EP2414731B1 - Method for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid and coal-fired power plant - Google Patents

Method for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid and coal-fired power plant Download PDF

Info

Publication number
EP2414731B1
EP2414731B1 EP10718437.6A EP10718437A EP2414731B1 EP 2414731 B1 EP2414731 B1 EP 2414731B1 EP 10718437 A EP10718437 A EP 10718437A EP 2414731 B1 EP2414731 B1 EP 2414731B1
Authority
EP
European Patent Office
Prior art keywords
coal
coal dust
grinding
power plant
silo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10718437.6A
Other languages
German (de)
French (fr)
Other versions
EP2414731A1 (en
Inventor
Hellmuth Brueggemann
Olivier Drenik
Michael Heim
Haider Mirza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42333293&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2414731(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to PL10718437T priority Critical patent/PL2414731T3/en
Publication of EP2414731A1 publication Critical patent/EP2414731A1/en
Application granted granted Critical
Publication of EP2414731B1 publication Critical patent/EP2414731B1/en
Priority to HRP20161325TT priority patent/HRP20161325T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/02Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in parallel arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • F23K2201/1006Mills adapted for use with furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/10Supply line fittings
    • F23K2203/103Storage devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/10Supply line fittings
    • F23K2203/105Flow splitting devices to feed a plurality of burners

Definitions

  • the invention relates to a method and arrangement for improving the dynamic behavior of a coal-fired power plant at primary and / or secondary requirements of the electricity grid operator to the power delivery to the grid.
  • Deviations from the specified mains frequency value occur especially when the power demand on the power plants connected to the electricity grid suddenly changes, for example because a power plant is disconnected from the grid due to an accident or a large consumer is switched on or because the network configuration or network distribution changes.
  • the primary control is still supported by the secondary control or secondary control power, which compensates for quasi-stationary deviations of both the frequency and the transfer capacity after the sudden adjustment of the power consumed or generated by the primary control.
  • coal-fired power plants are usually formed with coal dust firing in which the coal ground in the coal grinding plant are fed directly via pulverized coal pipes of the combustion chamber of the power plant (so-called "direct” coal dust firing).
  • direct coal dust firing The treatment of the fuel is one of the main factors for a good combustion, a good efficiency, low emissions and little unburned in the ash to use this by-product.
  • the coal grinding plant or coal mill must be in a stationary heat and mass flow equilibrium, which means that load changes to the pulverized coal firing and thus the power plant itself can be carried out only slowly and thus a delay occurs when made or required load changes ,
  • the delay time of the coal mill with changing fuel quantity or task is an essential part of the total system delay time.
  • the delay time of the coal mill can be long according to the raw coal preparation process (depending on fineness, moisture, hardness of the raw coal and the mill load) and therefore has an adverse effect on the delay time of the entire system.
  • the US 4,332,207 discloses the delivery of coal from a raw coal bunker and through a pulverizer directly into the furnace via burners.
  • the coal can be fed from an independent source through a variable feed into the furnace.
  • the object of the invention is therefore to provide a method for improving the dynamic behavior of a coal-fired power plant at primary and / or secondary requirements of the electricity network operator to the power delivery to the network, in which the delay time of coal dust firing of the power plant is reduced so that the power plant complies with the specifications or conditions of respective national electricity grid operators. It is a further object of the invention to provide an arrangement for improving the dynamic behavior of a coal-fired power plant at primary and / or secondary requirements of the electricity grid operator to the power delivery to the grid.
  • An advantageous embodiment of the invention provides that the storage volume V Sp having silo in normal operation of the indirect combustion system volume side in about half filled with coal dust for provision and use in increasing the primary and / or secondary requirements of the electricity network operator to the power delivery to the grid and the remaining storage volume is used to receive and store the excess coal dust produced while reducing the primary and / or secondary requirements of the electricity grid operator to the power delivery to the grid.
  • the increase or decrease of indirectly supplied amount of pulverized coal by a controlled increase or decrease in the throughput of the metering organs. This makes it possible to precisely address the needs or the dynamic behavior of the coal-fired power plant.
  • An advantageous embodiment provides to increase or reduce the volume flow of the conveying gas blower in a controlled manner when increasing or decreasing the amount of coal dust indirectly supplied. Thus, the smooth entry of coal dust is maintained in the combustion chamber.
  • the increase or decrease in the throughput of the metering organs and / or the increase or decrease in the volume flow of the delivery gas blower is effected by the affected by the requirements of the electricity grid block power control of the coal-fired power plant.
  • the primary requirement or the primary control is triggered by a remote-controlled signal.
  • the secondary requirement or the secondary control is also triggered by a remote-controlled signal.
  • the secondary requirement or the secondary regulation can also be triggered by written or verbal instruction to the operating personnel of the power plant.
  • the power generated In an electrical power system, the power generated must be constantly in balance with the load power. Changes in the load of the load or faults in power plants affect this balance and cause frequency deviations in the network to which the machines participating in the primary control or the primary demand react.
  • the primary control or equivalent primary demand ensures, due to its control behavior, the restoration of the balance between generated and consumed power within a few seconds, keeping the frequency within the permissible limits.
  • the secondary control or secondary demand comes into operation, the objective of which is to return the frequency to its desired value and the transfer rates to the agreed values and thus to have the entire activated primary control capacity available as a reserve again.
  • FIG. 1 shows the Interpretation of Primary and Secondary Control Performance and Primary and Secondary Response Values of the UK Electricity Grid Regulations (Grid Code UK), which are based on a Frequency Change of -0.5 Hz from the target frequency of the electricity grid has to be made.
  • the diagram of Fig. 1 indicates that a power plant connected to the electricity grid in accordance with the primary control P must react with a plant response within a period of time T Sp of 10 seconds and thereby the power plant output must be increased. The amount of power increase within this period T Sp depends on the load range with which the power plant is currently operating at the time of the frequency drop.
  • the British Electricity Network regulations set at a specified requested Minimum load (minimum generation) of 65% of the rated power RC (Registered Capacity) of the power plant determines that at this part load the power plant output must be increased within 10 seconds by 10% (percentage A P ) of the nominal power or capacity RC of the power plant ( please refer FIG. 2 ).
  • the abscissa shows the load range (in% of RC) of the power plant
  • the ordinate shows the primary and secondary control ranges (in% of the RC)
  • the power increase decreases linearly from 10% to 0.
  • FIG. 2 In the case of a frequency overrun or reduction of the primary and / or secondary requirements of the electricity network operator to the power delivery to the grid is in accordance with FIG. 2 It is planned to lower the power plant capacity in the partial load range between 95% and 70% of the nominal power of the power plant within 10 seconds by 10% of the nominal power RC of the power plant. Between the partial load ranges of 70% to 65% of the power plant rated power RC, the power reduction decreases linearly from 10% to approx. 6.5 and between 100% and the partial load range of 95% the power reduction increases linearly from approx. 5% to 10%.
  • FIG. 2 also indicates the minimum load (minimum generation MG) of the power plant required by the UK electricity grid, which is 65% of the rated power of the power plant.
  • FIG. 3 shows by way of example how these requirements set out in the British Electricity Grid Regulations can be met.
  • the furnace 1 of the power plant according to the invention and not shown, for example, with four coal grinding 2.1, 2.2, 2.3, 2.4 formed, all of which directly fire the combustion chamber of the power plant, not shown (direct firing or direct firing system), wherein at least one of the coal -Mahlanlagen 2.1, 2.2, 2.3, 2.4 is designed such that so that the combustion chamber instead indirectly fired directly (indirect firing or indirect firing system) can be, ie that at least one of the coal grinding 2.1, 2.2, 2.3, 2.4 next to direct firing system is additionally formed with an indirect firing system.
  • each coal grinding 2.1, 2.2, 2.3, 2.4 are served in each case a burner level and emanating from the respective coal grinding plants 2.1, 2.2, 2.3, 2.4 outgoing pulverized coal pipes 3.1, 3.2, 3.3, 3.4 each serve the burner, not shown in the respective Corners or side walls of the generally rectangular combustion chamber of the coal-fired power plant.
  • the feed devices 9.1, 9.2, 9.3, 9.4 located downstream of the delivery members 10 are supplied via a conveying gas line 11 with a conveying gas, for example air, which is supplied by a conveying gas blower 12 is introduced.
  • the feeder 15 may be, for example, an injector, a feed shoe, a dust pump or the like.
  • the separated in the separator 4 carrier gas or carrier air is discharged via a carrier gas discharge line 14 and fed to the atmosphere, where it is previously cleaned again in a Staubabscheidesystem.
  • the carrier gas may also be introduced into the combustion chamber or into the combustion chamber downstream flue passages of the coal-fired power plant instead of into the atmosphere and freed of dust in the existing dust collection system (e.g., E-filter, baghouse filter or the like) of the power plant.
  • each of the storage lines 7.1, 7.2, 7.3, 7.4 each have their own separator 4 and its own downstream silo 5, from which then depart the respective supply lines 9.1, 9.2, 9.3, 9.4.
  • the coal grinding plants 2.1, 2.2, 2.3 of the furnace 1 work according to FIG. 3 in such a way that the pulverized coal pulverized therein is fed directly to the combustion chamber for combustion via the respective pulverized coal pipes 3.1, 3.2, 3.3, 3.4.
  • coal grinding plant 2.4 which is an example (it may be any other grinding system instead of the grinding plant 2.4) in addition to the direct firing system is additionally formed with an indirect firing system, are in the coal dust lines 3.1, 3.2, 3.3, 3.4 respectively arranged pulverized coal Turnouts 6 and 13 are set such that the pulverized coal pulverized in the coal grinding plant 2.4 is not fed directly to the combustion chamber but via the silo 5 to the combustion chamber.
  • arranged in the supply lines 9.1, 9.2, 9.3, 9.4 metering organs 10 and feeders 15 in operation and conveying gas is provided by the conveying gas line 11 and the conveying gas blower 12 to the feeders 15.
  • the conveying gas takes in the feeders 15 each assigned by the metering organs 10 coal dust and promotes him into the combustion chamber.
  • the mode of operation of the grinding plant 2.4 is such that, as a rule, at the beginning of the operation, the grinding capacity of the grinding plant 2.4 compared to the grinding capacity of the grinding plant 2.1, 2.2, 2.3 or 2.3 compared to the current demand of the grinding capacity of the grinding plant 2.4 or compared to the instantaneous actual performance of the grinding plant 2.4 is increased to fill with the oversupply of crushed fuel, the storage volume V Sp having silo 5 volume side about half.
  • the grinding capacity of the grinding plant 2.4 is equalized with those of the grinding plant 2.1, 2.2, 2.3 or the current demand of the grinding capacity of the grinding plant 2.4.
  • the discharge or delivery rate of the metering elements 10 corresponds to the volume grinding performance of the grinding plant 2.4, ie after the filling process, the amount of pulverized coal from the silo 5 is discharged as produced by the grinding plant 2.4 and entered into the silo 5 , with smallest losses in the separator 4 are taken into account.
  • the block power control of the coal-fired power plant influenced, which substantially increases the amount of coal discharged through the metering elements 10 from the silo 5 and the combustion chamber indirectly supplied pulverized coal compared to the instantaneous actual performance or against the by the coal grinding plants 2.1, 2.2, 2.3 each supplied coal dust.
  • the current actual power refers to the power or the partial load with which the coal-fired power plant is currently operated and from which also the combustion chamber supplied amount of fuel and thus the respective throughput of the individual coal grinding 2.1, 2.2, 2.3, 2.4 is dependent ,
  • the coal grinding plant 2.4 downstream silo 5 is designed and formed with a corresponding capacity or storage volume V Sp for the coal dust to be stored.
  • exemplary four coal grinding plants 2.1, 2.2, 2.3, 2.4 are each formed with an indirect combustion system and thus with a silo 5 for storing coal dust. If, by way of example, two, three or all four coal grinding plants 2.1, 2.2, 2.3, 2.4 are additionally formed with an indirect firing system or an indirect firing system, then the entire required storage volume or the absorption capacity V Sp of pulverized coal can be reduced to the existing number of silos 5 or the storage volume V Sp are increased by the increased number of silos 5.
  • the storage volume V Sp of the silo 5 is designed such that during normal operation, ie at steady state, the storage volume V Sp of the silo 5 is filled in about half and thereby has stored enough coal dust, in the event of Frequency drop or a primary and / or secondary requirement of the electricity network operator to the power delivery to the network, ie a transient state, to bring an increased amount of pulverized coal in the combustion chamber to improve the dynamic behavior of the power plant.
  • the silo 5 must still have enough storage capacity to bring in the case of frequency exceeding or a primary and / or secondary requirement of the electricity network operator to the power delivery to the network, so again a transient state, a reduced amount of coal dust in the combustion chamber can and absorb the stored during the transient condition of the grinding plant 2.4 excess amount of coal dust in the silo 5 and store it.
  • the feeders 15 and the coal dust lines (feed lines 9.1, 9.2, 9.3, 9.4 and coal dust lines 3.1, 3.2, 3.3, 3.4) downstream of the silo or the silo 5 up to the Combustion chamber dimensionally appropriate to be formed in order to pass the required amounts of fuel in the required short time and to be able to supply the combustion chamber.
  • the conveying gas or carrying air required for this purpose is brought in by the conveying gas line 11 and regulated by means of the conveying gas blower 12.
  • FIG. 4 schematically shows the dynamic behavior of a direct and an indirect firing or of a direct and an indirect firing system of a coal-fired power plant. While the increase of the steam generator power from L 0 to L 1 in direct firing from t 0 requires the time t 2 , the increase of the same steam generator power in indirect firing from t 0 requires only the time t, and thus comes with an ideal, jump-shaped Increase within a time t 0 (step response) much closer.
  • Increasing the steam generator capacity from L 0 to L 1 represents a percentage A P of the power plant rated power RC, for example an increase of 10% of the power plant rated power RC.
  • the coal grinding 2.4 can be operated as a direct firing system by the coal dust switches 6 and 13 converted and the coal dust through the pulverized coal pipes 3.1, 3.2, 3.3, 3.4 is fed directly to the combustion chamber and the silo 5 and the allocating organs 10 and the feeders 15 thus bypassed (bypass). If further coal grinding plants 2.1, 2.2, 2.3 are additionally constructed with an indirect firing system, then one or more coal grinding plants can be converted to the operation as an indirect firing system by conversion of the pulverized coal switches 6 and 13 and thus the indirect firing system in maintenance temporarily replace the coal grinding plant 2.4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren und Anordnung zur Verbesserung des dynamischen Verhaltens eines kohlegefeuerten Kraftwerkes bei primären und/oder sekundären Anforderungen des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz.The invention relates to a method and arrangement for improving the dynamic behavior of a coal-fired power plant at primary and / or secondary requirements of the electricity grid operator to the power delivery to the grid.

