EP2418441B1 - Ice storage device - Google Patents

Ice storage device Download PDF

Info

Publication number
EP2418441B1
EP2418441B1 EP20100008385 EP10008385A EP2418441B1 EP 2418441 B1 EP2418441 B1 EP 2418441B1 EP 20100008385 EP20100008385 EP 20100008385 EP 10008385 A EP10008385 A EP 10008385A EP 2418441 B1 EP2418441 B1 EP 2418441B1
Authority
EP
European Patent Office
Prior art keywords
ice storage
fluid medium
cooling module
cooling
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20100008385
Other languages
German (de)
French (fr)
Other versions
EP2418441A1 (en
Inventor
Sven-Olaf Klüe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kluee Sven-Olaf
Original Assignee
Kluee Sven-Olaf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20100008385 priority Critical patent/EP2418441B1/en
Application filed by Kluee Sven-Olaf filed Critical Kluee Sven-Olaf
Priority to ES10008385T priority patent/ES2411934T3/en
Priority to RU2013110238/13A priority patent/RU2013110238A/en
Priority to BR112013003152A priority patent/BR112013003152A2/en
Priority to PCT/EP2011/057050 priority patent/WO2012019792A1/en
Priority to MX2013001631A priority patent/MX2013001631A/en
Publication of EP2418441A1 publication Critical patent/EP2418441A1/en
Priority to CL2013000392A priority patent/CL2013000392A1/en
Application granted granted Critical
Publication of EP2418441B1 publication Critical patent/EP2418441B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • F25D31/003Liquid coolers, e.g. beverage cooler with immersed cooling element

Definitions

  • the invention relates to improvements in ice storage, as used in particular in milk cooling systems.
  • the milked milk can be cooled by means of storage cooling or throughflow cooling.
  • storage cooling In both cooling methods, it is known to use cold water to cool the milk.
  • a heat exchanger In the continuous cooling, a heat exchanger is used, through which a flow channel milk, is passed through the other cold water. There is a heat exchange between the warm milk and the cold water, which cools the milk.
  • storage cooling the milk is stored in a container that is cooled by cold water, which then also cools the milk.
  • a cooling module according to the preamble of claim 1 is in the US 5,381,670 disclosed.
  • ice storage In order to reduce the cooling capacity of the system to be installed, the use of ice storage is known. These ice storage can “buffer” cold. Ice storage are “charged” by low-power refrigerators over a period of time and can the stored refrigeration capacity, which may be above the cooling capacity of the refrigeration generators, deliver again at short notice. Thus, it can be ensured that in the system for cooling milk, despite a smaller installed cooling capacity, there is always enough stored cooling capacity to cool the de-molten milk.
  • a corresponding milk cooling system is eg in the DE-A1-103 16 165 disclosed.
  • the known in the art ice storage include a water-filled ice storage tank.
  • a refrigerant can flow in the ice storage tank and with this firmly connected coils through which a refrigerant can flow.
  • the water in the ice storage tank is cooled.
  • the heated after cooling of milk water can be returned to the ice storage tank, where it is cooled again.
  • the rate at which the refrigeration capacity stored in the ice storage pool can be delivered is referred to as the "melting rate".
  • the water in the ice storage tank can be cooled so far that at least partially ice forms in the ice storage tank. So that the described cooling cycle of the water from the ice storage tank for milk cooling and back is not interrupted, care must be taken in the ice formation in the ice storage tank that between inflow and outflow of water in the ice storage tank basically at least one flow channel is present.
  • the coils are usually galvanized. Corrosion can cause irreparable damage to the coil. In such a case, the entire ice storage including pipe coil and ice storage tank must be replaced. This is a complex and expensive process.
  • the invention is based on the object to provide devices that allows a simple and cost-effective repair of ice storage in case of corrosion damage and ensures a high Abschmelz intricate in ice storage.
  • the invention relates to a refrigeration module for lowering into an ice storage tank of an ice storage unit filled with a first fluid medium, comprising a pipe arrangement, by which an inlet opening and an outlet opening for a second fluid medium are connected to one another, a system holder with which the refrigeration module in the ice storage tank fastened and attached to the pipe assembly with an inlet opening for the first fluid medium being provided on the system holder, and the system holder on the underside of the refrigeration module having fluid ports for the first fluid medium having fluid-connected outflow openings arranged so that the first medium flowing out of the outflow openings is uniform is distributed over the surface of the cooling module, and wherein an air injection device (30) having an air supply opening (32) and a plurality of fluid-connected Beerausströmö Maschinenen (33) is provided, wherein the Heilausströmö Maschinenen (33) on the underside (3) of the cold module (1) are arranged so that the air flowing from the Heilausströmö Maschinenen (33) air is evenly distributed over the surface of the cold module (1).
  • the invention further relates to an ice storage comprising an ice storage tank filled with a first fluid medium and at least one refrigeration module according to the invention lowered into the ice storage tank.
  • the invention further relates to a kit for retrofitting ice storage basins, comprising at least two identical refrigeration modules according to the invention, wherein the inlet opening and outlet opening for the second fluid medium, the air supply openings and the inlet opening for the first fluid medium of the refrigeration modules are connected in parallel.
  • the invention relates to a set of ice storage, comprising at least two identical cooling modules according to the invention, which are lowered in each case an ice storage tank, and inlet opening and outlet opening for the second fluid medium, the air supply openings and the Inlet opening for the first fluid medium of the cooling modules are connected in parallel.
  • Two or more ports are "connected in parallel” when a flow of fluid is evenly distributed among the two or more ports or when fluid streams from the two or more ports are combined.
  • a corresponding division of a fluid flow or a combination of fluid flows can be carried out, for example, by a Y-shaped line.
  • Devices are "operated in parallel” if the similar openings on the devices are connected in parallel.
  • the invention is based on the finding that a cost-effective repair for corrosion damage is possible by a modular design of an ice storage.
  • a refrigeration module comprising a pipe arrangement is proposed, which can be lowered into an ice storage tank. If corrosion damage occurs in such a cooling module, then only the cooling module, but not the ice storage tank or the entire ice storage must be replaced. It is also possible that with existing ice storage with corrosion damage to the coil only the damaged coil is removed while the ice storage tank is maintained. The refrigeration module according to the invention can then be lowered into the already existing ice storage tank, whereby the functionality of the ice storage is restored.
  • more than one cooling module is lowered in an already existing or newly installed ice storage tank, the individual connections of the at least two cooling modules being connected to one another in such a way that they are operated in parallel.
  • the set of ice storage includes several standardized cooling modules, which - as described above - are operated in parallel and each in an adapted to the size and cooling capacity of the refrigeration modules ice storage tank are lowered.
  • the advantages of mass production can also be transferred to the ice storage basins.
  • the number of ice accumulators with ice storage basins and refrigeration modules lowered therein is determined which, operated in parallel, deliver the desired total refrigeration capacity.
  • an inlet opening for the first fluid medium is provided, and the system holder at the bottom of the refrigeration module has outflow openings fluidly connected to the inlet opening for the first fluid medium and so arranged in that the first medium flowing out of the outflow openings is distributed uniformly over the surface of the cooling module.
  • the first fluid medium is the same fluid medium with which the ice storage tank is filled, preferably in particular the heated water flowing back from the process.
  • the inflow of the first fluid medium via the refrigeration module according to the invention ensures that the first fluid medium flowing into the ice storage tank is distributed uniformly over the surface of the underside of the refrigeration module.
  • By the inflow of the first fluid medium over the entire surface of the underside of the cooling module is the formation of a single flow channel, which would greatly reduce the Abschmelz intricate would result effectively prevented.
  • the Abschmelz intricate can be significantly increased by the use of a cooling module according to the invention. This advantage also occurs in particular in the kit according to the invention for retrofitting ice storage tanks.
  • the cooling module according to the invention further comprises an air injection device.
  • the air injection device has an air feed opening and a plurality of air discharge openings arranged on the underside of the refrigeration module, the air discharge openings being arranged so that the air flowing out of the air discharge openings is distributed uniformly over the surface of the refrigeration module.
  • the inlet opening and the outlet opening for the second fluid medium, the inlet opening for the first fluid medium and / or the air supply opening are arranged on the top side of the refrigeration module.
  • system holder is at least partially tubular and the inlet opening for the first fluid medium with the outflow openings for the first fluid medium through the tubular parts of the system holder are fluidly connected to each other. The flowing from the input port to the discharge openings first fluid medium is thus passed through the system holder.
  • an outlet opening and at least one inlet opening connected to the fluid for the first medium are provided on the refrigeration module, wherein the inflow opening between the top and bottom of the refrigeration module and the outlet opening is preferably arranged on the top side of the refrigeration module.
  • outlet opening on the upper side of the cold module and the inflow opening between the upper and lower side of the cold module are fluid-connected to one another via a tubular part of the system holder.
  • the tube assembly may preferably be formed as a tube coils.
  • a plate-type cooler or an evaporator plate arrangement as a multiply interleaved tube arrangement.
  • first fluid medium is water
  • second fluid medium is cold fluid.
  • the tube assembly is preferably galvanized or stainless steel.
  • FIG. 1a the front view
  • FIG. 1b the right side view
  • Figure 1c the bottom view of the refrigeration module 1 represents.
  • the refrigeration module 1 comprises a tube arrangement 10 and a system holder 20.
  • the tube assembly 10 is looped several times and connects an inlet opening 11 to an outlet opening 12.
  • the tube assembly 10 is So a pipe coil.
  • the second fluid medium flowing through the inlet opening 11 into the tube arrangement 10 passes through the entire tube arrangement 10 before it exits again at the outlet opening 12.
  • Inlet and outlet openings 11, 12 are arranged on the upper side 2 of the cooling module 1.
  • the system holder 20 includes two U-shaped holding members 21 to which the tube assembly 10 is attached.
  • the transverse part 22, as well as the side parts 23, 24 of the holding elements 21 are tubular.
  • an inlet opening 25 for a first fluid medium is provided in each case. Due to the tubular configuration of the one side part 23 and the transverse part 22, this inlet opening 25 is fluidly connected to an outflow opening 26 respectively provided on the transverse parts 22.
  • First fluid medium flowing through the inlet opening 25 thus flows through the holding element 21 and flows out at the outflow openings 26 ,
  • the outlet openings 26 are arranged so that the first medium flowing out of the outflow openings 26 flows uniformly over the surface - i. the bottom 3 - the cooling module 1 is distributed.
  • an inflow opening 27 for the first medium is provided in the upper region between the upper and lower sides 2, 3 of the cooling module 1.
  • This inflow opening 27 is fluidly connected via the tubular other side part 24 with the outlet opening 28 for the first fluid medium, which is arranged on the upper side 2 of the cooling module 1.
  • first fluid medium can pass over the tubular other side part 24 to the outlet opening 28.
  • a direct fluid flow through the holding element 21 is prevented by a dividing wall (not shown) in the area 29.
  • the refrigeration module 20 also has an air injection device 30.
  • the air injection device 30 consists of a pipeline system 31, wherein an air supply opening 32 is provided on the upper side 2 of the cooling module 1.
  • the air supply opening 32 is connected via the pipe system 31 with a grid-like structure 32 arranged on the underside 3 of the refrigeration module 1.
  • a grid-like structure 32 arranged on the underside 3 of the refrigeration module 1.
  • the outlet openings 33 are arranged so that the air flowing out of them uniformly over the surface -. the bottom 3 - the cooling module 1 is distributed.
  • the system holder 20 also has feet 40, with which the system holder 20 in an ice storage tank 50 can be fastened. It is possible that the cooling module 1 is considered to be fixed in the sense of this invention solely due to its weight and the resulting frictional force between the feet 40 and the ice storage tank 50. In addition, it is possible for the feet 40 to be attached to the ice storage pool 50 by other means, such as spot welding. But it is also possible to provide additional or alternative security elements, with which the cooling module 1, for example, to the Side walls of an ice storage tank can be attached.
  • FIGS. 2a, b may be, on the one hand, an ice storage device according to the invention with a refrigeration module 1 and an ice storage basin 50. But it can also be an already existing ice storage tank 50, which is retrofitted with a cooling module 1 according to the invention. Due to the substantial agreement between these two variants, they will therefore be summarized in the following explanation in a single embodiment.
  • the cooling module 1 off FIGS. 1a to c is how in FIGS. 2a, b shown lowered into an ice storage tank 50.
  • the ice storage tank 50 is filled with a first fluid medium.
  • the refrigeration module 1 applies solely on the basis of its weight and the resulting friction between feet 40 and ice storage tank 50 as fixed in the context of this application.
  • the two inlet openings 25 are connected to one another via pipelines 60 such that first fluid medium flowing through the pipelines 60 is distributed uniformly over the two inlet openings 25. So you are connected in parallel.
  • the two outlet openings 28 on the holding elements 21 are connected in parallel, that is connected to one another via a piping system so that uniformly first fluid medium can be withdrawn through the outlet openings 28 from the ice storage tank 50 via the piping system 61.
  • the inlet and outlet openings 11, 12 of the tube assembly 10 for the second fluid medium are integrated via pipes 62, 63 in a cooling circuit, not shown.
  • This refrigeration cycle includes a refrigeration generator (not shown) that cools the second fluid medium to a low temperature before flowing through the conduit 62 into the inlet port 11 of the tube assembly 10.
  • a refrigeration generator (not shown) that cools the second fluid medium to a low temperature before flowing through the conduit 62 into the inlet port 11 of the tube assembly 10.
  • heat exchange occurs through the wall of the tube assembly 10 with the first fluid medium within the ice storage reservoir 50, thereby cooling the first fluid medium while the second fluid medium within the tube assembly 10 heated.
  • the heated second fluid medium flows from the outlet port 12 through the conduits 63 back to the refrigeration generator, where it is cooled again. This results in a closed coolant circuit for the second fluid medium.
  • the first fluid medium in the ice storage tank 50 is cooled by heat exchange with the second fluid medium in the tube assembly 10.
  • the cooled first fluid medium can be removed from the ice storage tank 50 via the inlet openings 27, the outlet openings 28 and the tubes 61.
  • the cooled first fluid medium may thus for example be supplied to a heat exchanger for milk cooling (not shown).
  • the first fluid medium is heated and then fed via the pipes 60 to the cooling module 1.
  • the heated first fluid medium flows through the inlet openings 25 and the holding elements 21 to the outflow openings 26 on the transverse part 22 of the holding elements 21. There, the heated first fluid medium exits and mixes with the first fluid medium located in the ice storage tank 50. Due to the mixing there is a heat exchange between the colder first fluid medium located in the ice storage tank 50 and the inflowing, warmer first fluid medium, whereby the latter is cooled.
  • the outflow openings 26 are arranged so that the first fluid medium is uniformly distributed over the surface or the bottom 3 of the cooling module 1. This ensures that in the ice storage tank 50 no zones form exclusively with freshly inflowing first fluid medium, which would then have an elevated temperature compared to the other areas in the ice storage tank. It is also prevented that in the case of icing of the first fluid medium in the ice storage tank 50, there is no formation of a single flow channel from the single outlet for the first fluid medium, which would result in a reduction of the Abschmelz intricate. Rather, the formation of a flow channel is effectively avoided by the inventive way of supplying the first fluid medium.
  • an air injection device 30 is provided.
  • the air injection device 30 is connected via a pipe 64 to a compressed air source (not shown).
  • the compressed air flowing into the air injection device 30 through the air supply opening 32 escapes in the region of Bottom 3 of the cooling module 1 through the provided there shipsausströmö Maschinenen 33.
  • the Heilausströmö Maschinenen 33 are arranged so that the outflowing air is evenly distributed over the surface of the cooling module 1. Due to the injected air 50 turbulences are caused in the ice water basin, which leads to a homogenization of the first fluid medium located in the ice storage tank 50.
  • the tube assembly 10 is preferably galvanized or stainless steel.
  • the second fluid medium may also be passed through a plate cooler or evaporator plate assembly.
  • a plate cooler instead of a coil.
  • FIG. 3 an inventive set for retrofitting an ice storage tank 50 is shown.
  • the ice storage tank is already present and should only with refrigeration modules 1 according to the invention (see FIG. FIGS. 1a-c ) can be retrofitted.
  • the ice storage tank 50 is iso dimensioned that two cooling modules 1 according to the invention can be lowered into the ice storage tank 50.
  • the individual inlet and outlet openings or feed openings 11, 12, 25, 28, 32 of the individual cooling modules 1 are connected in parallel via pipes 61 to 64, whereby the cooling modules 1 are operated in parallel.
  • the number of cooling modules 1 to be lowered into the ice storage tank 50 is selected depending on the size of the ice storage tank 50.
  • the identical and therefore cost-effectively mass-produced cooling modules 1 in this case have a certain cooling capacity, for example. 500 kWh.
  • an integer multiple of the refrigeration capacity of a single cold storage module 1 can be arbitrarily achieved as installed total output. In the illustrated embodiment, therefore, a total cooling capacity of 1000 kWh is achieved. But there are also total cooling capacities of 1500 kWh, 2000 kWh, 2500 kWh, etc. possible.
  • the inventive set for retrofitting ice storage tank 50 thus makes it possible for ice storage of any size, the coil can not be used due to corrosion, but the ice storage tank is undamaged, easy to retrofit with inventive cooling module or a variety of them. An elaborate one-off production of a coil, which would be exactly suitable for the still existing ice storage tank 50, thus eliminated.
  • a set of ice accumulators which each comprise an inventive refrigeration module 1 and an ice storage tank 50 adapted to the dimensions of this refrigeration module 1.
  • the invention has recognized that any refrigeration capacity or an arbitrary multiple of a specific refrigerating capacity can be achieved by operating ice storage units according to the invention via pipelines 60-64 in parallel.
  • a corresponding set of ice storage with corresponding pipes 60-64 shown in the inventive set of ice storage so can be used on a standardized ice storage with a certain cooling capacity and achieved by the parallel connection several such ice storage an integer multiple of the cooling capacity of a single ice storage as total cooling capacity become.
  • the set of ice storage devices according to the invention offers the advantage that not only standardized refrigeration modules 1 but also standardized ice storage basins 50 can be used, which enables cost-effective series production.
  • the first fluid medium is taken from the ice storage tank 50 via flow channels in the refrigeration module 1.
  • an outflow 51 it is also possible for an outflow 51 to be provided at the ice storage tank 50 for this purpose.
  • a corresponding alternative ice storage tank 50 with outflow 51 is in FIG. 5 shown.
  • FIG. 6 a second embodiment of an ice storage according to the invention is shown.
  • the ice storage according to FIG. 6 has extensive parallels to the ice storage according to FIG. 2 on, which is why on the local versions is referenced. In the following, only the differences between the embodiments according to FIG. 2 and 6 received.
  • the cross members 22 of the holding elements 21 are formed as downwardly open U-profiles.
  • the cooling module 1 rests with the cross members 22 on the bottom of the ice storage tank 50, flow channels resulting in the transverse parts 22 for the first fluid medium.
  • the cross members 22 are provided with outflow openings 26 through which the first fluid medium is uniformly distributed over the surface of the cooling module 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

