EP2411496B1 - Schonendes bleichmittel - Google Patents

Schonendes bleichmittel Download PDF

Info

Publication number
EP2411496B1
EP2411496B1 EP10707913.9A EP10707913A EP2411496B1 EP 2411496 B1 EP2411496 B1 EP 2411496B1 EP 10707913 A EP10707913 A EP 10707913A EP 2411496 B1 EP2411496 B1 EP 2411496B1
Authority
EP
European Patent Office
Prior art keywords
acid
bleach
group
weight
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10707913.9A
Other languages
English (en)
French (fr)
Other versions
EP2411496A1 (de
Inventor
Anette Nordskog
Dorota SENDOR-MÜLLER
Wolfgang Rybinski Von
Peter Schmiedel
Ursula Huchel
Thomas Weber
Siglinde Erpenbach
Paula Barreleiro
André HÄTZELT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL10707913T priority Critical patent/PL2411496T3/pl
Publication of EP2411496A1 publication Critical patent/EP2411496A1/de
Application granted granted Critical
Publication of EP2411496B1 publication Critical patent/EP2411496B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3932Inorganic compounds or complexes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/10Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
    • D06L4/12Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen combined with specific additives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/1026Other features in bleaching processes
    • D21C9/1036Use of compounds accelerating or improving the efficiency of the processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/16Bleaching ; Apparatus therefor with per compounds