Die Konstanthaltung der Wechselspannungsfrequenz in Elektrizitätsnetzen stellt eine wichtige Aufgabe dar. Abweichungen von der vorgegebenen Frequenz können zum Versagen an das Netz angeschlossener Verbraucher und daraus resultierenden Folgeschäden führen.Keeping constant the AC frequency in electricity networks is an important task. Deviations from the given frequency can lead to a failure of the connected consumers and the resulting consequential damage.

Zu Abweichungen vom vorgegebenen Netzfrequenzwert kommt es vor allem dann, wenn sich die Leistungsanforderung an die mit dem Elektrizitätsnetz verbundenen Kraftwerke plötzlich ändert, weil z.B. ein Kraftwerk wegen einer Havarie vom Netz getrennt oder ein Großverbraucher zugeschaltet wird oder weil die Netzkonfiguration oder Netzaufteilung sich ändert. Um die Netzfrequenz auf dem vorgegebenen Wert konstant oder in einem bestimmten Toleranzbereich zu halten, muss im Rahmen der sogenannten Primärregelung bzw. Primärregelleistung dafür gesorgt werden, dass die Erzeugungsleistung und die Netzlast ausgeglichen bleiben und immer so viel elektrische Leistung erzeugt, wie durch die Netzlast beim Betrieb mit der vorgegebenen Netzfrequenz verbraucht wird. Die Primärregelung wird dabei noch von der Sekundärregelung bzw. Sekundärregelleistung unterstützt, die nach dem Ausregeln einer plötzlichen Änderung der verbrauchten oder der erzeugten Leistung durch die Primärregelung quasistationäre Abweichungen sowohl der Frequenz als auch der Übergabeleistung ausgleicht.Deviations from the specified mains frequency value occur especially when the power demand on the power plants connected to the electricity grid suddenly changes, for example because a power plant is disconnected from the grid due to an accident or a large consumer is switched on or because the network configuration or network distribution changes. In order to keep the grid frequency constant or within the specified tolerance range within the framework of the so-called primary control or primary control power, it is necessary to ensure that the generation power and the grid load remain balanced and always generate as much electrical power as the grid load Operation is consumed at the predetermined mains frequency. The primary control is still supported by the secondary control or secondary control power, which compensates for quasi-stationary deviations of both the frequency and the transfer capacity after the sudden adjustment of the power consumed or generated by the primary control.

Um Abweichungen vom vorgegebenen Netzfrequenzwert in kürzester Zeit entgegenwirken zu können, geben manche nationalen Netzbetreiber in ihren Standards vor, unter welchen Bedingungen bzw. Vorgaben dies zu bewerkstelligen ist. So schreibt beispielsweise der britische Netzbetreiber National Grid Electricity Transmission plc durch sein Dokument "The Grid Code", Issue 3 vor, dass im Falle einer Frequenzabweichung ein an das Elektrizitätsnetz verbundenes Kraftwerk beispielsweise bei einer Betriebsweise von 65% seiner Nennleistung die Kraftwerksleistung im Rahmen der Primärregelung bzw. der primären Anforderungen innerhalb von 10 Sekunden um 10 Prozent seiner Nennleistung angehoben wird und somit der Frequenzabweichung entgegengewirkt wird. Diese zeitlich sehr schnelle und vom Leistungsumfang sehr große Änderung stellt große Anforderungen an das Kraftwerk, insbesondere an ein kohlegefeuertes Kraftwerk.In order to be able to counteract deviations from the specified power frequency value in the shortest possible time, some national network operators specify in their standards under which conditions or specifications this can be achieved. For example, the British grid operator National Grid Electricity transmission plc, through its document "The Grid Code" Issue 3, states that in the event of a frequency deviation, a power plant connected to the electricity grid would, for example, operate at 65% of its rated power or the primary requirements within 10 seconds by 10 percent of its rated power is increased and thus the frequency deviation is counteracted. This very fast change, which is very large in terms of the scope of services, places great demands on the power plant, especially on a coal-fired power plant.

Große kohlegefeuerte Kraftwerke sind in der Regel mit Kohlestaubfeuerungen ausgebildet, bei denen die in der Kohle-Mahlanlage gemahlene Kohle direkt über Kohlenstaubleitungen der Brennkammer des Kraftwerkes zugeführt werden (sogenannte "direkte" Kohlestaubfeuerungen). Die Aufbereitung des Brennstoffes ist eine der Hauptfaktoren für eine gute Verbrennung, einen guten Wirkungsgrad, geringe Emissionen und wenig Unverbranntes in der Asche, um dieses Nebenprodukt nutzen zu können. Zur Kohleaufbereitung muss sich die Kohle-Mahlanlage bzw. Kohlemühle in einem stationären Wärme- und Massenstromgleichgewicht befinden, was dazu führt, dass Laständerungen an der Kohlenstaubfeuerung und somit am Kraftwerk selbst nur langsam durchgeführt werden können und damit eine Verzugszeit bei vorgenommenen bzw. erforderlichen Laständerungen auftritt.Large coal-fired power plants are usually formed with coal dust firing in which the coal ground in the coal grinding plant are fed directly via pulverized coal pipes of the combustion chamber of the power plant (so-called "direct" coal dust firing). The treatment of the fuel is one of the main factors for a good combustion, a good efficiency, low emissions and little unburned in the ash to use this by-product. For coal preparation, the coal grinding plant or coal mill must be in a stationary heat and mass flow equilibrium, which means that load changes to the pulverized coal firing and thus the power plant itself can be carried out only slowly and thus a delay occurs when made or required load changes ,

Die Verzugszeit der Kohlemühle bei sich ändernder Brennstoffmenge bzw. -aufgabe ist ein wesentlicher Bestandteil der Anlagen-Gesamtverzugszeit. Die Verzugszeit der Kohlemühle kann entsprechend dem Rohkohleaufbereitungsprozess lang sein (abhängig von Feinheit, Feuchte, Härte der Rohkohle sowie der Mühlenbelastung) und wirkt sich daher nachteilig auf die Verzugszeit der Gesamtanlage aus.The delay time of the coal mill with changing fuel quantity or task is an essential part of the total system delay time. The delay time of the coal mill can be long according to the raw coal preparation process (depending on fineness, moisture, hardness of the raw coal and the mill load) and therefore has an adverse effect on the delay time of the entire system.

