EP2405176B1 - Verfahren und Vorrichtung zur Bereitstellung von elektrischer und thermischer Energie, insbesondere in einer Hafenanlage - Google Patents

Verfahren und Vorrichtung zur Bereitstellung von elektrischer und thermischer Energie, insbesondere in einer Hafenanlage Download PDF

Info

Publication number
EP2405176B1
EP2405176B1 EP20110450073 EP11450073A EP2405176B1 EP 2405176 B1 EP2405176 B1 EP 2405176B1 EP 20110450073 EP20110450073 EP 20110450073 EP 11450073 A EP11450073 A EP 11450073A EP 2405176 B1 EP2405176 B1 EP 2405176B1
Authority
EP
European Patent Office
Prior art keywords
gas
heat
electrical energy
consumers
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20110450073
Other languages
English (en)
French (fr)
Other versions
EP2405176A1 (de
Inventor
Werner Dipl.-Ing. Hermeling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LO Solutions GmbH
Original Assignee
LO Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LO Solutions GmbH filed Critical LO Solutions GmbH
Publication of EP2405176A1 publication Critical patent/EP2405176A1/de
Application granted granted Critical
Publication of EP2405176B1 publication Critical patent/EP2405176B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/038Treating the boil-off by recovery with expanding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the invention relates to a method for the provision of electrical and thermal energy, in particular in a port facility, wherein liquefied natural gas (LNG) is stored in a vessel-fillable LNG terminal, from which the resulting boil-off gas is withdrawn and in an internal combustion engine is burned to generate heat and electricity, wherein the heat is passed to heat consumers and the electrical energy is fed or stored in the network and liquid natural gas is evaporated from the LNG terminal and is supplied to a gas supply network, and to a device for carrying out this procedure.
  • LNG liquefied natural gas
  • Liquefied natural gas is liquefied natural gas by cooling to -164 to -161 ° C (109 K to 112 K).
  • Liquid natural gas is about 1 / 600th of the volume of natural gas in gaseous form.
  • Liquid natural gas has great advantages, especially for transport and storage purposes.
  • the natural gas loses its characteristic of the line boundness by such a cooling and can thus be transported on the road, the rail and on the water. So far, this type of transport played only a minor role, since in particular for the complicated liquefaction about 10 to 25 percent of the energy content of the gas are needed. If the distances to be bridged between the source of natural gas and the consumer are less than 2,000 kilometers, transport via the natural gas pipeline or as compressed natural gas (CNG) is more economical.
  • CNG compressed natural gas
  • the standard transport route is secured via pipelines from the natural gas production facility to a purpose-built LNG terminal in a port.
  • the previously gaseous natural gas is liquefied to liquid natural gas.
  • These systems are extremely cost and energy intensive.
  • the liquid natural gas is pumped onto special ships, They drive to another LNG terminal and transport the liquid natural gas back to shore using the ship's own cargo pumps.
  • the ever-expanding ships are also referred to as 2G tankers.
  • the onward transport usually takes place after a conversion into the gaseous state by pipelines to the remote gas companies, predominantly to a hub.
  • the document US-A-4,995,234 describes a process in which liquefied natural gas is evaporated from an LNG terminal and fed to a gas supply network.
  • the withdrawn from the LNG terminal liquid natural gas is first compressed and then fed to an evaporator and then expanded via a turbine to feed pressure of the gas supply network, the cold obtained from the evaporation and relaxation is supplied to cold consumers.
  • the invention now aims to provide a method and a device, with which a maximum of available liquefaction energy and caloric energy from the (liquid) Natural gas can be recovered, so that overall a more economical device or a more economical process is created.
  • the inventive method is carried out such that the liquid natural gas is compressed after evaporation and is then expanded via a turbine to feed pressure of the gas supply network, the recovered cold from the evaporation and relaxation is supplied to cold consumers and the relaxing of the Gas via the turbine obtained electrical energy is fed or stored in the network. Since port facilities always require refrigeration, especially for refrigerated warehouses for storing food or freshly caught fish, the cold obtained by these process steps can be used simply and economically. So far, the cold produced by regasification has always been seen as a waste product in this environment and simply released into the atmosphere. By using this energy, the economics of the process can be increased.
  • the gas is compressed after regasification via the feed pressure of a gas supply network, the gas must not be pressed by large pumps in the gas supply network, but can be expanded by a turbine, so here additional electrical and thermal energy is released, which will continue to be used can.
  • a cyclic, piston-less process is preferably used, as described, for example, in US Pat W02007 / 128023 is described.
  • the procedure is preferably such that the liquid natural gas is spent for vaporizing and compressing in a dosing and a metered amount is fed to an evaporator, whereupon the dosing is again filled with liquid gas and the pressure in the last used evaporator for squeezing the liquid Gas is used from the dosing into another evaporator, wherein each cyclically Vaporizers different from each other are charged from the dosing and the pressure in the dosing and, if necessary, in each case to be filled evaporator is reduced before a renewed introduction of a metered amount of the liquefied gas and the gas is then expanded via a turbine to feed pressure of a gas network.
  • no expensive and wear-prone pumps are necessary, so that the process causes less costs during operation.
  • biogas plant with connected cryogenic gas purification and liquefaction for recycling organic waste, the biogas produced being burned in an internal combustion engine generating heat and electricity, the heat being passed on to heat consumers and the electrical energy is stored and the cold used in the biogas plant is recovered and the cold is supplied to refrigeration consumers.
  • CO 2 is produced as starting material for dry ice, which is also easy to transport within the port facility for cooling purposes.
  • Such a method is, for example, in the Austrian patent application AT508249 shown and described.
