EP2421334A2 - Switch system and method for operating a gas discharge lamp - Google Patents

Switch system and method for operating a gas discharge lamp Download PDF

Info

Publication number
EP2421334A2
EP2421334A2 EP20110174027 EP11174027A EP2421334A2 EP 2421334 A2 EP2421334 A2 EP 2421334A2 EP 20110174027 EP20110174027 EP 20110174027 EP 11174027 A EP11174027 A EP 11174027A EP 2421334 A2 EP2421334 A2 EP 2421334A2
Authority
EP
European Patent Office
Prior art keywords
circuit arrangement
voltage
arrangement according
control unit
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20110174027
Other languages
German (de)
French (fr)
Other versions
EP2421334A3 (en
Inventor
Ludger Wilken
Hans Siewerth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2421334A2 publication Critical patent/EP2421334A2/en
Publication of EP2421334A3 publication Critical patent/EP2421334A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/16Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies
    • H05B41/20Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch
    • H05B41/23Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps not having an auxiliary starting electrode
    • H05B41/231Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps not having an auxiliary starting electrode for high-pressure lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/16Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies
    • H05B41/18Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having a starting switch
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations

Definitions

  • the invention relates to a circuit arrangement and a method for operating a gas discharge lamp, in particular a high-pressure discharge lamp or low-pressure discharge lamp, which is operated on an inductive ballast and is connected in parallel to the lamp and serves to ignite the lamp and operate at a certain power.
  • Retro-fit lamps replace less efficient lamps, such as high-pressure mercury vapor lamps, with a luminous efficacy of about 50 lm / W. Retro-fit lamps contain more efficient lamps, such as metal halide high-pressure lamps or high-pressure sodium vapor lamps with luminous efficiencies of 100 lm / W and more.
  • the Retro-Fit lamp uses the magnetic ballast required to operate high pressure mercury vapor lamps. In order to reduce the power consumption of the higher-efficiency lamp at the same luminous flux, it has been proposed ( Fig. 1 ) [ WO 2008/104431 A1 ], the average lamp current and thus the lamp power by a switch connected in parallel to the lamp switch, which is closed at the end of each half-wave for a certain time to reduce.
  • This circuit has the characteristic that the harmonic mode according to IEC 61000-3-2 is fulfilled in the reduced-power operation.
  • Fig. 2 an embodiment of the circuit is shown in which the controllable switch is realized by a symmetrically switching triac.
  • the resistors, and the capacitor are selected so that after a certain time after a current zero crossing, for example 7 ms, a sufficient voltage is applied to the capacitor that the Diac X5 breaks through and ignites the triac X4.
  • the ignited triac closes the circuit for a short time and allows the impressed inductor current to flow almost loss-free, while the lamp is short-circuited and does not absorb any power.
  • the triac X4 opens automatically, whereby in the following half-wave again a current flows through the lamp, this takes up a power and generates light until the triac is closed again.
  • the network of the resistors, diodes and diac has a strong temperature dependence, whereby it is not possible to set a constant lamp power.
  • the lamp power is dependent on the voltage applied in each case.
  • this circuit arrangement also can not be provided, the ignition voltage required for the operation of a metal halide high-pressure lamp or high-pressure sodium vapor lamp.
  • the circuit arrangement according to the invention is suitable for a high-efficiency discharge lamp of high efficiency of 100 lm / W and more, which is connected to the magnetic ballast of a high-pressure mercury vapor lamp, e.g. a 125W lamp, so that the resulting lamp power is adjusted according to the preset value, e.g. 65 W, regardless of the temperature of the circuit of the mains voltage.
  • the circuit must include a device which can ignite the high pressure discharge lamp.
  • Fig. 3 the schematic diagram for such a circuit is shown.
  • the lamp is connected via the magnetic ballast and the ignition unit with the AC voltage source, eg 230 V.
  • the control unit for example a microcontroller.
  • the ignitor for example, a superimposed ignitor, high voltage pulses are generated, causing the lamp a voltage breakdowns and a takeover.
  • the ignitor is also controlled by the control unit.
  • the DC power supply supplies the control unit with a current.
  • the UI measuring unit provides the control unit with signals that are proportional to the lamp voltage and the lamp current.
  • the supplies UI measuring unit a signal proportional to the lamp voltage with which the voltage zero crossings can be detected very accurately.
  • the control unit has the task of the ignition at the appropriate time when the lamp is not burning to control.
  • the control unit evaluates the lamp power from the voltage and current signal. A certain time after the lamp is taken over, when the lamp power exceeds a certain value, eg 90 W, the control unit activates the controllable switch a few milliseconds before the end of each half-cycle, causing the lamp to short-circuit for a certain time and the lamp power on average is reduced.
  • the detection unit provides a signal for the lamp voltage zero crossing. The control unit evaluates this signal.
  • control unit A certain time after the voltage zero crossing, eg 7 ms, the control unit generates a signal which closes the controllable switch.
  • the control unit evaluates the lamp power from the signals of the U / I measuring unit within one or more periods and changes the delay time Td such that the available lamp power approaches the rated power, eg 65 W, with each period.
  • FIG Fig. 4 For a 65 W plug-in EL lamp, a first embodiment of a possible circuit arrangement in FIG Fig. 4 shown.
  • the AC power supply is connected to contacts L and N and the lamp is connected to contacts X5-1 and X5-2.
  • the magnetic ballast is located between the contacts L and X1-1 and is preferably for the operation of a 125 W high pressure mercury vapor lamp.
  • the control unit here the microcontroller D1 (Atmel ATiny44), requires a DC voltage source for operation, which can supply a sufficient large current of about 5 mA.
  • the capacitor C4 e.g. 470 ⁇ F, 10V
  • diode N1 e.g. 1N4007
  • the resistor R1, e.g. 68 ⁇ , 2W with the zener diode V3 in parallel with the capacitor, e.g. BZV85, the voltage limited to 5.1V.
  • a current flows through C3, R1 and the diode N4, whereby the current flow in both half-waves is about the same, and hereby no DC voltage builds up in the supply voltage.
  • a current of up to 10 A flows through this current path for a time of approximately 1 ⁇ s. All components, in particular the Zener diode, must be selected so that they can handle this current.
  • the storage capacitor C4 receives the capacitors C6, e.g. 10 ⁇ F and C5, e.g. 0.1 ⁇ F, connected in parallel to avoid a voltage increase during the ignition phase.
  • the microcontroller used requires a stable and accurate voltage as a reference for the internal voltage measurement.
  • the constant voltage source V1 is supplied with a voltage of 2.5 V with with an accuracy of 0.1%, eg ADR5041. This voltage is connected to the reference input of D1.
  • the ignition unit is essentially an electronic controlled superposition ignitor as described in EP 0847 681 B1 ] is proposed.
  • the switch is implemented in the superimposed ignition device by a triac T2, eg BTA201W-800E, which is ignited by the microcontroller with voltage pulses.
  • the triac When the triac is closed, the surge capacitor C2, for example 47 nF, is charged, the charging current being limited by the resistor R7, for example 18 k ⁇ / 2 W.
  • the capacitor C2 Exceeds the voltage applied to the capacitor C2, the ignition voltage of the voltage-controlled switch, the Sidacs V2, eg ONSemi, MKP3V240, this is closed, bringing the capacitor C2 via the secondary winding of the high voltage transformer L1, eg 6 turns on ferrite core, material EPCOS N87, and the throttle L2, eg 10 ⁇ H, is discharged.
  • the current flowing through the secondary winding of the high voltage transformer generates at the output of the primary winding, eg 62 turns, of the transformer a high voltage pulse which leads to a voltage breakdown in the high pressure discharge lamp.
  • the capacitor C3 is still a voltage, which here represents the transfer voltage for the lamp and maintains the arc current in the high pressure discharge lamp for a short time, and voltage applied to the output of the throttle can take over the arc.
  • the microcontroller During the ignition phase, the microcontroller generates over many periods until complete acceptance at regular intervals, e.g. every 100 ⁇ s, voltage pulses, which short-circuit triac T2 during the ignition phase. After the ignition phase during stationary lamp operation of the triac T2 is open and thus the ignition unit is not in operation, which has the advantage that in particular the resistor R7 during steady-state operation does not absorb power and Sidac because of the high Wiederzündspitzen not permanently short-circuits.
  • Fig. 5 Voltage and current measurements of the ignition unit are shown on an HCI-T 100 W lamp, showing the different phases in the ignition process, the applied mains voltage being 200V.
  • a switch such as a triac, connected in parallel with the lamp ( Fig. 1 ) [ WO 2008/104431 A1 ].
  • This circuit has the disadvantage that due to the rapid current changes during switching on the triac at the end of the half-wave and because of the relatively low impedance of the choke for higher frequencies, the limits for radio interference according to DIN EN 55015 are exceeded ( Fig. 6 , without choke L3 and capacitor C14).