Definitions

  • the present invention relates to the use of carboxy-group carrying saccharide polymer for reducing the damage of bleach-enhancing transition metal complexes in the treatment of cellulosic material, especially in the washing of textiles, a gentle process for treating cellulosic material in the presence of a peroxygen bleaching agent and a bleach-enhancing transition metal complex and agents which oxygen-containing bleaching agent, bleach-enhancing transition metal complex and carboxy-group-carrying saccharide polymer.
  • Inorganic peroxygen compounds particularly hydrogen peroxide and solid peroxygen compounds which dissolve in water to release hydrogen peroxide, such as sodium perborate and sodium carbonate perhydrate, have long been used as oxidizing agents for disinfecting and bleaching purposes.
  • the oxidation effect of these substances in dilute solutions depends strongly on the temperature; Thus, for example, with H 2 O 2 or perborate in alkaline bleaching liquors only at temperatures above about 80 ° C, a sufficiently fast bleaching of soiled textiles.
  • the oxidation effect of the inorganic peroxygen compounds can be improved by adding so-called bleach activators, for the numerous proposals, especially from the classes of N- or O-acyl compounds, for example, polyacylated alkylenediamines, especially tetraacetylethylenediamine, acylated glycolurils, in particular tetraacetylglycoluril, N- acylated hydantoins, hydrazides, triazoles, hydrotriazines, urazoles, diketopiperazines, sulfururamides and cyanurates, in addition carboxylic acid anhydrides, in particular phthalic anhydride, carboxylic acid esters, in particular sodium nonanoyloxy-benzenesulfonate, sodium isononanoyloxy-benzenesulfonate and acylated sugar derivatives, such as pentaacetylglucose, have become known in the literature , By adding these substances,
  • the present invention aims at the bleaching treatment of cellulose-containing material, for example when washing cotton-containing textiles, to reduce the damage to the cellulose-containing material, for example a cotton-containing textile, when using bleach-active catalysts, without significantly influencing the bleaching performance.
  • the invention in a first aspect is the use of carboxy-group-carrying saccharide polymer for reducing the damage of cellulose-containing material by the presence of bleach-enhancing transition metal complexes in the bleaching treatment of cellulose-containing material, which is characterized in that the carboxy-group-carrying saccharidic polymer of alginate, pectin, pectinate and mixtures of at least two of these are selected.
  • Alginic acid or its salts are naturally occurring ingredients of brown algae (Phaeophycea), in which they are present as cell wall components.
  • Alginic acids are acidic, carboxy group-containing polysaccharides having a relative molecular weight MR of about 200,000, consisting of d-mannuronic acid and I-guluronic acid in different ratios, which are linked via 1,4-glycosidic bonds.
  • Alginates which can be used according to the invention are, in particular, the alkali metal and alkaline earth metal salts of alginic acid, it not being necessary for all the carboxy groups of the alginic acid to be present in salt form.
  • the sodium, potassium, ammonium and magnesium alginates are readily soluble in water.
  • the viscosity of alginate solutions depends inter alia on the molecular weight and on the counterion. For example, calcium alginates form thermo-reversible gels at certain proportions. Sodium alginates give more or less highly viscous solutions in water.
  • Pectins are naturally occurring polysaccharides whose major constituent (usually at least 65% by weight) is ⁇ -D-galacturonic acid.
  • the galacturonic acid monomers are connected to each other via ⁇ -1,4-, usually also to a small extent via ⁇ -1,4-glycosidic bonds and thus form the backbone of the pectin molecule.
  • the linear backbone is periodically interrupted by 1,2-linkages with ⁇ -L-rhamnose.
  • the rhamnose units in natural pectins carry oligomeric side chains from the sugars arabinose, galactose and / or xylose.
  • the neutral sugar side chains can in turn be subdivided into arabinans, galactans and arabinogalactan-I as well as arabinogalactan-II, which is linked to proteins.
  • the lengths of the side chains are usually between one and 50 sugar units. In industrial extraction of pectins, these side chains are largely lost.
  • the hydroxyl groups on C2 and / or C3 of the galacturonic acid units are acetylated to a small extent or substituted by further neutral sugars, such as D-galactose, D-xylose, L-arabinose, L-rhamnose.
  • Part of the carboxyl groups of polygalacturonic acid is usually esterified with methanol.
  • the degree of esterification and acetylation varies with the origin of the pectin.
  • the action of aqueous alkaline solutions or pectinase on pectin gives rise to pectosic acid and then pectinic acid.
  • Pectic acid forms a colorless mass, hardly in cold water, in hot, heavy, in alcohol not soluble in the solutions of neutral salts; It reacts and tastes sour and forms with the alkalis soluble, with other metals insoluble, gelatinous salts.
  • calcium ions to the galacturonic acid units, the largely water-insoluble calcium pectinate is formed.
  • Pectinates which can be used according to the invention are, in particular, the alkali metal salts and alkaline earth metal salts of pectinic acid, the alkali metal salts being particularly preferred and not all carboxy groups of the pectic acid having to be present in salt form.
  • Suitable bleach-activating transition metal complex compounds are in particular those of the metals Fe, Mn, Co, V, Ru, Ti, Mo, W, Cu and / or Cr, for example manganese, iron, cobalt, ruthenium or molybdenum-salene complexes, manganese , Iron, cobalt, ruthenium or molybdenum carbonyl complexes, manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogen-containing tripod ligands, cobalt, iron, , Copper and ruthenium ammine complexes, and iron or manganese complexes with polyazacycloalkane ligands such as TACN.
  • the metals Fe, Mn, Co, V, Ru, Ti, Mo, W, Cu and / or Cr for example manganese, iron, cobalt, ruthenium or molybdenum-salene complexes, manganese , Iron, co
  • Preferred metal M is manganese.
  • Y is an anion such as chloride, bromide, iodide, nitrate, perchlorate, rhodanide, hexafluorophosphate, sulfate, alkylsulfate, alkylsulfonate or acetate; when the charge z is negative, Y is a cation, such as an alkali ion, ammonium ion or alkaline earth metal ion.
  • Preferred ligands L include 1,4,7-triazacyclononane, 1,4,7-trimethyl-1,4,7-triazacyclononane, 1,5,9-trimethyl-1,5,9-triazacyclododecane and 1,2, 4,7-tetramethyl-1,4,7-triazacyclononane.
  • the bleach-enhancing transition metal complex compound corresponds to the general formula (II), in R 10 and R 11 independently of one another represent hydrogen, a C 1-18 -alkyl group, a group -NR 13 R 14 , a group -N + R 13 R 14 R 15 or a group R 12 is hydrogen, -OH, or a C 1-28 alkyl group, R 13 , R 14 and R 15 are each independently hydrogen, a C 1-4 alkyl or hydroxyalkyl group and X is halogen and A is a Depending on its charge and the nature and number of other charges, in particular the charge of the manganese central atom, also missing or may be present more than one charge-balancing anion ligands.
  • Manganese can have the oxidation state II, III, IV or V therein as well as in the complexes according to formula (I). If desired, though less preferred, other transition metals such as Fe, Co, Ni, V, Ru, Ti, Mo, W, Cu and / or Cr may be present in such complex compounds instead of the Mn central atom.
  • a process for the implementation of the use according to the invention can, if desired, be carried out at temperatures in the range from 10 ° C to 95 ° C.
  • the temperature is in the range of 20 ° C to 40 ° C.
  • the process can be carried out at pH values in the weakly acidic to alkaline range, in particular in the range from pH 5 to pH 12, preferably pH 8 to pH 11.
  • peroxygen concentrations (calculated as H 2 O 2 ) in the wash liquor are in the range of 0.001 g / l to 10 g / l, in particular 0.1 g / l to 1 g / l.
  • concentration of bleach-enhancing transition metal complex in the wash liquor is preferably in the range from 0.1 ⁇ mol / to 100 ⁇ mol / l, in particular from 0.5 ⁇ mol / l to 25 ⁇ mol / l.
  • the process can be realized, for example, by separately bleaching oxygen-containing bleach, bleach-enhancing transition metal complex and the carboxy-group-carrying saccharidic polymer separately a treatment solution for cellulose-containing material, for example a washing solution, which may contain a conventional detergent added. It is also possible not to use the final bleach-enhancing transition metal complex but separately one or more ligands which can form a bleach-enhancing transition metal complex in situ with a transition metal; The transition metal can then also be metered separately in the form of a salt or non-bleach-enhancing complex, or it is in the process as part of the process water used for this purpose or on the cellulosic material to be treated, in textiles to be cleaned, for example as part of the soiling to be removed in introduced the process. It is possible and preferred, the bleach-enhancing transition metal complex and the carboxy-group-carrying saccharidic polymer at the same time, in particular preferably present as a water-containing or aqueous solution present as premix together.
  • carboxy-group-carrying saccharidic polymer not only reduces the damage to the cellulosic material, but also improves the bleaching performance of the bleaching agent-containing bleaching agent and bleaching-enhancing transition metal complex system.
  • Another object of the invention is therefore the use of carboxy-group-carrying saccharide polymer to improve the bleaching performance of bleach-enhancing transition metal complex in aqueous solutions containing pers oxygen-containing bleach, which is characterized in that the carboxy-group-carrying saccharidic polymer of alginate, pectin, pectinate and mixtures of at least two is selected from these.
  • Such detergents which may be in solid form or as liquids or pastes, may be used as such in machine or manual washing processes, but may also be used as detergent additives and / or as laundry or textile pretreatment agents.
  • agents are used together with a conventional detergent. This is especially useful if the user wants to improve the usual detergent in its bleaching performance.
  • the means are used to improve the removal of encrusted dirt or stains, especially "problem spots" such as coffee, tea, red wine, grass, or fruit juice, which are difficult to remove by washing with conventional fabric washing mashines are accessible to oxidative attack.
  • Another application of such means is the removal of local stains on otherwise clean surfaces, so that a more complex washing or cleaning process of the corresponding overall structure, be it now a piece of clothing or a carpet or furniture upholstery, avoid.
  • an agent possibly together with an amount of water which is insufficient for complete dissolution of the agent, apply to the textile surface or its part to be cleaned, optionally mechanical energy, for example by rubbing with a cloth or a sponge, bring and after a period of time to be determined by the user, remove the agent and the oxidatively broken stain by washing with water, for example with the aid of a moistened cloth or sponge.
  • the agents contain from 0.01% to 0.5%, more preferably from 0.02% to 0.3%, by weight of bleach-enhancing transition metal complex.
  • the agent may also contain only one or more ligands which can form a bleach-enhancing transition metal complex in situ in the washing process with a transition metal.
  • the transition metal can also be present in the detergent in the form of a salt or non-bleach-enhancing complex or is introduced into the washing process as part of the process water used for this purpose or via the textile to be cleaned, for example as part of the soiling to be removed.
  • the detergents and cleaners in addition to the peroxygen-containing bleach, the bleach-enhancing transition metal complex or the ligand which can form in situ the bleach-enhancing transition metal complex, and carboxy-group-carrying saccharide polymer in principle all known and customary in such agents ingredients.
  • the detergents and cleaning agents may in particular be builders, surface-active surfactants, enzymes, sequestering agents, electrolytes, pH regulators, polymers with special effects, such as soil release polymers, dye transfer inhibitors, grayness inhibitors, crease-reducing active ingredients and shape-retaining active substances, and further auxiliaries, such as optical brighteners, Foam regulators, additional peroxygen activators, colorants and fragrances.
  • Suitable peroxygen compounds which are suitable for use in the inventive use are in particular organic peracids or persalts of organic acids, such as phthalimidopercaproic acid, perbenzoic acid or salts of diperdodecanedioic acid, hydrogen peroxide and inorganic salts which release hydrogen peroxide under the washing conditions, including alkali metal perborate, alkali percarbonate, persilicate and / or Perspersulfate such as caroate, into consideration.
  • organic peracids or persalts of organic acids such as phthalimidopercaproic acid, perbenzoic acid or salts of diperdodecanedioic acid, hydrogen peroxide and inorganic salts which release hydrogen peroxide under the washing conditions, including alkali metal perborate, alkali percarbonate, persilicate and / or Perspersulfate such as caroate, into consideration.
  • solid peroxygen compounds are to be used, they can be used in
  • bleach stabilizers such as phosphonates, borates or metaborates and metasilicates and magnesium salts such as magnesium sulfate may be useful.
  • An agent preferably contains from 15% to 50%, more preferably from 18% to 35%, by weight of peroxygen bleach, especially alkali percarbonate.
  • hydrogen peroxide can also be produced by an enzymatic system, namely an oxidase in combination with its substrate, which in a preferred embodiment of the invention is a constituent of the agent and can partially or preferably completely replace the persoxy-containing bleach in these.
  • bleach-activating agents in particular conventional bleach activators, that is to say compounds which contain perbenzoic acid optionally substituted under perhydrolysis conditions and / or peroxycarboxylic acids having 1 to 10 C atoms, in particular 2 to 4 C atoms, may be present in the compositions be used.
  • Suitable are customary bleach activators which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated phenylsulfonates , in particular nonanoyloxy or isononanoyloxybenzenesulfonate, N-acylated capro- or valerolactams, in particular N-acetylcaprolactam, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran as well as acetylated sorbitol and mannitol, and acylated sugar derivatives,
  • TAED
  • peritrile-forming nitriles such as 4-morpholinecarbonitrile or acetonitriles bearing ammonium groups
  • the agents are free of such conventional bleach activators.