  • the method is preferably carried out such that in addition a renewable energy power plant, such as tidal power plant, wind power plant, hydropower plant, etc. is used to provide additional electrical energy.
  • a renewable energy power plant such as tidal power plant, wind power plant, hydropower plant, etc.
  • liquefy a gas in a device which is coupled to an electrical energy generating device that the liquefied gas is preferably stored without pressure and that the liquefied gas can be used as needed, preferably with the aid of a refrigeration cycle of a refrigeration consumer, regasified and the energy released is converted into electrical energy and either fed into the grid or made available to electrical consumers.
  • a particularly efficient method based on this principle is in the Austrian patent AT506779 described.
  • the liquid natural gas is stored in the LNG terminal preferably in an atmospheric tank.
  • This electrical energy can be used immediately to supply the needs of the port facility, or also be kept in stock in the form of the liquefied gas for times of increased demand. Should a total of more electrical energy be generated than is consumed, this energy can also be sold by feeding it into the electricity network to energy providers.
  • liquid natural gas may also be taken from the atmospheric tank, if necessary, and transported on the road, rail or water.
  • the inventive device for providing electrical and thermal energy in a port facility wherein the liquid natural gas is stored in an LNG terminal in an atmospheric tank, which is followed by an internal combustion engine for burning the boil-off gas and the internal combustion engine, an energy storage for electrical energy is connected, wherein the internal combustion engine is connected via a heat conductor with heat consumers and the atmospheric tank is followed by an evaporator for evaporating the liquid natural gas, wherein the evaporator is followed by a turbine for generating electricity, according to the invention further developed such that the evaporation or expansion cooling can be transported via heat conductors to refrigeration consumers.
  • the above-mentioned method for cyclic, piston-less compression can be performed, which is characterized in particular by its efficiency and robustness.
  • the internal combustion engine is preceded by a biogas plant with cryogenic gas purification and gas liquefaction for recycling organic waste, wherein the biogas produced is supplied via lines of the internal combustion engine for generating heat and electricity, wherein the heat is forwarded via heat conductors to heat consumers and stored the electrical energy is and the obtained in the biogas plant refrigeration cold consumers supplied, more cold, which is usually obtained in the biogas plant as dry ice and therefore easy to transport, can be obtained for cooling purposes.
  • a power plant for renewable energy such as tidal power plant, wind power plant, hydroelectric power station, etc. upstream of the energy storage to provide the electrical energy.
  • the device For storing the electrical energy, the device is preferably further developed in such a way that a gas liquefying device coupled to an electrical energy device empties a storage tank for storing the liquefied gas, a regasification device connected to the storage tank for regasifying the liquefied gas, an expansion machine, in particular a turbine of the regasified gas and one of the expansion engine having driven electric generator, wherein the electric power supplied by the generator is provided to electrical consumers.
  • FIG.1 a device for storing energy in an embodiment that requires a pump
  • Fig.2 a device for storing energy in an embodiment in which the gas is compressed without a piston and cyclically without the use of a pump
  • Figure 3 a pH diagram of the working medium
  • Figure 4 a schematic harbor facility.
  • 1 denotes a wind generator, wherein the electrical energy generated by the generator can be fed via the electrical line 2 into the network.
  • 3 of an air liquefaction 4 can be supplied via an electrical line, the liquefied air enters a cryogenic tank 5.
  • the liquefied air stored without pressure is supplied via a line 6 to an evaporator 7, wherein the volume increase during the evaporation of a corresponding compressed gas via line 8 is supplied to a buffer 9 to equalize the pressure and is passed through a turbine 10, which with a generator 11 is coupled.
  • the electrical energy generated in the generator 11 can in turn be fed via the line 12 into the network, if in addition and possibly the production of the wind power plant 1 exceeding demand indicators are determined, so that in addition to the fed via the line 2 in the network current over the Line 12 power can be fed into the grid.
  • a separator 13 the liquid gas components are separated and the liquid phase returned to the tank and the gas phase to the condenser.
  • a pump 14 is necessary for this purpose and for the purpose of pressing liquid gas into the evaporator.
  • Fig. 2 an embodiment is shown in which no pump 14 is necessary. The remaining reference numerals have been retained.
  • the liquid gas enters a dosing 15, which subsequently alternately fed the two downstream evaporators 7 and 7 '.
  • the air is superheated to 70 bar and is supercritical at temperatures which are far below the ambient temperature. The respective temperatures are on a pH diagram to the right of the critical point. Based on this state is subsequently relaxed to 40 bar via the turbine 10, which is coupled to the generator 11, so that via the line 12 power can be released into the power grid. By relaxation, the temperature drops, for better use of this energy, the exhaust air flow through the evaporator 7, 7 'is passed, which serves as a cooler.
  • the cooling takes place with liquid air, which is caused by the throttling process in the separator 13 and the air liquefaction plant 4. Due to the pressure difference, the gas flows after the turbine 10 into the respective other evaporator 7 ', 7, wherein the supercritical air is further cooled and a state point is reached to the left of the critical point on the pH diagram.
  • the metering container 15 is thereby via the line 16 in the separator 13 to tank pressure, which is at 1-2 bar, relaxed, the liquid phase to the tank and the gas phase is supplied to the condenser again. This time, no pump 14 is necessary, since the gas phase is sucked in by the air liquefaction plant 4. This is the prerequisite for a further filling of the dosing.