Die Erfindung betrifft Verbesserungen bei Eisspeichern, wie sie insbesondere in Milchkühlungsanlagen verwendet werden.The invention relates to improvements in ice storage, as used in particular in milk cooling systems.

Nach dem Melken muss Milch innerhalb von zwei Stunden auf 3 bis 5°C abgekühlt werden, um einen hohe Qualität der Milch zu gewährleisten. Die entmolkene Milch kann dabei mittels Lagerkühlung oder Durchflusskühlung abgekühlt werden. Bei beiden Kühlungsmethoden ist es bekannt, Kaltwasser zum Kühlen der Milch zu verwenden. Bei der Durchlaufkühlung wird ein Wärmetauscher eingesetzt, durch dessen einen Strömungskanal Milch, durch den anderen Kaltwasser geleitet wird. Es kommt zu einem Wärmeaustausch zwischen der warmen Milch und dem kalten Wasser, wodurch die Milch abgekühlt wird. Bei der Lagerkühlung befindet sich die Milch in einem Behälter, der durch kaltes Wasser herabgekühlt wird, wodurch dann auch die Milch gekühlt wird.After milking, milk must be cooled down to 3 to 5 ° C within two hours to ensure a high quality of the milk. The milked milk can be cooled by means of storage cooling or throughflow cooling. In both cooling methods, it is known to use cold water to cool the milk. In the continuous cooling, a heat exchanger is used, through which a flow channel milk, is passed through the other cold water. There is a heat exchange between the warm milk and the cold water, which cools the milk. During storage cooling, the milk is stored in a container that is cooled by cold water, which then also cools the milk.

In Molkereibetrieben ist zur Kühlung von Milch eine hohe Kühlleistung in der Regel nicht kontinuierlich erforderlich. Vielmehr wird eine hohe Kühlleistung nur dann benötigt, wenn frisch entmolkene - und damit warme - Milch derIn dairy operations, a high cooling capacity is usually not required continuously to cool milk. Rather, a high cooling capacity is only needed if freshly-depleted - and therefore warm - milk of

Ein Kältemodul gemäß dem Oberbegriff des Anspruchs 1 wird in der US 5 381 670 offenbart.A cooling module according to the preamble of claim 1 is in the US 5,381,670 disclosed.

