EP2404191A1 - Radar sensor having blindness recognition device - Google Patents

Radar sensor having blindness recognition device

Info

Publication number
EP2404191A1
EP2404191A1 EP10704106A EP10704106A EP2404191A1 EP 2404191 A1 EP2404191 A1 EP 2404191A1 EP 10704106 A EP10704106 A EP 10704106A EP 10704106 A EP10704106 A EP 10704106A EP 2404191 A1 EP2404191 A1 EP 2404191A1
Authority
EP
European Patent Office
Prior art keywords
radar sensor
radar
blindness
evaluation
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10704106A
Other languages
German (de)
French (fr)
Inventor
Stefan Heilmann
Sonja Eder
Wolf Steffens
Goetz Kuehnle
Dirk Bechler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2404191A1 publication Critical patent/EP2404191A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4039Means for monitoring or calibrating of parts of a radar system of sensor or antenna obstruction, e.g. dirt- or ice-coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4056Means for monitoring or calibrating by simulation of echoes specially adapted to FMCW
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder

Definitions

  • the invention relates to a radar sensor with an associated evaluation and control device, which has a measurement mode for locating radar targets and includes a blindness detection device which is designed to detect blindness of the radar sensor based on the signals received from the radar sensor itself.
  • Driver assistance systems for example for automatic adaptive cruise control (ACC) or warning of imminent collisions and, if appropriate, for initiating measures to avert the collision or to mitigate the collision sequences (PSS, Predictive Safety System).
  • ACC automatic adaptive cruise control
  • PSS Predictive Safety System
  • a radar sensor is used for detecting the traffic environment and in particular for locating other vehicles. Since the driver will generally rely on the functionality of the assistance system, it is necessary for safety reasons that functional impairments of the radar sensor are detected during operation and can be reported to the driver. For this reason, automotive radar sensors are equipped with a blindness detection device that, while the radar sensor is operating in the measurement mode, specifically evaluates the received radar signals to generate one or more blindness indicators indicative of degradation of the radar sensor - up to complete Blindness - point out.
  • a possible cause of blindness of the radar sensor may be, for example, heavy rain, which reflects and dampens the radar radiation and thereby reduces the sensitivity of the sensor.
  • the reflection of the radar radiation in turn leads to a detectable signal, the so-called rain clutter.
  • the rain clutter Through targeted search for this rain clutter, it is therefore possible in principle to detect heavy rainfall and the associated impairment of the radar sensor.
  • Another possible cause of blindness is a dirt deposit or film of water on the surface of the radar lens or radome. Such a coating leads to the reflection and attenuation of the radar signal and thus to a loss of sensitivity. Again, however, in principle, that the reflection caused by the dirt deposit in turn represents a detectable signal by which the blindness could be detected. However, the distance between the dirt cover and the radar antenna is so small that it normally is outside the range of the distance, which can be monitored by means of the radar sensor.
  • blindness detection is to be understood in a comprehensive sense and is also intended to include such cases of angular blindness.
  • the object of the invention is to provide a radar sensor, especially for motor vehicles, which allows a more reliable blindness detection.
  • the evaluation and control device has a test mode in which the control of the radar sensor is based on parameters that are different from the parameters for the measurement mode and optimized for the blindness detection device, and that the evaluation and Control device has a switching device for switching between the measuring mode and the test mode.
  • the invention is based on the consideration that the parameters determining the operation of the radar sensor are optimized with respect to the detection of objects such as vehicles in front and the like, and therefore not necessarily also for the detection of the various forms of blindness have to be optimal.
  • these parameters include the frequency and power of the transmitted radar signal or, in the case of a Frequency Modulated Continuous Wave (FMCW) radar, where the transmitted frequency is ramp modulated, the modulation swing and the duration of the modulation ramp.
  • FMCW Frequency Modulated Continuous Wave
  • the regular operating mode of the radar sensor ie the measuring mode
  • the regular operating mode of the radar sensor is interrupted from time to time during the operation of the radar sensor, in the case of a driver assistance system while driving, and instead it is switched to a test mode in which the parameters with respect to the blindness detection are optimized, so that a more reliable blindness detection is possible.
  • the necessary interruptions of the measurement mode can be kept as short and timed so that they do not affect the seamless monitoring of the traffic environment.
  • Fig. 1 is a block diagram of a radar sensor according to the invention
  • Fig. 2 is a frequency / time diagram for an FMCW radar
  • 3 and 4 are diagrams for explaining influences of changes of operating parameters of the radar sensor in a blindness detection test mode
  • Fig. 5 is a power / time diagram and a frequency / time diagram.
  • the radar sensor shown in FIG. 1 has a transmitting and receiving module 10 and an associated evaluation and control device 12, which supplies information about the traffic environment to a driver assistance system 14, for example a distance control system (ACC) in a motor vehicle.
  • the transmitting and receiving module 10 has at least one antenna 16, which is fed by the evaluation and control device 12 with a signal to be transmitted and the received signals for evaluation to the evaluation and control device 12 passes.