  • the resulting gas is passed into the air liquefaction plant 4 and the resulting lack in the liquid phase is from the cryogenic tank 5, in which liquefied gas is in stock, which tank is fed by the air liquefaction plant refilled. From the separator 13 can be filled with liquid gas via the line 17 and the dosing again.
  • Fig. 3 shows a pH diagram of the working gas.
  • the gas is superheated to 100 bar and is supercritical right of the critical point 18 at the point 19, wherein the temperature is far below the ambient temperature.
  • the gas is expanded via the turbine 13 to 40 bar and reaches the point 20 with simultaneous loss of temperature.
  • the gas is then further cooled by means of liquid air, which originated from the throttling process, and the expanded air through the turbine until a point 21 is reached to the left of the critical point on the pH diagram.
  • the gas pressure drops to the point 22.
  • the temperature of the gas falls, at which point it is at point 23 in the pH diagram, and is then returned to the dosing tank 15.
  • the re-liquefaction is therefore possible in principle twice in the process. Once in the area of the superheated steam, from point 20 to point 21 in the pH diagram, wherein the temperature difference is very small, but the heat exchange surfaces are very large. Re-liquefaction is possible a second time after cooling with liquid product in the supercritical range. It tries to get as far as possible to the left side of the critical point (point 21), starting from the point 21 in Fig. 3 can be throttled to a pressure close to ambient pressure (item 22). This inevitably eliminates the largest portion of the liquid phase and it creates the smallest proportion of gas. This second throttling makes this process particularly economical.
  • liquid natural gas is cyclically and piston-less evaporated, compressed and expanded by a turbine in a gas supply network, in which case also the relaxation cold can be utilized in the port facility.
  • FIG 4 is an atmospheric tank designated 23, wherein a line 24 is indicated, with which the liquid natural gas can be sucked from transport ships. Via the line 25, the liquid natural gas can be loaded on further means of locomotion. Due to the heat input via the insulation of the atmospheric tank 23, boil-off gas falls in the tank 23, which gas is supplied via a line 26 to an internal combustion engine 27. The resulting heat in the internal combustion engine 27 is passed via a line 28 to heat consumers. The power generated in the internal combustion engine 27 is passed via a line 29 to a transformer 30 and fed from there either into a power grid 31 and sold or used to meet the needs of the port facility. Otherwise, the power may be supplied via a line 32 to the air liquefaction plant 4 to store the energy for times of greater demand. The energy released in the regasification can be returned to the transformer 30 via a line 33.
  • the liquid natural gas is removed from the tank 23 via a line 34 and subjected to the above-described method of cyclic, piston-less compression, the device required for this is designated 35.
  • the evaporative cooling is supplied via the line 36 to the cold consumers.
  • 37 designates a turbine via which the compressed gas is expanded, wherein here on the one hand the expansion cooling is supplied via a line 38 to the refrigerants consumers and the power generated via the line 39 either the transformer 30 is supplied or the air liquefaction 4.
  • With 43 refers to the line through which the natural gas is fed into the gas network.
  • Biomethane and CO 2 is obtained in the form of dry ice.
  • the biomethane is supplied via the line 41 of the internal combustion engine 27 for combustion.
  • the cold or dry ice is supplied to the cold consumers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Bereitstellung von elektrischer und thermischer Energie, insbesondere in einer Hafenanlage, wobei verflüssigtes Erdgas (LNG) in einem aus Schiffen befüllbaren LNG-Terminal gelagert wird, von welchem das entstehende Boil-off-Gas abgezogen wird und in einer Verbrennungskraftmaschine unter Erzeugung von Wärme und Strom verbrannt wird, wobei die Wärme an Wärmeverbraucher weitergeleitet wird und die elektrische Energie ins Netz gespeist oder gespeichert wird und flüssiges Erdgas aus dem LNG-Terminal verdampft wird und einem Gasversorgungsnetz zugeführt wird, sowie auf eine Vorrichtung zur Durchführung dieses Verfahrens.
  • Verfahren und Vorrichtungen zur Nutzung und insbesondere zur Umwandlung verschiedener Energieformen in elektrische Energie, sind in unterschiedlichen Ausbildungen bekannt geworden. Speziell bei Wasserkraftwerken und insbesondere bei Verfahren und Vorrichtungen zur Nutzung der Windenergie, der Sonnenenergie oder der Gezeitenenergie wird häufig beobachtet, dass die jeweils von äußeren Bedingungen abhängige Erzeugung elektrischer Energie nicht ohne weiteres mit dem jeweiligen Bedarf in Einklang gebracht werden kann. So ist beispielsweise die Energiegewinnung bei Solaranlagen auf Sonnenlicht angewiesen, wobei eine erste Spitze des Energieverbrauchs üblicherweise dann auftritt, wenn nach Sonnenuntergang plötzlich elektrische Beleuchtungskörper eingeschaltet werden.
  • Zum Zwecke der Vergleichmäßigung bzw. Glättung der elektrischen Ausgangsleistung derartiger mit regenerativer Energie betriebener Energiewandler wurde bereits vorgeschlagen, die in Zeiten geringeren Bedarfs anfallende Energie entsprechend zu speichern. Elektrische Energie lässt sich zwar prinzipiell in Akkumulatoren speichern. Der für eine derartige Speicherung elektrischer Energie erforderliche Investitionsaufwand und der erforderliche Platzbedarf machen aber derartige Anstrengungen wirtschaftlich nicht vertretbar. Auch erscheint die Berücksichtigung standortbedingter Witterungsverhältnisse durch eine Blattwinkelverstellung der Rotorblätter einer Windkraftanlage nicht geeignet, die jeweils maximal erzeugbare elektrische Energie sinnvoll zu nutzen. Vielmehr wird durch derartige Maßnahmen auf die Produktion elektrischer Energie in Zeiten geringeren Bedarfs verzichtet, obwohl die vorhandene Windenergie eine derartige Produktion begünstigen würde. Um Schwankungen zwischen Energieerzeugung und Energieverbrauch besser ausgleichen zu können, ist es prinzipiell bekannt, Speichermedien einzusetzen, wobei als mechanische Speicher beispielsweise Schwungmassenspeicher in Betracht kommen. Es wurden auch supraleitende magnetische Energiespeicher, Batteriespeicherungsanlagen sowie chemische Energiespeicher auf Wasserstoffbasis vorgeschlagen.
  • Als Flüssigerdgas (LNG für engl. liquefied natural gas) wird durch Abkühlung auf -164 bis - 161 °C (109 K bis 112 K) verflüssigtes Erdgas bezeichnet. Flüssiges Erdgas weist etwa 1/600stel des Volumens von Erdgas in Gasform auf.