Um die zu installierende Kühlleistung der Anlage zu reduzieren, ist die Verwendung von Eisspeichern bekannt. Diese Eisspeicher können Kälte "zwischenspeichern". Eisspeicher werden dabei von Kältegeneratoren mit geringerer Leistung über einen gewissen Zeitraum "aufgeladen" und können die gespeicherte Kälteleistung, die über der Kälteleistung der Kältegeneratoren liegen kann, kurzfristig wieder abgeben. So kann sichergestellt werden, dass in der Anlage zur Kühlung von Milch trotz geringerer installierter Kühlleistung immer ausreichend gespeicherte Kühlleistung zur Kühlung der entmolkenen Milch zur Verfügung steht. Eine entsprechende Milchkühlungsanlage ist z.B. in der DE-A1-103 16 165 offenbart.In order to reduce the cooling capacity of the system to be installed, the use of ice storage is known. These ice storage can "buffer" cold. Ice storage are "charged" by low-power refrigerators over a period of time and can the stored refrigeration capacity, which may be above the cooling capacity of the refrigeration generators, deliver again at short notice. Thus, it can be ensured that in the system for cooling milk, despite a smaller installed cooling capacity, there is always enough stored cooling capacity to cool the de-molten milk. A corresponding milk cooling system is eg in the DE-A1-103 16 165 disclosed.

Die im Stand der Technik bekannten Eisspeicher umfassen ein mit Wasser gefülltes Eisspeicherbecken. In dem Eisspeicherbecken und mit diesem fest verbunden sind Rohrschlangen angeordnet, durch die ein Kältemittel fließen kann. Durch einen Wärmeaustausch über die Wände der Rohrschlange zwischen dem durch einen Kältegenerator auf eine niedrige Temperatur herunter gekühlte Kältemittel und dem Wasser im Eisspeicherbecken wird das Wasser im Eisspeicherbecken abkühlt. Es entsteht so ein Reservoir für Kaltwasser, welches zur Kühlung von Milch - bspw. durch Durchlaufkühlung - genutzt werden kann. Das nach der Kühlung von Milch erwärmte Wasser kann dem Eisspeicherbecken wieder zugeführt werden, wo es erneut abgekühlt wird. Die Rate, in der die im Eisspeicherbecken gespeicherte Kälteleistung abgegeben werden kann, wird als "Abschmelzleistung" bezeichnet.The known in the art ice storage include a water-filled ice storage tank. In the ice storage tank and with this firmly connected coils are arranged through which a refrigerant can flow. By a heat exchange through the walls of the coil between the cooled by a refrigeration generator to a low temperature down refrigerant and the water in the ice storage tank, the water in the ice storage tank is cooled. This creates a reservoir for cold water, which can be used for cooling milk - for example, by continuous cooling. The heated after cooling of milk water can be returned to the ice storage tank, where it is cooled again. The rate at which the refrigeration capacity stored in the ice storage pool can be delivered is referred to as the "melting rate".

Das Wasser im Eisspeicherbecken kann soweit abgekühlt werden, dass sich im Eisspeicherbecken wenigstens teilweise Eis bildet. Damit der beschriebene Kühlkreislauf des Wassers vom Eisspeicherbecken zur Milchkühlung und zurück jedoch nicht unterbrochen wird, muss bei der Eisbildung im Eisspeicherbecken darauf geachtet werden, dass zwischen Zu- und Ablauf des Wassers im Eisspeicherbecken grundsätzlich wenigstens ein Strömungskanal vorhanden ist.The water in the ice storage tank can be cooled so far that at least partially ice forms in the ice storage tank. So that the described cooling cycle of the water from the ice storage tank for milk cooling and back is not interrupted, care must be taken in the ice formation in the ice storage tank that between inflow and outflow of water in the ice storage tank basically at least one flow channel is present.

Ist nur ein einziger Strömungskanal vorhanden und das Eisspeicherbecken ansonsten vergletschert bzw. vereist, so ist die vom Wasser überströmte Fläche auf Grund der Strömungskanalbildung klein, weshalb der Eisspeicher nur eine geringe Abschmelzleistung aufweist. Die abseits vom Strömungskanal liegenden Bereiche des Eisspeichers können im Falle der Vergletscherung nämlich nicht zur Kühlung des durch den Strömungskanal fließenden Wassers beitragen.If only a single flow channel is present and the ice storage tank is otherwise glaciated or frozen, the area overflowed by the water is small due to the flow channel formation, which is why the ice storage has only a low melting rate. In fact, in the case of glaciation, the regions of the ice storage which lie away from the flow channel can not contribute to the cooling of the water flowing through the flow channel.

Bei den bekannten Eisspeicherbecken sind die Rohrschlangen in der Regel verzinkt. Durch Korrosion kann es zu irreparablen Schäden an der Rohrschlange kommen. In einem solchen Fall muss der gesamte Eisspeicher samt Rohrschlange und Eisspeicherbecken ausgetauscht werden. Dies ist ein aufwändiger und kostspieliger Vorgang.In the known ice storage tanks, the coils are usually galvanized. Corrosion can cause irreparable damage to the coil. In such a case, the entire ice storage including pipe coil and ice storage tank must be replaced. This is a complex and expensive process.

Der Erfindung liegt die Aufgabe zu Grunde, Vorrichtungen zu schaffen, die eine einfache und kostengünstige Reparatur von Eisspeichern bei Korrosionsschäden erlaubt und die eine hohe Abschmelzleistung bei Eisspeichern gewährleistet.The invention is based on the object to provide devices that allows a simple and cost-effective repair of ice storage in case of corrosion damage and ensures a high Abschmelzleistung in ice storage.

Diese Aufgabe wird gelöst durch Vorrichtungen gemäß dem unabhängigen und der nebengeordneten Ansprüche. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.This object is achieved by devices according to the independent and the independent claims. Advantageous developments emerge from the dependent claims.

Demnach betrifft die Erfindung ein Kältemodul zur Absenkung in ein mit einem ersten fluiden Medium gefülltes Eisspeicherbecken eines Eisspeichers, umfassend eine Rohranordnung, durch die eine Einlassöffnung und eine Auslassöffnung für ein zweites fluides Medium miteinander verbunden sind, eine Systemhalterung, mit der das Kältemodul in dem Eisspeicherbecken befestigbar und an der die Rohranordnung befestigt ist, wobei an der Systemhalterung eine Einlassöffnung für das erste fluide Medium vorgesehen ist, und die Systemhalterung an der Unterseite des Kältemoduls mit der Einlassöffnung für das erste fluide Medium fluidverbundene Ausströmöffnungen aufweist, die so angeordnet sind, dass das aus den Ausströmöffnungen strömende erste Medium gleichmäßig über die Oberfläche des Kältemoduls verteilt wird, und wobei eine Lufteinblasungsvorrichtung (30) mit einer Luftzuführöffnung (32) und mehreren damit fluidverbundenen Luftausströmöffnungen (33) vorgesehen ist, wobei die Luftausströmöffnungen (33) so an der Unterseite (3) des Kältemoduls (1) angeordnet sind, dass die aus den Luftausströmöffnungen (33) strömende Luft gleichmäßig über die Oberfläche des Kältemoduls (1) verteilt wird.Accordingly, the invention relates to a refrigeration module for lowering into an ice storage tank of an ice storage unit filled with a first fluid medium, comprising a pipe arrangement, by which an inlet opening and an outlet opening for a second fluid medium are connected to one another, a system holder with which the refrigeration module in the ice storage tank fastened and attached to the pipe assembly with an inlet opening for the first fluid medium being provided on the system holder, and the system holder on the underside of the refrigeration module having fluid ports for the first fluid medium having fluid-connected outflow openings arranged so that the first medium flowing out of the outflow openings is uniform is distributed over the surface of the cooling module, and wherein an air injection device (30) having an air supply opening (32) and a plurality of fluid-connected Luftausströmöffnungen (33) is provided, wherein the Luftausströmöffnungen (33) on the underside (3) of the cold module (1) are arranged so that the air flowing from the Luftausströmöffnungen (33) air is evenly distributed over the surface of the cold module (1).

Die Erfindung betrifft weiterhin einen Eisspeicher umfassend ein mit einem ersten fluiden Medium gefülltes Eisspeicherbecken und wenigstens ein in das Eisspeicherbecken abgesenktes erfindungsgemäßes Kältemodul.The invention further relates to an ice storage comprising an ice storage tank filled with a first fluid medium and at least one refrigeration module according to the invention lowered into the ice storage tank.

Die Erfindung betrifft weiterhin einen Satz zur Nachrüstung von Eisspeicherbecken, umfassend wenigstens zwei baugleiche, erfindungsgemäße Kältemodule, wobei die Einlassöffnung und Auslassöffnung für das zweite fluide Medium, die Luftzuführöffnungen sowie die Einlauföffnung für das erste fluide Medium der Kältemodule parallel verbunden sind.The invention further relates to a kit for retrofitting ice storage basins, comprising at least two identical refrigeration modules according to the invention, wherein the inlet opening and outlet opening for the second fluid medium, the air supply openings and the inlet opening for the first fluid medium of the refrigeration modules are connected in parallel.

Weiterhin betrifft die Erfindung einen Satz von Eisspeichern, umfassend wenigstens zwei baugleiche, erfindungsgemäße Kältemodule, die in jeweils einem Eisspeicherbecken abgesenkt sind, und Einlassöffnung und Auslassöffnung für das zweite fluide Medium, die Luftzuführöffnungen sowie die Einlauföffnung für das erste fluide Medium der Kältemodule parallel verbunden sind.Furthermore, the invention relates to a set of ice storage, comprising at least two identical cooling modules according to the invention, which are lowered in each case an ice storage tank, and inlet opening and outlet opening for the second fluid medium, the air supply openings and the Inlet opening for the first fluid medium of the cooling modules are connected in parallel.

Nachfolgend seien einige in Zusammenhang mit der Erfindung verwendete Begriff näher erläutert:

  • Zwei Öffnungen o.ä. gelten als "fluidverbunden", wenn die beiden so verbunden sind, dass ein Fluid von der ersten Öffnung so geführt wird, dass es durch einen definierten Kanal zur zweiten Öffnung strömen kann. Eine entsprechende Verbindung kann bspw. durch eine Rohrleitung erreicht werden.
In the following, some term used in connection with the invention will be explained in more detail:
  • Two openings or similar are considered to be "fluidly connected" when the two are connected so that a fluid from the first opening is guided so that it can flow through a defined channel to the second opening. A corresponding connection can, for example, be achieved by a pipeline.

Zwei oder mehr Öffnungen sind "parallel angeschlossen", wenn ein Fluidzustrom gleichmäßig auf die zwei oder mehr Öffnungen verteilt wird oder aus den zwei oder mehr Öffnungen stammende Fluidströme zusammengefasst werden. Eine entsprechende Aufteilung eines Fluidzustroms bzw. Zusammenfassung von Fluidströmen kann bspw. durch eine Y-förmige Leitung erfolgen. Vorrichtungen werden "parallel betrieben", wenn die gleichartigen Öffnungen an den Vorrichtungen parallel angeschlossen sind.Two or more ports are "connected in parallel" when a flow of fluid is evenly distributed among the two or more ports or when fluid streams from the two or more ports are combined. A corresponding division of a fluid flow or a combination of fluid flows can be carried out, for example, by a Y-shaped line. Devices are "operated in parallel" if the similar openings on the devices are connected in parallel.

Der Erfindung liegt die Erkenntnis zugrunde, dass durch einen modularen Aufbau eines Eisspeichers eine kostengünstige Reparatur bei Korrosionsschäden möglich ist.The invention is based on the finding that a cost-effective repair for corrosion damage is possible by a modular design of an ice storage.