  • the agents may contain one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof come into question.
  • Suitable nonionic surfactants are in particular alkyl glycosides and ethoxylation and / or propoxylation of alkyl glycosides or linear or branched alcohols each having 12 to 18 carbon atoms in the alkyl moiety and 3 to 20, preferably 4 to 10 alkyl ether groups.
  • ethoxylation and / or propoxylation products of N-alkylamines, vicinal diols, fatty acid esters and fatty acid amides which correspond to said long-chain alcohol derivatives with respect to the alkyl moiety and of alkylphenols having from 5 to 12 carbon atoms in the alkyl radical.
  • Suitable anionic surfactants are in particular soaps and those which contain sulfate or sulfonate groups with preferably alkali ions as cations.
  • Usable soaps are preferably the alkali salts of the saturated or unsaturated fatty acids having 12 to 18 carbon atoms. Such fatty acids can also be used in incompletely neutralized form.
  • Useful surfactants of the sulfate type include the salts of the sulfuric acid half-esters of fatty alcohols having 12 to 18 carbon atoms and the sulfation products of said nonionic surfactants having a low degree of ethoxylation.
  • Suitable surfactants of the sulfonate type include linear alkylbenzenesulfonates having 9 to 14 carbon atoms in the alkyl moiety, alkane sulfonates having 12 to 18 carbon atoms, and olefin sulfonates having 12 to 18 carbon atoms, which are formed in the reaction of corresponding monoolefins with sulfur trioxide, and alpha-sulfofatty acid esters resulting from the sulfonation of fatty acid methyl or ethyl esters.
  • Such surfactants are present in the detergents or detergents in amounts of preferably from 5% by weight to 50% by weight, in particular from 8% by weight to 30% by weight.
  • An agent preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, in particular methylglycinediacetic acid, nitrilotriacetic acid, ethylenediamine-N, N'-disuccinic acid and ethylenediaminetetraacetic acid and polyaspartic acid, polyphosphonic acids, in particular aminotris (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid) and 1 -Hydroxyethane-1,1-diphosphonic acid, polymeric hydroxy compounds such as dextrin and polymeric (poly) carboxylic acids, in particular the accessible by oxidation of polysaccharides or dextrins polycarboxylates, polymeric acrylic acids, methacrylic acids, maleic acids and
  • the molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 5,000 and 200,000, that of the copolymers between 2,000 and 200,000, preferably 50,000 to 120,000, each based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of 50,000 to 100,000.
  • Suitable, although less preferred, compounds of this class are copolymers of acrylic or methacrylic acid with vinyl ethers, such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene, in which the acid content is at least 50% by weight.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C 3 -C 8 -carboxylic acid and preferably from a C 3 -C 4 -monocarboxylic acid, in particular from (meth) -acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C 4 -C 8 -dicarboxylic acid, with maleic acid being particularly preferred, and / or a derivative of an allylsulfonic acid which is substituted in the 2-position by an alkyl or aryl radical.
  • Such polymers generally have a molecular weight between 1,000 and 200,000.
  • Further preferred copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or vinyl acetate. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight.
  • Suitable water-soluble inorganic builder materials are, in particular, polymeric alkali metal phosphates, which may be in the form of their alkaline neutral or acidic sodium or potassium salts. Examples of these are tetrasodium diphosphate, disodium dihydrogen diphosphate, pentasodium triphosphate, so-called sodium hexametaphosphate and the corresponding potassium salts or mixtures of sodium and potassium salts. Crystalline or amorphous alkali metal aluminosilicates, in amounts of up to 50% by weight, preferably not more than 40% by weight, and in liquid agents, in particular from 1% by weight to 5% by weight, are particularly suitable as water-insoluble, water-dispersible inorganic builder materials. used.
  • detergent grade crystalline sodium aluminosilicates especially zeolite A, P and optionally X. Amounts near the above upper limit are preferably used in solid, particulate agents.
  • suitable aluminosilicates have no particles with a particle size greater than 30 .mu.m and preferably consist of at least 80% by weight of particles having a size of less than 10 .mu.m.
  • Their calcium binding capacity is usually in the range of 100 to 200 mg CaO per gram.
  • Suitable substitutes or partial substitutes for the said aluminosilicate are crystalline Alkali silicates which may be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates useful as builders in the compositions preferably have a molar ratio of alkali metal oxide to SiO 2 below 0.95, in particular from 1: 1.1 to 1:12, and may be present in amorphous or crystalline form.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of 1: 2 to 1: 2.8.
  • the crystalline silicates which may be present alone or in admixture with amorphous silicates, are crystalline layer silicates with the general formula of Na 2 Si x O used 2x + -1 ⁇ y H 2 O in which x, known as the modulus, an integer of 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3.
  • both .beta.- and ⁇ -sodium is preferably also made of amorphous alkali metal silicates, practically anhydrous crystalline Alkallsilikate the above general formula, in which x is a number from 1.9 to 2, 1 means can be used in means.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be made from sand and soda. Crystalline sodium silicates with a modulus in the range 1.9 to 3.5 are used in a further preferred embodiment of the compositions.
  • a granular compound of alkali silicate and alkali carbonate is used, as is commercially available, for example, under the name Nabion® 15.
  • alkali metal silicate in particular zeolite, is also present as an additional builder
  • the weight ratio is aluminosilicate to silicate , in each case based on anhydrous active substances, preferably 1:10 to 10: 1.
  • the weight ratio of amorphous alkali metal silicate to crystalline alkali metal silicate is preferably 1: 2 to 2: 1 and especially 1: 1 to 2: 1.
  • Builder substances are preferably present in the detergents or cleaners in amounts of up to 60% by weight, in particular from 5% by weight to 40% by weight, while the disinfectants are preferably free of the builder substances complexing only the components of the water hardness and preferably not more than 20% by weight, in particular from 0.1% by weight to 5% by weight, of heavy metal complexing substances, preferably from the group comprising aminopolycarboxylic acids, aminopolyphosphonic acids and hydroxypolyphosphonic acids and their water-soluble salts and mixtures thereof.
  • the water-soluble builder block contains at least 2 of components b), c), d) and e) in amounts greater than 0% by weight.
  • the agent is 15% by weight to 25% by weight of alkali metal carbonate, which may be replaced at least proportionally by alkali metal bicarbonate, and up to 5% by weight, in particular 0.5% by weight. % to 2.5% by weight of citric acid and / or alkali citrate.
  • compositions are as component a) 5 wt .-% to 25 wt .-%, in particular 5 wt .-% to 15 wt .-% citric acid and / or alkali and up to 5 wt .-%, in particular 1 wt .-% to 5 wt .-% alkali carbonate, which may be at least partially replaced by alkali metal bicarbonate included. If both alkali metal carbonate and alkali metal bicarbonate are present, the component comprises a) alkali carbonate and alkali metal bicarbonate, preferably in a weight ratio of 10: 1 to 1: 1.
  • the agent contains 1% by weight to 5% by weight alkali silicate with a modulus in the range from 1.8 to 2.5.
  • the agent contains from 0.05% by weight to 1% by weight of phosphonic acids and / or alkali metal phosphonate.
  • Phosphonic acids also include optionally substituted alkyl and aryl phosphonic acids, such as phenylphosphonic understood, which may also have several phosphonic acid groups (so-called polyphosphonic acids).
  • They are preferably selected from the hydroxy and / or aminoalkylphosphonic acids and / or their alkali metal salts, for example dimethylaminomethanediphosphonic acid, 3-aminopropane-1-hydroxy-1,1-diphosphonic acid, 1-amino-1-phonylmethanediphosphonic acid, 1-hydroxyethane 1,1-diphosphonic acid (HEDP), amino-tris (methylenephosphonic acid), and acylated derivatives of phosphorous acid, which can also be used in any mixtures.
  • dimethylaminomethanediphosphonic acid 3-aminopropane-1-hydroxy-1,1-diphosphonic acid
  • 1-amino-1-phonylmethanediphosphonic acid 1-hydroxyethane 1,1-diphosphonic acid (HEDP), amino-tris (methylenephosphonic acid)
  • HEDP 1-hydroxyethane 1,1-diphosphonic acid
  • HEDP 1-hydroxyethane 1,1-diphosphonic acid
  • the composition contains from 15% by weight to 35% by weight of alkali metal phosphate, in particular trisodium polyphosphate.
  • Alkali phosphate is the summary term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to high molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91 gcm -3 , melting point 60 °) and as a monohydrate (density 2.04 gcm -3 ). Both salts are white powders which are very soluble in water and which lose their water of crystallization when heated and at 200 ° C into the weak acid diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and pass on Madrell's salt.
  • NaH 2 PO 4 is acidic; It arises when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (potassium phosphate primary or monobasic potassium, potassium biphosphate, KDP), KH 2 PO 4 , is a white salt of density 2.33 gcm -3 , has a melting point of 253 ° (decomposition to form (KPO 3 ) x , potassium polyphosphate) and is slightly soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 is a colorless, very slightly water-soluble crystalline salt.
  • Disodium hydrogen phosphate is prepared by neutralization of phosphoric acid with soda solution using phenolphthalein as an indicator.
  • Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is readily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals which have a density of 1.62 gcm -3 as dodecahydrate and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 O 6 ) have a density of 2.536 gcm -3 .
  • Trisodium phosphate is readily soluble in water under alkaline reaction and is prepared by evaporating a solution of exactly 1 mole of disodium phosphate and 1 mole of NaOH.
  • tripotassium tertiary or tribasic potassium phosphate
  • K 3 PO 4 is a white, deliquescent, granular powder of density 2.56 gcm -3 , has a melting point of 1340 ° and is readily soluble in water with an alkaline reaction. It arises, for example, when heating Thomasschlacke with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over the corresponding sodium compounds in the detergent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 gcm -3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1.815-1.836 gcm -3 , melting point 94 ° with loss of water) , For substances are colorless, in water with alkaline reaction soluble crystals.
  • Na 4 P 2 O 7 is formed on heating of disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying.
  • the decahydrate complexes heavy metal salts and hardness agents and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 gcm -3 , which is soluble in water, the pH being 1% Solution at 25 ° 10.4.
  • Condensation of the NaH 2 PO 4 or of the KH 2 PO 4 gives rise to relatively high molecular weight sodium and potassium phosphates, in which cyclic representatives, the sodium or potassium metaphosphates and chain types, the sodium or potassium polyphosphates, can be distinguished.
  • Pentakaliumtriphosphat, K 5 P 3 O 10 (potassium tripolyphosphate), for example, in the form of a 50 wt .-% solution (> 23% P 2 O 5 , 25% K 2 O) in the trade.
  • the potassium polyphosphates are widely used in the washing and cleaning industry.
  • sodium potassium tripolyphosphates which can also be used in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH: (NaPO 3 ) 3 + 2 KOH ⁇ Na 3 K 2 P 3 O 10 + H 2 O
  • sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two can be used in exactly the same way as sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two. Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can also be used.
  • the agent contains from 1.5% to 5% by weight of polymeric polycarboxylate, especially selected from the polymerization or copolymerization products of acrylic acid, methacrylic acid and / or maleic acid.
  • polymeric polycarboxylate especially selected from the polymerization or copolymerization products of acrylic acid, methacrylic acid and / or maleic acid.
  • homopolymers of acrylic acid particularly preferred are those having an average molecular weight in the range from 5,000 D to 15,000 D (PA standard)
  • enzymes which can be used in the compositions apart from the abovementioned oxidase, those from the class of the proteases, lipases, cutinases, amylases, pullulanases, mannanases, cellulases, hemicellulases, xylanases and peroxidases and mixtures thereof are suitable, for example proteases such as BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Alcalase®, Esperase®, Savinase®, Durazym® and / or Purafect® OxP, amylases such as Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® and / or Purafect® OxAm, lipases such as Lipolase®, Lipomax®, Lumafast® and / or Lipozym®, cellulases such as Celluzyme® and / or Carezyme®.
  • proteases such
  • fungi or bacteria such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes or Pseudomonas cepacia derived enzymatic agents.
  • the optionally used enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature inactivation. They are in the detergents, cleaners and disinfectants preferably in amounts of up to 10 wt .-%, in particular from 0.2 wt .-% to 2 wt .-%, containing, with particular preference against oxidative degradation stabilized enzymes are used ,
  • the composition contains 5% by weight to 50% by weight, in particular 8-30% by weight, of anionic and / or nonionic surfactant, up to 60% by weight, in particular 5-40% by weight.
  • the means system and environmentally friendly acids especially citric acid, acetic acid, tartaric acid, Malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali metal hydroxides.
  • Such pH regulators are preferably contained in the compositions not more than 20% by weight, in particular from 1.2% by weight to 17% by weight.
  • Soil release polymers often referred to as “target release” agents or because of their ability to provide soil repellency to the treated surface, for example, the fiber, are referred to as "target repellents", for example, nonionic or cationic cellulose derivatives.
  • target repellents for example, nonionic or cationic cellulose derivatives.
  • the particularly polyester-active soil release polymers include copolyesters of dicarboxylic acids, for example adipic acid, phthalic acid or terephthalic acid, diols, for example ethylene glycol or propylene glycol, and polydiols, for example polyethylene glycol or polypropylene glycol.