  • Besonders zu Transport- und Lagerungszwecken hat flüssiges Erdgas große Vorteile. Das Erdgas verliert durch eine derartige Abkühlung seine Eigenschaft der Leitungsgebundenheit und kann somit auf der Straße, der Schiene und auf dem Wasser transportiert werden. Bislang spielte diese Art des Transportes nur eine untergeordnete Rolle, da insbesondere für die aufwendige Verflüssigung etwa 10 bis 25 Prozent des Energieinhaltes des Gases benötigt werden. Liegen die zu überbrückenden Distanzen zwischen Erdgasquelle und Verbraucher unter 2.000 Kilometern, ist der Transport per Erdgaspipeline bzw. als verdichtetes Erdgas (CNG) wirtschaftlicher.
  • Der standardmäßige Transportweg wird dabei über Pipelines von der Erdgasförderstätte zu einem speziell angefertigten LNG-Terminal in einem Hafen sichergestellt. Im LNG-Terminal wird das vorher gasförmige Erdgas zu flüssigem Erdgas verflüssigt. Diese Anlagen sind extrem kosten- und energieintensiv. Anschließend wird das flüssige Erdgas auf Spezialschiffe gepumpt, die zu einem anderen LNG-Terminal fahren und das flüssige Erdgas dort wieder mit den schiffseigenen Ladungspumpen an Land fördern. Die immer größer werdenden Schiffe werden auch als 2G-Tanker bezeichnet. Der Weitertransport erfolgt meistens nach einer umwandlung in den gasförmigen Zustand per Pipelines zu den Ferngasgesellschaften, überwiegend zu einem Hub.
  • Im Jahr 2004 wurden etwa fünf Prozent der Erdgas-Transporte weltweit in Form von Flüssigerdgas durchgeführt. Aufgrund der aktuell hohen Gaspreise und der zu erwartenden weiteren Steigerungen im Zuge der Preisbindung an Erdöl gewinnt diese Transportmöglichkeit für Erdgas jedoch zunehmend an Bedeutung. Aktuell werden bei steigender Tendenz mehr als 25 Prozent des weltweit transportierten Erdgases als flüssiges Erdgas transportiert.
  • Trotz der Isolierung der LNG-Tanker führt die langsame Erwärmung der Tanks zum Verdampfen eines Teils der Ladung, dem so genannten "Boil-off". Damit der Druck im Tank keine unzulässig hohen Werte annimmt, muss das verdampfte Gas entweichen können. Anstelle eines Abblasens wird dieses Gas energetisch zur Dampferzeugung und schließlich mit zum Vortrieb und zur Stromerzeugung genutzt. LNG-Tanker sind aus diesem Grund überwiegend als Turbinenschiffe für Schweröl- und/oder Erdgasbetrieb ausgeführt. Bei einem Überschuss an Boil-Off-Gas wird die Überproduktion an Dampf im Hilfs- oder Hauptkondensator gegen Seewasser kondensiert, so dass bei keinem normalen Schiffsbetriebszustand Methan (als Erdgashauptbestandteil) in die Atmosphäre abgeblasen werden muss. Bei Überschreiten dieser Kapazitätsgrenzen der Kondensatoren wird das "Boil Off"-Gas durch einen Mast in die Atmosphäre geblasen oder mit schiffseigenen Verflüssigern rückverflüssigt, um den Tankdruck im zulässigen Bereich zu halten.
  • Im Dokument KR20090072042 ist ein Verfahren zur Bereitstellung von elektrischer und thermischer Energie beschrieben, wobei verflüssigtes Erdgas in einem LNG-Tank gelagert wird, von welchem das entstehende Boil-off-Gas abgezogen und in einer Verbrennungskraftmaschine unter Erzeugung von Wärme und Strom verbrannt wird.
  • Das Dokument US-A-4 995 234 beschreibt ein Verfahren, bei dem flüssiges Erdgas aus einem LNG-Terminal verdampft und einem Gasversorgungsnetz zugeführt wird. Dabei wird das aus dem LNG-Terminal abgezogene flüssige Erdgas zunächst komprimiert und danach einem Verdampfer zugeführt und anschließend über eine Turbine auf Einspeisdruck des Gasversorgungsnetzes entspannt, wobei die gewonnene Kälte aus der Verdampfung und der Entspannung Kälteverbrauchern zugeführt wird.
  • Die Erfindung zielt nun darauf ab, ein verfahren und eine Vorrichtung zu schaffen, mit welcher ein Maximum an verfügbarer verflüssigungsenergie und an kalorischer Energie aus dem (flüssigen) Erdgas rückgewonnen werden kann, sodass insgesamt eine wirtschaftlichere Vorrichtung bzw. ein wirtschaftlicheres Verfahren geschaffen wird.
  • Zur Lösung dieser Aufgabe wird das erfindungsgemäße Verfahren derart durchgeführt, dass das flüssige Erdgas nach dem Verdampfen komprimiert wird und anschließend über eine Turbine auf Einspeisdruck des Gasversorgungsnetzes entspannt wird, wobei die gewonnene Kälte aus der Verdampfung und der Entspannung Kälteverbrauchern zugeführt wird und die beim Entspannen des Gases über die Turbine gewonnene elektrische Energie ins Netz gespeist oder gespeichert wird. Da in Hafenanlagen immer ein Kältebedarf vorhanden ist, insbesondere für Kühlhallen zur Lagerung von Lebensmitteln oder frisch gefangenem Fisch, kann die durch diese Verfahrensschritte gewonnene Kälte einfach und ökonomisch genutzt werden. Bisher wurde die bei der Regasifizierung anfallende Kälte in diesem Umfeld immer als Abfallprodukt gesehen und einfach an die Atmosphäre abgegeben. Durch die Nutzung dieser Energie kann die Wirtschaflichkeit des Verfahrens erhöht werden. Dadurch, dass das Gas nach der Regasifizierung über den Einspeisdruck eines Gasversorgungsnetzes komprimiert wird muss das Gas nicht mit Hilfe großer Pumpen in das Gasversorgungsnetz gedrückt werden, sondern kann über eine Turbine entspannt werden, sodass hier zusätzliche elektrische und thermische Energie freigesetzt wird, welche weiterverwendet werden kann.
  • Zur Regasifizierung und Komprimierung des Erdgases wird bevorzugt ein zyklisches, kolbenloses Verfahren angewendet, wie dies bspw. in der W02007/128023 beschrieben ist. Dazu wird in bevorzugter Weise derart vorgegangen, dass das flüssige Erdgas zum Verdampfen und Komprimieren in einen Dosierbehälter verbracht wird und eine dosierte Menge einem Verdampfer zugeführt wird, worauf der Dosierbehälter neuerlich mit flüssigem Gas gefüllt wird und der Druck im zuletzt eingesetzten Verdampfer zum Auspressen des flüssigen Gases aus dem Dosierbehälter in einen weiteren Verdampfer herangezogen wird, wobei zyklisch jeweils voneinander verschiedene Verdampfer aus dem Dosierbehälter beschickt werden und der Druck im Dosierbehälter sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer vor einem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird und das Gas anschließend über eine Turbine auf Einspeisedruck eines Gasnetzwerkes entspannt wird. Dadurch sind keine teuren und verschleißanfälligen Pumpen notwendig, sodass das Verfahren im Betrieb weniger Kosten verursacht.
  • Um mehr Kälte bereitstellen zu können wird bevorzugt derart vorgegangen, dass eine Biogasanlage mit angeschlossener kryogenen Gasreinigung und Verflüssigung zur Verwertung organischer Abfälle verwendet wird, wobei das erzeugte Biogas in einer Verbrennungskraftmaschine unter Erzeugung von Wärme und Strom verbrannt wird, wobei die Wärme an Wärmeverbraucher weitergeleitet wird und die elektrische Energie gespeichert wird und die in der Biogasanlage eingesetzte Kälte zurückgewonnen wird und die Kälte Kälteverbrauchern zugeführt wird. In derartigen Biogasanlagen fällt insbesondere CO2 als Ausgangsmaterial für Trockeneis an, welches innerhalb der Hafenanlage zu Kühlzwecken auch einfach transportierbar ist. Ein derartiges Verfahren wird bspw. in der österreichischen Patentanmeldung AT508249 gezeigt und beschrieben.