Die US 4 332 207 offenbart die Lieferung von Kohle aus einem Rohkohlebunker und durch einen Pulverisierer direkt in den Ofen über Brenner. Darüber hinaus, wenn erforderlich, kann die Kohle aus einer unabhängigen Quelle durch eine variable Zuführung in den Ofen zugeführt werden.The US 4,332,207 discloses the delivery of coal from a raw coal bunker and through a pulverizer directly into the furnace via burners. In addition, if necessary, the coal can be fed from an independent source through a variable feed into the furnace.

Aufgabe der Erfindung ist es nun, ein Verfahren zur Verbesserung des dynamischen Verhaltens eines kohlegefeuerten Kraftwerkes bei primären und/oder sekundären Anforderungen des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz zu schaffen, bei dem die Verzugszeit der Kohlestaubfeuerung des Kraftwerkes so reduziert wird, dass das Kraftwerk die Vorgaben bzw. Bedingungen jeweiliger nationaler Betreiber von Elektrizitätsnetzen einhält. Es ist des weiteren eine Aufgabe der Erfindung, eine Anordnung zur Verbesserung des dynamischen Verhaltenseines kohlegefeuerten Kraftwerkes bei primären und/oder sekundären Anforderungen des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz zu schaffen.The object of the invention is therefore to provide a method for improving the dynamic behavior of a coal-fired power plant at primary and / or secondary requirements of the electricity network operator to the power delivery to the network, in which the delay time of coal dust firing of the power plant is reduced so that the power plant complies with the specifications or conditions of respective national electricity grid operators. It is a further object of the invention to provide an arrangement for improving the dynamic behavior of a coal-fired power plant at primary and / or secondary requirements of the electricity grid operator to the power delivery to the grid.

Die vorstehend genannte Aufgabe wird hinsichtlich des Verfahrens durch die Gesamtheit der Merkmale des Patentanspruches 1 und hinsichtlich der Anordnung durch die Gesamtheit der Merkmale des Patentanspruches 9 gelöst.The above object is achieved with respect to the method by the totality of the features of claim 1 and with respect to the arrangement by the totality of the features of claim 9.

Vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.Advantageous embodiments of the invention can be found in the dependent claims.

Durch die erfindungsgemäße Lösung wird ein Verfahren und eine Anordnung zur Verbesserung des dynamischen Verhaltens eines kohlegefeuerten Kraftwerkes bei primären und/oder sekundären Anforderungen des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz geschaffen, das bzw. die nachfolgenden Vorteile aufweist:

  • Schaffung der Möglichkeit für Kraftwerksbetreiber, die erforderlichen Zulassungen zum Bauen und Betreiben von Kraftwerken in Übereinstimmung mit den vorgeschriebenen nationalen Netzfrequenzanforderungen zu erhalten.
  • Durch Verkauf von Primärregelreserve wird es dem Kraftwerksbetreiber ermöglicht, die Anlage ökonomischer zu betreiben bzw. höhere Gewinne zu erzielen.
  • Dem Hersteller bzw. Anbieter derartiger Kraftwerke wird es ermöglicht, diese Kraftwerke auf weltweiten Märkten, z.B. UK, Irland, Frankreich, China, Indien, Singapur etc. anbieten bzw. verkaufen zu können.
The solution according to the invention provides a method and an arrangement for improving the dynamic behavior of a coal-fired power plant at primary and / or secondary requirements of the electricity grid operator for the supply of electricity to the grid, which has the following advantages:
  • Provide the opportunity for power plant operators to obtain the necessary approvals for the construction and operation of power plants in accordance with the prescribed national grid frequency requirements.
  • The sale of primary control reserve will allow the power plant operator to operate the plant more economically or to achieve higher profits.
  • The manufacturer or supplier of such power plants will be able to offer or sell these power plants on worldwide markets, eg UK, Ireland, France, China, India, Singapore etc.

Eine vorteilhafte Ausbildung der Erfindung sieht vor, dass das ein Speichervolumen VSp aufweisende Silo im Normalbetrieb des indirekten Feuerungssystems volumenseitig in etwa zur Hälfte mit Kohlenstaub zur Vorhaltung und Verwendung bei Erhöhung der primären und/oder sekundären Anforderungen des Elektrizitätsnetzbetreibers an die Stromabgabe in das Netz gefüllt wird und das verbleibende Speichervolumen zur Aufnahme und Speicherung des überschüssig produzierten Kohlenstaubes bei Reduzierung der primären und/oder sekundären Anforderungen des Elektrizitätsnetzbetreibers an die Stromabgabe in das Netz verwendet wird.An advantageous embodiment of the invention provides that the storage volume V Sp having silo in normal operation of the indirect combustion system volume side in about half filled with coal dust for provision and use in increasing the primary and / or secondary requirements of the electricity network operator to the power delivery to the grid and the remaining storage volume is used to receive and store the excess coal dust produced while reducing the primary and / or secondary requirements of the electricity grid operator to the power delivery to the grid.

In vorteilhafter Ausgestaltung der Erfindung erfolgt die Erhöhung oder Verringerung der indirekt zugeführten Kohlenstaubmenge durch eine geregelte Erhöhung oder Verringerung der Durchsatzleistung der Zuteilorgane. Damit kann exakt auf die Bedürfnisse bzw. auf das dynamische Verhalten des kohlegefeuerten Kraftwerkes eingegangen werden.In an advantageous embodiment of the invention, the increase or decrease of indirectly supplied amount of pulverized coal by a controlled increase or decrease in the throughput of the metering organs. This makes it possible to precisely address the needs or the dynamic behavior of the coal-fired power plant.

Eine vorteilhafte Ausgestaltung sieht vor, bei Erhöhung oder Verringerung der indirekt zugeführten Kohlenstaubmenge den Volumenstrom des Fördergas-Gebläses in geregelter Weise zu erhöhen oder zu verringern. Damit wird der reibungslose Eintrag des Kohlenstaubes in die Brennkammer aufrecht erhalten.An advantageous embodiment provides to increase or reduce the volume flow of the conveying gas blower in a controlled manner when increasing or decreasing the amount of coal dust indirectly supplied. Thus, the smooth entry of coal dust is maintained in the combustion chamber.

Vorteilhaft ist es, dass die Erhöhung oder Verringerung der Durchsatzleistung der Zuteilorgane und/oder die Erhöhung oder Verringerung des Volumenstromes des Fördergas-Gebläses durch die von den Anforderungen des Elektrizitätsnetzes beeinflusste Blockleistungsregelung des kohlegefeuerten Kraftwerkes bewirkt wird. Durch diese Maßnahme wird gewährleistet, dass im Falle einer Frequenzänderung bzw. einer Anforderung im Elektrizitätsnetz umgehend eine Beeinflussung der Netzregelung an die Blockleistungsregelung des kohlegefeuerten Kraftwerkes und deren Feuerung geht und damit ohne Zeitverlust eine Gegenmaßnahme eingeleitet wird, um das dynamische Verhalten des Kraftwerkes zu optimieren.It is advantageous that the increase or decrease in the throughput of the metering organs and / or the increase or decrease in the volume flow of the delivery gas blower is effected by the affected by the requirements of the electricity grid block power control of the coal-fired power plant. This measure ensures that, in the event of a frequency change or a requirement in the electricity grid, the grid control of the coal-fired power plant and its firing are influenced immediately and a countermeasure is initiated without loss of time in order to optimize the dynamic behavior of the power plant.

In vorteilhafter Ausbildung der Erfindung wird die primäre Anforderung bzw. die Primärregelung durch ein ferngesteuertes Signal ausgelöst. In weiterer vorteilhafter Ausbildung der Erfindung wird die sekundäre Anforderung bzw. die Sekundärregelung ebenfalls durch ein ferngesteuertes Signal ausgelöst.In an advantageous embodiment of the invention, the primary requirement or the primary control is triggered by a remote-controlled signal. In a further advantageous Training the invention, the secondary requirement or the secondary control is also triggered by a remote-controlled signal.

Die sekundäre Anforderung bzw. die Sekundärregelung kann des weiteren durch schriftliche oder mündliche Anweisung an das Bedienpersonal des Kraftwerkes ausgelöst werden.The secondary requirement or the secondary regulation can also be triggered by written or verbal instruction to the operating personnel of the power plant.

Nachstehend sind Ausführungsbeispiele der Erfindung an Hand der Zeichnungen und der Beschreibung näher erläutert.Embodiments of the invention with reference to the drawings and the description are explained in more detail.

Es zeigt:

Fig. 1
einen Auszug aus den britischen Elektrizitätsnetz-Vorschriften (Grid Code (UK)), wobei der Auszug das minimale Anforderungsprofil der Frequenzabhängigkeit für eine 0,5 Hz Frequenzänderung von der Soll-Frequenz aufzeigt (Minimum Frequency Response Requirement Profile for a 0,5 Hz frequency change from Target Frequency),
Fig. 2
einen Auszug aus den britischen Elektrizitätsnetz-Vorschriften (Grid Code (UK)), wobei der Auszug die Interpretation der Primär- und Sekundärregelung bzw. Primär- und Sekundäranforderung (Interpretation of Primary and Secondary Response Values) aufzeigt,
Fig. 3
schematisch dargestellt eine Anordnung zur Verbesserung des dynamischen Verhaltens eines kohlegefeuerten Kraftwerkes bei primären und/oder sekundären Anforderungen des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz, wobei die Kohlemahlanlage einschließlich Kohlenstaubleitungen der Feuerung des Kraftwerkes dargestellt ist,
Fig. 4
schematisch dargestellt die Relation einer Leistungserhöhung in Abhängigkeit der Zeit und des Feuerungsverfahrens.
It shows:
Fig. 1
an extract from the British Electricity Grid Regulations (Grid Code (UK)), the extract shows the minimum requirement profile of the frequency dependence for a 0.5 Hz frequency change from the desired frequency (Minimum Frequency Response Requirement Profile for a 0.5 Hz frequency change from target frequency),
Fig. 2
an excerpt from the British Grid Code (UK), the excerpt showing the interpretation of Primary and Secondary Control and Primary and Secondary Response Values, respectively;
Fig. 3
schematically illustrated an arrangement for improving the dynamic behavior of a coal-fired power plant at primary and / or secondary requirements of the electricity network operator to the power delivery to the network, the coal mill including coal dust pipes of the firing of the power plant is shown,
Fig. 4
schematically shows the relation of a power increase as a function of time and the firing process.