  • Preferred soil release polyesters include those compounds which are formally accessible by esterification of two monomeric moieties, the first monomer being a dicarboxylic acid HOOC-Ph-COOH and the second monomer being a diol HO- (CHR 21 -) a OH, also known as polymeric Diol H- (O- (CHR 21 -) a ) b OH may be present.
  • Ph is an o-, m- or p-phenylene radical which can carry 1 to 4 substituents selected from alkyl radicals having 1 to 22 carbon atoms, sulfonic acid groups, carboxyl groups and mixtures thereof
  • R 21 is hydrogen, an alkyl radical having 1 to 22 C atoms and mixtures thereof
  • a is a number from 2 to 6
  • b is a number from 1 to 300.
  • the molar ratio of monomer diol units to polymer diol units is preferably 100: 1 to 1: 100, in particular 10: 1 to 1:10.
  • the degree of polymerization b is preferably in the range of 4 to 200, especially 12 to 140.
  • the molecular weight or the average molecular weight or the maximum molecular weight distribution of preferred soil release polyester is in the range of 250 to 100,000, especially 500 to 50,000
  • the acid underlying the remainder Ph is preferably selected from terephthalic acid, isophthalic acid, phthalic acid, trimellitic acid, mellitic acid, the isomers of sulfophthalic acid, sulfoisophthalic acid and sulfoterephthalic acid and mixtures thereof.
  • acids having at least two carboxyl groups may be included in the soil release-capable polyester.
  • alkylene and alkenylene dicarboxylic acids such as malonic acid, succinic acid, fumaric acid, maleic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • Preferred diols HO- (CHR 21- ) a OH include those in which R 21 is hydrogen and a is a number from 2 to 6, and those in which a has the value 2 and R 11 is selected from hydrogen and the alkyl radicals having 1 to 10, in particular 1 to 3, carbon atoms.
  • R 11 is selected from hydrogen and the alkyl radicals having 1 to 10, in particular 1 to 3, carbon atoms.
  • those of the formula HO-CH 2 -CHR 11 -OH in which R 11 has the abovementioned meaning are particularly preferred.
  • diol components are ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,2-decanediol, 1, 2-dodecanediol and neopentyl glycol.
  • Particularly preferred among the polymeric diols is polyethylene glycol having an average molecular weight in the range of 1000 to 6000.
  • these polyesters may also be end developmentver consideration, with alkyl groups having 1 to 22 carbon atoms and esters of monocarboxylic acids in question as end groups.
  • the hydroxymonocarboxylic acids may in turn be linked to one another via their hydroxyl group and their carboxyl group and thus be present several times in an end group.
  • the number of hydroxymonocarboxylic acid units per end group is in the range from 1 to 50, in particular from 1 to 10.
  • suitable for use in laundry detergents of textiles color transfer inhibitors include polyvinylpyrrolidones, polyvinylimidazoles, polymeric N-oxides such as poly (vinylpyridine-N-oxide) and copolymers of vinylpyrrolidone with vinylimidazole and optionally other monomers.
  • the means for use in textile laundry may contain anti-crease agents, since textile fabrics, in particular of rayon, wool, cotton and their mixtures, may tend to wrinkle, because the individual fibers against bending, buckling, pressing and squeezing across the fiber direction.
  • anti-crease agents include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, alkylol esters, -alkylolamides or fatty alcohols, which are usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid ester.
  • Graying inhibitors have the task of keeping suspended from the hard surface and in particular from the textile fiber suspended dirt in the fleet.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example starch, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • starch derivatives can be used, for example aldehyde starches.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, for example in amounts of from 0.1 to 5% by weight, based on the compositions.
  • the agents may contain optical brighteners, among these in particular derivatives of diaminostilbenedisulfonic acid or their alkali metal salts.
  • Suitable salts are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or compounds of similar construction which, instead of the morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyrene type may be present, for example, the alkali salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or 4 - (4-chlorostyryl) -4 '- (2-sulfostyryl).
  • Mixtures of the aforementioned optical brightener can be used.
  • foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with silanated silicic acid or bis-fatty acid alkylenediamides. It is also advantageous to use mixtures of various foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone- and / or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. In particular, mixtures of paraffins and Bistearylethylenediamide preferred
  • agents can be used to prevent the tarnishing of silver objects, so-called silver corrosion inhibitors.
  • Preferred silver corrosion inhibitors are organic disulfides, dihydric phenols, trihydric phenols, optionally alkyl- or aminoalkyl-substituted triazoles such as benzotriazole and cobalt, manganese, titanium, zirconium, hafnium, vanadium or cerium salts and / or complexes in which the Metals in one of the oxidation states II, III, IV, V or VI are true.
  • An agent may contain conventional antimicrobial agents in addition to the ingredients previously mentioned to enhance the disinfecting effect against particular germs.
  • antimicrobial additives are preferably present in compositions in amounts not exceeding 10% by weight, in particular from 0.1% by weight to 5% by weight.
  • a hard surface cleaner can contain abrasive components, in particular from the group comprising quartz flours, wood flours, plastic flours, chalks and glass microspheres, and mixtures thereof.
  • Abrasives are preferably not more than 20 wt .-%, in particular from 5 wt .-% to 15 wt .-%, contained in the cleaning agents.
  • cotton substrates provided with standardized tea soiling were treated for 30 minutes at 30 ° C in the respective solutions.
  • the treated fabric substrate was rinsed under running water and then dried and color measured.
  • the following table shows the brightness value of the cotton measuring pieces.
  • cotton strips of defined width were treated 20 times for 45 minutes each at 60 ° C in the respective solutions.
  • the strips were dried and dipped in a wetting solution before being torn using a constant rate tensile testing machine.
  • the tensile strength of the treated cotton was compared with the tensile strength of the untreated cotton and the wet tensile strength loss in% was calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Textile Engineering (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft die Verwendung von carboxygruppentragendem saccharidischem Polymer zur Verminderung der Schädigung von bleichverstärkenden Übergangsmetallkomplexen beim Behandeln von cellulosehaltigem Material, insbesondere beim Waschen von Textilien, ein schonendes Verfahren zum Behandeln von cellulosehaltigem Material in Gegenwart eines persauerstoffhaltigen Bleichmittels und eines bleichverstärkenden Übergangsmetallkomplexes sowie Mittel, welche persauerstoffhaltiges Bleichmittel, bleichverstärkenden Übergangsmetallkomplex und carboxygruppentragendes saccharidisches Polymer enthalten.
  • Anorganische Persauerstoffverbindungen, insbesondere Wasserstoffperoxid und feste Persauerstoffverbindungen, die sich in Wasser unter Freisetzung von Wasserstoffperoxid lösen, wie Natriumperborat und Natriumcarbonat-Perhydrat, werden seit langem als Oxidationsmittel zu Desinfektions- und Bleichzwecken verwendet. Die Oxidationswirkung dieser Substanzen hängt in verdünnten Lösungen stark von der Temperatur ab; so erzielt man beispielsweise mit H2O2 oder Perborat in alkalischen Bleichflotten erst bei Temperaturen oberhalb von etwa 80 °C eine ausreichend schnelle Bleiche verschmutzter Textilien. Bei niedrigeren Temperaturen kann die Oxidationswirkung der anorganischen Persauerstoffverbindungen durch Zusatz sogenannter Bleichaktivatoren verbessert werden, für die zahlreiche Vorschläge, vor allem aus den Stoffklassen der N- oder O-Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Hydrotriazine, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natrium-nonanoyloxy-benzolsulfonat, Natrium-isononanoyloxy-benzolsulfonat und acylierte Zuckerderivate, wie Pentaacetylglukose, in der Literatur bekannt geworden sind. Durch Zusatz dieser Substanzen kann die Bleichwirkung wäßriger Peroxidflotten so weit gesteigert werden, daß bereits bei Temperaturen um 60 °C im Wesentlichen die gleichen Wirkungen wie mit der Peroxidflotte allein bei 95 °C eintreten. Die Schädigung des Gewebes bleibt dabei in einem für den Verbraucher akzeptablen Rahmen.
  • Im Bemühen um energiesparende Wasch- und Bleichverfahren gewinnen in den letzten Jahren Anwendungstemperaturen deutlich unterhalb 60 °C, insbesondere unterhalb 45 °C bis herunter zur Kaltwassertemperatur an Bedeutung.
  • Bei diesen niedrigen Temperaturen läßt die Wirkung der bisher bekannten Aktivatorverbindungen in der Regel erkennbar nach. Es hat deshalb nicht an Bestrebungen gefehlt, für diesen Temperaturbereich wirksamere Bleichsysteme zu entwickeln. Ein Ansatzpunkt dazu ergibt sich durch den Einsatz von Wasserstoffperoxid-liefernden Verbindungen zusammen mit Übergangsmetallsalzen und -komplexen als sogenannten Bleichkatalysatoren. Bei diesen besteht, vermutlich wegen der hohen Reaktivität der aus ihnen und der Persauerstoffverbindung entstehenden oxidierenden Intermediate, allerdings die Gefahr der oxidativen Textilschädlgung. Der Einsatz solcher Übergangsmetallkatalysatoren in Waschmitteln ist in der Praxis bisher erschwert worden, weil dann die Schädigung des Gewebes deutlich höher ist als bei einem Persäure-bildenden konventionellen System aus Bleichmittel und Bleichaktivator. Gleiches gilt sinngemäß für Bleichvorgänge, die bei der Herstellung von cellulosehaltigem Material, wie Zellstoff oder Papier, durchgeführt werden.
  • Aus der Patentanmeldung DE 197 38 273 A1 und der internationalen Patentanmeldung WO 99/64554 A1 sind Waschmittel enthaltend Carboxymethylcellulose, Mn-haltigen Bleichkatalysator und Natriumpercarbonat sowie deren Einsatz in bleichenden Waschverfahren bekannt. Die internationale Patentanmeldung WO 96/06155 A1 betrifft die Verminderung von Textilschäden durch den Einsatz von Ammoniumsalzen in Waschmitteln, die bleichkatalysierenden Metallkomplex, Persauerstoffverbindung und gegebenenfalls weitere Waschmittelinhaltsstoffe enthalten, zu denen auch Dispergatoren wie Alginate gehören.
  • Die vorliegende Erfindung zielt darauf ab, bei der bleichenden Behandlung von cellulosehaltigem Material, beispielsweise beim Waschen von baumwollhaltigen Textilien, die Schädigung des cellulosehaltigen Materials, beispielsweise eines baumwollhaltigen Textils, beim Einsatz von bleichaktiven Katalysatoren zu erniedrigen, ohne die Bleichleistung dabei wesentlich zu beeinflussen.
  • Gegenstand der Erfindung ist in einem ersten Aspekt die Verwendung von carboxygruppentragendem saccharidischem Polymer zur Verminderung der Schädigung von cellulosehaltigem Material durch die Anwesenheit bleichverstärkender Übergangsmetallkomplexe bei der bleichenden Behandlung von cellulosehaltigem Material, welches dadurch gekennzeichnet ist, dass das carboxygruppentragende saccharidische Polymer aus Alginat, Pektin, Pektinat und Mischungen aus mindestens zweien von diesen ausgewählt wird.
  • Alginsäure beziehungsweise ihre Salze sind natürlich vorkommende Inhaltsstoffe von Braunalgen (Phaeophycea), In denen sie als Zellwandbestandteile vorliegen. Alginsäuren sind saure, Carboxy-Gruppen enthaltende Polysaccharide mit einem relativen Molekulargewicht MR von ca. 200.000, bestehend aus d-Mannuronsäure und I-Guluronsäure in unterschiedlichen Verhältnissen, welche über 1,4-glykosidische Bindungen verknüpft sind. Erfindungsgemaß brauchbare Alginate sind insbesondere die Alkali- und Erdalkalisalze der Alginsäure, wobei nicht sämtliche Carboxy-Gruppen der Alginsäure in Salzform vorliegen müssen. Die Natrium-, Kalium-, Ammonium- und Magnesiumalginate sind gut wasserlöslich. Die Viskosität von Alginat-Lösungen hängt unter anderem von der Molmasse und vom Gegenion ab. Calciumalginate bilden zum Beispiel bei bestimmten Mengenverhältnissen thermoirreversible Gele. Natriumalginate ergeben in Wasser mehr oder weniger hoch viskose Lösungen.
  • Bei Pektinen handelt es sich um natürlich vorkommende Polysaccharide, deren Hauptbestandteil (zu normalerweise mindestens 65 Gew.-%) die α-D-Galacturonsäure ist. Die Galacturonsäure-Monomere sind über α-1,4-, meist auch zu einem geringen Anteil über β-1,4-glycosidische Bindungen miteinander verbunden und bilden so das Rückgrat des Pektinmoleküls. Das lineare Rückgrat wird periodisch durch 1,2-Bindungen mit α-L-Rhamnose unterbrochen. Die Rhamnose-Einheiten in natürlichen Pektinen tragen oligomere Seitenketten aus den Zuckern Arabinose, Galactose und/oder Xylose. Die Neutralzuckerseitenketten können wiederum in Arabinane, Galactane und Arabinogalactan-I sowie Arabinogalactan-II, welches mit Proteinen verknüpft ist, unterteilt werden. Die Längen der Seitenketten liegen meist zwischen einer und 50 Zuckereinheiten. Bei der industriellen Gewinnung der Pektine gehen diese Seitenketten zum Großteil verloren. Die Hydroxylgruppen an C2 und/oder C3 der Galacturonsäureeinheiten sind zu geringen Teilen acetyliert oder durch weitere Neutralzucker, wie D-Galactose, D-Xylose, L-Arabinose, L-Rhamnose, substituiert. Ein Teil der Carboxylgruppen der Polygalacturonsäure ist in der Regel mit Methanol verestert. Der Grad der Veresterung und Acetylierung schwankt mit der Herkunft des Pektins. Bei Einwirkung von wässrig-alkalischen Lösungen oder Pektinase auf Pektin entsteht Pektosinsäure und dann Pektinsäure.. Pektinsäure bildet eine farblose, in kaltem Wasser kaum, in heißem schwer, in Alkohol nicht, in den Lösungen neutraler Salze leicht lösliche Masse; sie reagiert und schmeckt sauer und bildet mit den Alkalien lösliche, mit sonstigen Metallen unlösliche, gallertartige Salze. Durch Anlagerung von Calciumionen an die Galakturonsäure-Einheiten entsteht das weitgehend wasserunlösliche Calciumpektinat. Erfindungsgemäß brauchbare Pektinate sind insbesondere die Alkali- und Erdalkalisalze der Pektinsäure, wobei die Alkalisalze besonders bevorzugt sind und nicht sämtliche Carboxy-Gruppen der Pektinsäure in Salzform vorliegen müssen.
  • Als bleichaktivierende Übergangsmetallkomplexverbindungen kommen insbesondere solche der Metalle Fe, Mn, Co, V, Ru, Ti, Mo, W, Cu und/oder Cr in Frage, beispielsweise Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Salenkomplexe, Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, Mangan-, Eisen-, Cobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, Cobalt-, Eisen-, Kupfer- und Ruthenium-Amminkomplexe, und Eisen- oder Mangan-Komplexe mit Polyazacycloalkan-Liganden, wie TACN.
  • Zu den bevorzugten bleichverstärkenden Übergangsmetallkomplexverbindungen gehören Metallkomplexe der Formel (I),