  • Um den großen Bedarf an elektrischem Strom in der Hafenanlage zu decken wird das Verfahren bevorzugt derart durchgeführt, dass zusätzlich ein Kraftwerk für erneuerbare Energien, wie Gezeitenkraftwerk, Windkraftwerk, Wasserkraftwerk, etc. Verwendung findet, um zusätzliche elektrische Energie bereit zu stellen.
  • Um die elektrischen Energien der einzelnen Erzeuger zu speichern, wird bevorzugt derart vorgegangen, dass ein Gas in einer mit einer elektrische Energie erzeugenden Vorrichtung gekoppelten Vorrichtung verflüssigt wird, dass das verflüssigte Gas vorzugsweise drucklos gespeichert wird und dass das verflüssigte Gas bei Bedarf, vorzugsweise mit Hilfe eines Kältekreislaufs eines Kälteverbrauchers, regasifiziert und die freiwerdende Energie in elektrische Energie umgewandelt und entweder ins Netz eingespeist wird oder elektrischen Verbrauchern zur Verfügung gestellt wird. Ein besonders effizientes Verfahren, das auf diesem Prinzip beruht, ist im österreichischen Patent AT506779 beschrieben.
  • Das flüssige Erdgas wird im LNG-Terminal in bevorzugter Weise in einem atmosphärischen Tank gelagert. Dadurch, dass der Tank lediglich isoliert, nicht jedoch aktiv gekühlt wird, fällt durch den Wärmeeintrag über die Isolierung jederzeit gleichmäßig Boil-off-gas an, welches in der Verbrennungskraftmaschine verbrannt wird, wobei im Schnitt 33% der Energie in elektrische Energie umgewandelt wird und 67% in kalorische Wärme. Diese elektrische Energie kann gleich zur Versorgung des Bedarfs der Hafenanlage herangezogen werden, oder ebenfalls in Form des verflüssigten Gases für Zeiten des erhöhten Bedarfs vorrätig gehalten werden. Sollte insgesamt mehr elektrische Energie erzeugt werden als verbraucht wird, so kann diese Energie auch durch Einspeisen in das Stromnetz an Energieanbieter verkauft werden. Das flüssige Erdgas kann jedoch auch wenn nötig dem atmosphärischen Tank entnommen werden und auf der Straße, der Schiene oder auf dem Wasser weitertransportiert werden.
  • Die erfindungsgemäße Vorrichtung zur Bereitstellung von elektrischer und thermischer Energie in einer Hafenanlage, wobei das flüssige Erdgas in einem LNG-Terminal in einem atmosphärischen Tank gelagert ist, welchem eine Verbrennungskraftmaschine für das Verbrennen des Boil-off-Gases nachgeschaltet ist und der Verbrennungskraftmaschine ein Energiespeicher für elektrische Energie nachgeschaltet ist, wobei die Verbrennungskraftmaschine über einen Wärmeleiter mit Wärmeverbrauchern verbunden ist und dem atmosphärischen Tank ein Verdampfer zum Verdampfen des flüssigen Erdgases nachgeschaltet ist, wobei dem Verdampfer eine Turbine zur Erzeugung von Strom nachgeschaltet ist, ist erfindungsgemäß derart weitergebildet, dass die Verdampfungs- bzw. Entspannungskälte über Wärmeleiter zu Kälteverbrauchern transportierbar ist.
  • Dadurch, dass in bevorzugter Weise dem atmosphärischen Tank wenigstens zwei Verdampfer unter Zwischenschaltung eines Dosierbehälters nachgeschalten sind, kann das oben erwähnte Verfahren zur zyklischen, kolbenlosen Kompression durchgeführt werden, welches sich insbesondere durch seine Effizienz und Robustheit auszeichnet.
  • Dadurch, dass der Verbrennungskraftmaschine eine Biogasanlage mit kryogener Gasreinigung und Gasverflüssigung zur Verwertung organischer Abfälle vorgeschaltet ist, wobei das erzeugte Biogas über Leitungen der Verbrennungskraftmaschine zur Erzeugung von Wärme und Strom zugeführt wird, wobei die Wärme über Wärmeleiter an Wärmeverbraucher weitergeleitet wird und die elektrische Energie gespeichert wird und die in der Biogasanlage gewonnene Kälte Kälteverbrauchern zugeführt wird, kann weitere Kälte, die in der Biogasanlage meist als Trockeneis anfällt und demnach einfach transportabel ist, für Kühlzwecke erhalten werden.
  • Es können weitere Kraftwerke dazu dienen den elektrischen Bedarf der Hafenanlage zu decken, wobei bevorzugt vorgesehen ist, dass zusätzlich ein Kraftwerk für erneuerbare Energien, wie Gezeitenkraftwerk, Windkraftwerk, Wasserkraftwerk, etc. dem Energiespeicher vorgeschaltet ist, um die elektrische Energie bereit zu stellen.
  • Zur Speicherung der elektrischen Energie wird die Vorrichtung bevorzugt derart weitergebildet, dass eine an eine elektrische Energie erzeugende Vorrichtung gekoppelte Gasverflüssigungsvorrichtung einen Speicherbehälter zur Speicherung des verflüssigten Gases, eine an den Speicherbehälter angeschlossene Regasifizierungseinrichtung zum Regasifizieren des verflüssigten Gases, eine Expansionsmaschine, insbesondere Turbine, zum Entspannen des regasifizierten Gases und einen von der Expansionsmaschine angetriebenen elektrischen Generator aufweist, wobei die vom Generator gelieferte elektrische Energie elektrischen Verbrauchern zur Verfügung gestellt ist.
  • Die Erfindung wird nachfolgend eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. In dieser zeigt Fig.1 eine Vorrichtung zur Speicherung von Energie in einer Ausführung, die eine Pumpe erfordert, Fig.2 eine Vorrichtung zur Speicherung von Energie in einer Ausführung, in welcher das Gas kolbenlos und zyklisch ohne Verwendung einer Pumpe komprimiert wird, Fig.3 ein p-H-Diagramm des Arbeitsmediums und Fig.4 eine schematische Hafenanlage.
  • In der Zeichnung ist mit 1 ein Windgenerator bezeichnet, wobei die vom Generator erzeugte elektrische Energie über die elektrische Leitung 2 in das Netz eingespeist werden kann. Sobald der Bedarf an elektrischer Energie, welche über die Leitung 2 in das Netz eingespeist wird, unter der jeweils erzeugten Energie liegt, kann über eine elektrische Leitung 3 Strom einer Luftverflüssigungsanlage 4 zugeführt werden, wobei die verflüssigte Luft in einen kryogenen Tank 5 gelangt. Zur Regasifikation wird die drucklos gespeicherte verflüssigte Luft über eine Leitung 6 einem Verdampfer 7 zugeführt, wobei durch die Volumszunahme bei der Verdampfung ein entsprechendes Druckgas über die Leitung 8 einem Zwischenspeicher 9 zur Vergleichmäßigung des Drucks zugeführt wird und über eine Turbine 10 geleitet wird, welche mit einem Generator 11 gekoppelt ist. Die im Generator 11 erzeugte elektrische Energie kann wiederum über die Leitung 12 in das Netz gespeist werden, wenn zusätzlich und ggf. die Produktion des Windkraftwerks 1 übersteigende Bedarfskennzahlen ermittelt werden, sodass zusätzlich zu dem über die Leitung 2 in das Netz gespeisten Strom auch über die Leitung 12 Strom in das Netz gespeist werden kann. In einem Abscheider 13 werden die flüssigen Gasanteile abgetrennt und die flüssige Phase dem Tank und die Gasphase dem Verflüssiger rückgeführt. Zu diesem Zweck und zu dem Zweck flüssiges Gas in den Verdampfer zu pressen ist eine Pumpe 14 notwendig.