  • a so-called radome 18 is arranged, i. H. a cover designed to protect the antenna and the connected electronic components from the effects of the weather.
  • the function of the radome is also fulfilled by a radar lens that focuses the transmitted and received radar radiation.
  • the evaluation and control device 12 is formed by an electronic data processing system and comprises amaschineerf20 for controlling the transmitting and receiving module 10 and an evaluation part 22 which is operable in at least two different operating modes, namely a measurement mode MM and at least one test mode TM.
  • a switching device 24 controls the switching between the operating modes.
  • the measurement mode MM is used to locate radar targets.
  • the radar sensor is an FMCW radar in which the frequency f of the radar signal transmitted by the antenna 16 is ramped, such as is shown schematically in Fig. 2. There, the frequency f is plotted against the time t.
  • the echo received by a radar target, such as a preceding vehicle, is mixed within the transmit and receive module 10 by means of a mixer, not shown, with the transmitted signal to provide an intermediate frequency signal whose frequency corresponds to the difference in frequency between the transmitted and received signals.
  • This intermediate frequency signal is transmitted to the evaluation part 22 and is sampled there over the duration T of a frequency ramp.
  • the time signal sampled in this way is then converted into a spectrum by Fast Fourier Transform (FFT). In this spectrum, each located object is distinguished in the form of a peak at a certain frequency.
  • FFT Fast Fourier Transform
  • the frequency difference between received and transmitted signal depends (linearly) on the signal propagation time and consequently on the object distance. If the located object has a relative velocity other than zero with respect to the radar sensor, the Doppler effect results in an additional frequency shift.
  • the frequency of a peak in the spectrum is thus dependent both on the distance and on the relative speed of the object and implicitly defines a relationship between the possible distances and relative speeds of the object.
  • the antenna 16 usually consists of several juxtaposed patches, and by evaluating the amplitude and phase relationships between the signals received from the different patches, the azimuth angle of the located object can be determined.
  • the location data thus obtained are transmitted via the object, ie the distance Relative speed and the azimuth angle, reported to the driver assistance system 14.
  • essential parameters for the operation of the radar sensor are the ramp duration T and the modulation stroke H of the modulation ramp. These parameters are optimized in measurement mode MM so that optimum resolution and sensitivity is achieved for objects in the traffic-related distance range.
  • the radar sensor described here by means of the switching device 24 is switched from the measurement mode MM to the test mode TM from time to time, and in this test mode, other parameters are used for the control of the transmitting and receiving module 10, namely parameters optimized for blindness detection.
  • test mode blindness detection with increased reliability is thus possible. If a blindness or a significant impairment of the sensitivity of the radar sensor is detected, this is reported to the driver assistance system 14, which responds appropriately, for example, by disabling itself and issuing a corresponding warning to the driver.
  • the switching means 24 may be arranged to periodically switch between the measuring mode MM and the test mode TM.
  • the duration of the test mode TM will be on the order of only a few milliseconds, so that despite the occasional interruptions of the measurement mode still a virtually complete monitoring of the traffic environment is possible.
  • the driver assistance system 14 is also capable of the function of the switching device 24 influence, so that, for example, in critical situations, such as when a collision threatens to switch to the test mode can be prevented.
  • the radar sensor does not detect any preceding vehicles or other objects of comparable size, this could indicate a blindness of the radar sensor. However, it is also possible that in the detection range of the radar sensor simply no corresponding objects are present. One possible test of whether the radar sensor is blind can now be to temporarily increase the range of the radar sensor.
  • the range of object distances and relative velocities which can be detected with the aid of the radar sensor is limited in practice by the frequency range on which the spectrum formed from the intermediate frequency signal can be evaluated. This area is largely determined by the hardware of the evaluation part 22.
  • the frequency of the object peaks in the spectrum increases proportionally with the object distance, so that as of a certain object distance, for example of the order of magnitude of about 200 m, the objects no longer lie within the evaluable range of the spectrum.
  • By reducing the frequency deviation H (FIG. 2) with the same ramp duration it can be achieved that the frequency of an object peak grows more slowly as the object distance increases, so that the radar sensor is then sensitive to objects at even greater distances. If no objects can be found even in this enlarged distance range, this is an indicator for a blindness of the radar sensor.
  • the bottom clutter occurs in the spectrum only in a certain frequency range, which depends inter alia on the installation height of the transmitting and receiving module 10 in the vehicle and the vertical opening angle of the radar team.
  • the radar radiation will hit the road at a greater distance, and the ground clutter will accordingly only occur at higher frequencies, but will then become weaker as the distance decreases due to the decrease in the signal intensity.
  • the relative speed of the road surface coincides except for the sign with the vehicle's own velocity V, the bottom cutter is also subjected to a corresponding Doppler shift.
  • a measure of the strength of the bottom clutter and thus the remaining sensitivity of the radar sensor can be obtained by integrating in the spectrum over the frequency range in which bottom clutter is to be expected, but in which normally no "real" objects occur.
  • the bottom clutter is distributed over as large a part of the evaluable range of the spectrum.