Gemäß dem Hauptanspruch wird dazu ein Kältemodul umfassend eine Rohranordnung vorgeschlagen, welches in ein Eisspeicherbecken absenkbar ist. Treten bei einem solchen Kältemodul Korrosionsschäden auf, so muss lediglich das Kältemodul, nicht jedoch das Eisspeicherbecken bzw. der gesamte Eisspeicher ausgetauscht werden. Ebenfalls ist es möglich, dass bei bereits vorhandenen Eisspeichern mit Korrosionsschäden an der Rohrschlange lediglich die beschädigte Rohrschlange entfernt wird, während das Eisspeicherbecken erhalten bleibt. Das erfindungsgemäße Kältemodul kann dann in das bereits vorhandene Eisspeicherbecken abgesenkt werden, womit die Funktionsfähigkeit des Eisspeichers wieder hergestellt ist.According to the main claim, a refrigeration module comprising a pipe arrangement is proposed, which can be lowered into an ice storage tank. If corrosion damage occurs in such a cooling module, then only the cooling module, but not the ice storage tank or the entire ice storage must be replaced. It is also possible that with existing ice storage with corrosion damage to the coil only the damaged coil is removed while the ice storage tank is maintained. The refrigeration module according to the invention can then be lowered into the already existing ice storage tank, whereby the functionality of the ice storage is restored.

Erfindungsgemäß ist weiterhin vorgesehen, dass in einem bereits vorhandenen oder neu zu installierenden Eisspeicherbecken mehr als ein Kältemodul abgesenkt wird, wobei die einzelnen Anschlüsse der wenigstens zwei Kältemodule so miteinander verbunden werden, dass sie parallel betrieben werden. Durch den Einsatz mehrerer parallel geschalteter Kältemodule ist es möglich eine beliebige Kälteleistung zu installieren, ohne dass es dazu einer speziellen Konstruktion und Anfertigung eines Kältemoduls bzw. einer Rohranordnung bedarf. Vielmehr wird durch eine einheitliche Größe von Kältemodulen, von denen parallel geschaltet auch mehrere in einem Eisspeicherbecken abgesenkt werden können, erreicht, dass ein beliebiges ganzzahliges Vielfaches der Kälteleistung eines einzelnen Kältemoduls als Gesamtkälteleistung installiert werden kann. Dadurch können die Kostenvorteile einer Serienproduktion bei Konstruktion und Fertigung der Kältemodule voll ausgenutzt werden können.According to the invention, it is further provided that more than one cooling module is lowered in an already existing or newly installed ice storage tank, the individual connections of the at least two cooling modules being connected to one another in such a way that they are operated in parallel. Through the use of several parallel connected cooling modules, it is possible to install any cooling capacity, without the need for a special design and manufacture of a cooling module or a pipe arrangement. Rather, by a uniform size of cooling modules, of which several can be lowered in parallel in an ice storage tank, achieved that any integer multiple of the cooling capacity of a single cooling module can be installed as a total cooling capacity. This allows the cost advantages of a series production in design and manufacture of the refrigeration modules can be fully utilized.

Ist auch ein bereits vorhandenes Eisspeicherbecken beschädigt oder soll ein neuer Eisspeicher installiert werden, so ist erfindungsgemäß ein Satz von Eisspeichern vorgesehen. Der Satz von Eisspeichern umfasst dabei mehrere standardisierte Kältemodule, die - wie oben beschrieben - parallel betrieben werden und jeweils in einem auf die Größe und Kälteleistung der Kältemodule angepassten Eisspeicherbeckens abgesenkt sind. Indem jedes Kältemodul in einem eigenen Eisspeicherbecken abgesenkt ist, können die Vorteile der Serienproduktion, wie sie bereits für die Kältemodule beschrieben wurden, auch auf die Eisspeicherbecken übertragen werden. Abhängig von der gewünschten Gesamtkälteleistung wird die Anzahl von Eisspeichern mit Eisspeicherbecken und darin abgesenkten Kältemodulen bestimmt, die parallel betrieben die gewünschte Gesamtkälteleistung liefern.If an existing ice storage tank is also damaged or if a new ice storage tank is to be installed, a set of ice storage tanks is provided according to the invention. The set of ice storage includes several standardized cooling modules, which - as described above - are operated in parallel and each in an adapted to the size and cooling capacity of the refrigeration modules ice storage tank are lowered. By lowering each refrigeration module in its own ice storage tank, the advantages of mass production, as already described for the refrigeration modules, can also be transferred to the ice storage basins. Depending on the desired total cooling capacity, the number of ice accumulators with ice storage basins and refrigeration modules lowered therein is determined which, operated in parallel, deliver the desired total refrigeration capacity.

Um die Abschmelzleistung eines Eisspeichers zu erhöhen, ist bei dem erfindungsgemäßen Kältemodul vorgesehen, dass eine Einlassöffnung für das erste fluide Medium vorgesehen ist, und die Systemhalterung an der Unterseite des Kältemoduls Ausströmöffnungen aufweist, die mit der Einlassöffnung für das erste fluide Medium fluidverbunden und so angeordnet sind, dass das aus den Ausströmöffnungen strömende erste Medium gleichmäßig über die Oberfläche des Kältemoduls verteilt wird. Bei dem ersten fluiden Medium handelt es sich um das gleiche fluide Medium, mit dem das Eisspeicherbecken gefüllt ist, vorzugsweise insbesondere das vom Prozess zurückfließende erwärmte Wasser.In order to increase the melting rate of an ice storage, it is provided in the refrigeration module according to the invention that an inlet opening for the first fluid medium is provided, and the system holder at the bottom of the refrigeration module has outflow openings fluidly connected to the inlet opening for the first fluid medium and so arranged in that the first medium flowing out of the outflow openings is distributed uniformly over the surface of the cooling module. The first fluid medium is the same fluid medium with which the ice storage tank is filled, preferably in particular the heated water flowing back from the process.

Durch den Zulauf des ersten fluiden Mediums über das erfindungsgemäße Kältemodul wird erreicht, dass das dem Eisspeicherbecken zufließende erste fluide Medium gleichmäßig über der Oberfläche der Unterseite des Kältemoduls verteilt wird. Indem der Zulauf des ersten fluiden Mediums über die gesamte Oberfläche der Unterseite des Kältemoduls erfolgt wird die Bildung eines einzelnen Strömungskanals, der eine starke Absenkung der Abschmelzleistung zur Folge hätte, effektiv verhindert.The inflow of the first fluid medium via the refrigeration module according to the invention ensures that the first fluid medium flowing into the ice storage tank is distributed uniformly over the surface of the underside of the refrigeration module. By the inflow of the first fluid medium over the entire surface of the underside of the cooling module is the formation of a single flow channel, which would greatly reduce the Abschmelzleistung would result effectively prevented.

Indem die Zuführung des ersten fluiden Mediums zum Eisspeicherbecken über das erfindungsgemäße Kältemodul erfolgt, wird weiterhin erreicht, dass bei bereits vorhandenen Eisspeicherbecken, bei denen die Zuleitung des ersten fluiden Mediums punktuell erfolgt, die Abschmelzleistung durch den Einsatz eines erfindungsgemäßen Kältemoduls deutlich erhöht werden kann. Dieser Vorteil tritt insbesondere auch bei dem erfindungsgemäßen Satz zur Nachrüstung von Eisspeicherbecken auf.By the supply of the first fluid medium to the ice storage tank via the cooling module according to the invention, it is further achieved that in already existing ice storage tanks, in which the supply of the first fluid medium pointwise, the Abschmelzleistung can be significantly increased by the use of a cooling module according to the invention. This advantage also occurs in particular in the kit according to the invention for retrofitting ice storage tanks.

Um die Abschmelzleistung weiter zu erhöhen, umfasst das erfindungsgemäße Kältemodul weiterhin eine Lufteinblasungsvorrichtung. Die Lufteinblasungsvorrichtung weist dabei eine Luftzuführöffnungen und mehrere damit fluidverbundene, an der Unterseite des Kältemoduls angeordnete Luftausströmöffnungen auf, wobei die Luftausströmungsöffnungen so angeordnet sind, dass die aus der Luftausströmöffnungen strömende Luft gleichmäßig über die Oberfläche des Kältemoduls verteilt wird. Durch die gleichmäßig über die Oberfläche des Kältemoduls verteilte Einblasung von Luft wird eine erhöhte Turbulenz im Eisspeicherbecken, zumindest im Bereich des Kältemoduls, erreicht. Auf Grund der so erreichten Turbulenz wird die Bildung von Strömungskanälen und damit eine Absenkung der Abschmelzleistung effektiv verhindert.In order to further increase the deposition rate, the cooling module according to the invention further comprises an air injection device. In this case, the air injection device has an air feed opening and a plurality of air discharge openings arranged on the underside of the refrigeration module, the air discharge openings being arranged so that the air flowing out of the air discharge openings is distributed uniformly over the surface of the refrigeration module. By uniformly distributed over the surface of the cooling module blowing air is an increased turbulence in the ice storage tank, at least in the area of the cooling module achieved. Due to the turbulence thus achieved, the formation of flow channels and thus a lowering of the Abschmelzleistung is effectively prevented.

Auch wenn das erste fluide Medium ausschließlich in flüssiger Phase vorliegt, wird durch die Einblasung von Luft eine Verbesserung des Eisspeichers erreicht. Durch die Lufteinblasung werden alle Bereiche des Eisspeicherbeckens, zumindest jedoch der Bereich des Kältemoduls durchmischt. Durch die ständige Durchmischung des aus den Ausströmöffnungen des Kältemoduls zufließenden ersten Mediums mit dem im Eisspeicherbecken, wird eine homogene Temperaturverteilung im Eisspeicherbecken erreicht. Die Ausbildung einzelner Temperaturzonen innerhalb des Eisspeicherbeckens und damit ggf. Temperaturschwankungen im dem Eisspeicherbecken entnommenes erstes fluides Medium wird also vermieden.Even if the first fluid medium is exclusively in the liquid phase, an improvement in the ice storage is achieved by the injection of air. By the air injection all areas of the ice storage tank, but at least the area of the cold module are mixed. Due to the constant mixing of the flowing out of the outflow openings of the cooling module first medium with the ice storage tank, a homogeneous temperature distribution in Ice storage tank reached. The formation of individual temperature zones within the ice storage tank and thus possibly temperature fluctuations in the ice storage tank taken first fluid medium is thus avoided.

Es ist bevorzugt, wenn die Einlassöffnung und die Auslassöffnung für das zweite fluide Medium, die Einlassöffnung für das erste fluide Medium und/oder die Luftzuführöffnung an der Oberseite des Kältemoduls angeordnet sind.It is preferred if the inlet opening and the outlet opening for the second fluid medium, the inlet opening for the first fluid medium and / or the air supply opening are arranged on the top side of the refrigeration module.