  • a choke L3 is switched, for example with 330 ⁇ H, whereby the current increase during the switching on of the triac T1 is reduced.
  • a capacitor C14 for example 10 nF, is connected in parallel through the parallel to the triac T1 and the inductor L3, whereby the voltage breakdown occurring during switching is somewhat slowed down. This function is also supported by capacitor C3. Overall, this new circuit for power reduction meets the limit values according to DIN EN 55015 ( Fig. 6 )
  • triac T1 is fired by microcontroller D1, resistor R23, e.g. 39 ⁇ limits the current and the capacitor C12, e.g. 10 nF prevents interference, e.g. is ignited during the ignition phase of the triac T1.
  • the microcontroller D1 needs only a short voltage pulse, e.g. of 20 ⁇ s duration to ignite the triac, which advantageously results in that the current to be supplied by the DC power supply remains very small.
  • the microcontroller D1 must turn on the triac T1 at the appropriate time so that the lamp can burn stably without flicker. For this purpose, the microcontroller must detect the time of voltage zero crossing and after a certain time, eg 7 ms generate a signal that ignites the triac T1.
  • a voltage zero crossing detector of the prior art is shown.
  • the signal is applied via a high-resistance resistor R1 and the capacitor C1 to the positive input of a comparator in the microcontroller MC, wherein the likewise connected voltage parts of R4 and R5 generates a DC voltage component of 2.5 V, for example.
  • the negative input of the comparator is also connected to a voltage divider made up of R2 and R3, which generates a reference voltage of 2.5 V as well.
  • the voltage is short-circuited shorted by the triac before the voltage zero crossing, so that only the forward voltage of the triac 0.5 V is present as a voltage.
  • the existing voltage zero crossing results from a small voltage change of 0.5 V whereby the voltage zero crossing can not be detected cleanly even by small disturbances.
  • the upper diagram shows the lamp voltage and the lower diagram shows the signal of the voltage divider UZero, which is connected to the plus input of the comparator.
  • Uconst shows the voltage at the negative input of the comparator.
  • the voltage is proposed shortly after the zero crossing at the rising or falling edge at a threshold of, for example, ⁇ 50 V to detect.
  • the constant voltage applied to the negative input of the comparator is connected to a resistor R6 to an I / O output of the microcontroller ( Fig. 9 ).
  • the microcontroller knows from the voltage measurement which half-wave is currently available. If the triac T1 is closed in the positive half-cycle, the zero voltage is to be detected at the following drop in voltage at -50 V, which is achieved by the I / O output being switched to low a certain time after the triac T1 has been triggered which reduces the voltage at the minus input of the comparator to about - 3 V (see URefShift in Fig. 8 ) and thus the comparator switches about 190 ⁇ s after the voltage zero crossing. If the triac T1 is ignited in the negative half-wave, then the I / O output is switched to high, whereby the reference voltage is increased to approximately -2 V ( Fig. 8 ).
  • a modified form of this circuit is in the application example ( Fig. 4 ).
  • a signal with a DC voltage component of approximately - 2.5 V is generated, that via R15, eg 120 k ⁇ , to the I / O output connected.
  • the comparator By switching the I / O output to "high” or “low” at appropriate times, the signal is increased or decreased, whereby the comparator generates a trigger signal when the lamp voltage, the threshold value, eg +/- 50 V below or exceeds.
  • This circuit produces a delay of approximately 190 ⁇ s between the real voltage zero crossing and the detected voltage zero crossing. This value is the same for the positive and negative half wave. It represents a time delay, which is numerically corrected in the microcontroller.
  • Another possibility to realize different switching thresholds is to select an I / O input from the microcontroller.
  • the I / O input is set to "high” when a threshold voltage of 3.5 V is exceeded, and the I / O input is set to "low” when the threshold voltage falls below 1.5 V.
  • different thresholds are present, which leads to the generation of a trigger signal at a lamp voltage of +/- 50 V by a suitable dimensioning of the voltage divider.
  • An advantage of this device is that with a change in the supply voltage of the control unit, the switching threshold voltage adapt linearly, whereby a change in the input voltage is partially compensated by the resistor divider.
  • the control unit evaluates the power from a voltage and current measurement.
  • the microcontroller used in the application example, Atmel ATiny44 has ADC inputs that can measure differential voltages and are capable of amplifying the applied voltage by a factor of 20, so the signal only has to have a small dynamic range of 200 mV.
  • a reference voltage of about - 100 mV is generated, and applied to the negative input of the differential ADC from the microcontroller.
  • the voltage divider of R21, R22, e.g. 200 k ⁇ , R25, e.g. 2k ⁇ and R20, e.g. 100 ⁇ a small voltage is generated, which is shifted with R17 and R18 and the capacitor C10 with the same values as the resistance divider, the reference voltage to -100 mV, for example, which is then connected to the positive input of the ADC from the microcontroller.
  • a voltage is generated proportional to the lamp current.
  • this voltage signal is shifted to -100 mV and connected to a second positive ADC input of the microcontroller.
  • the difference between the signal for voltage and current to the reference signal is amplified by a factor of 20 and digitized with the internal AD converter.
  • the instantaneous power value is calculated from the product of the digitized voltage and current value. This measurement is repeated at constant time intervals, e.g. every 100 ⁇ s.
  • the performance itself is calculated as the average of these instantaneous performances over one or more periods.
  • the measured power is compared with the nominal power every few periods. Is the measured power greater than the nominal power plus a threshold or less the rated power minus a threshold, then the predetermined Tastpause is increased or decreased. This is repeated until the available power corresponds to the nominal power.
  • a light sensor can be integrated which generates a voltage signal that is proportional to the luminance and is measured by the control unit.
  • the control unit preferably detects the light signal at the times when the lamp is shorted by the triac T1 and the lamp does not generate light.
  • the control unit when it is dark in the vicinity of the lamp, and the light signal falls below a certain threshold turn on the lamp and when it gets bright again and the light signal exceeds another threshold, be turned off again, by closing the triac T1 for a while, eg 1 half-wave, is possible.
  • the light sensor can also be used to adjust the lamp power so that, depending on the ambient luminance, the lamp power is continuously reduced further, e.g. to 50 W, which can save additional energy.
  • controllable switch for the ignition device when the lamp is off and cold by a control unit, such as a microcontroller, is driven, and indeed for so long until the lamp has ignited that the controllable switch parallel to the lamp, after starting the lamp, from a certain lamp power consumption, is controlled by the control unit, in such a way that the Tastpause is slowly increased until reaching the rated power and then continue to operate is that the power is either constant or set to a predeterminable value.
  • the control unit must receive appropriate measures such as the voltage zero crossing.
  • the circuit for operating the lamp should preferably be integrated in a housing that is attached to the lamp. As a result, high temperatures of up to 110 ° C occur in electronics. In order for the circuit to have a sufficiently long life of e.g. 16000 has, only components are selected for the circuit, which have sufficiently small temperature-dependent failure rates. These failure rates are supplied by the manufacturers of electronic components. The total failure rate can be calculated from the sum of the failure rates of the individual components. For the given circuit it was estimated that at 16000 h and 110 ° C the failure rate is less than 2%.
  • the application example of the circuit arrangement is for operation on the magnetic ballast of a 125 W high-pressure mercury vapor lamp in which the lamp power is preferably set to 65 W.
  • the lamp power is preferably set to 65 W.
  • the power is preferably adjusted so that the resulting luminous flux of the lamp operated with this circuit is similar to the luminous flux of the lamp to be replaced.
  • the lamp output would be 65 W for a new light output of 100 lm / W.
  • This circuit arrangement can also be used for operation on magnetic ballasts for other lamps, for example on a magnetic ballast, which is provided for the operation of a high-pressure 80 W mercury vapor lamp.
  • the lamp power can also be adjusted arbitrarily up to a maximum power without the operation of the short-circuit switch.
  • Fig. 10 shows a second embodiment of the circuit arrangement according to the Fig. 4 , This embodiment is similar to the embodiment according to the Fig. 4 , therefore, only the differences between the two embodiments will be explained.
  • the resistor R7 is looped in the input and charges the capacitor C2.
  • the losses over the power resistor R7 are some 10 mW, which is acceptable.
  • the microcontroller measures the voltage applied and generates an ignition pulse for the triac T2, preferably at the maximum voltage (90 °, 50 Hz) and preferably once per half-wave.
  • a further improvement of the ignition behavior is achieved when several Ignition pulses are generated per half-wave, eg 3 pulses, which have a distance of about 300 microseconds.
  • the triac must be dimensioned so that this pulse currents of 20 A can withstand, which is ensured here by a 4 A triac.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