  • FIG. 3 shows how the position of the bottom clutters in the spectrum can be influenced by varying the ramp duration T of the modulation ramp (with a constant frequency deviation) at different intrinsic speeds V of the vehicle.
  • the numbers k of the so-called frequency bins are plotted, in which the spectrum of the intermediate frequency signal is divided. These numbers k correspond, apart from a normalization constant, to the various frequencies in the spectrum and in practice, for example, range from 0 to 511.
  • FIG. 3 shows only the lower part of the spectrum.
  • the evaluable region 26 of the spectrum is shown hatched in Fig. 3 and begins only at Bin no. 5.
  • Another blindness indicator is based on the detection of the so-called rain clutter, which is caused by reflection of the radar signal to raindrops, but only in a distance range of about 0 to 10 m, since at longer distances the weak radar returns of raindrops are no longer detectable.
  • the extension of the ramp duration T has the positive effect that the rain clutter region 30 is shifted completely into the evaluable region 26 even at lower speeds.
  • Fig. 5 shows an example of a possible modulation scheme in the alternate operation of the radar sensor in the measurement mode MM and in the test mode TM.
  • the modulated frequency f of the transmitted signal is plotted against time t.
  • the modulation takes place alternately with rising and falling ramps with a constant, relatively short ramp duration.
  • the modulation stroke is continuously varied in the example shown during the measurement mode, for example, to adjust the range of the radar sensor to the respective traffic situation.
  • test mode TM on the other hand, only falling frequency ramps are driven, with significantly longer ramp times and also (slightly) increased modulation stroke.
  • the use of falling ramps is for blindness detection, in particular for the detection of rain clutter advantage, since then the distance and relative speed-dependent components of the frequency shift so cooperate, that the rain clutter area is moved to the evaluable area.
  • the modulation period T is kept constant in the test mode, which simplifies the evaluation of the received signals.
  • the radiated from the antenna 16 power P is plotted against time. It can be seen that in the test mode TM this power is varied between at least two values, in the example shown between a higher value on a modulation ramp and a lower value on a different modulation ramp.
  • This power variation allows even more sensitive and reliable detection of conditions in which the sensitivity of the radar sensor is degraded. Factors that lower sensitivity will have a greater impact on performance.
  • the radiation reflected at the radome 18 results in a sinusoidal signal with a characteristic frequency (very small corresponding to the small distance).
  • this frequency is increased so that the sinusoidal signal within the relatively small time window (of the duration of the modulation ramp T) is recognizable as a sine wave with the frequency characteristic for the Radomabstand, so that reflections can be directly detected at Radombelag ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a radar sensor, comprising an associated evaluation and control unit (12) which has a measuring mode (MM) for locating radar targets and includes a blindness recognition device which is designed to recognize a blinding of the radar sensor based on the signals received by the radar sensor itself, characterized in that the evaluation and control device (12) has a test mode (TM) in which the radar sensor is controlled on the basis of parameters that are different from the parameters for the measuring mode (MM) and optimized for the blindness recognition device, and that the evaluation and control device (12) has a switching unit (24) for switching between the measuring mode (MM) and the test mode (TM).

Description

Beschreibung description
Titeltitle
Radarsensor mit BlindheitserkennungseinrichtungRadar sensor with blindness detection device
Stand der TechnikState of the art
Die Erfindung betrifft einen Radarsensor mit einer zugehörigen Auswertungs- und Steuereinrichtung, die einen Meßmodus zur Ortung von Radarzielen aufweist und eine Blindheitserkennungseinrichtung einschließt, die dazu ausgebildet ist, eine Erblindung des Radarsensors anhand der von dem Radarsensor selbst empfangenen Signale zu erkennen.The invention relates to a radar sensor with an associated evaluation and control device, which has a measurement mode for locating radar targets and includes a blindness detection device which is designed to detect blindness of the radar sensor based on the signals received from the radar sensor itself.
Kraftfahrzeuge werden zunehmend mit Fahrerassistenzsystemen ausgerüstet, beispielsweise zur automatischen Abstandsregelung (ACC, Adaptive Cruise Control) oder zur Warnung vor drohenden Kollisionen und gegebenenfalls zur Einleitung von Maßnahmen zur Abwendung der Kollision oder zur Milderung der Kollisionsfolgen (PSS; Predictive Safety System). Bei diesen Fahrerassistenzsystemen wird ein Radarsensor zur Erfassung des Verkehrsumfelds und insbesondere zur Ortung anderer Fahrzeuge eingesetzt. Da sich der Fahrer im allgemeinen auf die Funktionsfähigkeit des Assistenzsystems verlassen wird, ist es aus Sicherheitsgründen erforderlich, daß Funktionsbeeinträchtigungen des Radarsensors bei laufendem Betrieb erkannt werden und dem Fahrer gemeldet werden können. Aus diesem Grund sind Radarsensoren für Kraftfahrzeuge mit einer Blindheitserkennungseinrichtung ausgestattet, die, während der Radarsensor im Meßmodus betrieben wird, die empfangenen Radarsignale in spezieller Weise auswertet, um so einen oder mehrere Blindheitsindikatoren zu generieren, die auf eine Funktionsbeeinträchtigung des Radarsensors - bis hin zur vollständigen Erblindung - hinweisen.Motor vehicles are increasingly being equipped with driver assistance systems, for example for automatic adaptive cruise control (ACC) or warning of imminent collisions and, if appropriate, for initiating measures to avert the collision or to mitigate the collision sequences (PSS, Predictive Safety System). In these driver assistance systems, a radar sensor is used for detecting the traffic environment and in particular for locating other vehicles. Since the driver will generally rely on the functionality of the assistance system, it is necessary for safety reasons that functional impairments of the radar sensor are detected during operation and can be reported to the driver. For this reason, automotive radar sensors are equipped with a blindness detection device that, while the radar sensor is operating in the measurement mode, specifically evaluates the received radar signals to generate one or more blindness indicators indicative of degradation of the radar sensor - up to complete Blindness - point out.