  • In Fig. 2 wird ein Ausführungsbeispiel gezeigt, bei welchem keine Pumpe 14 notwendig ist. Die übrigen Bezugszeichen wurden beibehalten. Hier gelangt das flüssige Gas in einen Dosierbehälter 15, der in weiterer Folge abwechselnd die zwei nachgeschalteten Verdampfer 7 und 7' beschickt. In den Verdampfern 7, 7' wird die Luft auf 70 bar überhitzt und ist überkritisch bei Temperaturen, welche weit unter der Umgebungstemperatur liegen. Die jeweiligen Temperaturen liegen auf einem p-H-Diagramm rechts des kritischen Punktes. Ausgehend von diesem Zustand wird im Anschluss auf 40 bar über die Turbine 10 entspannt, welche mit dem Generator 11 gekoppelt ist, sodass über die Leitung 12 Strom ins Stromnetz freigegeben werden kann. Durch die Entspannung fällt die Temperatur, wobei zur besseren Nutzung dieser Energie der Abluftstrom durch den Verdampfer 7, 7' geleitet wird, der als Kühler dient. Die Kühlung erfolgt mit flüssiger Luft, die durch den Drosselprozess im Abscheider 13 und der Luftverflüssigungsanlage 4 entstanden ist. Auf Grund der Druckdifferenz strömt das Gas nach der Turbine 10 in den jeweils anderen Verdampfer 7', 7, wobei die überkritische Luft weiter abgekühlt wird und ein Zustandspunkt links des kritischen Punktes auf dem p-H-Diagramm erreicht wird.
  • Der Dosierbehälter 15 wird dabei über die Leitung 16 in den Abscheider 13 auf Tankdruck, welcher bei 1-2 bar liegt, entspannt, wobei die flüssige Phase dem Tank und die Gasphase dem Verflüssiger wieder zugeführt wird. Diesmal ist keine Pumpe 14 notwendig, da die Gasphase von der Luftverflüssigungsanlage 4 angesaugt wird. Dies ist die Vorraussetzung für einen weitere Befüllung des Dosierbehälters. Ebenso wird die überkritische Luft nach der Abkühlung über die Turbine aus dem Verdampfer 7, 7', über den Abscheider 13 gedrosselt. Das anfallende Gas wird in die Luftverflüssigungsanlage 4 geleitet und die dadurch fehlende Menge in der flüssigen Phase wird aus dem kryogenen Tank 5, in welchem verflüssigtes Gas vorrätig ist, welcher Tank durch die Luftverflüssigungsanlage gespeist ist, nachgefüllt. Aus dem Abscheider 13 kann über die Leitung 17 auch der Dosierbehälter wieder mit flüssigem Gas gefüllt werden.
  • Dadurch, dass die über die Turbine entspannte Luft den Verdampfern 7, 7' als Kühlung wieder rückgeführt wird, herrscht dort die größte Temperaturdifferenz.
  • Fig. 3 zeigt ein p-H-Diagramm des arbeitenden Gases. Im Verdampfer 7, 7' befindet sich das Gas auf 100 bar überhitzt und ist überkritisch rechts des kritischen Punktes 18 auf dem Punkt 19, wobei die Temperatur weit unter der Umgebungstemperatur liegt. Im nächsten Schritt wird das Gas über die Turbine 13 auf 40 bar entspannt und erreicht den Punkt 20 bei gleichzeitigem Verlust an Temperatur. Das Gas wird im Anschluss weiter mittels flüssiger Luft, welche aus dem Drosselprozess entstanden ist, und der entspannten Luft über die Turbine abgekühlt bis ein Punkt 21 links des kritischen Punktes auf dem p-H-Diagramm erreicht wird. Bei dem Drosselprozess im Abscheider 13 fällt der Gasdruck auf Punkt 22. Beim Rückführen des flüssigen Gases fällt die Temperatur des Gases, wobei es sich an diesem Punkt im p-H-Diagramm auf Punkt 23 befindet, und wird anschliessend wieder in den Dosierbehälter 15 geleitet.
  • Die Rückverflüssigung ist also prinzipiell zweimal in dem Prozess möglich. Einmal im Bereich des überhitzten Dampfes, von Punkt 20 zu Punkt 21 im p-H-Diagramm, wobei die Temperaturdifferenz sehr gering ist, die Wärmeaustauschflächen aber sehr groß sind. Ein zweites Mal ist die Rückverflüssigung nach dem Kühlen mit flüssigem Produkt im überkritischen Bereich möglich. Es wird hiermit versucht möglichst weit auf die linke Seite des kritischen Punktes zu kommen (Punkt 21), wobei ab dem Punkt 21 in Fig. 3 auf einen Druck nahe dem Umgebungsdruck gedrosselt werden kann (Punkt 22). Dabei fällt zwangsläufig der größte Anteil der flüssigen Phase aus und es entsteht der kleinste Anteil an Gas. Diese zweite Drosselung macht dieses Verfahren besonders wirtschaftlich.
  • Auf die gleiche Weise wird das flüssige Erdgas zyklisch und kolbenlos verdampft, komprimiert und über eine Turbine in ein Gasversorgungsnetz entspannt, wobei hier zusätzlich auch die Entspannungskälte in der Hafenanlage verwertet werden kann.
  • In Fig.4 ist ein atmosphärischer Tank mit 23 bezeichnet, wobei eine Leitung 24 angedeutet ist, mit welcher das flüssige Erdgas aus Transportschiffen abgesaugt werden kann. Über die Leitung 25 kann das flüssige Erdgas auf weitere Fortbewegungsmittel verladen werden. Durch den Wärmeeintrag über die Isolierung des atmosphärischen Tanks 23 fällt in dem Tank 23 Boil-off Gas an, welches über eine Leitung 26 einer Verbrennungskraftmaschine 27 zugeführt wird. Die in der Verbrennungskraftmaschine 27 anfallende Wärme wird über eine Leitung 28 an Wärmeverbraucher geleitet. Der in der Verbrennungskraftmaschine 27 erzeugte Strom wird über eine Leitung 29 an einen Transformator 30 geleitet und von dort entweder in ein Stromnetz 31 eingespeist und verkauft oder verwendet, um den Bedarf der Hafenanlage zu decken. Anderenfalls kann der Strom über eine Leitung 32 der Luftverflüssigungsanlage 4 zugeführt werden, um die Energie für Zeiten größeren Bedarfs zu speichern. Die bei der Regasifizierung freigesetzte Energie kann über eine Leitung 33 wieder dem Transformator 30 zugeführt werden.
  • Das flüssige Erdgas wird aus dem Tank 23 über eine Leitung 34 entnommen und dem oben beschriebenen Verfahren der zyklischen, kolbenlosen Kompression unterworfen, wobei die dafür notwendige Vorrichtung mit 35 bezeichnet ist. Die Verdampfungskälte wird über die Leitung 36 den Kälteverbrauchern zugeführt. Mit 37 ist eine Turbine bezeichnet, über welche das komprimierte Gas entspannt wird, wobei hier einerseits die Entspannungskälte über eine Leitung 38 den Kälteverbrauchern zugeführt wird und der erzeugte Strom über die Leitung 39 entweder dem Transformator 30 zugeführt wird oder der Luftverflüssigungsanlage 4. Mit 43 ist die Leitung bezeichnet, über welche das Erdgas in das Gasnetz eingespeist wird.
  • Mit 40 ist eine Biogasanlage zur Verwertung organischer Abfälle bezeichnet, wobei in dieser als Endprodukt bspw. Biomethan und CO2 in Form von Trockeneis anfällt. Das Biomethan wird über die Leitung 41 der Verbrennungskraftmaschine 27 zur Verbrennung zugeführt. Über die Leitung bzw. den Weg 42 wird die Kälte bzw. das Trockeneis den Kälteverbrauchern zugeführt.