In einem elektrischen Energieversorgungssystem (Elektrizitätsnetz) muss die erzeugte Leistung ständig im Gleichgewicht mit der Verbraucherleistung sein. Änderungen der Verbraucherlast bzw. Störungen von Kraftwerken beeinträchtigen dieses Gleichgewicht und verursachen Frequenzabweichungen im Netz, auf die die an der Primärregelung bzw. der Primäranforderung beteiligten Maschinen reagieren. Die Primärregelung bzw. die damit gleichgestellte Primäranforderung gewährleistet aufgrund ihres Regelverhaltens die Wiederherstellung des Gleichgewichtes zwischen erzeugter und verbrauchter Leistung innerhalb weniger Sekunden, wobei die Frequenz innerhalb der zulässigen Grenzwerte gehalten wird. Im Elektrizitätsnetz bestehen nach dem Ausregeln einer plötzlichen Änderung der verbrauchten oder erzeugten Leistung durch die Primärregelung bzw. der Primäranforderung quasistationäre Abweichungen (in Bezug auf die Sollwerte) sowohl der Frequenz Δf als auch der Übergabeleistung ΔPi zwischen den einzelnen Regelzonen. In diesem Zusammenhang tritt die Sekundärregelung bzw. Sekundäranforderung in Funktion, deren Zielsetzung es ist, die Frequenz auf ihren Sollwert und die Übergabeleistungen auf die vereinbarten Werte zurückzuführen und damit die gesamte aktivierte Primärregelleistung wieder als Reserve zur Verfügung zu haben.In an electrical power system, the power generated must be constantly in balance with the load power. Changes in the load of the load or faults in power plants affect this balance and cause frequency deviations in the network to which the machines participating in the primary control or the primary demand react. The primary control or equivalent primary demand ensures, due to its control behavior, the restoration of the balance between generated and consumed power within a few seconds, keeping the frequency within the permissible limits. In the electricity grid, after regulating a sudden change in the power consumed or generated by the primary control or the primary demand, there are quasi-stationary deviations (with respect to the set values) both the frequency Δf and the transfer power ΔPi between the individual control zones. In this context, the secondary control or secondary demand comes into operation, the objective of which is to return the frequency to its desired value and the transfer rates to the agreed values and thus to have the entire activated primary control capacity available as a reserve again.

Figur 1 zeigt die Interpretation der Primär- und Sekundärregelung bzw. Primär- und Sekundärregelleistung bzw. Primär- und Sekundäranforderung (Interpretation of Primary- and Secondary Response Values) der Britischen Elektrizitätsnetz-Vorschriften (Grid Code UK), die bei einer Frequenzabweichung (Frequency Change) von -0,5 Hz von der Soll-Frequenz (Target Frequency) des Elektrizitätsnetzes zu erfolgen hat. Das Diagramm der Fig. 1 zeigt auf, dass ein mit dem Elektrizitätsnetz verbundenes Kraftwerk gemäß der Primärregelung P innerhalb einer Zeitspanne TSp von 10 Sekunden mit einem Anlagen-Ansprechverhalten (Plant response) reagieren und dabei die Kraftwerksleistung angehoben werden muss. Die Höhe der Leistungsanhebung innerhalb dieser Zeitspanne TSp ist abhängig vom Lastbereich, mit dem das Kraftwerk zum Zeitpunkt des Frequenzabfalles gerade betrieben wird. Die Britischen Elektrizitätsnetz-Vorschriften setzen beispielsweise bei einer festgelegten angeforderten Mindestlast (Minimum Generation) von 65% der Nennleistung RC (Registered Capacity) des Kraftwerkes fest, dass bei dieser Teillast die Kraftwerksleistung innerhalb der 10 Sekunden um 10% (Prozentanteil AP) der Nennleistung bzw. -kapazität RC des Kraftwerkes angehoben werden muss (siehe Figur 2). Gemäß der Figur 2 (die Abszisse zeigt den Lastbereich (in % der RC) des Kraftwerkes, die Ordinate zeigt die Primär- bzw. Sekundärregelbereiche (in % der RC)) ist die Anhebung um 10% der Nennkapazität RC des Kraftwerkes zwischen dem Teillastbereich von 65 bis 80% der Kraftwerksnennleistung RC zu gewährleisten. Zwischen dem Teillastbereich von 80 bis 100% der Kraftwerksnennleistung RC nimmt die Leistungsanhebung linear von 10% auf 0 ab. FIG. 1 shows the Interpretation of Primary and Secondary Control Performance and Primary and Secondary Response Values of the UK Electricity Grid Regulations (Grid Code UK), which are based on a Frequency Change of -0.5 Hz from the target frequency of the electricity grid has to be made. The diagram of Fig. 1 indicates that a power plant connected to the electricity grid in accordance with the primary control P must react with a plant response within a period of time T Sp of 10 seconds and thereby the power plant output must be increased. The amount of power increase within this period T Sp depends on the load range with which the power plant is currently operating at the time of the frequency drop. For example, the British Electricity Network regulations set at a specified requested Minimum load (minimum generation) of 65% of the rated power RC (Registered Capacity) of the power plant determines that at this part load the power plant output must be increased within 10 seconds by 10% (percentage A P ) of the nominal power or capacity RC of the power plant ( please refer FIG. 2 ). According to the FIG. 2 (the abscissa shows the load range (in% of RC) of the power plant, the ordinate shows the primary and secondary control ranges (in% of the RC)) is the increase by 10% of the nominal capacity RC of the power plant between the partial load range of 65 to 80% to guarantee the power plant rating RC. Between the partial load range of 80 to 100% of the power plant rated power RC, the power increase decreases linearly from 10% to 0.

Im Falle einer Frequenzüberschreitung bzw. Reduzierung der primären und/oder sekundären Anforderungen des Elektrizitätsnetzbetreibers an die Stromabgabe in das Netz ist gemäß Figur 2 vorgesehen, die Kraftwerksleistung im Teillastbereich zwischen 95% und 70% der Nennleistung des Kraftwerkes innerhalb der 10 Sekunden um 10% der Nennleistung RC des Kraftwerkes abzusenken. Zwischen den Teillastbereichen von 70% bis 65% der Kraftwerksnennleistung RC nimmt die Leistungsabsenkung linear von 10% auf ca. 6,5 ab und zwischen 100% und dem Teillastbereich von 95% nimmt die Leistungsabsenkung linear von ca. 5% auf 10% zu. Figur 2 zeigt ferner die vom Britischen Elektrizitätsnetz angeforderte Mindestlast (Minimum Generation MG) des Kraftwerkes auf, die bei 65% der Kraftwerksnennleistung liegt.In the case of a frequency overrun or reduction of the primary and / or secondary requirements of the electricity network operator to the power delivery to the grid is in accordance with FIG. 2 It is planned to lower the power plant capacity in the partial load range between 95% and 70% of the nominal power of the power plant within 10 seconds by 10% of the nominal power RC of the power plant. Between the partial load ranges of 70% to 65% of the power plant rated power RC, the power reduction decreases linearly from 10% to approx. 6.5 and between 100% and the partial load range of 95% the power reduction increases linearly from approx. 5% to 10%. FIG. 2 also indicates the minimum load (minimum generation MG) of the power plant required by the UK electricity grid, which is 65% of the rated power of the power plant.

Figur 3 zeigt beispielhaft auf, wie sich diese aus den Britischen Elektrizitätsnetz-Vorschriften gestellten Anforderungen erfüllen lassen. Dazu wird die Feuerung 1 des erfindungsgemäßen und nicht dargestellten Kraftwerkes beispielhaft mit vier Kohle-Mahlanlagen 2.1, 2.2, 2.3, 2.4 ausgebildet, die sämtlich die nicht dargestellte Brennkammer des Kraftwerkes direkt befeuern (Direktfeuerung bzw. direktes Feuerungssystem) können, wobei wenigstens eine der Kohle-Mahlanlagen 2.1, 2.2, 2.3, 2.4 derart ausgebildet ist, dass damit die Brennkammer anstatt direkt auch indirekt befeuert (Indirekte Feuerung bzw. indirektes Feuerungssystem) werden kann, d.h. dass wenigstens eine der Kohle-Mahlanlagen 2.1, 2.2, 2.3, 2.4 neben dem direkten Feuerungssystem zusätzlich noch mit einem indirekten Feuerungssystem ausgebildet ist. FIG. 3 shows by way of example how these requirements set out in the British Electricity Grid Regulations can be met. For this purpose, the furnace 1 of the power plant according to the invention and not shown, for example, with four coal grinding 2.1, 2.2, 2.3, 2.4 formed, all of which directly fire the combustion chamber of the power plant, not shown (direct firing or direct firing system), wherein at least one of the coal -Mahlanlagen 2.1, 2.2, 2.3, 2.4 is designed such that so that the combustion chamber instead indirectly fired directly (indirect firing or indirect firing system) can be, ie that at least one of the coal grinding 2.1, 2.2, 2.3, 2.4 next to direct firing system is additionally formed with an indirect firing system.

Mit direkt befeuert bzw. einem direkten Feuerungssystem ist ausgesagt, dass die in der Kohle-Mahlanlage bzw. Kohlemühle 2.1, 2.2, 2.3, 2.4 zerkleinerte Kohle über Kohlenstaubleitungen 3.1, 3.2, 3.3, 3.4 mittels eines Trägergases bzw. Tragluft direkt der Brennkammer zugeführt und darin verfeuert wird. Dabei kann gemäß Figur 3 von jeder Kohle-Mahlanlage 2.1, 2.2, 2.3, 2.4 jeweils eine Brennerebene bedient werden und die von den jeweiligen Kohle-Mahlanlagen 2.1, 2.2, 2.3, 2.4 ausgehenden Kohlenstaubleitungen 3.1, 3.2, 3.3, 3.4 bedienen jeweils die nicht dargestellten Brenner in den jeweiligen Ecken oder Seitenwänden der im allgemeinen rechteckigen Brennkammer des kohlegefeuerten Kraftwerkes.With directly fired or a direct firing system is stated that the coal crushed in the coal grinding plant or coal mill 2.1, 2.2, 2.3, 2.4 coal fed through coal dust lines 3.1, 3.2, 3.3, 3.4 by means of a carrier gas or air directly to the combustion chamber and is burned in it. It can according to FIG. 3 of each coal grinding 2.1, 2.2, 2.3, 2.4 are served in each case a burner level and emanating from the respective coal grinding plants 2.1, 2.2, 2.3, 2.4 outgoing pulverized coal pipes 3.1, 3.2, 3.3, 3.4 each serve the burner, not shown in the respective Corners or side walls of the generally rectangular combustion chamber of the coal-fired power plant.