Ein naheliegendes Kriterium für Erblindung besteht darin, daß der Radarsensor keinerlei Radarechos empfängt. Dieses Kriterium ist jedoch für sich allein nicht sehr aussagekräftig, da sich nicht ausschließen läßt, daß tatsächlich keine Radarziele im Ortungsbereich des Sensors vorhanden sind.An obvious criterion for blindness is that the radar sensor does not receive any radar echoes. However, this criterion alone is not very meaningful, since it can not be ruled out that actually no radar targets are present in the detection range of the sensor.
Im allgemeinen empfängt jedoch ein in einem Fahrzeug eingebauter Radarsensor stets gewisse Reflexionen von Bodenunebenheiten. Diese Reflexionen werden als "Bodenclutter" bezeichnet. Das Ausbleiben dieses Bodenclutters ist ein relativ verläßliches Indiz für Erblindung.In general, however, a radar sensor installed in a vehicle always receives some reflections of uneven ground. These reflections are referred to as "bottom clutter". The absence of this Bodenclutters is a relatively reliable indication of blindness.
Eine mögliche Ursache für eine Erblindung des Radarsensors kann beispielsweise auch starker Regen sein, der die Radarstrahlung reflektiert und dämpft und dadurch die Empfindlichkeit des Sensors herabsetzt. Die Reflexion der Radarstrahlung führt jedoch ihrerseits zu einem detektierbaren Signal, dem sogenannten Regenclutter. Durch gezielte Suche nach diesem Regenclutter ist es daher im Prinzip möglich, starken Regen und die damit einhergehende Funktionsbeeinträchtigung des Radarsensors zu erkennen.A possible cause of blindness of the radar sensor may be, for example, heavy rain, which reflects and dampens the radar radiation and thereby reduces the sensitivity of the sensor. However, the reflection of the radar radiation in turn leads to a detectable signal, the so-called rain clutter. Through targeted search for this rain clutter, it is therefore possible in principle to detect heavy rainfall and the associated impairment of the radar sensor.
Eine andere mögliche Ursache für Erblindung ist ein Schmutzbelag oder ein Wasserfilm auf der Oberfläche der Radarlinse oder des Radoms. Ein solcher Belag führt zur Reflexion und Dämpfung des Radarsignals und damit zu einer Empfindlichkeitseinbuße. Auch hier gilt jedoch im Prinzip, daß die durch den Schmutzbelag verursachte Reflexion ihrerseits ein detektierbares Signal darstellt, anhand dessen die Erblindung erkannt werden könnte. Allerdings ist der Abstand zwischen dem Schmutzbelag und der Radarantenne so klein, daß er normalerweise außerhalb des Abstandsbereiches liegt, der mit Hilfe des Radarsensors überwacht werden kann.Another possible cause of blindness is a dirt deposit or film of water on the surface of the radar lens or radome. Such a coating leads to the reflection and attenuation of the radar signal and thus to a loss of sensitivity. Again, however, in principle, that the reflection caused by the dirt deposit in turn represents a detectable signal by which the blindness could be detected. However, the distance between the dirt cover and the radar antenna is so small that it normally is outside the range of the distance, which can be monitored by means of the radar sensor.
Eine spezielle Form der Erblindung ist schließlich die sogenannte Winkelblindheit, die beispielsweise durch eine Eisschicht auf der Radarlinse oder dem Radom verursacht werden kann. Eine solche Eisschicht führt zwar nicht zu einer nennenswerten Reflexion und Dämpfung der Radarstrahlung, verursacht jedoch aufgrund von Brechungseffekten eine Richtungsablenkung der Radarstrahlung, was bei winkelauflösenden Radarsensoren zur Folge hat, daß die Winkeldaten der georteten Objekte nicht mehr verläßlich sind. Der Begriff "Blindheitserkennung" ist in einem umfassenden Sinne zu verstehen und soll auch solche Fälle der Winkelblindheit einschließen.Finally, a special form of blindness is the so-called angular blindness, which can be caused for example by an ice layer on the radar lens or the radome. Although such an ice layer does not lead to a significant reflection and attenuation of the radar, but caused due to refraction effects a directional deflection of the radar, resulting in angle-resolving radar sensors has the consequence that the angular data of the located objects are no longer reliable. The term "blindness detection" is to be understood in a comprehensive sense and is also intended to include such cases of angular blindness.