            [LnMmXp]z Yq     (I)

    worin M Mangan oder Eisen oder Mischungen dieser Metalle bedeutet, welche im Oxidationszustand II, III, IV oder V vorliegen können, oder in Mischungen derselben, n und m unabhängig voneinander ganze Zahlen mit einem Wert von 1 bis 4 sind, X eine koordinierende oder überbrückende Spezies darstellt, p eine ganze Zahl mit einem Wert von 0 bis 12 ist, Y ein Gegenion ist, dessen Typ von der Ladung z des Komplexes abhangig ist, die positiv, Null oder negativ sein kann, q = z/[Ladung Y], und L ein Ligand ist, der ein makrocyclisches organisches Molekül der allgemeinen Formel
    Figure imgb0001
    ist, worin jeder der Reste R1 und RZ Null, H, Alkyl oder Aryl, gegebenenfalls substituiert, sein kann; t und t' unabhängig voneinander 2 oder 3 sind; D und D1 unabhängig voneinander N, NR, PR, O oder S sind, worin R H, Alkyl oder Aryl, gegebenenfalls substituiert, bedeutet; und s eine ganze Zahl mit einem Wert von 2 bis 5 ist, worin, falls D = N ist, eine der daran gebundenen Heterocarbonbindungen ungesättigt ist, was zur Herbeiführung eines N = CR1-Teilstückes führt. Bevorzugtes Metall M ist Mangan. Die koordinierende oder überbrückende Spezies X ist vorzugsweise ein kleines koordinierendes Ion oder überbrückendes Molekül oder eine Mischung derselben, beispielsweise Wasser, OH-, O2-, S2-, -S(=O)-, N3-, HOO-, O2 2-, O2 -, Amin, Cl-, SCN-, N3 -, und Carboxylat wie zum Beispiel Acetat oder Mischungen aus diesen. Wenn die Ladung z positiv ist, ist Y ein Anion, wie beispielsweise Chlorid, Bromid, Iodid, Nitrat, Perchlorat, Rhodanid, Hexafluorphosphat, Sulfat, Alkylsulfat, Alkylsulfonat oder Acetat; wenn die Ladung z negativ ist, ist Y ein Kation, wie beispielsweise ein Alkaliion, Ammoniumion oder Erdalkaliion. Zu den bevorzugten Liganden L gehören 1,4,7-Triazacyclononan, 1,4,7-Trimethyl-1,4,7-triazacyclononan, 1,5,9-Trimethyl-1,5,9-triazacyclododecan und 1,2,4,7-Tetramethyl-1,4,7-triazacyclononan.
  • In einer weiteren bevorzugten Ausführungsform entspricht die bleichverstärkende Übergangsmetallkomplexverbindung der allgemeinen Formel (II),
    Figure imgb0002
    in der R10 und R11 unabhängig voneinander für Wasserstoff, eine C1-18-Alkylgruppe, eine Gruppe -NR13R14, eine Gruppe -N+R13R14R15 oder eine Gruppe
    Figure imgb0003
    R12 für Wasserstoff, -OH, oder eine C1-28-Alkylgruppe, R13, R14 und R15 unabhängig voneinander für Wasserstoff, eine C1-4-Alkyl- oder -Hydroxyalkylgruppe und X für Halogen stehen sowie A für einen ladungsausgleichenden Anionliganden steht, der Je nach seiner Ladung und der Art und Anzahl der sonstigen Ladungen, insbesondere der Ladung des Mangan-Zentralatoms, auch fehlen oder mehrfach vorhanden sein kann. Mangan kann darin wie auch in den Komplexen gemäß Formel (I) die Oxidationsstufe II, III, IV oder V aufweisen. Gewünschtenfalls, wenn auch weniger bevorzugt, können in derartigen Komplexverbindungen anstelle des Mn-Zentralatoms auch andere Übergangsmetalle, wie beispielsweise Fe, Co, Ni, V, Ru, Ti, Mo, W, Cu und/oder Cr, vorhanden sein.
  • Ein Verfahren zur Umsetzung der erfindungsgemäßen Verwendung kann gewünschtenfalls bei Temperaturen im Bereich von 10 °C bis 95 °C durchgeführt werden. Bevorzugt liegt die Temperatur im Bereich von 20 °C bis 40 °C.
  • Das Verfahren kann gewünschtenfalls bei pH-Werten im schwach sauren bis alkalischen Bereich, Insbesondere Im Bereich von pH 5 bis pH 12, vorzugsweise pH 8 bis pH 11, durchgeführt werden.
  • In dem Verfahren setzt man vorzugsweise Konzentrationen von 0,0001 g/l bis 2 g/l, insbesondere 0,01 g/l bis 1 g/l carboxygruppentragendes saccharidisches Polymer in der wässrigen Behandlungslösung ein.
  • In dem Textilwaschverfahren bevorzugte Persauerstoffkonzentrationen (berechnet als H2O2) in der Waschlauge liegen im Bereich von 0,001 g/l bis 10 g/l, insbesondere 0,1 g/l bis 1 g/l. Die Konzentration an bleichverstärkendem Übergangsmetallkomplex in der Waschlauge liegt vorzugsweise im Bereich von 0,1 µmol/ bis 100 µmol/l, insbesondere 0,5 µmol/l bis 25 µmol/l.
  • Das Verfahren läßt sich beispielsweise dadurch realisieren, dass man persauerstoffhaltiges Bleichmittel, bleichverstärkenden Übergangsmetallkomplex und das carboxygruppentragende saccharidische Polymer jeweils separat einer Behandlungslosung für cellulosehaltiges Material, beispielsweise einer Waschlösung, die ein übliches Waschmittel enthalten kann, zusetzt. Es ist auch möglich, nicht den fertigen bleichverstärkenden Übergangsmetallkomplex, sondern separat einen oder mehrere Liganden, welche im Prozess mit einem Übergangsmetall in situ einen bleichverstärkenden Übergangsmetallkomplex bilden können, einzusetzen; das Übergangsmetall kann dann ebenfalls separat in Form eines Salzes oder nicht bleichverstärkenden Komplexes zudosiert werden, oder es wird in den Prozess als Bestandteil des dafür eingesetzten Brauchwassers oder über das zu behandelnde cellulosehaltige Material, bei zu reinigenden Textilien beispielsweise als Bestandteil der zu entfernenden Anschmutzung, in den Prozess eingebracht. Dabei ist es möglich und bevorzugt, den bleichverstärkenden Übergangsmetallkomplex und das carboxygruppentragende saccharidische Polymer gleichzeitig, insbesondere als vorzugsweise wasserhaltiges beziehungsweise als wäßrige Lösung vorliegendes Vorgemisch, gemeinsam einzubringen.
  • Überraschenderweise wurde gefunden, dass sich durch den Einsatz des carboxygruppentragenden saccharidischen Polymers nicht nur die Schädigung des cellulosehaltigen Materials verringert, sondern auch die Bleichleistung des Systems aus persauerstoffhaltigem Bleichmittel und bleichverstärkendem Übergangsmetallkomplex verbessert. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung von carboxygruppentragendem saccharidischem Polymer zur Verbesserung der Bleichleistung von bleichverstärkendem Übergangsmetallkomplex in wäßrigen Lösungen, die persauerstoffhaltiges Bleichmittel enthalten, welches dadurch gekennzeichnet ist, dass das carboxygruppentragende saccharidische Polymer aus Alginat, Pektin, Pektinat und Mischungen aus mindestens zweien von diesen ausgewählt wird.
  • Bevorzugt setzt man ein Mittel ein, welches persauerstoffhaltiges Bleichmittel, bleichverstärkenden Übergangsmetallkomplex oder einen Liganden, welcher im Prozess mit einem Übergangsmetall in situ einen bleichverstärkenden Übergangsmetallkomplex bilden kann, und carboxygruppentragendes saccharidisches Polymer enthält.
  • Solche Waschmittel, die in fester Form oder als Flüssigkeiten oder Pasten vorliegen können, können als solche in maschinellen oder manuellen Waschverfahren eingesetzt werden, aber auch als Waschmitteladditive und/oder als Wäsche- beziehungsweise Textilvorbehandlungsmittel zum Einsatz kommen.
  • Als Waschmitteladditiv werden Mittel zusammen mit einem üblichen Waschmittel eingesetzt. Dies ist vor allem dann sinnvoll, wenn der Anwender das übliche Waschmittel in seiner Bleichleistung verbessern will. Bei der Wäschevorbehandlung werden die Mittel eingesetzt, um die Entfernung von verkrustetem Schmutz oder Flecken, insbesondere "Problemflecken", wie Kaffee, Tee, Rotwein, Gras, oder Fruchtsaft, zu verbessern, die durch Waschen mit üblichen Textilwaschmaschitteln nur schwierig zu entfernen, aber einem oxidativen Angriff zugänglich sind. Ein weiteres Einsatzgebiet solcher Mittel ist die Entfernung lokaler Anschmutzungen von ansonsten sauberen Oberflächen, so daß sich ein aufwendigerer Wasch- oder Reinigungsvorgang des entsprechenden Gesamtgebildes, sei dieses nun ein Kleidungsstück oder ein Teppich oder ein Möbelpolsterteil, vermeiden läßt. Dazu kann man in einfacher Weise ein Mittel, gegebenenfalls zusammen mit einer Wassermenge, welche zur vollständigen Auflösung des Mittels nicht ausreicht, auf die textile Oberfläche beziehungsweise deren zu reinigenden Teil aufbringen, gegebenenfalls mechanische Energie, beispielsweise durch Reiben mit einem Tuch oder einem Schwamm, einbringen und nach einer vom Anwender festzulegenden Zeit das Mittel und die oxidativ aufgebrochene Anschmutzung durch Auswaschen mit Wasser, beispielsweise mit Hilfe eines angefeuchteten Tuches oder Schwammes, entfernen.
  • Vorzugsweise enthalten die Mittel 0,01 Gew.-% bis 0,5 Gew.-%, insbesondere 0,02 Gew.-% bis 0,3 Gew.-% an bleichverstärkendem Übergangsmetallkomplex. Alternativ oder gegebenenfalls auch zusätzlich kann das Mittel auch lediglich einen oder mehrere Liganden enthalten, welche im Waschprozess mit einem Übergangsmetall in situ einen bleichverstarkenden Übergangsmetallkomplex bilden können. Das Übergangsmetall kann dabei in Form eines Salzes oder nicht bleichverstärkenden Komplexes ebenfalls im Waschmittel vorhanden sein oder wird in den Waschprozess als Bestandteil des dafür eingesetzten Brauchwassers oder über das zu reinigende Textil, beispielsweise als Bestandteil der zu entfernenden Anschmutzung, in den Waschprozess eingebracht werden.
  • Die Wasch- und Reinigungsmittel können neben dem persauerstoffhaltigen Bleichmittel, dem bleichverstärkenden Übergangsmetallkomplex beziehungsweise dem Liganden, welcher in situ den bleichverstärkenden Übergangsmatallkomplex bilden kann, und carboxygruppentragendem saccharidischem Polymer im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die Wasch- und Reinigungsmittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren, Polymere mit Spezialeffekten, wie soil release-Polymere, Farbübertragungsinhibitoren, Vergrauungsinhibitoren, knitterreduzierende Wirkstoffe und formerhaltende Wirkstoffe, und weitere Hilfsstoffe, wie optische Aufheller, Schaumregulatoren, zusätzliche Persauerstoff-Aktivatoren, Farb- und Duftstoffe enthalten.
  • Als für den Einsatz bei der erfindungsgemäßen Verwendung geeignete Persauerstoffverbindungen kommen insbesondere organische Persäuren beziehungsweise persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure oder Salze der Diperdodecandisaure, Wasserstoffperoxid und unter den Waschbedingungen Wasserstoffperoxid abgebende anorganische Salze, zu denen Alkaliperborat, Alkalipercarbonat, -persilikat und/oder -persulfat wie Caroat gehören, in Betracht. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Der Zusatz geringer Mengen bekannter Bleichmittelstabilisatoren wie beispielsweise von Phosphonaten, Boraten beziehungsweise Metaboraten und Metasilikaten sowie Magnesiumsalzen wie Magnesiumsulfat kann zweckdienlich sein. Ein Mittel enthalt vorzugsweise 15 Gew.-% bis 50 Gew.-%, insbesondere 18 Gew.-% bis 35 Gew.-% persauerstoffhaltiges Bleichmittel, insbesondere Alkalipercarbonat. Alternativ oder gegebenenfalls zusätzlich kann im Verfahren Wasserstoffperoxid auch durch ein enzymatisches System, nämlich eine Oxidase in Kombination mit ihrem Substrat, erzeugt werden, das in einer bevorzugten Ausgestaltung der Erfindung Bestandteil des Mittels ist und in diesen das persauerstoffhaltige Bleichmittel teilweise oder vorzugsweise ganz ersetzen kann.