Mit indirekt befeuert bzw. einem indirekten Feuerungssystem ist ausgesagt, dass die in der Kohle-Mahlanlage bzw. Kohlemühle 2.1, 2.2, 2.3, 2.4 zerkleinerte bzw. gemahlene Kohle über Kohlenstaubleitungen 3.1, 3.2, 3.3, 3.4 ausgetragen und zunächst in Richtung der Brennkammer geleitet wird, dann aber über jeweils eine in der Kohlenstaubleitung 3.1, 3.2, 3.3, 3.4 angeordnete Kohlenstaub-Weiche 6 und über Speicherleitungen 7.1, 7.2, 7.3, 7.4 einem für sämtliche Speicherleitungen gemeinsamen Abscheider 4 zugeführt wird. Im Abscheider 4 wird der Kohlenstaub von dem Trägergas bzw. Tragluft abgeschieden bzw. getrennt und über eine Verbindungsleitung 8 einem Silo 5 zugeführt und darin gespeichert. Über Zuführungsleitungen 9.1, 9.2, 9.3, 9.4 sowie in diesen Zuführungsleitungen angeordnete und geregelte Zuteilorgane 10 kann der Kohlenstaub aus dem Silo 5 abgezogen und über jeweils eine Aufgabevorrichtung 15 und eine weitere Kohlenstaub-Weiche 13 den Kohlenstaubleitungen 3.1, 3.2, 3.3, 3.4 stromabwärts der ersten Kohlenstaub-Weichen 6 zugeführt werden, um von diesen in die Brennkammer gefördert zu werden. Zur Beförderung des aus dem Silo 5 abgezogenen Kohlenstaubes in die Brennkammer wird den in den Zuführungsleitungen 9.1, 9.2, 9.3, 9.4 stromabwärts der Zuteilorgane 10 angeordneten Aufgabevorrichtungen 15 über eine Fördergas-Leitung 11 ein Fördergas, beispielsweise Luft, zugeführt, die von einem Fördergas-Gebläse 12 herangeführt wird. Die Aufgabevorrichtung 15 kann beispielsweise ein Injektor, ein Aufgabeschuh, eine Staubpumpe oder dgl. sein.With indirectly fired or an indirect firing system is stated that in the coal grinding plant or coal mill 2.1, 2.2, 2.3, 2.4 comminuted or ground coal on coal dust lines 3.1, 3.2, 3.3, 3.4 discharged and initially directed towards the combustion chamber is then, but in each case one in the pulverized coal pipe 3.1, 3.2, 3.3, 3.4 arranged pulverized coal switch 6 and via storage lines 7.1, 7.2, 7.3, 7.4 a common for all storage lines separator 4 is supplied. In the separator 4, the pulverized coal is separated from the carrier gas or carrier air or separated and fed via a connecting line 8 to a silo 5 and stored therein. About supply lines 9.1, 9.2, 9.3, 9.4 and arranged in these supply lines and controlled metering organs 10, the coal dust from the silo 5 deducted and via a respective feeder 15 and a further pulverized coal switch 13 the pulverized coal pipes 3.1, 3.2, 3.3, 3.4 downstream of the first pulverized coal switches 6 are supplied to be conveyed by these in the combustion chamber. To transport the coal dust drawn off from the silo 5 into the combustion chamber, the feed devices 9.1, 9.2, 9.3, 9.4 located downstream of the delivery members 10 are supplied via a conveying gas line 11 with a conveying gas, for example air, which is supplied by a conveying gas blower 12 is introduced. The feeder 15 may be, for example, an injector, a feed shoe, a dust pump or the like.

Das im Abscheider 4 abgeschiedene Trägergas bzw. Tragluft wird über eine Trägergas-Abführleitung 14 abgeleitet und der Atmosphäre zugeführt, wobei es davor nochmals in einem Staubabscheidesystem gereinigt wird. Das Trägergas kann anstatt in die Atmosphäre auch in die Brennkammer oder in die der Brennkammer nachgeschalteten Rauchgaszüge des kohlegefeuerten Kraftwerkes eingeleitet und im vorhandenen Staubabscheidesystem (z.B. E-Filter, Schlauchfilter oder dgl.) der Kraftwerksanlage von Staub befreit werden.The separated in the separator 4 carrier gas or carrier air is discharged via a carrier gas discharge line 14 and fed to the atmosphere, where it is previously cleaned again in a Staubabscheidesystem. The carrier gas may also be introduced into the combustion chamber or into the combustion chamber downstream flue passages of the coal-fired power plant instead of into the atmosphere and freed of dust in the existing dust collection system (e.g., E-filter, baghouse filter or the like) of the power plant.

Abweichend zu Figur 3 kann jede der Speicherleitungen 7.1, 7.2, 7.3, 7.4 jeweils einen eigenen Abscheider 4 sowie einen eigenen nachgeschalteten Silo 5 aufweisen, von denen dann die jeweiligen Zuführungsleitungen 9.1, 9.2, 9.3, 9.4 abgehen.Deviating from FIG. 3 each of the storage lines 7.1, 7.2, 7.3, 7.4 each have their own separator 4 and its own downstream silo 5, from which then depart the respective supply lines 9.1, 9.2, 9.3, 9.4.

Im Normalbetrieb des Kraftwerkes arbeiten die Kohle-Mahlanlagen 2.1, 2.2, 2.3 der Feuerung 1 gemäß Figur 3 derart, dass der darin gemahlene Kohlenstaub über die jeweiligen Kohlenstaubleitungen 3.1, 3.2, 3.3, 3.4 direkt der Brennkammer zur Verfeuerung zugeführt wird. Bei der Kohle-Mahlanlage 2.4, die beispielhaft (es kann anstatt der Mahlanlage 2.4 auch jede andere Mahlanlage sein) neben dem direkten Feuerungssystem zusätzlich mit einem indirekten Feuerungssystem ausgebildet ist, sind die in den Kohlenstaubleitungen 3.1, 3.2, 3.3, 3.4 jeweils angeordneten Kohlenstaub-Weichen 6 und 13 derart eingestellt, dass der in der Kohle-Mahlanlage 2.4 gemahlene Kohlenstaub nicht direkt der Brennkammer, sondern über das Silo 5 der Brennkammer zugeführt wird. Dazu sind die in den Zuführungsleitungen 9.1, 9.2, 9.3, 9.4 angeordneten Zuteilorgane 10 und Aufgabevorrichtungen 15 in Betrieb und Fördergas wird durch die Fördergasleitung 11 und das Fördergas-Gebläse 12 den Aufgabevorrichtungen 15 bereitgestellt. Das Fördergas nimmt in den Aufgabevorrichtungen 15 den jeweils von den Zuteilorganen 10 zugeteilten Kohlenstaub auf und fördert ihn in die Brennkammer. Die Fahrweise der Mahlanlage 2.4 ist derart, dass in der Regel zu Beginn des Betriebes die Mahlleistung der Mahlanlage 2.4 gegenüber der Mahlleistung der Mahlanlage 2.1, 2.2, 2.3 bzw. gegenüber dem momentanen Bedarf der Mahlleistung der Mahlanlage 2.4 bzw. gegenüber der momentanen Ist-Leistung der Mahlanlage 2.4 erhöht wird, um mit dem Überangebot an zerkleinertem Brennstoff das ein Speichervolumen VSp aufweisende Silo 5 volumenseitig etwa zur Hälfte aufzufüllen. Nach erfolgter Befüllung des Silos 5 wird die Mahlleistung der Mahlanlage 2.4 denen der Mahlanlage 2.1, 2.2, 2.3 bzw. dem momentanen Bedarf der Mahlleistung der Mahlanlage 2.4 angeglichen. Mit Ausnahme des Befüllvorganges des Silos 5 entspricht die Austrag- bzw. Förderleistung der Zuteilorgane 10 der mengenseitigen Mahlleistung der Mahlanlage 2.4, d.h. nach dem Befüllvorgang wird die Menge Kohlenstaub aus dem Silo 5 ausgetragen wie von der Mahlanlage 2.4 produziert und in das Silo 5 eingetragen wird, wobei kleinste Verluste im Abscheider 4 berücksichtigt sind.In normal operation of the power plant, the coal grinding plants 2.1, 2.2, 2.3 of the furnace 1 work according to FIG. 3 in such a way that the pulverized coal pulverized therein is fed directly to the combustion chamber for combustion via the respective pulverized coal pipes 3.1, 3.2, 3.3, 3.4. In the coal grinding plant 2.4, which is an example (it may be any other grinding system instead of the grinding plant 2.4) in addition to the direct firing system is additionally formed with an indirect firing system, are in the coal dust lines 3.1, 3.2, 3.3, 3.4 respectively arranged pulverized coal Turnouts 6 and 13 are set such that the pulverized coal pulverized in the coal grinding plant 2.4 is not fed directly to the combustion chamber but via the silo 5 to the combustion chamber. For this purpose, arranged in the supply lines 9.1, 9.2, 9.3, 9.4 metering organs 10 and feeders 15 in operation and conveying gas is provided by the conveying gas line 11 and the conveying gas blower 12 to the feeders 15. The conveying gas takes in the feeders 15 each assigned by the metering organs 10 coal dust and promotes him into the combustion chamber. The mode of operation of the grinding plant 2.4 is such that, as a rule, at the beginning of the operation, the grinding capacity of the grinding plant 2.4 compared to the grinding capacity of the grinding plant 2.1, 2.2, 2.3 or 2.3 compared to the current demand of the grinding capacity of the grinding plant 2.4 or compared to the instantaneous actual performance of the grinding plant 2.4 is increased to fill with the oversupply of crushed fuel, the storage volume V Sp having silo 5 volume side about half. After the filling of the silo 5, the grinding capacity of the grinding plant 2.4 is equalized with those of the grinding plant 2.1, 2.2, 2.3 or the current demand of the grinding capacity of the grinding plant 2.4. With the exception of the filling process of the silo 5, the discharge or delivery rate of the metering elements 10 corresponds to the volume grinding performance of the grinding plant 2.4, ie after the filling process, the amount of pulverized coal from the silo 5 is discharged as produced by the grinding plant 2.4 and entered into the silo 5 , with smallest losses in the separator 4 are taken into account.