The arrangement has a switch connected parallel to a gas discharge lamp, and an inductor serially connected to the switch. An igniter e.g. switchable superimposed-pulse igniter, is controlled by a control device i.e. microcontroller, and utilizes a capacitor as a takeover capacitor in an upstream direct current (DC) supply unit. A detection unit detects zero-crossing voltage, and is connected with a comparator input and an input/output (I/O) output of the control unit. A reference part is attached to a negative input of a differential analog-to-digital (A/D) converter at the control unit.

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Schaltungsanordnung und ein Verfahren zum Betrieb einer Gasentladungslampe, insbesondere einer Hochdruckentladungslampe oder Niederdruckentladungslampe, die an einem induktiven Vorschaltgerät betrieben wird und parallel zur Lampe geschaltet ist und dazu dient die Lampe zu zünden und mit einer bestimmten Leistung zu betreiben.The invention relates to a circuit arrangement and a method for operating a gas discharge lamp, in particular a high-pressure discharge lamp or low-pressure discharge lamp, which is operated on an inductive ballast and is connected in parallel to the lamp and serves to ignite the lamp and operate at a certain power.

Hintergrundbackground

Retro-Fit Lampen ersetzen weniger effiziente Lampen, wie Quecksilberdampf-Hochdrucklampen mit einer Lichtausbeute von etwa 50 lm/W. Retro-Fit Lampen enthalten höher effiziente Lampen, wie Metallhalogenid-Hochdrucklampen oder Natriumdampf-Hochdrucklampen mit Lichtausbeuten von 100 lm/W und mehr. Die Retro-Fit Lampe nutzt das zum Betrieb von Quecksilberdampf-Hochdrucklampen erforderliche magnetische Vorschaltgerät. Um bei gleichem Lichtstrom die Leistungsaufnahme der höher effizienten Lampe zu reduzieren wurde vorgeschlagen (Fig. 1) [ WO 2008/104431 A1 ], den mittleren Lampenstrom und damit die Lampenleistung durch eine parallel zur Lampe geschalteten Schalter, der am Ende einer jeden Halbwelle für eine bestimmte Zeit geschlossen wird, zu reduzieren. Diese Schaltung hat die Eigenschaft, dass beim leistungsreduzierten Betrieb die Oberwellennorm gemäß der IEC 61000-3-2 erfüllt wird. In Fig. 2 ist eine Ausführungsform der Schaltung gezeigt, bei welcher der steuerbare Schalter durch einen symmetrisch schaltenden Triac realisiert wird. Bei der Ansteuerschaltung werden die Widerstände, und der Kondensator so gewählt, dass am Kondensator nach eine gewisse Zeit nach einem Stromnulldurchgang, .z.B. 7 ms, eine ausreichende Spannung anliegt, dass der Diac X5 durchbricht und den Triac X4 zündet. Der gezündete Triac schließt den Stromkreis kurz und lässt den eingeprägten Drosselstrom nahezu verlustfrei Weiterfließen, während die Lampe kurzgeschlossen ist und keine Leistung aufnimmt. Beim nächsten Stromnulldurchgang öffnet sich der Triac X4 selbstständig, womit in der darauffolgenden Halbwelle wieder ein Strom durch die Lampe fließt, diese eine Leistung aufnimmt und Licht erzeugt und zwar so lange bis der Triac abermals geschlossen wird. Nachteile an der in Fig. 2 gezeigte Schaltungsanordnungen sind, dass das Netzwerk aus den Widerständen, Dioden und dem Diac eine starke Temperaturabhängigkeit aufweißt, womit es nicht möglich ist eine konstante Lampenleistung einzustellen. Nachteilig ist ebenfalls, dass die Lampenleistung abhängig ist von der jeweils anliegenden Netzspannung. Durch diese Schaltungsanordnung kann ebenfalls nicht, die Zündspannung bereitgestellt werden, die für den Betrieb einer Metallhalogenid-Hochdrucklampe oder Natriumdampf-Hochdrucklampe erforderlich ist.Retro-fit lamps replace less efficient lamps, such as high-pressure mercury vapor lamps, with a luminous efficacy of about 50 lm / W. Retro-fit lamps contain more efficient lamps, such as metal halide high-pressure lamps or high-pressure sodium vapor lamps with luminous efficiencies of 100 lm / W and more. The Retro-Fit lamp uses the magnetic ballast required to operate high pressure mercury vapor lamps. In order to reduce the power consumption of the higher-efficiency lamp at the same luminous flux, it has been proposed ( Fig. 1 ) [ WO 2008/104431 A1 ], the average lamp current and thus the lamp power by a switch connected in parallel to the lamp switch, which is closed at the end of each half-wave for a certain time to reduce. This circuit has the characteristic that the harmonic mode according to IEC 61000-3-2 is fulfilled in the reduced-power operation. In Fig. 2 an embodiment of the circuit is shown in which the controllable switch is realized by a symmetrically switching triac. In the drive circuit, the resistors, and the capacitor are selected so that after a certain time after a current zero crossing, for example 7 ms, a sufficient voltage is applied to the capacitor that the Diac X5 breaks through and ignites the triac X4. The ignited triac closes the circuit for a short time and allows the impressed inductor current to flow almost loss-free, while the lamp is short-circuited and does not absorb any power. At the next current zero crossing, the triac X4 opens automatically, whereby in the following half-wave again a current flows through the lamp, this takes up a power and generates light until the triac is closed again. Cons to the in Fig. 2 Circuit arrangements shown are that the network of the resistors, diodes and diac has a strong temperature dependence, whereby it is not possible to set a constant lamp power. Another disadvantage is that the lamp power is dependent on the voltage applied in each case. By this circuit arrangement also can not be provided, the ignition voltage required for the operation of a metal halide high-pressure lamp or high-pressure sodium vapor lamp.

Aufgabetask

Es ist die Aufgabe der vorliegenden Erfindung eine Schaltungsanordnung für eine Retro-Fit Lampe zu schaffen, die die Zündung und eine leistungsreduzierten Betrieb der Hochdruckentladungslampe, bei einer vorgegebenen Leistung insbesondere bei höheren Temperaturen an den elektronischen Bauteilen ermöglicht.It is the object of the present invention to provide a circuit arrangement for a retro-fit lamp, the ignition and a reduced-power operation of the High-pressure discharge lamp, allows for a given performance, especially at higher temperatures on the electronic components.

Darüber hinaus sollen verschiedene Steuerungsmöglichkeiten, z.B. mit einem Dämmerungsschalter, einem Lichtsensor und externer Steuerung über Funksignale ermöglicht werden. An den folgenden Ausführungsbeispielen wird die Funktion der erfindungsgemäßen Schaltung erläutert.In addition, various control options, e.g. with a twilight switch, a light sensor and external control via radio signals. In the following embodiments, the function of the circuit according to the invention will be explained.

Darstellung der ErfindungPresentation of the invention

Die erfindungsgemäße Schaltungsanordnung ist geeignet, für eine Hochdruckentladungslampe mit hoher Effizienz von 100 lm/W und mehr, die an dem magnetischen Vorschaltgerät einer Quecksilberdampfhochdrucklampe, z.B. einer 125 W Lampe, so ansteuert, dass die sich einstellende Lampenleistung gemäß dem Vorgabewert, z.B. 65 W, ist und zwar unabhängig von der Temperatur der Schaltung der Netzspannung. Ebenso muss die Schaltung eine Vorrichtung enthalten, welche die Hochdruckentladungslampe zünden kann.The circuit arrangement according to the invention is suitable for a high-efficiency discharge lamp of high efficiency of 100 lm / W and more, which is connected to the magnetic ballast of a high-pressure mercury vapor lamp, e.g. a 125W lamp, so that the resulting lamp power is adjusted according to the preset value, e.g. 65 W, regardless of the temperature of the circuit of the mains voltage. Likewise, the circuit must include a device which can ignite the high pressure discharge lamp.

Kurze Beschreibung der Zeichnung(en)Short description of the drawing (s)

Fig. 1Fig. 1
Vereinfachte Schaltung zum leistungsreduzierten Betrieb einer Lampe mit einem Schalter parallel zur Lampe nach Stand der Technik.Simplified circuit for reduced-power operation of a lamp with a switch in parallel with the lamp of the prior art.
Fig. 2Fig. 2
Schaltung mit Ansteuerschaltung zum leistungsredu-zierten Betrieb einer Lampe nach Stand der Tech-nik.Circuit with drive circuit for reduced-power operation of a lamp according to the prior art.
Fig. 3Fig. 3
Prinzipschaltbild der Schaltung.Schematic diagram of the circuit.
Fig. 4Fig. 4
Erste Ausführungsform der erfindungsgemäßen Schal-tungsanordnung mit Mikrokontroller, DC Spannungs-versorgung, Kurzschlussschalter, Zündgerät, Span-nungsnulldurchgangsdetektor, Spannungs- und Strom-messvorrichtung zum Betrieb einer Hochdruckentla-dungslampe.First embodiment of the circuit arrangement according to the invention with microcontroller, DC voltage supply, short-circuit switch, ignitor, voltage zero-crossing detector, voltage and current measuring device for operating a high-pressure discharge lamp.
Fig. 5Fig. 5
Zündung und Übernahme der HCI 100 W / WDL Lampe bei einer Netzspannung von 200 V.Ignition and acceptance of the HCI 100 W / WDL lamp at a mains voltage of 200 V.
Fig. 6Fig. 6
Quasipeakspektren and Mittelwertspektren an einer Netznachbildung mit und ohne Drossel L3 und Kon-densator C14 sowie die Grenzwerte gemäß der DIN EN 55015.Quasipeak spectra and mean value spectra on a network simulation with and without choke L3 and capacitor C14 and the limit values according to DIN EN 55015.
Fig. 7Fig. 7
Vorrichtung zur Detektion des Spannungsnulldurch-ganges mit einem Mikrokontroller nach Stand der Technik.Device for detecting the voltage zero crossing with a microcontroller according to the prior art.
Fig. 8Fig. 8
Zeitabhängige-Spannungssignale, für die Spannung UD an der Drossel, Uzero am Spannungsteiler, einer konstanten Referenzspannung Uconst auf die man nicht triggern kann, und dem Referenzsignal URefS-hift, dass zum Triggern des Mikrokontrollers ge-nutzt werden kann.Time-dependent voltage signals, for the voltage UD at the inductor, Uzero at the voltage divider, a constant reference voltage Uconst on which one can not trigger, and the reference signal URefS-hift that can be used to trigger the microcontroller.
Fig. 9Fig. 9
Vorrichtung zur Detektion des Spannungsnulldurch-ganges mit einem Mikrokontroller, bei dem die Re-ferenzspannung des internen Komparators mit einem I/O-Ausgang rückgekoppelt wird, womit eine Schalt-schwelle entsteht, womit der Spannungsnulldurch-gang an der ansteigenden bzw. abfallende Flanke der Spannung detektiert wird.Device for detecting the voltage zero crossing with a microcontroller, wherein the reference voltage of the internal comparator with a I / O output is fed back, whereby a switching threshold is formed, whereby the voltage zero crossing at the rising or falling edge of the voltage is detected.
Fig. 10Fig. 10
Zweite Ausführungsform der erfindungsgemäßen Schaltungsanordnung mit Mikrokontroller, DC Span-nungsversorgung, Kurzschlussschalter, Zündgerät, Spannungsnulldurchgangsdetektor, Spannungs- und Strommessvorrichtung zum Betrieb einer Hochdruck-entladungslampe.Second embodiment of the circuit arrangement according to the invention with microcontroller, DC power supply, short-circuit switch, ignitor, voltage zero-crossing detector, voltage and current measuring device for operating a high-pressure discharge lamp.
Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