Aufgabe der Erfindung ist es, einen Radarsensor zu schaffen, insbesondere für Kraftfahrzeuge, der eine verläßlichere Blindheitserkennung ermöglicht.The object of the invention is to provide a radar sensor, especially for motor vehicles, which allows a more reliable blindness detection.
Offenbarung der ErfindungDisclosure of the invention
Diese Aufgabe wird dadurch gelöst, daß die Auswertungs- und Steuereinrichtung einen Testmodus aufweist, in dem die Steuerung des Radarsensors auf der Grundlage von Parametern erfolgt, die von den Parametern für den Meßmodus verschieden und für die Blindheitserkennungseinrichtung optimiert sind, und daß die Auswertungs- und Steuereinrichtung eine Schalteinrichtung zur Umschaltung zwischen dem Meßmodus und dem Testmodus aufweist.This object is achieved in that the evaluation and control device has a test mode in which the control of the radar sensor is based on parameters that are different from the parameters for the measurement mode and optimized for the blindness detection device, and that the evaluation and Control device has a switching device for switching between the measuring mode and the test mode.
Vorteile der ErfindungAdvantages of the invention
Die Erfindung beruht auf der Überlegung, daß die Parameter, die die Betriebsweise des Radarsensors bestimmen, im Hinblick auf die Erkennung von Objekten wie vorausfahrende Fahrzeuge und dergleichen optimiert sind und deshalb nicht zwangsläufig auch für die Erkennung der verschiedenen Formen von Erblindung optimal sein müssen. Beispiele für diese Parameter sind etwa die Frequenz und die Leistung des gesendeten Radarsignals oder, bei einem FMCW-Radar (Frequency Modulated Continuous Wave), bei dem die gesendete Frequenz rampenförmig moduliert wird, der Modulationshub und die Dauer der Modulationsrampe. Erfindungsgemäß wird nun während des Betriebs des Radarsensors, bei einem Fahrerassistenzsystem also während der Fahrt, der reguläre Betriebsmodus des Radarsensors, also der Meßmodus, von Zeit zu Zeit unterbrochen, und es wird statt dessen auf einen Testmodus umgeschaltet, in dem die Parameter im Hinblick auf die Blindheitserkennung optimiert sind, so daß eine verläßlichere Blindheitserkennung möglich wird.The invention is based on the consideration that the parameters determining the operation of the radar sensor are optimized with respect to the detection of objects such as vehicles in front and the like, and therefore not necessarily also for the detection of the various forms of blindness have to be optimal. Examples of these parameters include the frequency and power of the transmitted radar signal or, in the case of a Frequency Modulated Continuous Wave (FMCW) radar, where the transmitted frequency is ramp modulated, the modulation swing and the duration of the modulation ramp. According to the invention, the regular operating mode of the radar sensor, ie the measuring mode, is interrupted from time to time during the operation of the radar sensor, in the case of a driver assistance system while driving, and instead it is switched to a test mode in which the parameters with respect to the blindness detection are optimized, so that a more reliable blindness detection is possible.
Die dazu notwendigen Unterbrechungen des Meßmodus können so kurz gehalten und zeitlich so gewählt werden, daß sie die lückenlose Überwachung des Verkehrsumfelds nicht beeinträchtigen.The necessary interruptions of the measurement mode can be kept as short and timed so that they do not affect the seamless monitoring of the traffic environment.
In den Unteransprüchen sind vorteilhafte Ausgestaltungen angegeben, die sich insbesondere auf die Erfassung verschiedener Blindheitsindikatoren und die jeweils zugehörigen Parameteroptimierungen beziehen. Dabei versteht es sich, daß auch unterschiedliche Testmodi für die Erfassung unterschiedlicher Blindheitsindikatoren vorgesehen sein können.In the dependent claims advantageous embodiments are given, which relate in particular to the detection of various blindness indicators and the respectively associated parameter optimizations. It goes without saying that different test modes can also be provided for the detection of different blindness indicators.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.An embodiment of the invention is illustrated in the drawings and explained in more detail in the following description.
Es zeigen:Show it:
Fig. 1 ein Blockdiagramm eines erfindungsgemäßen Radarsensors;Fig. 1 is a block diagram of a radar sensor according to the invention;
Fig. 2 ein Frequenz/Zeit-Diagramm für ein FMCW-Radar; Fig. 3 und 4 Diagramme zur Erläuterung der Einflüsse von Änderungen von Betriebsparametern des Radarsensors in einem Testmodus zur Blindheitserkennung; undFig. 2 is a frequency / time diagram for an FMCW radar; 3 and 4 are diagrams for explaining influences of changes of operating parameters of the radar sensor in a blindness detection test mode; and
Fig. 5 ein Leistungs-/Zeit-Diagramm und ein Frequenz/Zeit-Diagramm.Fig. 5 is a power / time diagram and a frequency / time diagram.