  • Zusätzlich zu der bleichverstärkenden Übergangsmetallkomplexverbindung können in den Mitteln gewünschtenfalls weitere als bleichaktivierende Wirkstoffe bekannte Verbindungen, insbesondere konventionelle Bleichaktivatoren, das heißt Verbindungen, die unter Perhydrolysebedingungen gegebenenfalls substituierte Perbenzoesäure und/oder Peroxocarbonsäuren mit 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen ergeben, eingesetzt werden. Geeignet sind übliche Bleichaktivatoren, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Phenylsulfonate, insbesondere Nonanoyloxy- oder Isononanoyloxybenzolsulfonat, N-acylierte Capro- oder Valerolactame, insbesondere N-Acetylcaprolactam, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran sowie acetyliertes Sorbit und Mannit, und acylierte Zuckerderivate, Insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton. Auch unter Perhydrolysebedingungen Perimidsäuren bildende Nitrile, wie 4-Morpholincarbonitril oder Ammoniumgruppen tragende Acetonitrile, können eingesetzt werden. Vorzugsweise sind die Mittel jedoch frei von solchen konventionellen Bleichaktivatoren.
  • Die Mittel können ein oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische in Frage kommen. Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxyllerungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicinalen Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomem im Alkylrest brauchbar.
  • Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfat- oder SulfonatGruppen mit bevorzugt Alkaliionen als Kationen enthalten. Verwendbare Seifen sind bevorzugt die Alkalisalze der gesättigten oder ungesättigten Fettsäuren mit 12 bis 18 C-Atomen. Derartige Fettsäuren können auch in nicht vollständig neutralisierter Form eingesetzt werden. Zu den brauchbaren Tensiden des Sulfat-Typs gehören die Salze der Schwefelsäurehalbester von Fettalkoholen mit 12 bis 18 C-Atomen und die Sulfatierungsprodukte der genannten nichtionischen Tenside mit niedrigem Ethoxylierungsgrad. Zu den verwendbaren Tensiden vom Sulfonat-Typ gehören lineare Alkylbenzolsulfonate mit 9 bis 14 C-Atomen im Alkylteil, Alkansulfonate mit 12 bis 18 C-Atomen, sowie Olefinsulfonate mit 12 bis 18 C-Atomen, die bei der Umsetzung entsprechender Monoolefine mit Schwefeltrioxid entstehen, sowie alpha-Sulfofettsäureester, die bei der Sulfonierung von Fettsäuremethyl- oder -ethylestem entstehen.
  • Derartige Tenside sind in den Reinigungs- oder Waschmitteln in Mengen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, enthalten.
  • Ein Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycindiessigsäure, Nitrilotriessigsäure, Ethylendiamin-N,N'-dibernsteinsäure und Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methylenphosphonsäure) und 1-Hydroxyethan-1,1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden beziehungsweise Dextrinen zugänglichen Polycarboxylate, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättiger Carbonsäuren liegt im allgemeinen zwischen 5 000 und 200 000, die der Copolymeren zwischen 2 000 und 200 000, vorzugsweise 50 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 50 000 bis 100 000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder einem veresterten Vinylalkohol oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-C8-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure, wobei Maleinsäure besonders bevorzugt ist, und/oder ein Derivat einer Allylsulfonsäure, die in 2-Stellung mit einem Alkyl- oder Arylrest substituiert ist, sein. Derartige Polymere weisen im allgemeinen eine relative Molekülmasse zwischen 1 000 und 200 000 auf. Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
  • Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein.
  • Als wasserlösliche anorganische Buildermaterialien kommen insbesondere polymere Alkaliphosphate, die in Form ihrer alkalischen neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, in Betracht. Beispiele hierfür sind Tetranatriumdiphosphat, Dinatriumdihydrogendiphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat sowie die entsprechenden Kaliumsalze beziehungsweise Gemische aus Natrium- und Kaliumsalzen. Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, P und gegebenenfalls X, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 µm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 µm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden kann, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.
  • Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1:1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na2O:SiO2 von 1:2 bis 1:2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+-1 · y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si2Os · y H2O) bevorzugt Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkallsilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, können in Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5 werden in einer weiteren bevorzugten Ausführungsform der Mittel eingesetzt. In einer bevorzugten Ausgestaltung der Mittel setzt man ein granulares Compound aus Alkalisilikat und Alkalicarbonat ein, wie es zum Beispiel unter dem Namen Nabion® 15 im Handel erhältlich ist Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat, insbesondere Zeolith, vorhanden ist, beträgt das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, vorzugsweise 1:10 bis 10:1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilikat zu kristallinem Alkalisilikat vorzugsweise 1:2 bis 2:1 und insbesondere 1:1 bis 2:1.
  • Buildersubstanzen sind in den Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 60 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, enthalten, während die Desinfektionsmittel vorzugsweise frei von den lediglich die Komponenten der Wasserhärte komplexierenden Buildersubstanzen sind und bevorzugt nicht über 20 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, an schwermetallkomplexierenden Stoffen, vorzugsweise aus der Gruppe umfassend Aminopolycarbonsäuren, Aminopolyphosphonsäuren und Hydroxypolyphosphonsäuren und deren wasserlösliche Salze sowie deren Gemische, enthalten.
  • In einer bevorzugten Ausgestaltung der Erfindung weist ein Mittel einen wasserlöslichen Builderblock auf. Durch die Verwendung des Begriffes "Builderblock" soll hierbei ausgedrückt werden, daß die Mittel keine weiteren Buildersubstanzen enthalten als solche, die wasserlöslich sind, das heißt sämtliche in dem Mittel enthaltenen Buildersubstanzen sind in dem so charakterisierten "Block" zusammengefasst, wobei allenfalls die Mengen an Stoffen ausgenommen sind, die als Verunreinigungen beziehungsweise stabilisierende Zusätze in geringen Mengen in den übrigen Inhaltsstoffen der Mittel handelsüblicherweise enthalten sein können. Unter dem Begriff "wasserlöslich" soll dabei verstanden werden, daß sich der Builderblock bei der Konzentration, die sich durch die Einsatzmenge des ihn enthaltenden Mittels bei den üblichen Bedingungen ergibt, rückstandsfrei löst. Vorzugsweise sind mindestens 15 Gew.-% und bis zu 55 Gew.-%, insbesondere 25 Gew.-% bis 50 Gew.-% an wasserlöslichem Builderblock in den Mitteln enthalten. Dieser setzt sich vorzugsweise zusammen aus den Komponenten
    1. a) 5 Gew.-% bis 35 Gew.-% Citronensäure, Alkalicitrat und/oder Alkalicarbonat, welches auch zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann,
    2. b) bis zu 10 Gew.-% Alkalisilikat mit einem Modul im Bereich von 1,8 bis 2,5,
    3. c) bis zu 2 Gew.-% Phosphonsäure und/oder Alkaliphosphonat,
    4. d) bis zu 50 Gew.-% Alkaliphosphat, und
    5. e) bis zu 10 Gew.-% polymerem Polycarboxylat,
    wobei die Mengenangaben sich auf das gesamte Wasch- beziehungsweise Reinigungsmittel beziehen. Dies gilt auch für alle anderen Mengenangaben, sofern nicht ausdrücklich anders angegeben.
  • In einer bevorzugten Ausführungsform der Mittel enthält der wasserlösliche Builderblock mindestens 2 der Komponenten b), c), d) und e) in Mengen größer 0 Gew.-%.
  • Hinsichtlich der Komponente a) sind in einer bevorzugten Ausführungsform der Mittel 15 Gew.-% bis 25 Gew.-% Alkalicarbonat, welches zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann, und bis zu 5 Gew.-%, insbesondere 0,5 Gew.-% bis 2,5 Gew.-% Citronensäure und/oder Alkalicitrat enthalten. In einer alternativen Ausführungsform der Mittel sind als Komponente a) 5 Gew.-% bis 25 Gew.-%, insbesondere 5 Gew.-% bis 15 Gew.-% Citronensäure und/oder Alkalicitrat und bis zu 5 Gew.-%, insbesondere 1 Gew.-% bis 5 Gew.-% Alkalicarbonat, welches zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann, enthalten. Falls sowohl Alkalicarbonat wie auch Alkalihydrogencarbonat vorhanden sind, weist die Komponte a) Alkalicarbonat und Alkalihydrogencarbonat vorzugsweise im Gewichtsverhältnis von 10:1 bis 1:1 auf.
  • Hinsichtlich der Komponente b) sind in einer bevorzugten Ausführungsform der Mittel 1 Gew.-% bis 5 Gew.-% Alkalisilikat mit einem Modul im Bereich von 1,8 bis 2,5 enthalten.
  • Hinsichtlich der Komponente c) sind in einer bevorzugten Ausführungsform der Mittel 0,05 Gew.-% bis 1 Gew.-% Phosphonsäuren und/oder Alkaliphosphonat enthalten. Unter Phosphonsäuren werden dabei auch gegebenenfalls substituierte Alkyl- und Arylphosphonsäuren, wie beispielsweise Phenylphosphonsäure, verstanden, die auch mehrere Phosphonsäuregruppierungen aufweisen könne (sogenannte Polyphosphonsäuren). Bevorzugt werden sie ausgewählt aus den Hydroxy- und/oder Aminoalkylphosphonsäuren und/oder deren Alkalisalzen, wie zum Beispiel Dimethylaminomethandiphosphonsäure, 3-Aminopropan-1-hydroxy-1,1-diphosphonsäure, 1-Amino-1-phonyl-methandiphosphonsaure, 1-Hydroxyethan-1,1-diphosphonsäure (HEDP), Amino-tris(methylenphosphonsäure), und acylierte Derivate der phosphorigen Säure, die auch in beliebigen Mischungen eingesetzt werden können.
  • Hinsichtlich der Komponente d) sind in einer bevorzugten Ausführungsform der Mittel 15 Gew.-% bis 35 Gew.-% Alkaliphosphat, insbesondere Trinatriumpolyphosphat, enthalten. Alkaliphosphat ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) - Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen beziehungsweise Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei. Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Madrellsches Salz übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° (Zersetzung unter Bildung von (KPO3)x, Kaliumpolyphosphat) und ist leicht löslich in Wasser. Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na2P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist. Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O6) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt. Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt. Durch Kondensation des NaH2PO4 beziehungsweise des KH2PO4 entstehen höhermolekulare Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- beziehungsweise Kaliummetaphosphatem und kettenförmige Typen, die Natrium- beziehungsweise Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Madrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet. Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:

            (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O

  • Diese sind genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar, auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind einsetzbar.
  • Hinsichtlich der Komponente e) sind in einer bevorzugten Ausführungsform der Mittel 1,5 Gew.-% bis 5 Gew.-% polymeres Polycarboxylat, insbesondere ausgewählt aus den Polymerisationsbeziehungsweise Copolymerisationsproduktsn von Acrylsäure, Methacrylsäure und/oder Maleinsäure enthalten. Unter diesen sind die Homopolymere der Acrylsäure und unter diesen wiederum solche mit einer mittleren Molmasse im Bereich von 5 000 D bis 15 000 D (PA-Standard) besonders bevorzugt
  • Als in den Mitteln verwendbare Enzyme kommen außer der obengenannten Oxidase solche aus der Klasse der Proteasen, Lipasen, Cutinasen, Amylasen, Pullulanasen, Mannanasen, Cellulasen, Hemicellulasen, Xylanasen und Peroxidasen sowie deren Gemische in Frage, beispielsweise Proteasen wie BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Alcalase®, Esperase®, Savinase®, Durazym® und/oder Purafect® OxP, Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® und/oder Purafect® OxAm, Lipasen wie Lipolase®, Lipomax®, Lumafast® und/oder Lipozym®, Cellulasen wie Celluzyme® und/oder Carezyme®. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes oder Pseudomonas cepacia gewonnene enzymatische Wirkstoffe. Die gegebenenfalls verwendeten Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den Wasch-, Reinigungs- und Desinfektionsmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,2 Gew.-% bis 2 Gew.-%, enthalten, wobei besonders bevorzugt gegen oxidativen Abbau stabilisierte Enzyme eingesetzt werden.
  • In einer bevorzugten Ausführungsform der Erfindung enthält das Mittel 5 Gew.-% bis 50 Gew.-%, insbesondere 8 - 30 Gew.-% anionisches und/oder nichtionisches Tensid, bis zu 60 Gew.-%, insbesondere 5-40 Gew.-% Buildersubstanz und 0.2 Gew.-% bis 2 Gew.-% Enzym, ausgewählt aus den Proteasen, Lipasen, Cutinasen, Amylasen, Pullulanasen, Mannanasen, Cellulasen, Oxidasen und Peroxidasen sowie deren Gemischen.
  • Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten beim Zugeben von Wasser nicht von selbst ergebenden pH-Werts können die Mittel system- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den Mitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 1,2 Gew.-% bis 17 Gew.-%, enthalten.
  • Schmutzablösevermögende Polymere, die oft als "Soll Release"-Wirkstoffe oder wegen ihres Vermögens, die behandelte Oberfläche, zum Beispiel der Faser, schmutzabstoßend auszurüsten, als "Soll Repellents" bezeichnet werden, sind beispielsweise nichtionische oder kationische Cellulosederivate. Zu den insbesondere polyesteraktiven schmutzablösevermögenden Polymeren gehören Copolyester aus Dicarbonsäuren, beispielsweise Adipinsäure, Phthalsäure oder Terephthalsäure, Diolen, beispielsweise Ethylenglykol oder Propylenglykol, und Polydiolen, beispielsweise Polyethylenglykol oder Polypropylenglykol. Zu den bevorzugt eingesetzten schmutzablösevermögenden Polyestern gehören solche Verbindungen, die formal durch Veresterung zweier Monomerteile zugänglich sind, wobei das erste Monomer eine Dicarbonsäure HOOC-Ph-COOH und das zweite Monomer ein Diol HO-(CHR21-)aOH, das auch als polymeres Diol H-(O-(CHR21-)a)bOH vorliegen kann, ist. Darin bedeutet Ph einen o-, m- oder p-Phenylenrest, der 1 bis 4 Substituenten, ausgewählt aus Alkylresten mit 1 bis 22 C-Atomen, Sulfonsäuregruppen, Carboxylgruppen und deren Mischungen, tragen kann, R21 Wasserstoff, einen Alkylrest mit 1 bis 22 C-Atomen und deren Mischungen, a eine Zahl von 2 bis 6 und b eine Zahl von 1 bis 300. Vorzugsweise liegen in den aus diesen erhältlichen Polyestern sowohl Monomerdioleinheiten -O-(CHR21-)aO- als auch Polymerdioleinheiten -(O-(CHR21-)a)bO- vor. Das molare Verhältnis von Monomerdioleinheiten zu Polymerdioleinheiten beträgt vorzugsweise 100:1 bis 1:100, insbesondere 10:1 bis 1:10. In den Polymerdioleinheiten liegt der Polymerisationsgrad b vorzugsweise im Bereich von 4 bis 200, insbesondere von 12 bis 140. Das Molekulargewicht beziehungsweise das mittlere Molekulargewicht oder das Maximum der Molekulargewichtsverteilung bevorzugter schmutzablösevermögender Polyester liegt im Bereich von 250 bis 100 000, insbesondere von 500 bis 50 000. Die dem Rest Ph zugrundeliegende Säure wird vorzugsweise aus Terephtalsäure, Isophthalsäure, Phthalsäure, Trimellithsäure, Mellithsäure, den Isomeren der Sulfophthalsäure, Sulfoisophthalsäure und Sulfoterephtalsäure sowie deren Gemischen ausgewählt. Sofern deren Säuregruppen nicht Teil der Esterbindungen im Polymer sind, liegen sie vorzugsweise in Salzform, insbesondere als Alkali- oder Ammoniumsalz vor. Unter diesen sind die Natrium- und Kaliumsalze besonders bevorzugt. Gewünschtenfalls können statt des Monomers HOOC-Ph-COOH geringe Anteile, insbesondere nicht mehr als 10 Mol-% bezogen auf den Anteil an Ph mit der oben gegebenen Bedeutung, anderer Säuren, die mindestens zwei Carboxylgruppen aufweisen, im schmutzablösevermögenden Polyester enthalten sein. Zu diesen gehören beispielsweise Alkylen- und Alkenylendicarbonsäuren wie Malonsäure, Bernsteinsäure, Fumarsäure, Maleinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsaure und Sebacinsäure. Zu den bevorzugten Diolen HO-(CHR21-)aOH gehören solche, in denen R21 Wasserstoff und a eine Zahl von 2 bis 6 ist, und solche, in denen a den Wert 2 aufweist und R11 unter Wasserstoff und den Alkylresten mit 1 bis 10, insbesondere 1 bis 3 C-Atomen ausgewählt wird. Unter den letztgenannten Diolen sind solche der Formel HO-CH2-CHR11-OH, in der R11 die obengenannte Bedeutung besitzt, besonders bevorzugt. Beispiele für Diolkomponenten sind Ethylenglykol, 1,2-Propylenglykol, 1,3-Propylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,8-Octandiol, 1,2-Decandiol, 1,2-Dodecandiol und Neopentylglykol. Besonders bevorzugt unter den polymeren Diolen ist Polyethylenglykol mit einer mittleren Molmasse im Bereich von 1000 bis 6000. Gewünschtenfalls können diese Polyester auch endgruppenverschlossen sein, wobei als Endgruppen Alkylgruppen mit 1 bis 22 C-Atomen und Ester von Monocarbonsäuren in Frage kommen. Den über Esterbindungen gebundenen Endgruppen können Alkyl-, Alkenyl- und Arylmonocarbonsäuren mit 5 bis 32 C-Atomen, insbesondere 5 bis 18 C-Atomen, zugrundeliegen. Zu diesen gehören Valeriansäure, Capronsäure, Önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Undecansäure, Undecensäure, Laurinsäure, Lauroleinsäure, Tridecansäure, Myristinsäure, Myristoleinsäure, Pentadecansäure, Palmitinsäure, Stearinsäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Linolsäure, Linolaidinsäure, Linolensäure, Eläostearinsäure, Arachinsäure, Gadoleinsäure, Arachidonsäure, Behensäure, Erucasäure, Brassidinsäure, Clupanodonsäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, Benzoesäure, die 1 bis 5 Substituenten mit insgesamt bis zu 25 C-Atomen, insbesondere 1 bis 12 C-Atomen tragen kann, beispielsweise tert.-Butylbenzoesäure. Den Endgruppen können auch Hydroxymonocarbonsäuren mit 5 bis 22 C-Atomen zugrundeliegen, zu denen beispielsweise Hydroxyvaleriansäure, Hydroxycapronsäure, Ricinolsäure, deren Hydrierungsprodukt Hydroxystearinsäure sowie o-, m- und p-Hydroxybenzoesäure gehören. Die Hydroxymonocarbonsäuren können ihrerseits über ihre Hydroxylgruppe und ihre Carboxylgruppe miteinander verbunden sein und damit mehrfach in einer Endgruppe vorliegen. Vorzugsweise liegt die Anzahl der Hydroxymonocarbonsäureeinheiten pro Endgruppe, das heißt ihr Oligomerisierungsgrad, im Bereich von 1 bis 50, insbesondere von 1 bis 10. In einer bevorzugten Ausgestaltung der Erfindung werden Polymere aus Ethylenterephthalat und Polyethylenoxid-terephthalat, in denen die Polyethylenglykol-Einheiten Molgewichte von 750 bis 5000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 50:50 bis 90:10 beträgt, allein oder in Kombination mit Cellulosederivaten verwendet.
  • Zu den für den Einsatz in Mitteln für die Wäsche von Textilien in Frage kommenden Farbübertragungsinhibitoren gehören insbesondere Polyvinylpyrrolidone, Polyvinylimidazole, polymere N-Oxide wie Poly-(vinylpyridin-N-oxid) und Copolymere von Vinylpyrrolidon mit Vinylimidazol und gegebenenfalls weiteren Monomeren.
  • Die Mittel zum Einsatz in der Textilwäsche können Knitterschutzmittel enthalten, da textile Flächengebilde, insbesondere aus Reyon, Wolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasem gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der harten Oberfläche und insbesondere von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
  • Die Mittel können optische Aufheller, unter diesen insbesondere Derivate der Diaminostilbendisulfonsäure beziehungsweise deren Alkalimetallsalze, enthalten. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
  • Insbesondere beim Einsatz in maschinellen Wasch- und Reinigungsverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt
  • In Mitteln können außerdem Wirkstoffe zur Vermeidung des Anlaufens von Gegenständen aus Silber, sogenannte Silberkorrosionsinhibitoren, eingesetzt werden. Bevorzugte Silberkorrosionsschutzmittel sind organische Disulfide, zweiwertige Phenole, dreiwertige Phenole, gegebenenfalls alkyl- oder aminoalkylsubstituierte Triazole wie Benzotriazol sowie Cobalt-, Mangan-, Titan-, Zirkonium-, Hafnium-, Vanadium- oder Cersalze und/oder -komplexe, in denen die genannten Metalle in einer der Oxidationsstufen II, III, IV, V oder VI voliegen.
  • Ein Mittel kann zur Verstärkung der Desinfektionswirkung gegenüber speziellen Keimen zusätzlich zu den bisher genannten Inhaltsstoffen übliche antimikrobielle Wirkstoffe enthalten. Derartige antimikrobielle Zusatzstoffe sind in Mitteln vorzugsweise in Mengen nicht Ober 10 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, enthalten.
  • Ein Reinigungsmittel für harte Oberflächen kann darüber hinaus abrasiv wirkende Bestandteile, insbesondere aus der Gruppe umfassend Quarzmehle, Holzmehle, Kunststoffmehle, Kreiden und Mikroglaskugeln sowie deren Gemische, enthalten. Abrasivstoffe sind in den Reinigungsmitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 5 Gew.-% bis 15 Gew.-%, enthalten.
  • Beispiele
  • Primärwaschkraft und Nassreißkraftverlust wurden in einem miniaturisierten Waschtest getestet. Es wurde mit einer vereinfachten Waschlauge bestehend aus H2O2 und Katalysator (1,4,7-Trimethyl-1,4,7-triazacyclononan-Mangankomplex, Mn-Me3TACN) gearbeitet. Zum Einsatz kamen Lösungen von 0,35 g/l H2O2 und 5 µmol/l Mn-Me3TACN und jeweils 0 g/l (V1) oder 0,11 g/l (M1) Na-Alginat beziehungsweise 0,11 g/l (M2) Pektin in Wasser (3°dH), deren pH-Werte jeweils mittels NaOH auf pH 10,5 eingestellt worden waren.
  • Für die Messung der Primärwaschleistung wurden Baumwollsubstrate, die mit einer standardisierten Teeanschmutzung versehen worden war, 30 Minuten bei 30 °C in den jeweiligen Lösungen behandelt. Das behandelte Stoffsubstrat wurde unter fließendem Wasser ausgewaschen und anschließend getrocknet und farbvermessen. In der nachfolgenden Tabelle ist der Helligkeitswert der Baumwollmeßstücke angegeben.
  • Für die Messung des Nassreißkraftverlusts wurden Baumwollstreifen mit definierter Breite (Fadenanzahl) 20 Mal über jeweils 45 Minuten bei 60°C in den jeweiligen Lösungen behandelt. Die Streifen wurden getrocknet und in eine Netzlösung eingetaucht, bevor sie mittels einer Zugprüfmaschine mit konstanter Zugprüfgeschwindigkeit zerrissen wurden. Die Zerreißkraft der behandelten Baumwolle wurde mit der Zerreißkraft der unbehandelten Baumwolle verglichen und der Nassreißkraftverlust in % berechnet.
  • Es wurden für die Primärwaschkraft und den Nassreißkraftverlust jeweils 5fach-Bestimmungen durchgeführt. In der nachfolgenden Tabelle sind die Mittelwerte angegeben.
    Bleichleistung [Y-Wert] Nassreißkraftverlust [%]
    V1 60,9 88
    M1 62,5 69
    M2 62,6 76