In Fig. 3 ist das Prinzipschaltbild für eine solche Schaltung gezeigt. In der klassischen Schaltung für Hochdruckentladungslampen ist die Lampe über das magnetische Vorschaltgerät und der Zündeinheit mit der AC Spannungsquelle, z.B. mit 230 V, verbunden. Für die Einstellung der reduzierten Leistung wird ein steuerbarer Schalter parallel zur Lampe angeordnet, der durch die Steuereinheit, z.B. einem Mikrokontroller, angesteuert wird. Mit dem Zündgerät, zum Beispiel einem Überlagerungszündgerät, werden Hochspannungsimpulse erzeugt, die bei der Lampe eine Spannungszusammenbrüche und eine Übernahme bewirken. Das Zündgerät wird ebenso von der Steuereinheit angesteuert. Die DC-Spannungsversorgung versorgt die Steuereinheit mit einem Strom. Die UI-Messeinheit stellt der Steuereinheit Signale zur Verfügung die proportional der Lampenspannung und dem Lampenstrom sind. Ebenso liefert die UI-Messeinheit ein Signal proportional der Lampenspannung mit dem die Spannungsnulldurchgänge sehr genau detektiert werden können. Die Steuereinheit hat die Aufgabe die Zündeinheit zum geeigneten Zeitpunkt wenn die Lampe nicht brennt anzusteuern. Die Steuereinheit wertet aus dem Spannungs- und Stromsignal die Lampenleistung aus. Eine gewisse Zeit nach der Übernahme der Lampe, wenn die Lampenleistung einen gewissen Wert überschreitet, z.B. 90 W steuert die Steuereinheit den steuerbaren Schalter an und zwar einige Millisekunden vor dem Ende einer jeden Halbwelle, wodurch die Lampe eine bestimmte Zeit kurzgeschlossen und die Lampenleistung im Mittel reduziert wird. Die Detektionseinheit liefert ein Signal für den Lampen-Spannungs-Nulldurchgang. Die Steuereinheit wertet dieses Signal aus. Eine gewisse Zeit nach dem Spannungs-nulldurchgang, z.B. 7 ms, erzeugt die Steuereinheit ein Signal, welchen den steuerbaren Schalter schließt. Die Steuereinheit wertet aus den Signalen der U/I-Messeinheit die Lampenleistung innerhalb einer oder mehrere Perioden aus und verändert die Verzögerungszeit Td so, dass die vorhandene Lampenleistung der Nennleistung, z.B. 65 W, mit jeder Periode näher kommt.In Fig. 3 the schematic diagram for such a circuit is shown. In the classic circuit for high-pressure discharge lamps, the lamp is connected via the magnetic ballast and the ignition unit with the AC voltage source, eg 230 V. For setting the reduced power, a controllable switch is arranged parallel to the lamp, which is controlled by the control unit, for example a microcontroller. With the ignitor, for example, a superimposed ignitor, high voltage pulses are generated, causing the lamp a voltage breakdowns and a takeover. The ignitor is also controlled by the control unit. The DC power supply supplies the control unit with a current. The UI measuring unit provides the control unit with signals that are proportional to the lamp voltage and the lamp current. Likewise, the supplies UI measuring unit, a signal proportional to the lamp voltage with which the voltage zero crossings can be detected very accurately. The control unit has the task of the ignition at the appropriate time when the lamp is not burning to control. The control unit evaluates the lamp power from the voltage and current signal. A certain time after the lamp is taken over, when the lamp power exceeds a certain value, eg 90 W, the control unit activates the controllable switch a few milliseconds before the end of each half-cycle, causing the lamp to short-circuit for a certain time and the lamp power on average is reduced. The detection unit provides a signal for the lamp voltage zero crossing. The control unit evaluates this signal. A certain time after the voltage zero crossing, eg 7 ms, the control unit generates a signal which closes the controllable switch. The control unit evaluates the lamp power from the signals of the U / I measuring unit within one or more periods and changes the delay time Td such that the available lamp power approaches the rated power, eg 65 W, with each period.

Anwendungsbeispielexample

Für eine 65 W PlugIn EL Lampe ist eine erste Ausführungsform einer möglichen Schaltungsanordnung in Fig. 4 gezeigt. Hier wird die AC-Spannungsversorgung an den Kontakten L und N und die Lampe an die Kontakte X5-1 und X5-2 angeschlossen. Das magnetische Vorschaltgerät befindet sich zwischen den Kontakten L und X1-1 und ist vorzugsweise für den Betrieb einer 125 W Quecksilberdampf-Hochdrucklampe bestimmt.For a 65 W plug-in EL lamp, a first embodiment of a possible circuit arrangement in FIG Fig. 4 shown. Here, the AC power supply is connected to contacts L and N and the lamp is connected to contacts X5-1 and X5-2. The magnetic ballast is located between the contacts L and X1-1 and is preferably for the operation of a 125 W high pressure mercury vapor lamp.

DC SpannungsversorgungDC power supply

Die Steuereinheit, hier der Mikrokontroller D1 (Atmel ATiny44), benötigt zum Betrieb eine Gleichspannungsquelle, die einen ausreichenden großen Strom von etwa 5 mA liefern kann. Bei der DC Spannungsversorgung wird während der negativen Spannungshalbwelle der Kondensator C4, z.B. 470 µF, 10 V, über die Diode N1, z.B. 1N4007, dem Strombegrenzungskondensator C3, z.B. 220 nF, 400 V, und dem Vorwiderstand R1, z.B. 68 Ω, 2 W, aufgeladen, wobei die parallel zum Kondensator befindliche Zenerdiode V3, z.B. BZV85, die Spannung auf 5.1 V begrenzt. Während der positiven Spannungshalbwelle fließt ein Strom über C3, R1 und die Diode N4, womit der Stromfluss in beiden Halbwellen etwa gleich ist, und sich hiermit kein DC Spannung in der Versorgungsspannung aufbaut. Während der Zündphase fließt durch diesen Strompfad ein Strom bis 10 A für eine Zeit von etwa 1 µs. Alle Bauelemente, insbesondere die Zenerdiode, müssen so ausgewählt werden, dass sie diesen Strom vertragen können. Dem Speicherkondensator C4 werden die Kondensatoren C6, z.B. 10 µF und C5, z.B. 0.1 µF, parallel geschaltet, um eine Spannungsüberhöhung während der Zündphase zu vermeiden.The control unit, here the microcontroller D1 (Atmel ATiny44), requires a DC voltage source for operation, which can supply a sufficient large current of about 5 mA. In the case of the DC power supply, during the negative voltage half cycle the capacitor C4, e.g. 470 μF, 10V, via diode N1, e.g. 1N4007, the current limiting capacitor C3, e.g. 220 nF, 400 V, and the resistor R1, e.g. 68Ω, 2W, with the zener diode V3 in parallel with the capacitor, e.g. BZV85, the voltage limited to 5.1V. During the positive voltage half-wave, a current flows through C3, R1 and the diode N4, whereby the current flow in both half-waves is about the same, and hereby no DC voltage builds up in the supply voltage. During the ignition phase, a current of up to 10 A flows through this current path for a time of approximately 1 μs. All components, in particular the Zener diode, must be selected so that they can handle this current. The storage capacitor C4 receives the capacitors C6, e.g. 10 μF and C5, e.g. 0.1 μF, connected in parallel to avoid a voltage increase during the ignition phase.

Der eingesetzte Mikrokontroller benötigt eine stabile und genaue Spannung als Referenz für die interne Spannungsmessung. Zu diesem Zweck wird ausgehend von der DC Versorgungsspannung über den Widerstand R2 die Konstantspannungsquelle V1 versorgt, die eine Spannung von 2.5 V mit einer Genauigkeit von 0.1% erzeugt, z.B. ADR5041. Diese Spannung wird an den Referenzeingang von D1 angeschlossen.The microcontroller used requires a stable and accurate voltage as a reference for the internal voltage measurement. For this purpose, starting from the DC supply voltage via the resistor R2, the constant voltage source V1 is supplied with a voltage of 2.5 V with with an accuracy of 0.1%, eg ADR5041. This voltage is connected to the reference input of D1.

Zündungignition

Die Zündeinheit ist im Wesentlichen ein elektronische gesteuertes Überlagerungszündgerät wie es in [ EP 0847 681 B1 ] vorgeschlagen wird. In dem Anwendungsbeispiel (Fig. 4) wird der Schalter im Überlagerungszündgerät durch einen Triac T2, z.B. BTA201W-800E, realisiert, der vom Mikrokontroller mit Spannungsimpulsen gezündet wird. Beim Schließen des Triacs wird der Stoßkondensator C2, z.B. 47 nF, aufgeladen, wobei der Aufladestrom durch den Widerstand R7, z.B. 18 kΩ / 2 W, begrenzt wird. Überschreitet die am Kondensator C2 anliegende Spannung die Zündspannung des spannungsgesteuerten Schalters, des Sidacs V2, z.B. ONSemi, MKP3V240, wird dieser geschlossen, womit sich der Kondensator C2 über die sekundäre Wicklung des Hochspannungstransformators L1, z.B. 6 Windungen, auf Ferritkern, Material EPCOS N87, und der Drossel L2, z.B. 10 µH, entladen wird. Der durch die Sekundärwicklung des Hochspannungstransformators fließende Strom erzeugt am Ausgang der Primärwicklung, z.B. 62 Windungen, des Transformators einen Hochspannungsimpuls, der bei der Hochdruckentladungslampe zu einem Spannungszusammenbruch führt. Nach dem Spannungszusammenbruch liegt am Kondensator C3 immer noch eine Spannung an, die hier die Übernahmespannung für die Lampe darstellt und den Bogenstrom in der Hochdruckentladungslampe über kurze Zeit aufrechterhält, und am Ausgang der Drossel anliegende Spannung die Bogenentladung übernehmen kann.The ignition unit is essentially an electronic controlled superposition ignitor as described in EP 0847 681 B1 ] is proposed. In the application example ( Fig. 4 ), the switch is implemented in the superimposed ignition device by a triac T2, eg BTA201W-800E, which is ignited by the microcontroller with voltage pulses. When the triac is closed, the surge capacitor C2, for example 47 nF, is charged, the charging current being limited by the resistor R7, for example 18 kΩ / 2 W. Exceeds the voltage applied to the capacitor C2, the ignition voltage of the voltage-controlled switch, the Sidacs V2, eg ONSemi, MKP3V240, this is closed, bringing the capacitor C2 via the secondary winding of the high voltage transformer L1, eg 6 turns on ferrite core, material EPCOS N87, and the throttle L2, eg 10 μH, is discharged. The current flowing through the secondary winding of the high voltage transformer generates at the output of the primary winding, eg 62 turns, of the transformer a high voltage pulse which leads to a voltage breakdown in the high pressure discharge lamp. After the voltage breakdown, the capacitor C3 is still a voltage, which here represents the transfer voltage for the lamp and maintains the arc current in the high pressure discharge lamp for a short time, and voltage applied to the output of the throttle can take over the arc.