Ausführungsformen der ErfindungEmbodiments of the invention
Der in Fig. 1 gezeigte Radarsensor weist ein Sende- und Empfangsmodul 10 und eine zugehörige Auswertungs- und Steuereinrichtung 12 auf, die Informationen über das Verkehrsumfeld an ein Fahrerassistenzsystem 14, beispielsweise ein Abstandsregelsystem (ACC) in einem Kraftfahrzeug liefert. Das Sende- und Empfangsmodul 10 weist mindestens eine Antenne 16 auf, die von der Auswertungsund Steuereinrichtung 12 mit einem zu sendenden Signal gespeist wird und die empfangenen Signale zur Auswertung an die Auswertungs- und Steuereinrichtung 12 übergibt. In Abstand vor der Antenne ist ein sogenanntes Radom 18 angeordnet, d. h. eine Abdeckung, die die Antenne und die angeschlossenen elektronischen Komponenten vor Witterungseinflüssen schützen soll. In einigen Fällen wird die Funktion des Radoms auch von einer Radarlinse erfüllt, die die gesendete und empfangene Radarstrahlung bündelt.The radar sensor shown in FIG. 1 has a transmitting and receiving module 10 and an associated evaluation and control device 12, which supplies information about the traffic environment to a driver assistance system 14, for example a distance control system (ACC) in a motor vehicle. The transmitting and receiving module 10 has at least one antenna 16, which is fed by the evaluation and control device 12 with a signal to be transmitted and the received signals for evaluation to the evaluation and control device 12 passes. At a distance in front of the antenna, a so-called radome 18 is arranged, i. H. a cover designed to protect the antenna and the connected electronic components from the effects of the weather. In some cases, the function of the radome is also fulfilled by a radar lens that focuses the transmitted and received radar radiation.
Die Auswertungs- und Steuereinrichtung 12 wird durch ein elektronisches Datenverarbeitungssystem gebildet und umfaßt einen Treiberf20 zur Steuerung des Sende- und Empfangsmoduls 10 und einen Auswertungsteil 22, der in wenigstens zwei unterschiedlichen Betriebsmodi betreibbar ist, nämlich einem Meßmodus MM und mindestens einem Testmodus TM. Eine Schalteinrichtung 24 steuert die Umschaltung zwischen den Betriebsmodi.The evaluation and control device 12 is formed by an electronic data processing system and comprises a Treiberf20 for controlling the transmitting and receiving module 10 and an evaluation part 22 which is operable in at least two different operating modes, namely a measurement mode MM and at least one test mode TM. A switching device 24 controls the switching between the operating modes.
Der Meßmodus MM dient zur Ortung von Radarzielen. Im gezeigten Beispiel handelt es sich bei dem Radarsensor um ein FMCW-Radar, bei dem die Frequenz f des von der Antenne 16 gesendeten Radarsignals rampenförmig moduliert wird, wie schematisch in Fig. 2 dargestellt ist. Dort ist die Frequenz f gegen die Zeit t aufgetragen. Das von einem Radarziel, beispielsweise einem vorausfahrenden Fahrzeug empfangene Echo wird innerhalb des Sende- und Empfangsmoduls 10 mit Hilfe eines nicht gezeigten Mischers mit dem gesendeten Signal gemischt, so daß man ein Zwischenfrequenzsignal erhält, dessen Frequenz dem Frequenzunterschied zwischen gesendetem und empfangenem Signal entspricht. Dieses Zwischenfrequenzsignal wird an den Auswertungsteil 22 übermittelt und wird dort jeweils über die Dauer T einer Frequenzrampe gesampelt. Das auf diese Weise gesampelte Zeitsignal wird dann durch Schnelle Fouriertransformation (FFT) in ein Spektrum umgewandelt. In diesem Spektrum zeichnet sich jedes geortete Objekt in der Form eines Peaks bei einer bestimmten Frequenz ab.The measurement mode MM is used to locate radar targets. In the example shown, the radar sensor is an FMCW radar in which the frequency f of the radar signal transmitted by the antenna 16 is ramped, such as is shown schematically in Fig. 2. There, the frequency f is plotted against the time t. The echo received by a radar target, such as a preceding vehicle, is mixed within the transmit and receive module 10 by means of a mixer, not shown, with the transmitted signal to provide an intermediate frequency signal whose frequency corresponds to the difference in frequency between the transmitted and received signals. This intermediate frequency signal is transmitted to the evaluation part 22 and is sampled there over the duration T of a frequency ramp. The time signal sampled in this way is then converted into a spectrum by Fast Fourier Transform (FFT). In this spectrum, each located object is distinguished in the form of a peak at a certain frequency.