Im Falle einer Frequenzänderung bzw. eines Frequenzabfalles bzw. einer Frequenzunterschreitung von beispielsweise 0,5 Hz des Elektrizitätsnetzes wird über die Netzregelung des Elektrizitätsnetzes bzw. deren primären und/oder sekundären Anforderungen des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz die Blockleistungsregelung des kohlegefeuerten Kraftwerkes beeinflusst, die die Menge des durch die Zuteilorgane 10 aus dem Silo 5 ausgetragenen und der Brennkammer indirekt zugeführten Kohlenstaubes gegenüber der momentanen Ist-Leistung bzw. gegenüber der durch die Kohle-Mahlanlagen 2.1, 2.2, 2.3 jeweils zugeführten Kohlestaubmengen wesentlich erhöht. Dabei kann in kürzester Zeit der im Silo 5 für diese Zwecke gespeicherte und vorgehaltene Kohlenstaub in die Brennkammer zur Verfeuerung eingebracht werden und damit seitens der Feuerung zur Verbesserung des dynamischen Verhaltens des kohlegefeuerten Kraftwerkes wesentlich beigetragen werden. Die momentane Ist-Leistung bezeichnet die Leistung bzw. die Teillast, mit der das kohlegefeuerte Kraftwerk momentan betrieben wird und von der auch die der Brennkammer zugeführte Brennstoffmenge und damit auch der jeweilige Durchsatz der einzelnen Kohle-Mahlanlagen 2.1, 2.2, 2.3, 2.4 abhängig ist.In the case of a change in frequency or a drop in frequency or a frequency undershoot of, for example, 0.5 Hz of the electricity network is on the grid control of the electricity grid or their primary and / or secondary requirements of the electricity network operator to the power delivery to the grid, the block power control of the coal-fired power plant influenced, which substantially increases the amount of coal discharged through the metering elements 10 from the silo 5 and the combustion chamber indirectly supplied pulverized coal compared to the instantaneous actual performance or against the by the coal grinding plants 2.1, 2.2, 2.3 each supplied coal dust. It can be placed in the combustion chamber for burning the coal dust stored in the silo 5 for these purposes in the shortest possible time and thus contribute significantly to the part of the furnace to improve the dynamic behavior of the coal-fired power plant. The current actual power refers to the power or the partial load with which the coal-fired power plant is currently operated and from which also the combustion chamber supplied amount of fuel and thus the respective throughput of the individual coal grinding 2.1, 2.2, 2.3, 2.4 is dependent ,

Im Falle einer Frequenzüberschreitung von beispielsweise 0,5 Hz des Elektrizitätsnetzes wird über die Netzregelung des Elektrizitätsnetzes bzw. deren primären und/oder sekundären Anforderungen des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz die Blockleistungsregelung des kohlegefeuerten Kraftwerkes beeinflusst, die die Menge des durch die Zuteilorgane 10 aus dem Silo 5 ausgetragenen und der Brennkammer indirekt zugeführten Kohlenstaubes gegenüber der momentanen Ist-Leistung bzw. gegenüber der durch die Kohle-Mahlonlagen 2.1, 2.2, 2.3 jeweils zugeführten Kohlestaubmengen wesentlich verringert und damit ebenso wie bei der Erhöhung der Kohlenstaubmenge seitens der Feuerung zur Verbesserung des dynamischen Verhaltens des kohlegefeuerten Kraftwerkes wesentlich beigetragen. Dabei wird von der Mahlanlage 2.4 während dieses Vorganges bereitgestellter und nicht benötigter, d.h. überschüssiger, Kohlenstaub im Silo 5 zwischengespeichert.In the case of a frequency overshoot, for example, 0.5 Hz of the electricity network is on the grid control of the electricity grid or their primary and / or secondary requirements of the electricity network operator to the power in the Network affects the block power control of the coal-fired power plant, the amount of discharged through the metering elements 10 from the silo 5 and the combustion chamber indirectly supplied pulverized coal compared to the instantaneous actual performance or compared to the coal Mahlonlagen 2.1, 2.2, 2.3 respectively supplied amounts of coal dust significantly reduced, and thus substantially contributed to the improvement of the dynamic behavior of the coal-fired power plant as well as the increase in the amount of coal dust by the furnace. In this case, provided by the grinding plant 2.4 during this process and unneeded, ie excess, coal dust in the silo 5 cached.

Zur Realisierung der Verbesserung des dynamischen Verhaltens eines kohlegefeuerten Kraftwerkes wird das der Kohle-Mahlanlage 2.4 nachgeschaltete Silo 5 mit einer entsprechenden Aufnahmekapazität bzw. einem Speichervolumen VSp für den zu speichernden Kohlenstaub ausgelegt sowie ausgebildet. Es können aber auch noch weitere Kohle-Mahlanlagen der in Figur 3 beispielhaften vier Kohle-Mahlanlagen 2.1, 2.2, 2.3, 2.4 mit jeweils einem indirektem Feuerungssystem und damit mit einem Silo 5 zur Speicherung von Kohlenstaub ausgebildet werden. Werden beispielhaft zwei, drei oder alle vier Kohle-Mahlanlagen 2.1, 2.2, 2.3, 2.4 zusätzlich mit einer indirekten Feuerung bzw. einem indirekten Feuerungssystem ausgebildet, dann kann das gesamte erforderliche Speichervolumen bzw. die Aufnahmekapazität VSp an Kohlenstaub auf die vorhandene Anzahl an Silos 5 aufgeteilt werden oder das Speichervolumen VSp durch die erhöhte Anzahl an Silos 5 erhöht werden. Durch die zusätzliche Ausbildung mehrerer Mahlanlagen mit indirekten Feuerungssystemen und somit erhöhter Kohlenstaub-Speicherkapazität in den Silos 5 kann im Bedarfsfall die Dynamik der Brennstoffzuteilung des kohlegefeuerten Kraftwerkes weiter verbessert werden. Durch diese brennstoffseitige Verbesserung der Dynamik kann auch die Primär- und Sekundärreserve des kohlegefeuerten Kraftwerkes verbessert bzw. angehoben werden.To realize the improvement of the dynamic behavior of a coal-fired power plant, the coal grinding plant 2.4 downstream silo 5 is designed and formed with a corresponding capacity or storage volume V Sp for the coal dust to be stored. But there are also other coal grinding plants in FIG. 3 exemplary four coal grinding plants 2.1, 2.2, 2.3, 2.4 are each formed with an indirect combustion system and thus with a silo 5 for storing coal dust. If, by way of example, two, three or all four coal grinding plants 2.1, 2.2, 2.3, 2.4 are additionally formed with an indirect firing system or an indirect firing system, then the entire required storage volume or the absorption capacity V Sp of pulverized coal can be reduced to the existing number of silos 5 or the storage volume V Sp are increased by the increased number of silos 5. The additional training of several grinding plants with indirect combustion systems and thus increased coal dust storage capacity in the silos 5, the dynamics of the fuel allocation of the coal-fired power plant can be further improved if necessary. Through this fuel-side improvement of the dynamics and the primary and secondary reserve of the coal-fired power plant can be improved or raised.

Das Speichervolumen VSp des Silos 5 ist derart ausgelegt, dass bei normalem Betrieb, d.h. bei stationärem Zustand, das Speichervolumen VSp des Silos 5 in etwa zur Hälfte gefüllt ist und dabei ausreichend Kohlenstaub gespeichert hat, um im Falle eines Frequenzabfalles bzw. einer primären und/oder sekundären Anforderung des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz, d.h. eines instationären Zustandes, eine erhöhte Kohlenstaubmenge in die Brennkammer einbringen zu können, um das dynamische Verhalten des Kraftwerkes zu verbessern. Zum anderen muss das Silo 5 noch genügend Speicherkapazität aufweisen, um im Falle einer Frequenzüberschreitung bzw. einer primären und/oder sekundären Anforderung des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz, also wiederum eines instationären Zustandes, eine verringerte Kohlenstaubmenge in die Brennkammer einbringen zu können und dabei die während des instationären Zustandes von der Mahlanlage 2.4 produzierte überschüssige Kohlenstaubmenge im Silo 5 aufzunehmen bzw. zu speichern.The storage volume V Sp of the silo 5 is designed such that during normal operation, ie at steady state, the storage volume V Sp of the silo 5 is filled in about half and thereby has stored enough coal dust, in the event of Frequency drop or a primary and / or secondary requirement of the electricity network operator to the power delivery to the network, ie a transient state, to bring an increased amount of pulverized coal in the combustion chamber to improve the dynamic behavior of the power plant. On the other hand, the silo 5 must still have enough storage capacity to bring in the case of frequency exceeding or a primary and / or secondary requirement of the electricity network operator to the power delivery to the network, so again a transient state, a reduced amount of coal dust in the combustion chamber can and absorb the stored during the transient condition of the grinding plant 2.4 excess amount of coal dust in the silo 5 and store it.

Neben des Silos bzw. der Silos 5 können ferner die Zuteilorgane 10, die Aufgabevorrichtungen 15 und die Kohlestaubleitungen (Zuführungsleitungen 9.1, 9.2, 9.3, 9.4 und Kohlestaubleitungen 3.1, 3.2, 3.3, 3.4) stromabwärts des Silos bzw. der Silo 5 bis hin zur Brennkammer dimensionsseitig entsprechend ausgebildet werden, um die erforderlichen Brennstoffmengen in der erforderlichen kurzen Zeit durchleiten und der Brennkammer zuführen zu können. Das dazu benötigte Fördergas bzw. Tragluft wird durch die Fördergas-Leitung 11 und mittels des Fördergas-Gebläses 12 geregelt herangeführt.In addition to the silo or silos 5, the metering devices 10, the feeders 15 and the coal dust lines (feed lines 9.1, 9.2, 9.3, 9.4 and coal dust lines 3.1, 3.2, 3.3, 3.4) downstream of the silo or the silo 5 up to the Combustion chamber dimensionally appropriate to be formed in order to pass the required amounts of fuel in the required short time and to be able to supply the combustion chamber. The conveying gas or carrying air required for this purpose is brought in by the conveying gas line 11 and regulated by means of the conveying gas blower 12.