Während der Zündphase erzeugt der Mikrokontroller über viele Perioden hinweg bis zur vollständigen Übernahme in regelmäßigen Abständen, z.B. alle 100 µs, Spannungsimpulse, womit der Triac T2 während der Zündphase kurzgeschlossen wird. Nach der Zündphase beim stationären Lampenbetrieb ist der Triac T2 geöffnet und damit die Zündeinheit nicht in Betrieb, was den Vorteil ergibt, dass insbesondere der Widerstand R7 während des stationären Betriebes keine Leistung aufnimmt und der Sidac wegen der hohen Wiederzündspitzen nicht dauernd kurzschließt.During the ignition phase, the microcontroller generates over many periods until complete acceptance at regular intervals, e.g. Every 100 μs, voltage pulses, which short-circuit triac T2 during the ignition phase. After the ignition phase during stationary lamp operation of the triac T2 is open and thus the ignition unit is not in operation, which has the advantage that in particular the resistor R7 during steady-state operation does not absorb power and Sidac because of the high Wiederzündspitzen not permanently short-circuits.

In Fig. 5 werden Spannungs- und Strommessungen der Zündeinheit an einer HCI-T 100 W Lampe gezeigt, die die unterschiedlichen Phasen bei dem Zündprozess zeigen, wobei die anliegende Netzspannung 200 V beträgt.In Fig. 5 Voltage and current measurements of the ignition unit are shown on an HCI-T 100 W lamp, showing the different phases in the ignition process, the applied mains voltage being 200V.

Schaltung zum leistungsreduzierten BetriebCircuit for reduced-power operation

Für den leistungsreduzierten Betrieb der Lampe wird nach dem Stand der Technik ein Schalter, wie ein Triac, parallel zur Lampe geschaltet (Fig. 1) [ WO 2008/104431 A1 ]. Diese Schaltung hat den Nachteil, dass aufgrund der schnellen Stromänderungen während des Einschaltens des Triacs am Ende der Halbwelle und wegen der relativ geringen Impedanz der Drossel für höhere Frequenzen die Grenzwerte für Funkstörungen nach der DIN EN 55015 überschritten werden (Fig. 6, ohne Drossel L3 und Kondensator C14). In der erfindungsgemäßen Schaltung wird in Reihe zum Triac T1 eine Drossel L3, z.B. mit 330 µH, geschaltet womit der Stromanstieg während des Einschaltens des Triacs T1 verringert wird. Zusätzlich wird durch den parallel zum Triac T1 und der Drossel L3 ein Kondensator C14, z.B. 10 nF, parallel geschaltet, womit der beim Schalten entstehende Spannungszusammenbruch etwas verlangsamt wird. Diese Funktion wird ebenso durch den Kondensator C3 unterstützt. Insgesamt erfüllt diese neue Schaltung zur Leistungsreduktion die Grenzwerte gemäß der DIN EN 55015 (Fig. 6)For the reduced-power operation of the lamp according to the prior art, a switch, such as a triac, connected in parallel with the lamp ( Fig. 1 ) [ WO 2008/104431 A1 ]. This circuit has the disadvantage that due to the rapid current changes during switching on the triac at the end of the half-wave and because of the relatively low impedance of the choke for higher frequencies, the limits for radio interference according to DIN EN 55015 are exceeded ( Fig. 6 , without choke L3 and capacitor C14). In the circuit according to the invention, in series with the triac T1, a choke L3 is switched, for example with 330 μH, whereby the current increase during the switching on of the triac T1 is reduced. In addition, a capacitor C14, for example 10 nF, is connected in parallel through the parallel to the triac T1 and the inductor L3, whereby the voltage breakdown occurring during switching is somewhat slowed down. This function is also supported by capacitor C3. Overall, this new circuit for power reduction meets the limit values according to DIN EN 55015 ( Fig. 6 )

In der neuen Schaltungsausführung wird der Triac T1 durch den Mikrokontroller D1 gezündet, wobei der Widerstand R23, z.B. 39 Ω den Strom begrenzt und der Kondensator C12, z.B. 10 nF verhindert, dass durch Störungen, z.B. während der Zündphase der Triac T1 gezündet wird. In dieser Schaltung braucht der Mikrokontroller D1 nur einen kurzen Spannungsimpuls, z.B. von 20 µs Dauer erzeugen, um den Triac zu zünden, was in vorteilhafter Weise dazu führt, dass der von der DC Spannungsversorgung zu liefernde Strom sehr klein bleibt.In the new circuit design, triac T1 is fired by microcontroller D1, resistor R23, e.g. 39 Ω limits the current and the capacitor C12, e.g. 10 nF prevents interference, e.g. is ignited during the ignition phase of the triac T1. In this circuit, the microcontroller D1 needs only a short voltage pulse, e.g. of 20 μs duration to ignite the triac, which advantageously results in that the current to be supplied by the DC power supply remains very small.

Detektion des SpannungsnulldurchgangesDetection of the voltage zero crossing

Der Mikrokontroller D1 muss den Triac T1 zum passenden Zeitpunkt einschalten, damit die Lampe ohne zu Flickern stabil brennen kann. Zu diesem Zweck muss der Mikrokontroller den Zeitpunkt des Spannungsnulldurchganges detektieren und nach einer gewissen Zeit, z.B. 7 ms ein Signal erzeugen, das den Triac T1 zündet.The microcontroller D1 must turn on the triac T1 at the appropriate time so that the lamp can burn stably without flicker. For this purpose, the microcontroller must detect the time of voltage zero crossing and after a certain time, eg 7 ms generate a signal that ignites the triac T1.

In Fig. 7 ist ein Spannungsnulldurchgangsdetektor nach dem Stand der Technik gezeigt. Bei diesem wird das Signal über einen hochohmigen Widerstand R1 und den Kondensator C1 an den Pluseingang eines Komparators im Mikrokontroller MC gelegt, wobei der ebenfalls angeschlossene Spannungsteile aus R4 und R5 einen DC-Spannungsanteil von z.B. 2.5 V erzeugt. Der Minuseingang des Komparators ist ebenfalls an einem Spannungsteiler aus R2 und R3 angeschlossen womit eine Referenzspannung, von ebenfalls 2.5 V erzeugt wird. Beim Spannungsnulldurchgang vom Eingang Neutral ändert sich das Signal am Pluseingang, womit der Komparator umschaltet und damit ein Signal für den Spannungsnulldurchgang erzeugt. Bei der eingesetzten Schaltung mit dem Schalter parallel zur Lampe ist vor dem Spannungsnulldurchgang die Spannung kurzgeschlossen durch den Triac kurzgeschlossen, womit nur die Flussspannung des Triacs 0.5 V als Spannung vorhanden ist. Der vorhandene Spannungsnulldurchgang ergibt sich aus einer kleinen Spannungsänderung von 0.5 V womit der Spannungsnulldurchgang schon durch kleine Störungen nicht mehr sauber detektiert werden kann. In Fig. 8 ist im oberen Diagramm die Lampenspannung und im unteren Diagramm das Signal des Spannungsteilers UZero gezeigt, dass am Plus-Eingang des Komparators anliegt. Uconst zeigt die Spannung am Minuseingang des Komparators. Beim Spannungsnulldurchgang ist zwischen Uzero und Uconst keine saubere Schaltschwelle vorhanden.In Fig. 7 For example, a voltage zero crossing detector of the prior art is shown. In this case, the signal is applied via a high-resistance resistor R1 and the capacitor C1 to the positive input of a comparator in the microcontroller MC, wherein the likewise connected voltage parts of R4 and R5 generates a DC voltage component of 2.5 V, for example. The negative input of the comparator is also connected to a voltage divider made up of R2 and R3, which generates a reference voltage of 2.5 V as well. When zero voltage passes from the neutral input, the signal at the plus input changes, causing the comparator to switch, thus generating a voltage zero crossing signal. In the circuit used with the switch in parallel with the lamp, the voltage is short-circuited shorted by the triac before the voltage zero crossing, so that only the forward voltage of the triac 0.5 V is present as a voltage. The existing voltage zero crossing results from a small voltage change of 0.5 V whereby the voltage zero crossing can not be detected cleanly even by small disturbances. In Fig. 8 the upper diagram shows the lamp voltage and the lower diagram shows the signal of the voltage divider UZero, which is connected to the plus input of the comparator. Uconst shows the voltage at the negative input of the comparator. When voltage zero crossing between Uzero and Uconst no clean threshold is present.

Da der Spannungsnulldurchgang selbst nicht eindeutig detektierbar ist, wird vorgeschlagen die Spannung kurz nach dem Nulldurchgang an der ansteigenden bzw. abfallenden Flanke an einem Schwellenwert von, z.B. ± 50 V zu detektieren.Since the voltage zero crossing itself is not clearly detectable, the voltage is proposed shortly after the zero crossing at the rising or falling edge at a threshold of, for example, ± 50 V to detect.