Aufgrund der rampenförmigen Modulation des gesendeten Signals ist der Frequenzunterschied zwischen empfangenem und gesendetem Signal (und damit die Frequenz des Zwischenfrequenzsignals) (linear) von der Signallaufzeit und folglich vom Objektabstand abhängig. Wenn das geortete Objekt in bezug auf den Radarsensor eine von null verschiedene Relativgeschwindigkeit aufweist, führt der Dopplereffekt zu einer zusätzlichen Frequenzverschiebung. Die Frequenz eines Peaks im Spektrum ist somit sowohl vom Abstand wie auch von der Relativgeschwindigkeit des Objekts abhängig und definiert implizit eine Beziehung zwischen den möglichen Abständen und Relativgeschwindigkeiten des Objekts. Durch Auswertung von Spektren, die auf mehreren Modulationsrampen mit unterschiedlichen Steigungen gewonnen wurden, ist es dann möglich, jedem Objekt eindeutig einen bestimmten Abstand und eine bestimmte Relativgeschwindigkeit zuzuordnen.Due to the ramp-shaped modulation of the transmitted signal, the frequency difference between received and transmitted signal (and thus the frequency of the intermediate frequency signal) depends (linearly) on the signal propagation time and consequently on the object distance. If the located object has a relative velocity other than zero with respect to the radar sensor, the Doppler effect results in an additional frequency shift. The frequency of a peak in the spectrum is thus dependent both on the distance and on the relative speed of the object and implicitly defines a relationship between the possible distances and relative speeds of the object. By evaluating spectra obtained on several modulation ramps with different slopes, it is then possible to assign a specific distance and a specific relative speed to each object unambiguously.
Die Antenne 16 besteht in der Praxis zumeist aus mehreren nebeneinander angeordneten Patches, und durch Auswertung der Amplituden- und Phasenbeziehungen zwischen den von den verschiedenen Patches empfangenen Signalen läßt sich der Azimutwinkel des georteten Objekts bestimmen. Im Meßmodus MM werden die so gewonnenen Ortungsdaten über das Objekt, also der Abstand, die Relativgeschwindigkeit und der Azimutwinkel, an das Fahrerassistenzsystem 14 gemeldet.In practice, the antenna 16 usually consists of several juxtaposed patches, and by evaluating the amplitude and phase relationships between the signals received from the different patches, the azimuth angle of the located object can be determined. In measuring mode MM, the location data thus obtained are transmitted via the object, ie the distance Relative speed and the azimuth angle, reported to the driver assistance system 14.
Wie Fig. 2 zeigt, sind wesentliche Parameter für den Betrieb des Radarsensors die Rampendauer T und der Modulationshub H der Modulationsrampe. Diese Parameter sind im Meßmodus MM so optimiert, daß eine optimale Auflösung und Empfindlichkeit für Objekte in dem für das Verkehrsgeschehen relativen Abstandsbereich erreicht wird.As shown in FIG. 2, essential parameters for the operation of the radar sensor are the ramp duration T and the modulation stroke H of the modulation ramp. These parameters are optimized in measurement mode MM so that optimum resolution and sensitivity is achieved for objects in the traffic-related distance range.
Zwar ist es im Prinzip auch mit den für den Meßmodus MM geltenden Parametereinstellungen möglich, die Signale des Radarsensors so auszuwerten, daß eine Erblindung oder eine Abnahme der Empfindlichkeit des Radarsensors anhand von verschiedenen Indikatoren festgestellt werden kann, doch ist die Wahl der Parameter für diese Blindheitserkennung im allgemeinen nicht optimal. Aus diesem Grund wird bei dem hier beschriebenen Radarsensor mit Hilfe der Schalteinrichtung 24 von Zeit zu Zeit von dem Meßmodus MM auf den Testmodus TM umgeschaltet, und in diesem Testmodus werden für die Steuerung des Sende- und Empfangsmoduls 10 andere Parameter verwendet, nämlich Parameter, die für die Blindheitserkennung optimiert sind. Im Testmodus ist somit eine Blindheitserkennung mit erhöhter Zuverlässigkeit möglich. Wenn eine Erblindung oder eine signifikante Beeinträchtigung der Empfindlichkeit des Radarsensors festgestellt wird, so wird dies an das Fahrerassistenzsystem 14 gemeldet, das darauf in angemessener Weise reagiert, beispielsweise, indem es sich selbst deaktiviert und einen entsprechenden Warnhinweis an den Fahrer ausgibt.Although it is possible in principle with the applicable for the measurement mode MM parameter settings to evaluate the signals of the radar sensor so that a blindness or a decrease in the sensitivity of the radar sensor can be determined by different indicators, but the choice of parameters for this blindness detection generally not optimal. For this reason, in the radar sensor described here by means of the switching device 24 is switched from the measurement mode MM to the test mode TM from time to time, and in this test mode, other parameters are used for the control of the transmitting and receiving module 10, namely parameters optimized for blindness detection. In test mode, blindness detection with increased reliability is thus possible. If a blindness or a significant impairment of the sensitivity of the radar sensor is detected, this is reported to the driver assistance system 14, which responds appropriately, for example, by disabling itself and issuing a corresponding warning to the driver.