Es ist weiter bevorzugt, wenn die Systemhalterung wenigstens teilweise rohrförmig ausgeführt ist und die Eingangsöffnung für das erste fluide Medium mit den Ausströmöffnungen für das erste fluide Medium durch die rohrförmigen Teile der Systemhalterung miteinander fluidverbunden sind. Das von der Eingangsöffnung zu den Ausströmöffnungen fließende erste fluide Medium wird also durch die Systemhalterung geleitet.It is further preferred if the system holder is at least partially tubular and the inlet opening for the first fluid medium with the outflow openings for the first fluid medium through the tubular parts of the system holder are fluidly connected to each other. The flowing from the input port to the discharge openings first fluid medium is thus passed through the system holder.

Weiter bevorzugt ist es, wenn am Kältemodul eine Auslassöffnung und wenigstens eine damit fluidverbundene Einströmöffnung für das erste Medium vorgesehen ist, wobei die Einströmöffnung zwischen Ober- und Unterseite des Kältemoduls und die Auslassöffnung vorzugsweise an der Oberseite des Kältemoduls angeordnet ist. Indem bei einem entsprechend ausgestalteten Kältemodul das erste fluide Medium aus dem Eisspeicherbecken über die Einströmöffnung des Kältemoduls entnommen werden kann, muss an dem Eisspeicherbecken, in das ein entsprechendes Kältemodul abgesenkt wird, keinerlei Ein- oder Auslassöffnungen vorgesehen sein. Das Eisspeicherbecken kann demnach sehr einfach aufgebaut sein. Bei bereits vorhandenen Eisspeicherbecken können vorhandene Ein- und Auslassöffnungen unbenutzt bleiben und geschlossen werden. Dies bietet den Vorteil, dass unabhängig von an einem bereits vorhandenen Eisspeicherbecken vorgesehenen Ein- und Auslassöffnungen eine "standardisierte" Strömung im Eisspeicherbecken ergibt und so die Kälteleistung des Eisspeichers unabhängig von gegebenenfalls vorhandenen Ein- und Auslässen an dem Eisspeicherbecken vorhersagbar ist.It is further preferred if an outlet opening and at least one inlet opening connected to the fluid for the first medium are provided on the refrigeration module, wherein the inflow opening between the top and bottom of the refrigeration module and the outlet opening is preferably arranged on the top side of the refrigeration module. By the first fluid medium can be removed from the ice storage tank via the inflow opening of the cold module in a correspondingly designed cooling module, no inlet or outlet openings must be provided on the ice storage tank into which a corresponding cooling module is lowered. The ice storage tank can therefore be very simple. For existing ice storage tanks existing inlet and outlet openings can remain unused and closed become. This offers the advantage that regardless of provided on an existing ice storage tank inlet and outlet openings results in a "standardized" flow in the ice storage tank and so the cooling capacity of the ice storage is independent of any existing inlets and outlets on the ice storage tank is predictable.

Weiter bevorzugt ist es, wenn die Auslassöffnung an der Oberseite des Kältemoduls und die Einströmungsöffnung zwischen Ober- und Unterseite des Kältemoduls über einen rohrförmigen Teil der Systemhalterung miteinander fluidverbunden sind.It is further preferred if the outlet opening on the upper side of the cold module and the inflow opening between the upper and lower side of the cold module are fluid-connected to one another via a tubular part of the system holder.

Alternativ ist es natürlich weiterhin möglich, bereits vorhandene Ein- und Auslässe an einem Eisspeicherbecken zu nutzen. Auch ist es möglich, bei erfindungsgemäßen Eisspeichern einen Ausfluss an dem Eisspeicherbecken vorzusehen. Die Komplexität des Eisspeicherbeckens wird dadurch nur unwesentlich erhöht.Alternatively, it is of course still possible to use existing inlets and outlets on an ice storage tank. It is also possible to provide an outflow at the ice storage tank in the case of ice storage devices according to the invention. The complexity of the ice storage tank is thereby increased only slightly.

Die Rohranordnung kann vorzugsweise als Rohrschlangen ausgebildet sein. Es ist aber auch möglich als mehrfach verschachtelte Rohranordnung einen Plattenkühler oder eine Verdampferplattenanordnung vorzusehen.The tube assembly may preferably be formed as a tube coils. However, it is also possible to provide a plate-type cooler or an evaporator plate arrangement as a multiply interleaved tube arrangement.

Bevorzugt ist es, wenn es sich bei dem ersten fluiden Medium um Wasser, bei dem zweiten fluiden Medium um Kälteflüssigkeit handelt. Die Rohranordnung ist bevorzugt verzinkt oder aus Edelstahl.It is preferred if the first fluid medium is water, and the second fluid medium is cold fluid. The tube assembly is preferably galvanized or stainless steel.

Die Erfindung wird nun anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1a-c:
ein erstes Ausführungsbeispiel eines erfindungsgemäßen Kältemoduls;
Figur 2a, b:
ein erstes Ausführungsbeispiel eines erfindungsgemäßen Eisspeichers mit einem Kältemodul gemäß Figur 1;
Figur 3:
ein erstes Ausführungsbeispiel eines erfindungsgemäßen Satzes zur Nachrüstung von Eisspeicherbecken mit Kältemodulen gemäß Figur 1;
Figur 4:
ein erstes Ausführungsbeispiel eines Satzes von Eisspeichern mit Kältemodulen gemäß Figur 1;
Figur 5:
ein erstes Ausführungsbeispiel eines Eisspeicherbeckens; und
Figur 6:
ein zweites Ausführungsbeispiel eines erfindungsgemäßen Eisspeichers.
The invention will now be described with reference to exemplary embodiments illustrated in the drawings. Show it:
FIG. 1a-c:
a first embodiment of a cooling module according to the invention;
FIG. 2a, b:
a first embodiment of an ice storage according to the invention with a cooling module according to FIG. 1 ;
FIG. 3:
a first embodiment of a set according to the invention for retrofitting ice storage tank with cooling modules according to FIG. 1 ;
FIG. 4:
a first embodiment of a set of ice storage with refrigeration modules according to FIG. 1 ;
FIG. 5:
a first embodiment of an ice storage tank; and
FIG. 6:
A second embodiment of an ice storage according to the invention.

In Figuren la bis c ist ein erfindungsgemäßes Kältemodul 1 in drei verschiedenen Ansichten dargestellt, wobei Figur 1a die Vorderansicht, Figur 1b die rechte Seitenansicht und Figur 1c die Untersicht des Kältemoduls 1 darstellt.In Figures la to c, an inventive cooling module 1 is shown in three different views, wherein FIG. 1a the front view, FIG. 1b the right side view and Figure 1c the bottom view of the refrigeration module 1 represents.

Das Kältemodul 1 umfasst eine Rohranordnung 10 und eine Systemhalterung 20.The refrigeration module 1 comprises a tube arrangement 10 and a system holder 20.

Die Rohranordnung 10 ist, wie dargestellt, mehrfach geschlungen und verbindet eine Einlassöffnung 11 mit einer Auslassöffnung 12. Bei der Rohranordnung 10 handelt es sich also um eine Rohrschlange. Durch die Einlassöffnung 11 in die Rohranordnung 10 einströmendes zweites fluides Medium durchläuft die gesamte Rohranordnung 10, bevor es an der Auslassöffnung 12 wieder austritt. Ein- und Auslassöffnungen 11, 12 sind dabei an der Oberseite 2 des Kältemoduls 1 angeordnet.As shown, the tube assembly 10 is looped several times and connects an inlet opening 11 to an outlet opening 12. The tube assembly 10 is So a pipe coil. The second fluid medium flowing through the inlet opening 11 into the tube arrangement 10 passes through the entire tube arrangement 10 before it exits again at the outlet opening 12. Inlet and outlet openings 11, 12 are arranged on the upper side 2 of the cooling module 1.

Die Systemhalterung 20 umfasst zwei U-förmige Halteelemente 21, an denen die Rohranordnung 10 befestigt ist. Das Querteil 22, sowie die Seitenteile 23, 24 der Halteelemente 21 sind rohrförmig ausgebildet. An dem an der Oberseite 2 des Kältemoduls 1 befindlichen Ende des einen Seitenteils 23 jedes Halteelementes 21 ist jeweils eine Einlassöffnung 25 für ein erstes fluides Medium vorgesehen. Diese Einlassöffnung 25 ist auf Grund der rohrförmigen Ausgestaltung des einen Seitenteils 23 und dem Querteil 22 fluidverbunden mit einer jeweils an den Querteilen 22 vorgesehenen Ausströmöffnungen 26. Durch die Einlassöffnung 25 hineinströmendes erstes fluides Medium fließt demnach durch das Halteelement 21 und strömt an den Ausströmöffnungen 26 heraus. Die Auslassöffnungen 26 sind dabei so angeordnet, dass das aus den Ausströmöffnungen 26 strömende erste Medium gleichmäßig über die Oberfläche - d.h. die Unterseite 3 - des Kältemoduls 1 verteilt wird.The system holder 20 includes two U-shaped holding members 21 to which the tube assembly 10 is attached. The transverse part 22, as well as the side parts 23, 24 of the holding elements 21 are tubular. At the end of the one side part 23 of each holding element 21 located on the upper side 2 of the cooling module 1, an inlet opening 25 for a first fluid medium is provided in each case. Due to the tubular configuration of the one side part 23 and the transverse part 22, this inlet opening 25 is fluidly connected to an outflow opening 26 respectively provided on the transverse parts 22. First fluid medium flowing through the inlet opening 25 thus flows through the holding element 21 and flows out at the outflow openings 26 , The outlet openings 26 are arranged so that the first medium flowing out of the outflow openings 26 flows uniformly over the surface - i. the bottom 3 - the cooling module 1 is distributed.

An dem anderen Seitenteil 24 jedes Halteelementes 21 ist im oberen Bereich zwischen Ober- und Unterseite 2, 3 des Kältemoduls 1 eine Einströmöffnung 27 für das erste Medium vorgesehen. Diese Einströmöffnung 27 ist über das rohrförmige andere Seitenteil 24 mit der Auslassöffnung 28 für das erste fluide Medium, welche an der Oberseite 2 des Kältemoduls 1 angeordnet ist, fluidverbunden. Durch die Einströmöffnung 27 einströmendes erstes fluides Medium kann also über das rohrförmige andere Seitenteil 24 zur Auslassöffnung 28 gelangen. Um zu verhindern, dass das erste fluide Medium direkt von der Einlassöffnung 25 zur Auslassöffnung 28 gelangt, ist durch eine Trennwand (nicht dargestellt) im Bereich 29 ein direkter Fluidstrom durch das Halteelement 21 unterbunden.On the other side part 24 of each retaining element 21, an inflow opening 27 for the first medium is provided in the upper region between the upper and lower sides 2, 3 of the cooling module 1. This inflow opening 27 is fluidly connected via the tubular other side part 24 with the outlet opening 28 for the first fluid medium, which is arranged on the upper side 2 of the cooling module 1. Thus, inflowing through the inflow opening 27 first fluid medium can pass over the tubular other side part 24 to the outlet opening 28. In order to prevent the first fluid medium from passing directly from the inlet opening 25 to the outlet opening 28, a direct fluid flow through the holding element 21 is prevented by a dividing wall (not shown) in the area 29.