In einer möglichen Ausführungsform wird die konstante Spannung die am negativen Eingang des Komparators anliegt, mit einem Widerstand R6 an einen I/O Ausgang des Mikrokontrollers angeschlossen (Fig. 9). Der Mikrokontroller weiß aus der Spannungsmessung welche Halbwelle gerade vorhanden ist. Wird in der positiven Halbwelle der Triac T1 geschlossen soll bei dem folgenden Abfall der Spannung bei - 50 V, der Nulldurchgang detektiert werden, was dadurch erreicht wird, dass der I/O-Ausgang eine gewisse Zeit nach dem Zünden des Triacs T1 auf Low geschaltet wird, womit die Spannung am Minus-Eingang des Komparators auf etwa - 3 V reduziert wird (siehe URefShift in Fig. 8) und damit der Komparator etwa 190 µs nach dem Spannungsnulldurchgang schaltet. Wird in der negativen Halbwelle der Triac T1 gezündet, so wird der I/O-Ausgang auf high geschaltet, womit die Referenzspannung auf etwa - 2 V erhöht wird (Fig. 8).In one possible embodiment, the constant voltage applied to the negative input of the comparator is connected to a resistor R6 to an I / O output of the microcontroller ( Fig. 9 ). The microcontroller knows from the voltage measurement which half-wave is currently available. If the triac T1 is closed in the positive half-cycle, the zero voltage is to be detected at the following drop in voltage at -50 V, which is achieved by the I / O output being switched to low a certain time after the triac T1 has been triggered which reduces the voltage at the minus input of the comparator to about - 3 V (see URefShift in Fig. 8 ) and thus the comparator switches about 190 μs after the voltage zero crossing. If the triac T1 is ignited in the negative half-wave, then the I / O output is switched to high, whereby the reference voltage is increased to approximately -2 V ( Fig. 8 ).

Eine modifizierte Form dieser Schaltung ist im Anwendungsbeispiel (Fig. 4) gezeigt. Bei diesem wird über das Widerstandsnetzwerk aus R8, R9, R6, R10, jeweils z.B. 100 kΩ, R11, z.B. 680 kΩ ein Signal mit einem DC-Spannungsanteil von etwa - 2.5 V erzeugt, dass über R15, z.B. 120 kΩ an den I/O-Ausgang angeschlossen. Durch die Schaltung des I/O-Ausgangs auf "high" oder "low" zu geeigneten Zeitpunkten wird das Signal vergrößert oder verkleinert, womit der Komparator ein Triggersignal erzeugt, wenn die Lampenspannung den Schwellenwert, z.B. +/- 50 V unter- bzw. überschreitet.A modified form of this circuit is in the application example ( Fig. 4 ). In this case, via the resistor network of R8, R9, R6, R10, in each case eg 100 kΩ, R11, eg 680 kΩ, a signal with a DC voltage component of approximately - 2.5 V is generated, that via R15, eg 120 kΩ, to the I / O output connected. By switching the I / O output to "high" or "low" at appropriate times, the signal is increased or decreased, whereby the comparator generates a trigger signal when the lamp voltage, the threshold value, eg +/- 50 V below or exceeds.

Durch diese Schaltung entsteht zwischen dem realen Spannungsnulldurchgang und dem detektierten Spannungsnulldurchgang eine Verzögerung von etwa 190 µs. Dieser Wert ist für die positive und negative Halbwelle gleich. Er stellt einen zeitliche Verzögerung dar, die im Mikrokontroller numerisch korrigiert wird.This circuit produces a delay of approximately 190 μs between the real voltage zero crossing and the detected voltage zero crossing. This value is the same for the positive and negative half wave. It represents a time delay, which is numerically corrected in the microcontroller.

Eine weitere Möglichkeit unterschiedliche Schaltschwellen zu realisieren besteht darin eine I/O-Eingang vom Mikrokontroller zu wählen. Bei einer Versorgungsspannung von 5 V wird bei Überschreiten einer Schwellenspannung von 3.5 V der I/O-Eingang auf "high" und bei Unterschreiten einer Schwellenspannung von 1.5 V der I/O-Eingang auf "low" gestellt. Hiermit sind unterschiedliche Schwellen vorhanden, die durch eine geeignete Dimensionierung des Spannungsteilers zu der Generierung eines Triggersignals bei einer Lampenspannung von +/- 50 V führt. Vorteilhaft an dieser Vorrichtung ist, dass mit einer Veränderung der Versorgungsspannung der Steuereinheit sich die Schaltschwellenspannung linear anpassen, womit eine Änderung der Eingangsspannung von dem Widerstandsteiler teilweise kompensiert wird.Another possibility to realize different switching thresholds is to select an I / O input from the microcontroller. At a supply voltage of 5 V, the I / O input is set to "high" when a threshold voltage of 3.5 V is exceeded, and the I / O input is set to "low" when the threshold voltage falls below 1.5 V. With this, different thresholds are present, which leads to the generation of a trigger signal at a lamp voltage of +/- 50 V by a suitable dimensioning of the voltage divider. An advantage of this device is that with a change in the supply voltage of the control unit, the switching threshold voltage adapt linearly, whereby a change in the input voltage is partially compensated by the resistor divider.

Leistungsmessung und Regelung auf konstante LeistungPower measurement and control to constant power

Die Steuereinheit wertet aus einer Spannungs- und Strommessung die Leistung aus. Der im Anwendungsbeispiel eingesetzte Mikrokontroller, Atmel ATiny44, hat ADC-Eingänge, die Differenzspannungen messen können und in der Lage sind die anliegende Spannung um den Faktor 20 zu verstärken, womit das Signal nur einen kleinen Dynamikbereich von 200 mV haben muss.The control unit evaluates the power from a voltage and current measurement. The microcontroller used in the application example, Atmel ATiny44, has ADC inputs that can measure differential voltages and are capable of amplifying the applied voltage by a factor of 20, so the signal only has to have a small dynamic range of 200 mV.

Mit dem Widerstandsteiler aus R16, z.B. 1 kΩ und R18, z.B. 47 kΩ sowie dem Kondensator C11, z.B. 220 pF wird eine Referenzspannung von etwa - 100 mV erzeugt, und an den negativen Eingang des differenziellen ADC vom Mikrokontroller gelegt. Mit dem Spannungsteiler aus R21, R22, z.B. 200 kΩ, R25, z.B. 2 kΩ und R20, z.B. 100 Ω wird eine kleine Spannung erzeugt, die mit R17 und R18 sowie dem Kondensator C10 mit den gleichen Werten wie beim Widerstandsteiler die Referenzspannung auf beispielsweise -100 mV verschoben wird, die dann an den positiven Eingang des ADC vom Mikrocontroller angeschlossen wird.With the resistor divider made of R16, e.g. 1kΩ and R18, e.g. 47 kΩ and the capacitor C11, e.g. 220 pF, a reference voltage of about - 100 mV is generated, and applied to the negative input of the differential ADC from the microcontroller. With the voltage divider of R21, R22, e.g. 200 kΩ, R25, e.g. 2kΩ and R20, e.g. 100 Ω, a small voltage is generated, which is shifted with R17 and R18 and the capacitor C10 with the same values as the resistance divider, the reference voltage to -100 mV, for example, which is then connected to the positive input of the ADC from the microcontroller.

Mit dem Shuntwiderstand R3, z.B. 0.05 Ω wird eine Spannung proportional dem Lampenstrom erzeugt. Mit dem Netzwerk aus R4, R5 und C7 mit den gleichen Werten wie beim Widerstandsteiler für die Referenzspannung wird dieses Spannungssignal auf -100 mV verschoben und wird an einen zweiten positiven ADC-Eingang des Mikrocontrollers angeschlossen. Die Differenz des Signals für Spannung und Strom zum Referenzsignal wird um den Faktor 20 verstärkt und mit dem internen AD-Wandlers digitalisiert. Aus dem Produkt des digitalisieren Spannungs- und Stromwertes wird der Momentanwert der Leistung berechnet. Diese Messung wird in konstanten zeitlichen Abständen wiederholt, z.B. alle 100 µs. Die Leistung selbst wird als Mittelwert dieser Momentanleistungen über ein oder mehreren Perioden ermittelt.With the shunt resistor R3, e.g. 0.05 Ω, a voltage is generated proportional to the lamp current. With the network of R4, R5 and C7 having the same values as the reference voltage resistor divider, this voltage signal is shifted to -100 mV and connected to a second positive ADC input of the microcontroller. The difference between the signal for voltage and current to the reference signal is amplified by a factor of 20 and digitized with the internal AD converter. The instantaneous power value is calculated from the product of the digitized voltage and current value. This measurement is repeated at constant time intervals, e.g. every 100 μs. The performance itself is calculated as the average of these instantaneous performances over one or more periods.

Die gemessene Leistung wird alle paar Perioden mit der Nennleistung verglichen. Ist die gemessene Leistung größer als die Nennleistung plus eines Schwellenwerts oder kleiner der Nennleistung minus eines Schwellenwerts, dann wird die vorgegebene Tastpause vergrößert beziehungsweise verkleinert. Dieses wird solange wiederholt bis die vorhandene Leistung der Nennleistung entspricht.The measured power is compared with the nominal power every few periods. Is the measured power greater than the nominal power plus a threshold or less the rated power minus a threshold, then the predetermined Tastpause is increased or decreased. This is repeated until the available power corresponds to the nominal power.

Lichtsensorlight sensor

In der Schaltungsanordnung zum Betrieb einer Lampe kann ein Lichtsensor integriert werden, der ein der Leuchtdichte proportionales Spannungssignal erzeugt, dass von der Steuereinheit gemessen wird. Damit das Lichtsignal nicht durch das Licht der Lampe gestört wird, erfasst die Steuereinheit das Lichtsignal vorzugsweise zu den Zeiten and den die Lampe durch den Triac T1 kurzgeschlossen wird und die Lampe kein Licht erzeugt. Mit Hilfe des Lichtsensors kann die Steuereinheit wenn es in der Umgebung der Lampe dunkel wird, und das Lichtsignal einen gewissen Schwellenwert unterschreitet die Lampe einschalten und wenn es wieder hell wird und das Lichtsignal einen anderen Schwellenwert überschreitet wieder ausgeschaltet werden, was durch das Schließen des Triacs T1 für eine gewisse Zeit, z.B. 1 Halbwelle, möglich ist. Der Lichtsensor kann natürlich auch dazu benutzt werden, die Lampenleistung so einzustellen, dass abhängig von der Umgebungsleuchtdichte die Lampenleistung stufenlos weiter reduziert wird, z.B. auf 50 W, womit zusätzliche Energie eingespart werden kann.In the circuit arrangement for operating a lamp, a light sensor can be integrated which generates a voltage signal that is proportional to the luminance and is measured by the control unit. In order that the light signal is not disturbed by the light of the lamp, the control unit preferably detects the light signal at the times when the lamp is shorted by the triac T1 and the lamp does not generate light. With the aid of the light sensor, the control unit, when it is dark in the vicinity of the lamp, and the light signal falls below a certain threshold turn on the lamp and when it gets bright again and the light signal exceeds another threshold, be turned off again, by closing the triac T1 for a while, eg 1 half-wave, is possible. Of course, the light sensor can also be used to adjust the lamp power so that, depending on the ambient luminance, the lamp power is continuously reduced further, e.g. to 50 W, which can save additional energy.