Figur 4 zeigt schematisch das dynamische Verhalten einer direkten sowie einer indirekten Feuerung bzw. eines direkten sowie eines indirekten Feuerungssystems eines kohlegefeuerten Kraftwerkes auf. Während die Anhebung der Dampferzeugerleistung von L0 auf L1 bei der direkten Feuerung ausgehend von t0 die Zeit t2 benötigt, benötigt die Anhebung derselben Dampferzeugerleistung bei der indirekten Feuerung ausgehend von t0 nur die Zeit t, und kommt damit einer idealen, sprungförmigen Anhebung innerhalb einer Zeit t0 (Sprungantwort) wesentlich näher. Durch das erfindungsgemäße Verfahren bzw. der erfindungsgemäßen Anordnung, wenigstens eine der Kohle-Mahlanlagen 2.1, 2.2, 2.3, 2.4 neben der direkten Feuerung mit einer indirekten Feuerung auszubilden und als indirekte Feuerung zu betreiben und bei einer Frequenzänderung im Elektrizitätsnetz bzw. einer primären und/oder sekundären Anforderung des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz die Menge des aus dem Silo 5 ausgetragenen und der Brennkammer indirekt zugeführten Kohlenstaubes gegenüber der indirekt zugeführten Kohlenstaubmenge bei stabiler Netzfrequenz zu erhöhen oder zu verringern, kann das dynamische Verhalten der Feuerung gemäß Figur 4 und somit auch das Anlagen-Ansprechverhalten, d.h. das dynamische Verhalten des kohlegefeuerten Kraftwerkes wesentlich verbessert werden. Die Anhebung der Dampferzeugerleistung von L0 auf L1 stellt einen Prozentanteil AP der Kraftwerksnennleistung RC dar, beispielsweise eine Anhebung um 10% der Kraftwerksnennleistung RC. FIG. 4 schematically shows the dynamic behavior of a direct and an indirect firing or of a direct and an indirect firing system of a coal-fired power plant. While the increase of the steam generator power from L 0 to L 1 in direct firing from t 0 requires the time t 2 , the increase of the same steam generator power in indirect firing from t 0 requires only the time t, and thus comes with an ideal, jump-shaped Increase within a time t 0 (step response) much closer. By the inventive method or the inventive arrangement, at least one of the coal grinding 2.1, 2.2, 2.3, 2.4 next to the direct firing with an indirect firing form and operate as indirect firing and a frequency change in the electricity grid or a primary and / or or secondary Request of the electricity network operator to the power delivery to the network to increase or decrease the amount of discharged from the silo 5 and the combustion chamber indirectly supplied coal dust against the indirectly supplied amount of pulverized coal at a stable grid frequency, the dynamic behavior of the firing FIG. 4 and thus also the system response, ie the dynamic behavior of the coal-fired power plant can be substantially improved. Increasing the steam generator capacity from L 0 to L 1 represents a percentage A P of the power plant rated power RC, for example an increase of 10% of the power plant rated power RC.

Im Falle einer Wartung oder eines Ausfalles eines Zuteilorganes 10 oder einer Aufgabevorrichtung 15 des indirekten Feuerungssystems an der Kohle-Mahlanlage 2.4 kann die Kohle-Mahlanlage 2.4 als direktes Feuerungssystem weiterbetrieben werden, indem die Kohlenstaub-Weichen 6 und 13 umgestellt und der Kohlenstaub durch die Kohlenstaubleitungen 3.1, 3.2, 3.3, 3.4 direkt der Brennkammer zugeführt wird und das Silo 5 sowie die Zuteilorgane 10 und die Aufgabevorrichtungen 15 somit gebypasst (Bypass) werden. Sind weitere Kohle-Mahlanlagen 2.1, 2.2, 2.3 zusätzlich mit einem indirekten Feuerungssystem ausgebildet, so kann eine oder mehrere Kohle-Mahlanlagen mittels Umstellung der Kohlenstaub-Weichen 6 und 13 auf den Betrieb als indirektes Feuerungssystem umgestellt werden und so das in Wartung befindliche indirekte Feuerungssystem der Kohle-Mahlanlage 2.4 einstweilen ersetzen.In the case of maintenance or failure of a metering element 10 or a feeder 15 of the indirect firing system to the coal grinding 2.4, the coal grinding 2.4 can be operated as a direct firing system by the coal dust switches 6 and 13 converted and the coal dust through the pulverized coal pipes 3.1, 3.2, 3.3, 3.4 is fed directly to the combustion chamber and the silo 5 and the allocating organs 10 and the feeders 15 thus bypassed (bypass). If further coal grinding plants 2.1, 2.2, 2.3 are additionally constructed with an indirect firing system, then one or more coal grinding plants can be converted to the operation as an indirect firing system by conversion of the pulverized coal switches 6 and 13 and thus the indirect firing system in maintenance temporarily replace the coal grinding plant 2.4.

Selbstverständlich können mit dem erfindungsgemäßen Verfahren bzw. der erfindungsgemäßen Anordnung hinsichtlich der Primär- und Sekundärregelung bzw. der Primär- und Sekundäranforderung und daraus des Anlagen-Ansprechverhaltens bzw. hinsichtlich des verbesserten dynamischen Verhaltens eines kohlegefeuerten Kraftwerkes nicht nur die beispielhaft angeführten Britischen Elektrizitätsnetz-Vorschriften und deren Anforderungen eingehalten bzw. erfüllt werden, sondern auch weitere nationale oder internationale Vorschriften, die ein schnelles bzw. verbessertes dynamisches Verhalten eines kohlegefeuerten Kraftwerkes erfordern. Dazu müssen lediglich gegebenenfalls das Speichervolumen VSp des bzw. der Silos 5 sowie die Durchsatzleistungen der Zuteilorgane 10 und/oder der Aufgabevorrichtungen 15 und/oder des Fördergas-Gebläses 12 den Vorschriften angepasst werden.Of course, with the inventive method and the arrangement according to the invention with regard to the primary and secondary control and the primary and secondary demand and therefrom the system response or with regard to the improved dynamic behavior of a coal-fired power plant not only the exemplary British Electricity Grid regulations and their requirements are respected or met, but also other national or international regulations that require a fast or improved dynamic behavior of a coal-fired power plant. For this purpose, only if necessary, the storage volume V Sp of the silos or 5 and the Throughput of the metering organs 10 and / or the feeders 15 and / or the conveying gas blower 12 are adapted to the regulations.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Feuerungheating
2.12.1
Kohlemahlanlagecoal grinding plant
2.22.2
Kohlemahlanlagecoal grinding plant
2.32.3
Kohlemahlanlagecoal grinding plant
2.22.2
Kohlemahlanlagecoal grinding plant
3.13.1
KohlenstaubleitungPulverized coal conduit
3.23.2
KohlenstaubleitungPulverized coal conduit
3.33.3
KohlenstaubleitungPulverized coal conduit
3.43.4
KohlenstaubleitungPulverized coal conduit
44
Abscheiderseparators
55
Silosilo
66
Kohlenstaub-WeicheCoal dust Soft
7.17.1
Speicherleitungstorage line
7.27.2
Speicherleitungstorage line
7.37.3
Speicherleitungstorage line
7.47.4
Speicherleitungstorage line
88th
Verbindungsleitungconnecting line
9.19.1
Zuführungsleitungfeed pipe
9.29.2
Zuführungsleitungfeed pipe
9.39.3
Zuführungsleitungfeed pipe
9.49.4
Zuführungsleitungfeed pipe
1010
Zuteilorgangiven organ
1111
Fördergas-LeitungConveying gas line
1212
Fördergas-GebläseConveying gas blower
1313
Kohlenstaub-WeicheCoal dust Soft
1414
Trägergas-AbführleitungCarrier gas-discharge
1515
Aufgabevorrichtungfeeder

Claims (9)

  1. Method for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid, wherein the power plant has a nominal output (RC) and is operated with a furnace (1) comprising at least one firing box for the firing of the fuel, at least two coal grinding plants (2.1, 2.2, 2.3, 2.4) for the grinding of the fuel having a direct firing system, wherein, in the direct firing systems, coal dust lines (3.1, 3.2, 3.3, 3.4), which originate from the grinding plants (2.1, 2.2, 2.3, 2.4), serve the associated burners, wherein at least one of these coal grinding plants (2.4) comprises an additional indirect firing system, wherein the indirect firing system has at least one silo (5) and apportioning organs (10), and the coal dust is indirectly fed via the indirect firing system to the firing box and the further coal grinding plant(s) (2.1, 2.2, 2.3) directly feeds the coal dust to the firing box via the direct firing system, and wherein upon an increase of the primary and/or secondary requirements of the power grid operator with respect to the current output into the grid the coal dust quantity indirectly fed in via silo (5) and apportioning organs (10) compared with the present actual output or compared with the coal dust quantity fed in through each of the coal grinding plant(s) (2.1, 2.2, 2.3, 2.4) is increased and in the process coal dust stocked in the silo (5) is withdrawn and introduced into the firing box, and wherein upon a reduction of the primary and/or secondary requirements of the power grid operator with respect to the current output into the grid the coal dust quantity indirectly fed in via silo (5) and apportioning organs (10) is reduced compared with the present actual output or compared with the coal dust quantity fed in through each of the coal grinding plant (s) (2.1, 2.2, 2.3, 2.4) is reduced and in the process coal dust excessively produced by the grinding plant (2.4) stored in the silo (5) characterized in that, in the case of indirect feeding, the coal dust is separated from a carrier gas in a common separator (4) and fed to the silo (5) via a coal dust switch (6) arranged in each of the coal dust lines (3.1, 3.2, 3.3, 3.4) and via storage lines (7.1, 7.2, 7.3, 7.4), and in that the coal dust is fed to the coal dust lines (3.1, 3.2, 3.3, 3.4) downstream of the first coal dust switch (6) via feed lines (9.1, 9.2, 9.3, 9.4) and apportioning organs (10) arranged in the feed lines (9.1, 9.2, 9.3, 9.4), via in each case a charging device (15) and a further coal dust switch (13).
  2. Method according to Claim 1, characterized in that the silo (5) has a storage volume (VSp) and in normal operation of the indirect firing system with regard to volume is filled to about half with coal dust for stocking and use upon an increase of the primary and/or secondary requirements of the power grid operator with respect to the power output into the grid and the remaining storage volume is used for receiving and storing the excess produced coal dust upon reduction of the primary and/or secondary requirements of the power grid operator with respect to the current output into the grid.
  3. Method according to Claim 1, characterized in that the increase or reduction of the indirectly fed-in coal dust quantity is effected through controlled increase or reduction of the throughput rate of the apportioning organs (10).
  4. Method according to Claim 1, characterized in that upon an increase or a reduction of the indirectly fed-in coal dust quantity the volumetric flow of a conveying gas blower (12) is increased or reduced in a controlled manner.
  5. Method according to Claim 3 or 4, characterized in that the increase or the reduction of the throughput rate of the apportioning organs (10) and/or the increase or reduction of the volumetric flow of the conveying gas blower (12) is brought about by the block output control of the coal-fired power plant influenced by the requirements of the power grid.
  6. Method according to Claim 1, characterized in that the primary requirement is triggered through a remote-controlled signal.
  7. Method according to Claim 1, characterized in that the secondary requirement is triggered through a remote-controlled signal.
  8. Method according to Claim 1, characterized in that the secondary requirement is triggered through written or oral instruction to the operating personnel of the power plant.
  9. Coal-fired power plant, wherein the power plant has a nominal output (RC) and is designed with a furnace (1) which substantially comprises at least one firing box for the firing of the fuel, at least two coal grinding plants (2.1, 2.2, 2.3, 2.4) for the grinding of the fuel comprising a direct firing system, wherein, in the direct firing systems, coal dust lines (3.1, 3.2, 3.3, 3.4), which originate from the grinding plants (2.1, 2.2, 2.3, 2.4), serve the associated burners, wherein at least one of these coal grinding plants (2.4) comprises an additional indirect firing system, wherein the indirect firing system has at least one silo (5) and apportioning organs (10), and the coal dust can be indirectly fed via the indirect firing system to the firing box and with the further coal grinding plant(s) (2.1, 2.2, 2.3) the firing box can be directly fed with coal dust via the direct firing system, characterized in that in in each coal dust line (3.1, 3.2, 3.3, 3.4) of the indirect firing systems there is a first coal dust switch (6), in that the first coal dust switches (6) are connected to storage lines (7.1, 7.2, 7.3, 7.4), which open out in a common separator (4), in that the separator (4) is connected to the silo (5) via a connecting line (8), in that the silo (5) is connected via feed lines (9.1, 9.2, 9.3, 9.4) and further coal dust switches (13) to the coal dust lines (3.1, 3.2, 3.3, 3.4) downstream of the first coal dust switches (6), and in that in the feed lines (9.1, 9.2, 9.3, 9.4) there are respectively an apportioning organ (10) and a charging device (15).
EP10718437.6A 2009-04-03 2010-03-19 Method for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid and coal-fired power plant Active EP2414731B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL10718437T PL2414731T3 (en) 2009-04-03 2010-03-19 Method for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid and coal-fired power plant
HRP20161325TT HRP20161325T1 (en) 2009-04-03 2016-10-12 Method for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid and coal-fired power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009016191A DE102009016191B4 (en) 2009-04-03 2009-04-03 Method and arrangement for improving the dynamic behavior of a coal-fired power plant at primary and / or secondary requirements of the electricity grid operator to the power delivery to the grid
PCT/DE2010/000323 WO2010115396A1 (en) 2009-04-03 2010-03-19 Method and assembly for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid

Publications (2)

Publication Number Publication Date
EP2414731A1 EP2414731A1 (en) 2012-02-08
EP2414731B1 true EP2414731B1 (en) 2016-07-13

Family

ID=42333293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10718437.6A Active EP2414731B1 (en) 2009-04-03 2010-03-19 Method for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid and coal-fired power plant

Country Status (9)

Country Link
US (1) US20120122042A1 (en)
EP (1) EP2414731B1 (en)
CN (1) CN102388267B (en)
DE (1) DE102009016191B4 (en)
ES (1) ES2597961T3 (en)
HR (1) HRP20161325T1 (en)
HU (1) HUE029851T2 (en)
PL (1) PL2414731T3 (en)
WO (1) WO2010115396A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201114894D0 (en) * 2011-08-30 2011-10-12 Doosan Power Systems Ltd Combustion apparatus
DE102011053656A1 (en) 2011-09-15 2013-03-21 Hitachi Power Europe Gmbh Method for operating a furnace of a coal-fired power plant
FR3016806B1 (en) * 2014-01-28 2017-11-17 Electricite De France METHOD FOR REDUCING NOX EMISSIONS IN A CHARCOAL THERMAL POWER PLANT.
WO2016020559A1 (en) * 2014-08-07 2016-02-11 Inerco Ingeniería, Tecnología Y Consultoría, S.A. System for optimizing the combustion for pulverized solid fuel boilers and boiler incorporating such system
DE102016201182A1 (en) 2016-01-27 2017-07-27 Siemens Aktiengesellschaft Diaphragm pump with dust suction from below
DE102016216012A1 (en) 2016-08-25 2018-03-01 Siemens Aktiengesellschaft Diaphragm pump with porous, curved aluminum filter
DE102016216016A1 (en) 2016-08-25 2018-03-15 Siemens Aktiengesellschaft Production of a porous aluminum filter for a membrane pump
DE102016216006A1 (en) 2016-08-25 2018-03-01 Siemens Aktiengesellschaft Double membrane for a dust pump
CN117739359A (en) * 2023-12-19 2024-03-22 华电电力科学研究院有限公司 Automatic stable combustion method, device, equipment and medium for coal feeding interruption of coal-fired unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332207A (en) * 1980-10-30 1982-06-01 Combustion Engineering, Inc. Method of improving load response on coal-fired boilers
DE3147083A1 (en) 1981-11-27 1983-06-09 Steag Ag, 4300 Essen COMBUSTION PLANT AND METHOD FOR OPERATING THE BURNING PLANT
WO1984001016A1 (en) * 1982-09-02 1984-03-15 Combustion Eng Supplying pulverized coal to a coal-fired furnace

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1027835B (en) * 1954-12-23 1958-04-10 Steinkohlen Elek Zitaet Ag Procedure for operating dust firing systems
CZ280159B6 (en) * 1987-04-06 1995-11-15 Poludniowy Okreg Energetyczny Katowice Elektrownia Laziska Apparatus for the control of energetic unit
PL152729B1 (en) * 1987-04-06 1991-01-31 Method of controlling operation of a power unit
DE19521505B4 (en) * 1995-06-13 2004-07-01 Babcock Borsig Power Systems Gmbh Process for burning coal with less than 10% volatiles
TW419574B (en) * 1998-06-16 2001-01-21 Mitsubishi Heavy Ind Ltd Operating method of flow-level incinerator and the incinerator
CN1328235A (en) * 2000-06-13 2001-12-26 冯燧成 Wide-range peak regulation technique for electric generator set with coal powder furnace using coal gangue as fuel
SK287642B6 (en) * 2000-08-04 2011-05-06 Babcock-Hitachi Kabushiki Kaisha Solid fuel burner and combustion method using solid fuel burner
DE10100331B4 (en) * 2001-01-05 2006-08-10 Alstom Power Boiler Gmbh Mill device and method as well as firing device
CN100498060C (en) * 2005-11-11 2009-06-10 南京科远控制工程有限公司 Method for controlling optimized burning in circulating fluid bed boiler
JP4363406B2 (en) * 2006-02-07 2009-11-11 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
DE102008004400C5 (en) * 2008-01-14 2017-01-26 Babcock Borsig Steinmüller Gmbh Method for metering pulverized coal into a firing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332207A (en) * 1980-10-30 1982-06-01 Combustion Engineering, Inc. Method of improving load response on coal-fired boilers
DE3147083A1 (en) 1981-11-27 1983-06-09 Steag Ag, 4300 Essen COMBUSTION PLANT AND METHOD FOR OPERATING THE BURNING PLANT
WO1984001016A1 (en) * 1982-09-02 1984-03-15 Combustion Eng Supplying pulverized coal to a coal-fired furnace

Also Published As

Publication number Publication date
HUE029851T2 (en) 2017-04-28
WO2010115396A1 (en) 2010-10-14
CN102388267B (en) 2014-05-07
DE102009016191B4 (en) 2013-04-04
CN102388267A (en) 2012-03-21
HRP20161325T1 (en) 2016-11-18
PL2414731T3 (en) 2017-08-31
ES2597961T3 (en) 2017-01-24
EP2414731A1 (en) 2012-02-08
US20120122042A1 (en) 2012-05-17
DE102009016191A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
EP2414731B1 (en) Method for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid and coal-fired power plant
EP1665494B1 (en) Method for operating or controlling a wind turbine and method for providing primary control power by means of wind turbines
EP0613517B1 (en) Steam generating power station, process for operating the same and interlinking network
EP2818649B1 (en) Combination power plant
EP3096434B1 (en) Operation of a local alternating current network with a genset and a ups
EP3280021B1 (en) Method for controlling the reactive power output of a wind farm and corresponding wind farm
WO2012000538A1 (en) Switching on end devices according to network load
WO2012072352A1 (en) Method for operating a gas turbine in the case of load shedding, a device for controlling the operation of a gas turbine and a power plant
DE3304292C2 (en)
EP3536950A1 (en) Method and system for performing maintenance on a wind turbine in a group of wind turbines
EP3778292A1 (en) Method for operating a charging station for electric vehicles and charging station
EP3269948B1 (en) Method for the adaptation of the performance of a steam turbine power plant installation and steam turbine power plant installation
EP2622701A2 (en) Load-management system and load management method for electrical loads
DE102011114344B4 (en) Power control device and method for load balancing of a network
WO2014095237A1 (en) Method for operating a gas turbine
DE3501501C2 (en)
EP2738458B2 (en) Power plant and method for generating electric power
EP1520333B1 (en) Method for power adaptation in an electricity network
WO2018114714A1 (en) Longitudinal voltage regulator
EP2756171A1 (en) Method for operating a furnace of a coal-fired power station
EP3166196A1 (en) Power plant, power plant combination with a power plant, and method of operation
DE885855C (en) Device for regulating steam power plants
DE943963C (en) Process for reactive power control in line networks
DE3210620A1 (en) Control device for the supply of fuel to a fuel/air mixture preparation system for a steam generator and a system for controlling its mixture consumption
EP3474412A1 (en) Generating plant for feeding energy into electrical energy supply network and method therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131014

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 812651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012007

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20161325

Country of ref document: HR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160713

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20161325

Country of ref document: HR

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 812651

Country of ref document: AT

Kind code of ref document: T

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Effective date: 20161107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2597961

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161113

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010012007

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170327

Year of fee payment: 8

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E029851

Country of ref document: HU

26 Opposition filed

Opponent name: MITSUBISHI HITACHI POWER SYSTEMS EUROPE GMBH

Effective date: 20170407

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170328

Year of fee payment: 8

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170319

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180327

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 812651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20180307

Year of fee payment: 9

Ref country code: IT

Payment date: 20180322

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502010012007

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20161325

Country of ref document: HR

Payment date: 20190220

Year of fee payment: 10

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

27O Opposition rejected

Effective date: 20181120

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160713

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190319

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190319

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20161325

Country of ref document: HR

Payment date: 20200221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20200316

Year of fee payment: 11

Ref country code: BG

Payment date: 20200304

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HR

Payment date: 20200221

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20161325

Country of ref document: HR

Effective date: 20210319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230224

Year of fee payment: 14

Ref country code: PL

Payment date: 20230222

Year of fee payment: 14

Ref country code: DE

Payment date: 20230221

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523