Das Kältemodul 20 weist weiterhin eine Lufteinblasungsvorrichtung 30 auf. Die Lufteinblasungsvorrichtung 30 besteht aus einem Rohrleitungssystem 31, wobei an der Oberseite 2 des Kältemoduls 1 eine Luftzuführöffnung 32 vorgesehen ist. Die Luftzuführöffnung 32 ist über das Rohrsystem 31 mit einer an der Unterseite 3 des Kältemoduls 1 angeordneten gitterartigen Struktur 32 verbunden. An der gitterartigen Rohrleitungsstruktur 32 sind Luftausströmöffnungen 33 vorgesehen, durch die dem Rohrsystem 31 über die Luftzuführöffnung 32 zugeführte Luft entweichen kann. Die Auslassöffnungen 33 sind dabei so angeordnet, dass die daraus ausströmende Luft gleichmäßig über die Oberfläche - d.h. die Unterseite 3 - des Kältemoduls 1 verteilt wird.The refrigeration module 20 also has an air injection device 30. The air injection device 30 consists of a pipeline system 31, wherein an air supply opening 32 is provided on the upper side 2 of the cooling module 1. The air supply opening 32 is connected via the pipe system 31 with a grid-like structure 32 arranged on the underside 3 of the refrigeration module 1. At the lattice-like piping structure 32 Luftausströmöffnungen 33 are provided, through which the pipe system 31 via the air supply port 32 can escape air supplied. The outlet openings 33 are arranged so that the air flowing out of them uniformly over the surface -. the bottom 3 - the cooling module 1 is distributed.

Die Systemhalterung 20 weist weiterhin Füße 40 auf, mit denen die Systemhalterung 20 in einem Eisspeicherbecken 50 befestigbar ist. Dabei ist es möglich, dass das Kältemodul 1 ausschließlich auf Grund seines Gewichtes und der daraus resultierenden Reibungskraft zwischen den Füße 40 und dem Eisspeicherbecken 50 als befestigt im Sinn dieser Erfindung gilt. Zusätzlich ist es möglich, dass die Füße 40 an dem Eisspeicherbecken 50 durch andere Maßnahmen, bspw. eine Punktschweißverbindung, befestigt werden. Es ist aber auch möglich, weitere oder alternative Sicherungselemente vorzusehen, mit denen das Kältemodul 1 beispielsweise an den Seitenwänden eines Eisspeicherbeckens befestigt werden kann.The system holder 20 also has feet 40, with which the system holder 20 in an ice storage tank 50 can be fastened. It is possible that the cooling module 1 is considered to be fixed in the sense of this invention solely due to its weight and the resulting frictional force between the feet 40 and the ice storage tank 50. In addition, it is possible for the feet 40 to be attached to the ice storage pool 50 by other means, such as spot welding. But it is also possible to provide additional or alternative security elements, with which the cooling module 1, for example, to the Side walls of an ice storage tank can be attached.

Die Funktionsweise des Kältemoduls 1 aus Figuren 1a bis c wird nun anhand der Figuren 2a, b erläutert. Bei dem in Figuren 2a, b dargestellten Ausführungsbeispiel kann es sich zum einen um einen erfindungsgemäßen Eisspeicher mit einem Kältemodul 1 und einem Eisspeicherbecken 50 handeln. Ebenso gut kann es sich aber auch um ein bereits vorhandenes Eisspeicherbecken 50 handeln, welches mit einem erfindungsgemäßen Kältemodul 1 nachgerüstet ist. Auf Grund der wesentlichen Übereinstimmung zwischen diesen beiden Varianten werden sie in der nachfolgenden Erläuterung daher in einem einzigen Ausführungsbeispiel zusammengefasst behandelt.The operation of the cooling module 1 off FIGS. 1a to c will now be based on the FIGS. 2a, b explained. The exemplary embodiment illustrated in FIGS. 2a, b may be, on the one hand, an ice storage device according to the invention with a refrigeration module 1 and an ice storage basin 50. But it can also be an already existing ice storage tank 50, which is retrofitted with a cooling module 1 according to the invention. Due to the substantial agreement between these two variants, they will therefore be summarized in the following explanation in a single embodiment.

Das Kältemodul 1 aus Figuren 1a bis c ist, wie in Figuren 2a, b dargestellt, in ein Eisspeicherbecken 50 abgesenkt. Das Eisspeicherbecken 50 ist mit einem ersten fluiden Medium gefüllt. Das Kältemodul 1 gilt allein auf Grund seiner Gewichtskraft und der daraus resultierenden Reibung zwischen Füßen 40 und Eisspeicherbecken 50 als befestigt im Sinne dieser Anmeldung.The cooling module 1 off FIGS. 1a to c is how in FIGS. 2a, b shown lowered into an ice storage tank 50. The ice storage tank 50 is filled with a first fluid medium. The refrigeration module 1 applies solely on the basis of its weight and the resulting friction between feet 40 and ice storage tank 50 as fixed in the context of this application.

Die beiden Einlassöffnungen 25 sind über Rohrleitungen 60 so miteinander verbunden, dass durch die Rohrleitungen 60 fließendes erstes fluides Medium gleichmäßig auf die beiden Einlassöffnungen 25 verteilt wird. Sie sind also parallel angeschlossen. Auch die beiden Auslassöffnungen 28 an den Halteelementen 21 sind parallel angeschlossen, d.h. über ein Rohrleitungssystem so miteinander verbunden, dass über das Rohrleitungssystem 61 gleichmäßig erstes fluides Medium durch die Auslassöffnungen 28 aus dem Eisspeicherbecken 50 entnommen werden kann.The two inlet openings 25 are connected to one another via pipelines 60 such that first fluid medium flowing through the pipelines 60 is distributed uniformly over the two inlet openings 25. So you are connected in parallel. The two outlet openings 28 on the holding elements 21 are connected in parallel, that is connected to one another via a piping system so that uniformly first fluid medium can be withdrawn through the outlet openings 28 from the ice storage tank 50 via the piping system 61.

Die Ein- und Auslassöffnungen 11, 12 der Rohranordnung 10 für das zweite fluide Medium sind über Rohrleitungen 62, 63 in einen nicht dargestellten Kühlkreislauf eingebunden. Dieser Kühlkreislauf umfasst einen Kältegenerator (nicht dargestellt), der das zweite fluide Medium auf eine niedrige Temperatur herabkühlt, bevor es durch die Rohrleitung 62 in die Einlassöffnung 11 der Rohranordnung 10 strömt. Während das zweite fluide Medium durch die Rohranordnung 10 strömt, kommt es über die Wand der Rohranordnung 10 zu einem Wärmeaustausch mit dem im Eisspeicherbecken 50 befindlichen ersten fluiden Mediums, wodurch sich das erste fluide Medium abkühlt, während sich das zweite fluide Medium in der Rohranordnung 10 erwärmt. Das erwärmte zweite fluide Medium strömt aus der Auslassöffnung 12 durch die Rohrleitungen 63 zurück zum Kältegenerator, wo es erneut abgekühlt wird. Es entsteht somit ein geschlossener Kühlmittelkreislauf für das zweite fluide Medium.The inlet and outlet openings 11, 12 of the tube assembly 10 for the second fluid medium are integrated via pipes 62, 63 in a cooling circuit, not shown. This refrigeration cycle includes a refrigeration generator (not shown) that cools the second fluid medium to a low temperature before flowing through the conduit 62 into the inlet port 11 of the tube assembly 10. As the second fluid medium flows through the tube assembly 10, heat exchange occurs through the wall of the tube assembly 10 with the first fluid medium within the ice storage reservoir 50, thereby cooling the first fluid medium while the second fluid medium within the tube assembly 10 heated. The heated second fluid medium flows from the outlet port 12 through the conduits 63 back to the refrigeration generator, where it is cooled again. This results in a closed coolant circuit for the second fluid medium.

Wie bereits beschrieben, wird das erste fluide Medium im Eisspeicherbecken 50 durch auf Grund von Wärmeaustausch mit dem zweiten fluiden Medium in der Rohranordnung 10 abgekühlt. Das gekühlte erste fluide Medium kann über die Einströmöffnungen 27, den Auslassöffnungen 28 und den Rohren 61 dem Eisspeicherbecken 50 entnommen werden. Das gekühlte erste fluide Medium kann so beispielsweise einem Wärmetauscher zur Milchkühlung (nicht dargestellt) zugeführt werden. In einem entsprechenden Wärmetauscher wird das erste fluide Medium erwärmt und anschließend über die Rohrleitungen 60 dem Kältemodul 1 zugeführt.As already described, the first fluid medium in the ice storage tank 50 is cooled by heat exchange with the second fluid medium in the tube assembly 10. The cooled first fluid medium can be removed from the ice storage tank 50 via the inlet openings 27, the outlet openings 28 and the tubes 61. The cooled first fluid medium may thus for example be supplied to a heat exchanger for milk cooling (not shown). In a corresponding heat exchanger, the first fluid medium is heated and then fed via the pipes 60 to the cooling module 1.

Das erwärmte erste fluide Medium strömt durch die Einlassöffnungen 25 und den Halteelementen 21 zu den Ausströmöffnungen 26 am Querteil 22 der Halteelemente 21. Dort tritt das erwärmte erste fluide Medium aus und durchmischt sich mit dem in dem Eisspeicherbecken 50 befindlichen ersten fluiden Medium. Auf Grund der Durchmischung kommt es zu einem Wärmeaustausch zwischen dem im Eisspeicherbecken 50 befindlichen kälteren ersten fluiden Medium und dem zuströmenden, wärmeren ersten fluiden Medium, wodurch letzteres abgekühlt wird.The heated first fluid medium flows through the inlet openings 25 and the holding elements 21 to the outflow openings 26 on the transverse part 22 of the holding elements 21. There, the heated first fluid medium exits and mixes with the first fluid medium located in the ice storage tank 50. Due to the mixing there is a heat exchange between the colder first fluid medium located in the ice storage tank 50 and the inflowing, warmer first fluid medium, whereby the latter is cooled.

Die Ausströmöffnungen 26 sind so angeordnet, dass das erste fluide Medium gleichmäßig über die Oberfläche bzw. die Unterseite 3 des Kältemoduls 1 verteilt wird. Dadurch wird erreicht, dass sich im Eisspeicherbecken 50 keine Zonen ausschließlich mit frisch zugeflossenem ersten fluiden Mediums ausbilden, die dann gegenüber den übrigen Bereichen im Eisspeicherbecken eine erhöhte Temperatur aufweisen würden. Auch wird so verhindert, dass es im Falle von Vereisung des ersten fluiden Mediums im Eisspeicherbecken 50 keine Ausbildung eines einzigen Strömungskanäls vom Einzum Auslass für das erste fluide Medium kommt, was eine Verringerung der Abschmelzleistung zur Folge hätte. Vielmehr wird durch die erfindungsgemäße Art der Zuführung des ersten fluiden Mediums die Ausbildung eines Strömungskanals effektiv vermieden.The outflow openings 26 are arranged so that the first fluid medium is uniformly distributed over the surface or the bottom 3 of the cooling module 1. This ensures that in the ice storage tank 50 no zones form exclusively with freshly inflowing first fluid medium, which would then have an elevated temperature compared to the other areas in the ice storage tank. It is also prevented that in the case of icing of the first fluid medium in the ice storage tank 50, there is no formation of a single flow channel from the single outlet for the first fluid medium, which would result in a reduction of the Abschmelzleistung. Rather, the formation of a flow channel is effectively avoided by the inventive way of supplying the first fluid medium.