Die Aufgabe wird erfindungsgemäß dadurch erfüllt, dass der steuerbare Schalter für die Zündvorrichtung, wenn die Lampe aus und kalt ist durch eine Steuereinheit, wie einem Mikrokontroller, angesteuert wird, und zwar so lange bis die Lampe gezündet hat, dass der steuerbare Schalter parallel zur Lampe, nach dem Anlaufen der Lampe, ab einer gewissen Lampenleistungsaufnahme, von der Steuereinheit angesteuert wird, und zwar so, dass die Tastpause langsam bis zum Erreichen der Nennleistung vergrößert wird und dann so weiterbetrieben wird, dass die Leistung entweder konstant ist oder auf einen vorgebbaren Wert eingestellt wird. Zum Erfüllen dieser Aufgaben muss die Steuereinheit geeignete Messgrößen wie den Spannungsnulldurchgang erhalten.The object is achieved in that the controllable switch for the ignition device, when the lamp is off and cold by a control unit, such as a microcontroller, is driven, and indeed for so long until the lamp has ignited that the controllable switch parallel to the lamp, after starting the lamp, from a certain lamp power consumption, is controlled by the control unit, in such a way that the Tastpause is slowly increased until reaching the rated power and then continue to operate is that the power is either constant or set to a predeterminable value. To accomplish these tasks, the control unit must receive appropriate measures such as the voltage zero crossing.

Temperaturbeständigkeittemperature resistance

Die Schaltung zum Betrieb der Lampe soll vorzugsweise in einem Gehäuse integriert werden, dass an die Lampe befestigt wird. Hierdurch entstehen in der Elektronik hohe Temperaturen bis 110°C. Damit die Schaltung einen ausreichend große Lebensdauer von z.B. 16000 hat, werden für die Schaltung nur Bauelemente ausgewählt, die ausreichend kleine temperaturabhängige Ausfallraten haben. Diese Ausfallraten werden von den Herstellern der elektronischen Bauteile geliefert. Die gesamte Ausfallrate kann aus der Summe der Ausfallraten der einzelnen Bauteile berechnet werden. Für die gegebene Schaltung wurde abgeschätzt, dass bei 16000 h und 110°C die Ausfallrate kleiner 2% ist.The circuit for operating the lamp should preferably be integrated in a housing that is attached to the lamp. As a result, high temperatures of up to 110 ° C occur in electronics. In order for the circuit to have a sufficiently long life of e.g. 16000 has, only components are selected for the circuit, which have sufficiently small temperature-dependent failure rates. These failure rates are supplied by the manufacturers of electronic components. The total failure rate can be calculated from the sum of the failure rates of the individual components. For the given circuit it was estimated that at 16000 h and 110 ° C the failure rate is less than 2%.

Weitere Anwendungen der SchaltungsanordnungFurther applications of the circuit arrangement

Das Anwendungsbeispiel für die Schaltungsanordnung ist für den Betrieb an dem magnetischen Vorschaltgerät einer 125 W Quecksilberdampf-Hochdrucklampe bei der die Lampenleistung vorzugsweise auf 65 W eingestellt wird. Beim Betrieb an diesem Vorschaltgerät ist es möglich beliebige Lampenleistungen zwischen etwa 30 W und der maximalen Leistung ohne Betrieb des Kurzschlussschalters, was etwas 110 W sind, einzustellen. Hierbei wird die Leistung vorzugsweise so eingestellt, dass der entstehende Lichtstrom der mit dieser Schaltung betriebenen Lampe ähnlich groß ist wie der Lichtstrom der zu ersetzenden Lampe. Bei einer 125 W Quecksilberdampf-Hochdrucklampe wäre bei einer Lichtausbeute von 100 lm/W für die neue Lampe die Lampenleistung 65 W.The application example of the circuit arrangement is for operation on the magnetic ballast of a 125 W high-pressure mercury vapor lamp in which the lamp power is preferably set to 65 W. When operating on this ballast, it is possible any Lamp power between about 30 W and the maximum power without operating the short-circuit switch, which is a little 110 W to set. In this case, the power is preferably adjusted so that the resulting luminous flux of the lamp operated with this circuit is similar to the luminous flux of the lamp to be replaced. For a 125 W high-pressure mercury vapor lamp, the lamp output would be 65 W for a new light output of 100 lm / W.

Diese Schaltungsanordnung kann auch für den Betrieb an magnetischen Vorschaltgeräten für andere Lampen eingesetzt werden, beispielsweise an einem magnetischen Vorschaltgerät, das für den Betrieb einer 80 W Quecksilberdampf-Hochdrucklampe vorgesehen ist. Für diese Schaltung kann dann die Lampenleistung ebenfalls beliebig bis zu einer maximalen Leistung ohne den Betrieb des Kurzschlussschalters eingestellt werden.This circuit arrangement can also be used for operation on magnetic ballasts for other lamps, for example on a magnetic ballast, which is provided for the operation of a high-pressure 80 W mercury vapor lamp. For this circuit then the lamp power can also be adjusted arbitrarily up to a maximum power without the operation of the short-circuit switch.

Fig. 10 zeigt eine zweite Ausführungsform der Schaltungsanordnung gemäß der Fig. 4. Diese Ausführungsform ist ähnlich zur Ausführungsform gemäß der Fig. 4, es werden daher nur die Unterschiede beider Ausführungsformen erläutert. Fig. 10 shows a second embodiment of the circuit arrangement according to the Fig. 4 , This embodiment is similar to the embodiment according to the Fig. 4 , therefore, only the differences between the two embodiments will be explained.

In dieser Ausführungsform ist der Widerstand R7 im Eingang eingeschleift und lädt den Kondensator C2 auf. Die Verluste über den Leistungswiderstand R7 liegen bei einigen 10 mW, was akzeptabel ist. Der Mikrokontroller misst die anliegende Spannung und erzeugt einen Zündimpuls für den Triac T2 vorzugsweise beim Spannungsmaximum (90°, 50Hz) und vorzugsweise einmal pro Halwelle. Eine weitere Verbesserung des Zündverhaltens wird erreicht, wenn mehrere Zündimpulse pro Halbwelle erzeugt werden, z.B. 3 Pulse, die einem Abstand von etwa 300 µs haben. Der Triac muss so dimensioniert werden, dass dieser Pulsströme von 20 A aushalten kann, was hier durch einen 4 A Triac gewährleistet wird.In this embodiment, the resistor R7 is looped in the input and charges the capacitor C2. The losses over the power resistor R7 are some 10 mW, which is acceptable. The microcontroller measures the voltage applied and generates an ignition pulse for the triac T2, preferably at the maximum voltage (90 °, 50 Hz) and preferably once per half-wave. A further improvement of the ignition behavior is achieved when several Ignition pulses are generated per half-wave, eg 3 pulses, which have a distance of about 300 microseconds. The triac must be dimensioned so that this pulse currents of 20 A can withstand, which is ensured here by a 4 A triac.

Claims (21)