Claims (11)

  1. Verfahren zur Bereitstellung von elektrischer und thermischer Energie, insbesondere in einer Hafenanlage, wobei verflüssigtes Erdgas (LNG) in einem aus Schiffen befüllbaren LNG-Terminal gelagert wird, von welchem das entstehende Boil-off-Gas abgezogen wird und in einer verbrennungskraftmaschine unter Erzeugung von Wärme und Strom verbrannt wird, wobei die Wärme an Wärmeverbraucher weitergeleitet wird und die elektrische Energie ins Netz gespeist oder gespeichert wird und flüssiges Erdgas aus dem LNG-Terminal verdampft wird und einem Gasversorgungsnetz zugeführt wird, dadurch gekennzeichnet, dass das flüssige Erdgas nach dem Verdampfen ohne Verwendung einer Pumpe komprimiert wird und anschließend über eine Turbine (10, 37) auf Einspeisdruck des Gasversorgungsnetzes entspannt wird, wobei die gewonnene Kälte aus der Verdampfung und der Entspannung Kälteverbrauchern zugeführt wird und die beim Entspannen des Gases über die Turbine (10, 37) gewonnene elektrische Energie ins Netz gespeist oder gespeichert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das flüssige Erdgas zum Verdampfen und Komprimieren in einen Dosierbehälter (15) verbracht wird und eine dosierte Menge einem Verdampfer zugeführt wird, worauf der Dosierbehälter (15) neuerlich mit flüssigem Gas gefüllt wird und der Druck im zuletzt eingesetzten Verdampfer (7, 7') zum Auspressen des flüssigen Gases aus dem Dosierbehälter (15) in einen weiteren Verdampfer (7, 7') herangezogen wird, wobei zyklisch jeweils voneinander verschiedene Verdampfer (7, 7') aus dem Dosierbehälter (15) beschickt werden und der Druck im Dosierbehälter (15) sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer (7, 7') vor einem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Biogasanlage (40) mit angeschlossener kryogenen Gasreinigung und Verflüssigung zur Verwertung organischer Abfälle verwendet wird, wobei das erzeugte Biogas in einer Verbrennungskraftmaschine (27) unter Erzeugung von Wärme und Strom verbrannt wird, wobei die Wärme an Wärmeverbraucher weitergeleitet wird und die elektrische Energie gespeichert wird und die in der Biogasanlage (40) eingesetzte Kälte zurückgewonnen wird und die Kälte Kälteverbrauchern zugeführt wird.
  4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass zusätzlich ein Kraftwerk für erneuerbare Energien, wie Gezeitenkraftwerk, Windkraftwerk, Wasserkraftwerk, etc. Verwendung findet, um zusätzliche elektrische Energie bereit zu stellen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Gas in einer mit einer elektrische Energie erzeugenden Vorrichtung gekoppelten Vorrichtung verflüssigt wird, dass das verflüssigte Gas vorzugsweise drucklos gespeichert wird und dass das verflüssigte Gas bei Bedarf, vorzugsweise mit Hilfe eines Kältekreislaufs eines Kälteverbrauchers, regasifiziert und die freiwerdende Energie in elektrische Energie umgewandelt und entweder ins Netz eingespeist wird oder elektrischen Verbrauchern zur Verfügung gestellt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das flüssige Erdgas in einem atmosphärischen Tank (23) im LNG-Terminal gelagert ist.
  7. Vorrichtung zur Bereitstellung von elektrischer und thermischer Energie in einer Hafenanlage, wobei das flüssige Erdgas in einem LNG-Terminal in einem atmosphärischen Tank gelagert ist, welchem eine Verbrennungskraftmaschine für das Verbrennen des Boil-off-Gases nachgeschaltet ist und der Verbrennungskraftmaschine ein Energiespeicher für elektrische Energie nachgeschaltet ist, wobei die verbrennungskraftmaschine über einen Wärmeleiter mit wärmeverbrauchern verbunden ist und dem atmosphärischen Tank ein Verdampfer zum Verdampfen des flüssigen Erdgases und eine Vorrichtung zur zyklischen, kolbenlosen Komprimierung des verdampften Erdgases nachgeschaltet ist, wobei dem Verdampfer eine Turbine zur Erzeugung von Strom nachgeschaltet ist, wobei die Verdampfungs- bzw. Entspannungskälte über Wärmeleiter zu Kälteverbrauchern transportierbar ist.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass dem atmosphärischen Tank (23) wenigstens zwei Verdampfer (7, 7') unter Zwischenschaltung eines Dosierbehälters (15) nachgeschalten sind.
  9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Verbrennungskraftmaschine eine Biogasanlage (40) mit kryogener Gasreinigung und Gasverflüssigung zur Verwertung organischer Abfälle vorgeschaltet ist, wobei das erzeugte Biogas über Leitungen der Verbrennungskraftmaschine (27) zur Erzeugung von Wärme und Strom zugeführt wird, wobei die Wärme über Wärmeleiter an Wärmeverbraucher weitergeleitet wird und die elektrische Energie gespeichert wird und die in der Biogasanlage (40) gewonnene Kälte Kälteverbrauchern zugeführt wird.
  10. Vorrichtung nach Anspruch 7, 8 oder 9, dadurch gekennzeichnet, dass zusätzlich ein Kraftwerk für erneuerbare Energien, wie Gezeitenkraftwerk, Windkraftwerk, Wasserkraftwerk, etc. dem Energiespeicher vorgeschaltet ist, um die elektrische Energie bereit zu stellen.
  11. Vorrichtung nach Anspruch 7 bis 10, dadurch gekennzeichnet, dass eine an eine elektrische Energie erzeugende Vorrichtung gekoppelte Gasverflüssigungsvorrichtung einen Speicherbehälter zur Speicherung des verflüssigten Gases, eine an den Speicherbehälter angeschlossene Regasifizierungseinrichtung zum Regasifizieren des verflüssigten Gases, eine Expansionsmaschine, insbesondere Turbine (10, 37), zum Entspannen des regasifizierten Gases und einen von der Expansionsmaschine angetriebenen elektrischen Generator aufweist, wobei die vom Generator gelieferte elektrische Energie elektrischen Verbrauchern zur Verfügung gestellt ist.
EP20110450073 2010-07-09 2011-06-09 Verfahren und Vorrichtung zur Bereitstellung von elektrischer und thermischer Energie, insbesondere in einer Hafenanlage Not-in-force EP2405176B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT11712010A AT509334B1 (de) 2010-07-09 2010-07-09 Verfahren und vorrichtung zur bereitstellung von elektrischer und thermischer energie, insbesondere in einer hafenanlage