Als zusätzliche Maßnahmen zur Homogenisierung des im Eisspeicherbecken 50 befindlichen ersten fluiden Mediums und zur Vermeidung der Ausbildung eines Strömungskanals ist eine Lufteinblasungsvorrichtung 30 vorgesehen. Die Lufteinblasungsvorrichtung 30 ist über eine Rohrleitung 64 mit einer Druckluftquelle (nicht dargestellt) verbunden. Die durch die Luftzuführöffnung 32 in die Lufteinblasungsvorrichtung 30 einströmende Druckluft entweicht im Bereich der Unterseite 3 des Kältemoduls 1 durch die dort vorgesehenen Luftausströmöffnungen 33. Die Luftausströmöffnungen 33 sind dabei so angeordnet, dass die ausströmende Luft gleichmäßig über die Oberfläche des Kältemoduls 1 verteilt wird. Durch die eingeblasene Luft werden im Eiswasserbecken 50 Turbulenzen verursacht, die zu einer Homogenisierung des im Eisspeicherbeckens 50 befindlichen ersten fluiden Mediums führt. Durch entsprechende Turbulenzen wird außerdem sichergestellt, dass im Falle der Vereisung des im Eisspeicherbeckens 50 befindlichen ersten fluiden Mediums eine gleichmäßige Vereisung entlang der Rohranordnung 10 erfolgt und insbesondere keine einzelnen Strömungskanäle zwischen einzelnen Ausströmungsöffnungen 26 und den Einströmöffnungen 27 entstehen. Letztere hätte eine unerwünschte Herabsenkung der Abschmelzleistung zur Folge.As additional measures for the homogenization of the first fluid medium located in the ice storage tank 50 and to avoid the formation of a flow channel, an air injection device 30 is provided. The air injection device 30 is connected via a pipe 64 to a compressed air source (not shown). The compressed air flowing into the air injection device 30 through the air supply opening 32 escapes in the region of Bottom 3 of the cooling module 1 through the provided there Luftausströmöffnungen 33. The Luftausströmöffnungen 33 are arranged so that the outflowing air is evenly distributed over the surface of the cooling module 1. Due to the injected air 50 turbulences are caused in the ice water basin, which leads to a homogenization of the first fluid medium located in the ice storage tank 50. By appropriate turbulence is also ensured that in the case of icing of the located in the ice storage tank 50 first fluid medium uniform icing along the tube assembly 10 takes place and in particular no individual flow channels between individual outflow openings 26 and the inlet openings 27 arise. The latter would result in an unwanted lowering of the Abschmelzleistung.

Als erstes fluides Medium kann bevorzugt Wasser verwendet werden, während als zweites Fluidmedium vorzugsweise Kühlmittel verwendet wird. Die Rohranordnung 10 ist bevorzugt verzinkt oder aus Edelstahl.Water may preferably be used as the first fluid medium, while coolant is preferably used as the second fluid medium. The tube assembly 10 is preferably galvanized or stainless steel.

Alternativ zu einer Rohrschlange als Rohranordnung 10 kann das zweite fluide Medium auch durch einen Plattenkühler oder eine Verdampferplattenanordnung geleitet werden. Dem Fachmann ist ohne Weiteres möglich anstelle einer Rohrschlange einen Plattenkühler vorzusehen.As an alternative to a tube coil as a tube assembly 10, the second fluid medium may also be passed through a plate cooler or evaporator plate assembly. The skilled person is readily possible to provide a plate cooler instead of a coil.

In Figur 3 ist ein erfindungsgemäßer Satz zur Nachrüstung eines Eisspeicherbeckens 50 dargestellt. In diesem Ausführungsbeispiel ist das Eisspeicherbecken bereits vorhanden und soll lediglich mit erfindungsgemäßen Kältemodulen 1 (vgl. Figuren 1a-c) nachgerüstet werden.In FIG. 3 an inventive set for retrofitting an ice storage tank 50 is shown. In this embodiment, the ice storage tank is already present and should only with refrigeration modules 1 according to the invention (see FIG. FIGS. 1a-c ) can be retrofitted.

Im dargestellten Ausführungsbeispiel ist das Eisspeicherbecken 50 iso dimensioniert, dass zwei erfindungsgemäße Kältemodule 1 in das Eisspeicherbecken 50 abgesenkt werden können. Die einzelnen Ein- und Auslassöffnungen bzw. Zuführöffnungen 11, 12, 25, 28, 32 der einzelnen Kältemodule 1 sind über Rohrleitungen 61 bis 64 parallel verbunden, womit die Kältemodule 1 parallel betrieben werden.In the illustrated embodiment, the ice storage tank 50 is iso dimensioned that two cooling modules 1 according to the invention can be lowered into the ice storage tank 50. The individual inlet and outlet openings or feed openings 11, 12, 25, 28, 32 of the individual cooling modules 1 are connected in parallel via pipes 61 to 64, whereby the cooling modules 1 are operated in parallel.

Bei dem erfindungsgemäßen Satz zur Nachrüstung von Eisspeicherbecken ist also vorgesehen, dass abhängig von der Größe des Eisspeicherbeckens 50 die Anzahl der in das Eisspeicherbecken 50 abzusenkenden Kältemodule 1 gewählt wird. Die baugleichen und daher in Serienfertigung kostengünstig zu produzierenden Kältemodule 1 weisen dabei eine bestimmte Kälteleistung auf, bspw. 500 kWh. Indem mehrere solcher Kältemodule 1 in ein Eisspeicherbecken 50 abgesenkt werden, lässt sich als installierte Gesamtleistung beliebig ein ganzzahliges Vielfaches der Kälteleistung eines einzelnen Kältespeichermoduls 1 erreichen. Im dargestellten Ausführungsbeispiel wird also eine Gesamtkälteleistung von 1000 kWh erreicht. Es sind aber auch Gesamtkälteleistungen von 1500 kWh, 2000 kWh, 2500 kWh, usw. möglich. Der erfindungsgemäße Satz zur Nachrüstung von Eisspeicherbecken 50 ermöglicht es also, bei Eisspeichern beliebiger Größe, deren Rohrschlange auf Grund von Korrosion nicht mehr verwendet werden kann, deren Eisspeicherbecken jedoch unbeschädigt ist, einfach mit erfindungsgemäßem Kältemodul bzw. einer Vielzahl derer nachzurüsten. Eine aufwändige Einzelanfertigung einer Rohrschlange, die für das noch vorhandene Eisspeicherbecken 50 genau passend wäre, entfällt somit.In the kit according to the invention for retrofitting ice storage basins, it is thus provided that, depending on the size of the ice storage tank 50, the number of cooling modules 1 to be lowered into the ice storage tank 50 is selected. The identical and therefore cost-effectively mass-produced cooling modules 1 in this case have a certain cooling capacity, for example. 500 kWh. By lowering a plurality of such refrigeration modules 1 into an ice storage tank 50, an integer multiple of the refrigeration capacity of a single cold storage module 1 can be arbitrarily achieved as installed total output. In the illustrated embodiment, therefore, a total cooling capacity of 1000 kWh is achieved. But there are also total cooling capacities of 1500 kWh, 2000 kWh, 2500 kWh, etc. possible. The inventive set for retrofitting ice storage tank 50 thus makes it possible for ice storage of any size, the coil can not be used due to corrosion, but the ice storage tank is undamaged, easy to retrofit with inventive cooling module or a variety of them. An elaborate one-off production of a coil, which would be exactly suitable for the still existing ice storage tank 50, thus eliminated.

Sollte bei einem vorhandenen Eisspeicher neben der Rohrschlange auch das Eisspeicherbecken 50 beschädigt sein, so ist erfindungsgemäß ein Satz von Eisspeichern vorgesehen, die jeweils ein erfindungsgemäßes Kältemodul 1 sowie ein an die Dimensionen dieses Kältemoduls 1 angepasstes Eisspeicherbecken 50 umfassen. Die Erfindung hat erkannt, dass eine beliebige Kälteleistung bzw. ein beliebiges Vielfaches einer bestimmten Kälteleistung erreicht werden kann, indem erfindungsgemäße Eisspeicher über Rohrleitungen 60-64 parallel betrieben werden. In Figur 4 ist ein entsprechender Satz von Eisspeichern mit entsprechenden Rohrleitungen 60-64 dargestellt Bei dem erfindungsgemäßen Satz von Eisspeichern kann also auf einen standardisierten Eisspeicher mit einer gewissen Kälteleistung zurückgegriffen werden und durch den parallelen Anschluss mehrere solcher Eisspeicher ein ganzzahliges Vielfaches der Kälteleistung eines einzelnen Eisspeichers als Gesamtkälteleistung erreicht werden. Der erfindungsgemäße Satz von Eisspeichern bietet den Vorteil, dass nicht nur auf standardisierte Kältemodule 1, sondern auch auf standardisierte Eisspeicherbecken 50 zurückgegriffen werden kann, was eine kostengünstige Serienproduktion ermöglicht.If, in addition to the pipe coil, the ice storage tank 50 is damaged in the case of an existing ice storage, then so According to the invention, a set of ice accumulators is provided which each comprise an inventive refrigeration module 1 and an ice storage tank 50 adapted to the dimensions of this refrigeration module 1. The invention has recognized that any refrigeration capacity or an arbitrary multiple of a specific refrigerating capacity can be achieved by operating ice storage units according to the invention via pipelines 60-64 in parallel. In FIG. 4 a corresponding set of ice storage with corresponding pipes 60-64 shown in the inventive set of ice storage so can be used on a standardized ice storage with a certain cooling capacity and achieved by the parallel connection several such ice storage an integer multiple of the cooling capacity of a single ice storage as total cooling capacity become. The set of ice storage devices according to the invention offers the advantage that not only standardized refrigeration modules 1 but also standardized ice storage basins 50 can be used, which enables cost-effective series production.

In den Ausführungsbeispielen gemäß Figuren 1 bis 4 wird dem Eisspeicherbecken 50 das erste fluide Medium über Strömungskanäle im Kältemodul 1 entnommen. Alternativ dazu ist es jedoch auch möglich, dass an dem Eisspeicherbecken 50 dafür ein Ausfluss 51 vorgesehen ist. Ein entsprechendes alternatives Eisspeicherbecken 50 mit Ausfluss 51 ist in Figur 5 dargestellt.In the embodiments according to FIGS. 1 to 4 The first fluid medium is taken from the ice storage tank 50 via flow channels in the refrigeration module 1. Alternatively, however, it is also possible for an outflow 51 to be provided at the ice storage tank 50 for this purpose. A corresponding alternative ice storage tank 50 with outflow 51 is in FIG. 5 shown.