Schaltungsanordnung zum Betrieb einer Gasentladungslampe an einem magnetischen Vorschaltgerät aufweisend: - einen Schalter (T1) parallel zur Gasentladungslampe (1, L2), - eine Drossel (L3) in Reihe zum Schalter (T1), - eine Einheit zur Steuerung (D1), - eine Zündvorrichtung, die mittels der Einheit zur Steuerung (D1) gesteuert werden kann. Circuit arrangement for operating a gas discharge lamp on a magnetic ballast comprising: a switch (T1) parallel to the gas discharge lamp (1, L2), a throttle (L3) in series with the switch (T1), a control unit (D1), an ignition device which can be controlled by means of the control unit (D1). Schaltungsanordnung nach Anspruch 1, weiterhin aufweisend: - eine DC-Spannungsversorung, - eine Detektionseinheit für den Spannungsnulldurchgang, und - eine Vorrichtung für die Spannungs- und Strommessung. Circuitry according to claim 1, further comprising: a DC power supply, a voltage zero crossing detection unit, and - a device for voltage and current measurement. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit ein Mikrokontroller ist.Circuit arrangement according to claim 1, characterized in that the control unit is a microcontroller. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Zündvorrichtung ein schaltbares Überlagerungszündgerät ist.Circuit arrangement according to claim 1, characterized in that the ignition device is a switchable superimposed ignitor. Schaltungsanordnung nach Anspruch 4, dadurch gekennzeichnet, dass das Überlagerungszündgerät einen bipolaren Schalter, insbesondere ein Triac aufweist.Circuit arrangement according to claim 4, characterized in that the superimposed ignition device has a bipolar switch, in particular a triac. Schaltungsanordnung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Überlagerungszündgerät als Übernahmekondensator einen Kondensator in einer vorgelagerten Gleichspannungsversorgungseinheit benutzt.Circuit arrangement according to claim 4 or 5, characterized in that the superimposed ignition device uses as a takeover capacitor a capacitor in an upstream DC voltage supply unit. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Schaltungsanordnung zur Detektion des Spannungsnulldurchganges mit einem Komparatoreingang und einem I/O-Ausgang der Steuereinheit verbunden ist.Circuit arrangement according to claim 1, characterized in that the circuit arrangement for detecting the voltage zero crossing is connected to a comparator input and an I / O output of the control unit. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Schaltungsanordnung zur Detektion des Spannungsnulldurchganges mit einem I/O-Eingang der Steuereinheit verbunden ist.Circuit arrangement according to claim 1, characterized in that the circuit arrangement for detecting the voltage zero crossing is connected to an I / O input of the control unit. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Schaltungsanordnung zur Spannungs- und Strommessung einen Referenzteiler benutzt, der am negativen Eingang des differenziellen AD-Wandlers an der Steuereinheit angeschlossen ist.Circuit arrangement according to claim 1, characterized in that the circuit arrangement for voltage and current measurement uses a reference divider which is connected to the negative input of the differential AD converter to the control unit. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Schaltungsanordnung zur Spannungs- und Strommessung das Spannungssignal vom Spannungsteiler mit der Spannungsverschiebung an dem positiven Eingang des differenziellen AD-Wandlers an der Steuereinheit koppelt.Circuit arrangement according to claim 1, characterized in that the circuit arrangement for voltage and current measurement, the voltage signal from the voltage divider coupled with the voltage shift at the positive input of the differential AD converter to the control unit. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass das Stromsignal für die Spannungs- und Strommessung durch einen Shuntwiderstand erzeugt wird, dass verschoben wird und an den positiven Eingang eines differenziellen AD-Wandlers an der Steuereinheit gekoppelt ist.Circuit arrangement according to claim 1, characterized in that the current signal for the voltage and current measurement by a shunt resistor is generated, which is shifted and is coupled to the positive input of a differential AD converter to the control unit. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit zwei parallel arbeitende AD-Wandler aufweist, die beide den gleichen Eingang für die Referenzspannung benutzen.Circuit arrangement according to Claim 1, characterized in that the control unit has two parallel AD converters, both of which use the same input for the reference voltage. Schaltungsanordnung nach Anspruch 1 dadurch gekennzeichnet, dass eine Sicherung im Strompfad seriell zum Eingang der Schaltungsanordnung geschaltet ist.Circuit arrangement according to claim 1, characterized in that a fuse in the current path is connected in series with the input of the circuit arrangement. Schaltungsanordnung nach Anspruch 1 dadurch gekennzeichnet, dass eine Serienschaltung eines Stützkondensators und der Sicherung mit den Eingangsklemmen verbunden ist.Circuit arrangement according to claim 1, characterized in that a series circuit of a backup capacitor and the fuse is connected to the input terminals. Schaltungsanordnung nach Anspruch 14, dadurch gekennzeichnet, dass der Stützkondensator gleichzeitig als Strombegrenzung für die interne Spannungsversorgung der Schaltungsanordnung dient.Circuit arrangement according to claim 14, characterized in that the backup capacitor serves at the same time as a current limit for the internal power supply of the circuit arrangement. Schaltungsanordnung nach Anspruch 13, dadurch gekennzeichnet, dass die Sicherung kleiner ist als der Kurzschlussstrom des magnetischen Vorschaltgerätes.Circuit arrangement according to claim 13, characterized in that the fuse is smaller than the short-circuit current of the magnetic ballast. Schaltungsanordnung nach Anspruch 16, dadurch gekennzeichnet, dass die Sicherung 20% kleiner ist als der Kurzschlussstrom des magnetischen Vorschaltgerätes.Circuit arrangement according to claim 16, characterized in that the fuse is 20% smaller than the short-circuit current of the magnetic ballast. Schaltungsanordnung nach Anspruch 16, dadurch gekennzeichnet, dass die Sicherung 5% bis 50% kleiner ist als der Kurzschlussstrom des magnetischen Vorschaltgerätes.Circuit arrangement according to claim 16, characterized in that the fuse 5% to 50% smaller is considered the short circuit current of the magnetic ballast. Schaltungsanordnung nach Anspruch 16, dadurch gekennzeichnet, dass die Sicherung 5% bis 75% kleiner ist als der Kurzschlussstrom des magnetischen Vorschaltgerätes.Circuit arrangement according to claim 16, characterized in that the fuse is 5% to 75% smaller than the short-circuit current of the magnetic ballast. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit bei nicht brennen der Gasentladungslampe pulsförmige repetierende Steuersignale an die Zündeinheit gibt bis durch Überschreiten der Lampenleistung über einen bestimmten minimalen Wert, die Steuereinheit ein Signal an den steuerbaren Schalter parallel zur Lampe gibt, wobei die Tastpause von Periode zu Periode länger wird bis die gemessene Leistung gleich der Nennleistung der Gasentladungslampe ist.Circuit arrangement according to claim 1, characterized in that the control unit when not burning the gas discharge lamp pulse-shaped repetitive control signals to the ignition unit until by exceeding the lamp power above a certain minimum value, the control unit outputs a signal to the controllable switch in parallel to the lamp, wherein the Tastpause becomes longer from period to period until the measured power is equal to the rated power of the gas discharge lamp. Schaltungsanordnung nach Anspruch 7 oder 8 in Verbindung mit Anspruch 20, dadurch gekennzeichnet, dass nach dem Erhalt eines Signals für den Spannungsnulldurchgang die Steuereinheit eine vorbestimmte Zeit wartet, die als Differenz aus der halben Periodendauer minus der Tastpause und dem verspäteten Eintreffen des Spannungsnulldurchgangsignals bestimmt wird.Circuit arrangement according to claim 7 or 8 in conjunction with claim 20, characterized in that after receiving a signal for the voltage zero crossing, the control unit waits a predetermined time, which is determined as the difference of half the period minus the Tastpause and the delayed arrival of the voltage zero crossing signal.
EP11174027.0A 2010-08-18 2011-07-14 Switch system and method for operating a gas discharge lamp Withdrawn EP2421334A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010039487 DE102010039487A1 (en) 2010-08-18 2010-08-18 Circuit arrangement and method for operating a gas discharge lamp

Publications (2)

Publication Number Publication Date
EP2421334A2 true EP2421334A2 (en) 2012-02-22
EP2421334A3 EP2421334A3 (en) 2013-09-18

Family

ID=44735801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11174027.0A Withdrawn EP2421334A3 (en) 2010-08-18 2011-07-14 Switch system and method for operating a gas discharge lamp

Country Status (2)

Country Link
EP (1) EP2421334A3 (en)
DE (1) DE102010039487A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847681A1 (en) 1995-08-28 1998-06-17 Tridonic Bauelemente GmbH Striking circuit for a high-pressure gas discharge lamp
DE102006016827A1 (en) * 2006-04-07 2007-10-11 Bag Electronics Gmbh Circuit arrangement for high-pressure gas discharge lamps
WO2008104431A1 (en) 2007-02-28 2008-09-04 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement and method for adapting the output of high-pressure discharge lamps

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847681A1 (en) 1995-08-28 1998-06-17 Tridonic Bauelemente GmbH Striking circuit for a high-pressure gas discharge lamp
DE102006016827A1 (en) * 2006-04-07 2007-10-11 Bag Electronics Gmbh Circuit arrangement for high-pressure gas discharge lamps
WO2008104431A1 (en) 2007-02-28 2008-09-04 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement and method for adapting the output of high-pressure discharge lamps

Also Published As

Publication number Publication date
DE102010039487A1 (en) 2012-02-23
EP2421334A3 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
EP1519638B1 (en) Method for operating a low pressure discharge lamp
DE68924874T2 (en) Signal generating circuit for ballast control of discharge lamps.
DE2512918C3 (en) Circuit arrangement for operating a gas discharge lamp
DE19531966C2 (en) Power supply circuit for a high-pressure discharge lamp
EP1465330B1 (en) Method and circuit for varying the power consumption of capacitive loads
DE2918314A1 (en) POWER SUPPLY FOR A HIGH CURRENT DISCHARGE LAMP OR FLUORESCENT TUBE
DE3881025T2 (en) CIRCUIT FOR A HIGH-PERFORMANCE LAMP WITH A HIGH DISCHARGE.
DE202006004296U1 (en) Ausschaltzeitregelung
DE19849738C2 (en) Pulse generator
EP0614052B1 (en) Automatic ignition device
EP1696713B1 (en) Electronic ballast with current measuring means for high-pressure discharge lamps
EP1181844A1 (en) Method and ballast for feeding a uv light low pressure radiator
DE4301184A1 (en) Control unit for electrical discharge lamps
EP2421334A2 (en) Switch system and method for operating a gas discharge lamp
EP2127495B1 (en) Circuit arrangement and method for adapting the output of high-pressure discharge lamps
EP1618766B1 (en) Starter circuit having regulated starting voltage
WO2012031935A1 (en) Circuit arrangement and method for starting and operating a high-pressure discharge lamp
DE2604914C3 (en) Circuit arrangement for igniting and operating a discharge lamp
DE60117764T2 (en) IGNITION DEVICE WITH INTERFERENCE CAPACITY SUPPRESSOR
DE4101980A1 (en) AC voltage ballast for electric discharge lamps
EP2140735B1 (en) Circuit configuration for starting and operating at least one discharge lamp
DE2323287C3 (en) Circuit arrangement for igniting and operating a discharge lamp fed by an alternating current source
DE3618975C2 (en)
WO1996022006A1 (en) Starter circuit for discharge lamps
DE102010042776A1 (en) Circuit arrangement for igniting and supplying power to e.g. high-pressure lamp, has load path provided at output side for connecting device parallel to lamp and comprising controllable switch unit

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

17P Request for examination filed

Effective date: 20120821

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 41/18 20060101ALI20130814BHEP

Ipc: H05B 41/231 20060101AFI20130814BHEP

Ipc: H05B 41/392 20060101ALI20130814BHEP

Ipc: H05B 41/04 20060101ALI20130814BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140319