Publications (2)

Publication Number Publication Date
EP2405176A1 EP2405176A1 (de) 2012-01-11
EP2405176B1 true EP2405176B1 (de) 2013-03-13

Family

ID=44352393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110450073 Not-in-force EP2405176B1 (de) 2010-07-09 2011-06-09 Verfahren und Vorrichtung zur Bereitstellung von elektrischer und thermischer Energie, insbesondere in einer Hafenanlage

Country Status (2)

Country Link
EP (1) EP2405176B1 (de)
AT (1) AT509334B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613014A (zh) * 2018-05-07 2018-10-02 全感(苏州)智能技术有限公司 一种气瓶气压检测装置及远程控制系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7600308A (nl) * 1975-02-07 1976-08-10 Sulzer Ag Werkwijze en inrichting voor het verdampen en verwarmen van vloeibaar natuurlijk gas.
US4995234A (en) * 1989-10-02 1991-02-26 Chicago Bridge & Iron Technical Services Company Power generation from LNG
US5678411A (en) * 1995-04-26 1997-10-21 Ebara Corporation Liquefied gas supply system
DE19527882A1 (de) * 1995-07-29 1997-04-17 Hartmann Joerg Dipl Math Verfahren zur Energiespeicherung mittels flüssiger Luft
FR2852590B1 (fr) * 2003-03-20 2005-06-17 Snecma Moteurs Alimentation en energie d'un terminal gazier a partir d'un navire transportant du gaz liquefie
FR2879720B1 (fr) * 2004-12-17 2007-04-06 Snecma Moteurs Sa Systeme de compression-evaporation pour gaz liquefie
AT503579B1 (de) 2006-05-08 2007-11-15 Hermeling Katharina Mag Verfahren zur zyklischen kolbenlosen kompression der gasphase tiefkalt verflüssigter gase
US9470452B2 (en) * 2006-07-27 2016-10-18 Cosmodyne, LLC Imported LNG treatment
EP2137454A4 (de) * 2007-04-13 2017-09-20 Fluor Technologies Corporation Konfigurationen und verfahren zur offshore-wiederverdampfung von verflüssigtem erdgas und heizwertkonditionierung
US7900451B2 (en) * 2007-10-22 2011-03-08 Ormat Technologies, Inc. Power and regasification system for LNG
KR100946967B1 (ko) * 2007-12-28 2010-03-15 삼성중공업 주식회사 엘엔지 선에서의 전력발생 및 증발가스 처리 시스템 및방법
AT506779B1 (de) * 2008-03-05 2010-02-15 Hermeling Werner Dipl Ing Verfahren zur bedarfsabhängigen regelung und glättung der elektrischen ausgangsleistung eines energiewandlers sowie vorrichtung zur durchführung dieses verfahrens
AT508249B1 (de) 2009-07-22 2010-12-15 Hermeling Werner Dipl Ing Verfahren zum reinigen und verflüssigen von biogas

Also Published As

Publication number Publication date
EP2405176A1 (de) 2012-01-11
AT509334A4 (de) 2011-08-15
AT509334B1 (de) 2011-08-15

Similar Documents

Publication Publication Date Title
He et al. LNG cold energy utilization: Prospects and challenges
DK2753861T3 (en) METHOD AND APPARATUS FOR ENERGY STORAGE
DE102004030717A1 (de) Verfahren und Vorrichtung zur Speicherung von geothermer und regenerativer Energie durch die Umwandlung in chemische Energie
CN100424450C (zh) 以冷媒为介质的液化天然气冷量利用方法及其装置
EP2084372B1 (de) Verfahren und vorrichtung zum effektiven und emissionsarmen betrieb von kraftwerken sowie zur energiespeicherung und energiewandlung
EP2528192B1 (de) Energiespeicher, Verbundsystem mit Energiespeichern und Verfahren zum Betreiben eines Energiespeichers
EP2703610B1 (de) Verfahren und System zum Energiespeichern und Kurzzeitstromerzeugung
DE102022128800A1 (de) Eine Energiespeichervorrichtung für die Wasserstofferzeugung durch elektrolytisches Wasser in Verbindung mit niedriger Temperatur und deren Energiespeicherverfahren
WO2012013289A2 (de) Verfahren und vorrichtung zur stromspeicherung
US20160333744A1 (en) Method and apparatus for generating electricity using a thermal power plant
WO2014079410A2 (de) Energiespeicherkraftwerk
EP2405176B1 (de) Verfahren und Vorrichtung zur Bereitstellung von elektrischer und thermischer Energie, insbesondere in einer Hafenanlage
DE102013017914A1 (de) Nutzung des "Power to Gas" Prinzips zur Anbindung von Offshore-Windparks
EP4139562B1 (de) System mit einer flüssigluft-energiespeicher- und kraftwerksvorrichtung
CN204002944U (zh) 一种新型天然气高压管网余压发电系统
KR20180007124A (ko) 액화천연가스 가스화 공정을 이용한 극저온 에너지 저장 시스템
DE102020000131B4 (de) Verfahren zur CO2-Verflüssigung und -Speicherung in einem CO2-Kraftwerk
KR101858508B1 (ko) 해상 부유식 발전 플랜트 및 해상 부유식 발전 플랜트에서 생산된 전력을 육상의 전력 수요처에 공급하는 방법
US10690013B2 (en) System and method for liquid air energy storage
AT506779B1 (de) Verfahren zur bedarfsabhängigen regelung und glättung der elektrischen ausgangsleistung eines energiewandlers sowie vorrichtung zur durchführung dieses verfahrens
CN105928247A (zh) 一种液化天然气蒸发气冷能燃烧能综合利用系统
DE102013016528A1 (de) Emissionsfreie Mobilität mit Erdgas
US20240159166A1 (en) Hydrogen fueled electric power plant with thermal energy storage
JP2010062192A (ja) ジメチルエーテル(dme)を利用した自然エネルギーの液化と貯蔵
WO2016166024A1 (de) Verfahren zum betrieb einer kraftwerksanlage an standorten mit zu geringer brennstoffversorgung

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120710

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F17C 5/06 20060101ALI20120921BHEP

Ipc: F17C 9/04 20060101ALI20120921BHEP

Ipc: F17C 9/02 20060101AFI20120921BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 601019

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011000484

Country of ref document: DE

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130624

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130313

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130715

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

BERE Be: lapsed

Owner name: LO SOLUTIONS GMBH

Effective date: 20130630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

26N No opposition filed

Effective date: 20131216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011000484

Country of ref document: DE

Representative=s name: GODEMEYER BLUM LENZE - WERKPATENT, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011000484

Country of ref document: DE

Representative=s name: GODEMEYER BLUM LENZE PARTNERSCHAFT, PATENTANWA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011000484

Country of ref document: DE

Representative=s name: GODEMEYER BLUM LENZE PATENTANWAELTE, PARTNERSC, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011000484

Country of ref document: DE

Effective date: 20131216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130604

Year of fee payment: 3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011000484

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011000484

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110609

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130609

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150609

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 601019

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313