Claims (5)

  1. Verwendung von carboxygruppentragendem saccharidischem Polymer zur Verminderung der Schädigung von cellulosehaltigem Material durch die Anwesenheit bleichverstärkender Übergangsmetallkomplexe bei der bleichenden Behandlung von cellulosehaltigem Material, dadurch gekennzeichnet, dass das carboxygruppentragende saccharidische Polymer aus Alginat, Pektin, Pektinat und Mischungen aus mindestens zweien von diesen ausgewählt wird.
  2. Verwendung von carboxygruppentragendem saccharidischem Polymer zur Verbesserung der Bleichleistung von bleichverstärkendem Übergangsmetallkomplex in wäßrigen Lösungen, die persauerstoffhaltiges Bleichmittel enthalten, dadurch gekennzeichnet, dass das carboxygruppentragende saccharidische Polymer aus Alginat, Pektin, Pektinat und Mischungen aus mindestens zweien von diesen ausgewählt wird.
  3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die bleichverstärkende Übergangsmetallkomplexverbindung ein Metallkomplex der Formel (I) ist,

            [LnMmXp]z Yq     (I)

    worin M Mangan oder Eisen oder Mischungen dieser Metalle bedeutet, welche im Oxidationszustand II, III, IV oder V vorliegen können, oder in Mischungen derselben, n und m unabhängig voneinander ganze Zahlen mit einem Wert von 1 bis 4 sind, X eine koordinierende oder überbrückende Spezies darstellt, p eine ganze Zahl mit einem Wert von 0 bis 12 ist, Y ein Gegenion ist, dessen Typ von der Ladung z des Komplexes abhangig ist, die positiv, Null oder negativ sein kann, q = z/[Ladung Y], und L ein Ligand ist, der ein makrocyclisches organisches Molekül der allgemeinen Formel
    Figure imgb0004
    ist, worin jeder der Reste R1 und R2 Null, H, Alkyl oder Aryl, gegebenenfalls substituiert, sein kann; t und t' unabhängig voneinander 2 oder 3 sind; D und D1 unabhängig voneinander N, NR, PR, O oder S sind, worin R H, Alkyl oder Aryl, gegebenenfalls substituiert, bedeutet; und s eine ganze Zahl mit einem Wert von 2 bis 5 ist, worin, falls D = N ist, eine der daran gebundenen Heterocarbonbindungen ungesättigt ist, was zur Herbeiführung eines N = CR1-Teilstückes führt.
  4. Verwendung nach Anspruch 3, dadurch gekennzeichnet, dass der Komplex der Formel (I) mit M = Mangan und L = 1,4,7-Triazacyclononan, 1,4,7-Trimethyl-1,4,7-triazacyclononan, 1,5,9-Trimethyl-1,5,9-triazacyclododecan oder 1,2,4,7-Tetramethyl-1,4,7-triazacyclononan entspricht.
  5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die bleichverstärkende Übergangsmetallkomplexverbindung ein Mangankomplex der Formel (II) ist,
    Figure imgb0005
    in der R10 und R" unabhängig voneinander für Wasserstoff, eine C1-18-Alkylgruppe, eine Gruppe -NR13R14, eine Gruppe -N+R13R14R15 oder eine Gruppe
    Figure imgb0006
    R12 für Wasserstoff, -OH, oder eine C1-18-Alkylgruppe, R13, R14 und R15 unabhängig voneinander für Wasserstoff, eine C1-4-Alkyl- oder -Hydroxyalkylgruppe und X für Halogen stehen sowie A für ein ladungsausgleichendes Anion steht, das je nach seiner Ladung und der Art und Anzahl der sonstigen Ladungen, insbesondere der Ladung des Mangan-Zentralatoms, auch fehlen oder mehrfach vorhanden sein kann.
EP10707913.9A 2009-03-24 2010-03-11 Schonendes bleichmittel Not-in-force EP2411496B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10707913T PL2411496T3 (pl) 2009-03-24 2010-03-11 Delikatny środek bielący

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009001786A DE102009001786A1 (de) 2009-03-24 2009-03-24 Schonendes Bleichmittel
PCT/EP2010/053079 WO2010108782A1 (de) 2009-03-24 2010-03-11 Schonendes bleichmittel

Publications (2)

Publication Number Publication Date
EP2411496A1 EP2411496A1 (de) 2012-02-01
EP2411496B1 true EP2411496B1 (de) 2015-10-07

Family

ID=42173437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10707913.9A Not-in-force EP2411496B1 (de) 2009-03-24 2010-03-11 Schonendes bleichmittel

Country Status (6)

Country Link
US (1) US20120015860A1 (de)
EP (1) EP2411496B1 (de)
DE (1) DE102009001786A1 (de)
ES (1) ES2552090T3 (de)
PL (1) PL2411496T3 (de)
WO (1) WO2010108782A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101149A1 (en) 2011-01-26 2012-08-02 Novozymes A/S Storage-stable enzyme granules
EP3748065A1 (de) * 2019-06-03 2020-12-09 Aquitex Acabamentos Químicos Têxteis, Sa Verfahren zur gewebebleiche, produkte und verwendungen davon

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT330930B (de) 1973-04-13 1976-07-26 Henkel & Cie Gmbh Verfahren zur herstellung von festen, schuttfahigen wasch- oder reinigungsmitteln mit einem gehalt an calcium bindenden substanzen
WO1996006155A1 (en) * 1994-08-24 1996-02-29 The Procter & Gamble Company Bleach compositions comprising metal-containing bleach catalysts and ammonium salts
DE19738273A1 (de) * 1997-09-02 1999-03-04 Clariant Gmbh Cyclische Polyaminsalze
KR20000005710A (ko) * 1998-06-05 2000-01-25 성재갑 표백활성화제
WO2006072083A1 (en) * 2004-12-27 2006-07-06 The Dial Corporation Liquid laundry detergent containing fabric conditioners
DE102005044189A1 (de) * 2005-09-15 2007-03-22 Degussa Ag Pellets aus Diacylperoxid in einer Polysaccharidmatrix
DE102006004697A1 (de) * 2006-01-31 2007-08-02 Henkel Kgaa Wasch- oder Reinigungsmittel mit Farbübertragungsinhibitor
US20070270324A1 (en) * 2006-04-28 2007-11-22 Thorsten Bastigkeit High water content enzymatic heavy duty liquid detergent

Also Published As

Publication number Publication date
EP2411496A1 (de) 2012-02-01
US20120015860A1 (en) 2012-01-19
WO2010108782A1 (de) 2010-09-30
PL2411496T3 (pl) 2016-03-31
ES2552090T3 (es) 2015-11-25
DE102009001786A1 (de) 2010-10-14

Similar Documents

Publication Publication Date Title
EP2802644B1 (de) Acylhydrazone als bleichverstärkende wirkstoffe
EP2440641B1 (de) Nanopartikuläres mangandioxid
DE102009001692A1 (de) Wasch- oder Reinigungsmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem Übergangsmetallkomplex
DE102009001691A1 (de) Wasch- oder Reinigungsmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem Übergangsmetallkomplex
DE102011080099A1 (de) Wasch- oder Reinigungsmittel mit elektrochemisch aktivierbarer Mediatorverbindung
EP2440644B1 (de) Schonendes bleichmittel
DE102014207673A1 (de) Wasch- oder Reinigungsmittel mit elektrochemisch aktivierbarer anionischer Mediatorverbindung
EP1749084B1 (de) Bleichverstärkerkombination für den einsatz in wasch- und reinigungsmitteln
EP2504418B1 (de) Wasch- oder reinigungsmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem übergangsmetallkomplex
EP2411496B1 (de) Schonendes bleichmittel
EP2411495B1 (de) Schonendes bleichmittel
EP2411498B1 (de) Schonendes bleichmittel
DE102006036896A1 (de) Wasch- oder Reinigungsmittel mit größenoptimierten Bleichwirkstoffteilchen
WO2010108784A1 (de) Schonendes bleichmittel
WO2009141258A1 (de) Textilschonendes waschmittel
WO2017102475A1 (de) Pyridingruppenhaltige acylhydrazone
DE102008024800A1 (de) Textilschonendes Waschmittel
DE102008045297A1 (de) Textilschonendes Waschmittel
DE102015209082A1 (de) Acylhydrazone als bleichverstärkende Wirkstoffe
EP3440181A1 (de) N-methylpiperidingruppen-haltige acylhydrazone
DE102015207735A1 (de) Sulfobetainhaltige Wasch- und Reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIEDEL, PETER

Inventor name: HUCHEL, URSULA

Inventor name: BARRELEIRO, PAULA

Inventor name: RYBINSKI VON, WOLFGANG

Inventor name: HAETZELT, ANDRE

Inventor name: SENDOR-MUELLER, DOROTA

Inventor name: NORDSKOG, ANETTE

Inventor name: ERPENBACH, SIGLINDE

Inventor name: WEBER, THOMAS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140325

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150521

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 753772

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010411

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2552090

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151125

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151007

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160207

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010411

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

26N No opposition filed

Effective date: 20160708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160311

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160311

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 753772

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20180309

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180220

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180430

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190311

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220322

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220322

Year of fee payment: 13

Ref country code: FR

Payment date: 20220322

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010010411

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230311