In Figur 6 ist ein zweites Ausführungsbeispiel eines erfindungsgemäßen Eisspeichers gezeigt. Der Eisspeicher gemäß Figur 6 weist umfangreiche Parallelen zu dem Eisspeicher gemäß Figur 2 auf, weshalb auf die dortigen Ausführungen verwiesen wird. Im Folgenden wird lediglich auf die Unterschiede zwischen den Ausführungsbeispielen gemäß Figur 2 und 6 eingegangen.In FIG. 6 a second embodiment of an ice storage according to the invention is shown. The ice storage according to FIG. 6 has extensive parallels to the ice storage according to FIG. 2 on, which is why on the local versions is referenced. In the following, only the differences between the embodiments according to FIG. 2 and 6 received.

Bei dem Kältemodul 1 des Ausführungsbeispiels gemäß Figur 6 sind die Querteile 22 der Halteelemente 21 als nach unten offene U-Profile ausgebildet. Indem das Kältemodul 1 mit den Querteilen 22 auf dem Boden des Eisspeicherbeckens 50 aufliegt, ergeben sich Strömungskanäle in den Querteilen 22 für das erste fluide Medium. Die Querteile 22 sind mit Ausströmöffnungen 26 versehen, über die das erste fluide Medium gleichmäßig über die Oberfläche des Kältemoduls 1 verteilt wird.In the refrigeration module 1 of the embodiment according to FIG. 6 the cross members 22 of the holding elements 21 are formed as downwardly open U-profiles. By the cooling module 1 rests with the cross members 22 on the bottom of the ice storage tank 50, flow channels resulting in the transverse parts 22 for the first fluid medium. The cross members 22 are provided with outflow openings 26 through which the first fluid medium is uniformly distributed over the surface of the cooling module 1.

Claims (14)

  1. Cooling module (1) for lowering into an ice storage reservoir (50) of an ice storage device, which reservoir is filled with a first fluid medium, comprising a pipe arrangement (10) by means of which an inlet opening (11) and an outlet opening (12) for a second fluid medium are connected to one another, a system mount (20) with which the cooling module (1) can be fastened in the ice storage reservoir (50) and to which the pipe arrangement (10) is fastened, wherein an inlet opening (25) for the first fluid medium is provided on the system mount (20), and the system mount (20) has, on the underside (3) of the cooling module (1), outflow openings (26) which are fluid-connected to the inlet opening (25) for the first fluid medium and which are arranged in such a way that the first medium flowing out of the outflow openings (26) is uniformly distributed over the surface of the cooling module (1), characterized in that an air blow-in device (30) with an air supply opening (32) and a plurality of air outflow openings (33) fluid-connected therewith is provided, wherein the air outflow openings (33) are arranged on the underside (3) of the cooling module (1) such that the air flowing out of the air outflow openings (33) is distributed uniformly over the surface of the cooling module (1).
  2. Cooling module according to Claim 1, characterized in that the inlet opening (11) and the outlet opening (12) for the second fluid medium, the inlet opening (25) for the first fluid medium and/or the air supply opening (32) are arranged on the upper side (2) of the cooling module (1).
  3. Cooling module according to Claim 1 or 2, characterized in that the system mount (20) is designed to be a least partially tubular and the inlet opening (25) for the first fluid medium is fluid-connected to the outflow openings (26) for the first fluid medium by means of the tubular parts of the system mount (20).
  4. Cooling module according to one of the preceding claims, characterized in that an outlet opening (28) and at least one inflow opening (27) fluid-connected thereto for the first medium is provided on the cooling module (1), wherein the inflow opening (27) is arranged between the upper side and underside (2, 3) of the cooling module (1) and the outlet opening (28) is preferably arranged on the upper side (2) of the cooling module (1).
  5. Cooling module according to Claim 4, characterized in that the inflow opening (27) and the outlet opening (28) for the second fluid medium are fluid-connected to one another via a tubular part of the system mount (20).
  6. Cooling module according to one of the preceding claims, characterized in that the pipe arrangement (10) is designed as a pipe coil or plate cooler.
  7. Cooling module according to one of the preceding claims, characterized in that the first fluid medium is water and the second fluid medium is cooling liquid.
  8. Cooling module according to one of the preceding claims, characterized in that the pipe arrangement (10) is galvanized or made of stainless steel.
  9. Ice storage device comprising an ice storage reservoir (50) filled with a first fluid medium and at least one cooling module (1) according to Claim 1 which is lowered into the ice storage reservoir (50).
  10. Ice storage device according to Claim 9, characterized in that the ice storage reservoir (50) has an outlet opening (51) for the first fluid medium.
  11. Ice storage device according to Claim 9 or 10, characterized in that the cooling module (1) is developed according to one of Claims 2 to 8.
  12. Ice storage device according to one of Claims 9 to 11, characterized in that there are provided at least two cooling modules (1) which are lowered in the ice storage reservoir (50), wherein the inlet opening (11) and outlet opening (12) for the second fluid medium, the air supply openings (32) and the inlet opening (25) for the first fluid medium of the cooling module (1) are connected in parallel.
  13. Set for retrofitting ice storage reservoirs (50), comprising at least two structurally identical cooling modules (1) according to one of Claims 1 to 8, wherein the inlet opening (11) and outlet opening (12) for the second fluid medium, the air supply openings (32) and the inlet opening (25) for the first fluid medium of the cooling module (1) are connected in parallel.
  14. Set of ice storage devices, comprising at least two structurally identical cooling modules (1) according to one of Claims 1 to 8, which are lowered in a respective ice storage reservoir (50), and the inlet opening (11) and outlet opening (12) for the second fluid medium, the air supply openings (32) and the inlet opening (25) for the first fluid medium of the cooling module (1) are connected in parallel.
EP20100008385 2010-08-11 2010-08-11 Ice storage device Not-in-force EP2418441B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES10008385T ES2411934T3 (en) 2010-08-11 2010-08-11 Ice accumulator
EP20100008385 EP2418441B1 (en) 2010-08-11 2010-08-11 Ice storage device
BR112013003152A BR112013003152A2 (en) 2010-08-11 2011-05-03 ice storage unit
PCT/EP2011/057050 WO2012019792A1 (en) 2010-08-11 2011-05-03 Ice storage unit
RU2013110238/13A RU2013110238A (en) 2010-08-11 2011-05-03 COOLING DEVICE
MX2013001631A MX2013001631A (en) 2010-08-11 2011-05-03 Ice storage unit.
CL2013000392A CL2013000392A1 (en) 2010-08-11 2013-02-08 Refrigeration module for lowering in an ice storage unit inside a storage tank filled with a first fluid medium, has a pipe arrangement through which an inlet port and an outlet for a second fluid medium are connected between yes, a system fixing bracket and an air insufflation device with an air supply hole and several outlet; storage unit; and sets.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20100008385 EP2418441B1 (en) 2010-08-11 2010-08-11 Ice storage device

Publications (2)

Publication Number Publication Date
EP2418441A1 EP2418441A1 (en) 2012-02-15
EP2418441B1 true EP2418441B1 (en) 2013-03-13

Family

ID=43242739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100008385 Not-in-force EP2418441B1 (en) 2010-08-11 2010-08-11 Ice storage device

Country Status (7)

Country Link
EP (1) EP2418441B1 (en)
BR (1) BR112013003152A2 (en)
CL (1) CL2013000392A1 (en)
ES (1) ES2411934T3 (en)
MX (1) MX2013001631A (en)
RU (1) RU2013110238A (en)
WO (1) WO2012019792A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053060A (en) * 1954-08-06 1962-09-11 Grace F Morrison Ice-forming and ice-melting cooling system
US4932222A (en) * 1988-10-18 1990-06-12 Adams Jr Thomas A In-line milk cooler
US5381670A (en) * 1993-10-21 1995-01-17 Tippmann; Joseph R. Apparatus for cooling food by conduction
DE10316165B4 (en) 2003-04-09 2008-03-20 Institut für Luft- und Kältetechnik gGmbH Solar portable compact milk cooling unit

Also Published As

Publication number Publication date
BR112013003152A2 (en) 2016-06-28
RU2013110238A (en) 2014-09-20
EP2418441A1 (en) 2012-02-15
ES2411934T3 (en) 2013-07-09
CL2013000392A1 (en) 2013-11-15
MX2013001631A (en) 2013-10-03
WO2012019792A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
DE112008003700B4 (en) Device for increasing the heating and cooling capacity of a heat pump in heat recovery in ventilation units
EP0911156B1 (en) Tempering assembly in printing machines
EP3739276B1 (en) Heat exchanger and temperature control circuit system
DE602005001584T2 (en) Device for controlling the temperature of a fluid to be treated
DE112010004775T5 (en) Tube-in-tube heat exchanger for a beer cooler with a flexible outer shell and several metallic inner tubes
DE202008002015U1 (en) Modular air conditioning system
EP2713130A2 (en) Thermal storage device for refrigeration systems
EP3159457B1 (en) Drinking and domestic water system
EP2418441B1 (en) Ice storage device
EP3988881B1 (en) Method for operating a heat transfer assembly
DE102016202750A1 (en) Cooling device, control unit, cooling system and motor vehicle with it
DE69814594T2 (en) A LUBRICATION CIRCUIT SYSTEM
DE19548816A1 (en) Heat exchanger for heat accumulator
WO2020212155A1 (en) Heat exchanger arrangement with at least one multipass heat exchanger
DE102007028329A1 (en) Beverage cooling device, has pouring hole, cooling section and beverage outlet arranged such that poured beverage flows through cooling section up to beverage outlet under influence of force of gravity
EP1026467A2 (en) Plate-like heat exchanger for hot water production and storage
EP2966370B1 (en) Method for cooling or heating a space
EP2225515B1 (en) Apparatus for cooling drinking water
AT519250B1 (en) Heat exchanger for heating process water
AT505443A2 (en) DEVICE FOR REMOVING HEAT FROM A HEAT CARRIER STORAGE
AT514844B1 (en) Plate-type heat exchanger and method for operating the heat exchanger
DE102004012075B4 (en) Hot water supply system has hot water line integrated into circulation circuit by circulation line which is connected to hot water connection by connecting piece which incorporates injector
DE102006012280A1 (en) Air conditioning device for cooling and heating work space, comprising intake cycle with inlet opening, which is arranged at depth of minimum fifty meter and water body surface, which is arranged at minimum one thousand meter
DE202019102231U1 (en) Heat exchanger arrangement with at least one multi-pass heat exchanger
AT524588A4 (en) water heating system

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120316

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 601037

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002496

Country of ref document: DE

Effective date: 20130508

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2411934

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130715

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130828

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20130822

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

26N No opposition filed

Effective date: 20131216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002496

Country of ref document: DE

Effective date: 20131216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140811

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140811

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100811

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130811

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140812

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 601037

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200827

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200827

Year of fee payment: 11

Ref country code: IT

Payment date: 20200826

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201026

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002496

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210901

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210811

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831