Die Schalteinrichtung 24 kann so ausgebildet sein, daß sie periodisch zwischen dem Meßmodus MM und dem Testmodus TM umschaltet. Die Dauer des Testmodus TM wird dabei in der Größenordnung von nur einigen Millisekunden liegen, so daß trotz der gelegentlichen Unterbrechungen des Meßmodus noch eine praktisch lückenlose Überwachung des Verkehrsumfelds möglich ist. Im gezeigten Beispiel ist außerdem das Fahrerassistenzsystem 14 in der Lage, die Funktion der Schalteinrichtung 24 zu beeinflussen, so daß beispielsweise in kritischen Situationen, etwa wenn eine Kollision droht, eine Umschaltung auf den Testmodus verhindert werden kann.The switching means 24 may be arranged to periodically switch between the measuring mode MM and the test mode TM. The duration of the test mode TM will be on the order of only a few milliseconds, so that despite the occasional interruptions of the measurement mode still a virtually complete monitoring of the traffic environment is possible. In the example shown, the driver assistance system 14 is also capable of the function of the switching device 24 influence, so that, for example, in critical situations, such as when a collision threatens to switch to the test mode can be prevented.
Im folgenden soll nun anhand einiger Beispiele erläutert werden, wie durch geeignete Wahl der Betriebsparameter im Testmodus TM die Blindheitserkennung verbessert werden kann.In the following, it will now be explained with reference to a few examples how the blindness recognition can be improved by a suitable choice of the operating parameters in the test mode TM.
Wenn der Radarsensor keine vorausfahrenden Fahrzeuge oder sonstige Objekte vergleichbarer Größe ortet, so könnte dies auf eine Erblindung des Radarsensors hindeuten. Es ist jedoch auch möglich, daß im Ortungsbereich des Radarsensors einfach keine entsprechenden Objekte vorhanden sind. Ein möglicher Test, ob der Radarsensor erblindet ist, kann nun darin bestehen, daß vorübergehend die Reichweite des Radarsensors vergrößert wird.If the radar sensor does not detect any preceding vehicles or other objects of comparable size, this could indicate a blindness of the radar sensor. However, it is also possible that in the detection range of the radar sensor simply no corresponding objects are present. One possible test of whether the radar sensor is blind can now be to temporarily increase the range of the radar sensor.
Der Bereich der Objektabstände und Relativgeschwindigkeiten, der mit Hilfe des Radarsensors erfaßt werden kann, ist in der Praxis begrenzt durch den Frequenzbereich, auf dem das aus dem Zwischenfrequenzsignal gebildete Spektrum ausgewertet werden kann. Dieser Bereich ist weitgehend durch die Hardware des Auswertungsteils 22 festgelegt. Die Frequenz der Objektpeaks im Spektrum nimmt proportional mit dem Objektabstand zu, so daß ab einem gewissen Objektabstand, beispielsweise in der Größenordnung von etwa 200 m, die Objekte nicht mehr im auswertbaren Bereich des Spektrums liegen. Durch Verringerung des Frequenzhubes H (Fig. 2) bei gleicher Rampendauer kann jedoch erreicht werden, daß die Frequenz eines Objektpeaks mit zunehmendem Objektabstand langsamer anwächst, so daß der Radarsensor dann für Objekte in noch größerem Abstand empfindlich ist. Wenn sich auch in diesem vergrößerten Abstandsbereich keine Objekte finden lassen, so ist dies ein Indikator für eine Erblindung des Radarsensors.The range of object distances and relative velocities which can be detected with the aid of the radar sensor is limited in practice by the frequency range on which the spectrum formed from the intermediate frequency signal can be evaluated. This area is largely determined by the hardware of the evaluation part 22. The frequency of the object peaks in the spectrum increases proportionally with the object distance, so that as of a certain object distance, for example of the order of magnitude of about 200 m, the objects no longer lie within the evaluable range of the spectrum. By reducing the frequency deviation H (FIG. 2) with the same ramp duration, however, it can be achieved that the frequency of an object peak grows more slowly as the object distance increases, so that the radar sensor is then sensitive to objects at even greater distances. If no objects can be found even in this enlarged distance range, this is an indicator for a blindness of the radar sensor.
Auch wenn sich keine vorausfahrenden Fahrzeuge oder sonstige Objekte im Ortungsbereich des Radarsensors befinden, ist in einem bestimmten Frequenzbereich des Spektrums gleichwohl ein Signal vorhanden, das durch Reflexionen der Radarstrahlung an der Fahrbahnoberfläche verursacht wird. Jede kleine Unebenheit auf der Fahrbahn bewirkt, daß ein Teil der Radarstrahlung wieder zum Sende- und Empfangsmodul reflektiert wird. Die entsprechenden Signale sind im Spektrum als sogenannter "Bodenclutter" erkennbar. Wenn sich im Testmodus TM dieser Bodenclutter nachweisen läßt, so bedeutet dies, daß der Sensor nicht erblindet ist.Even if there are no preceding vehicles or other objects in the detection range of the radar sensor, a signal is nevertheless present in a certain frequency range of the spectrum which is caused by reflections of the radar radiation on the road surface. Every little bump causes on the roadway that part of the radar radiation is reflected back to the transmitting and receiving module. The corresponding signals are recognizable in the spectrum as so-called "bottom clutter". If this bottom clutter can be detected in the test mode TM, this means that the sensor is not blinded.
Der Bodenclutter tritt allerdings im Spektrum nur in einem gewissen Frequenzbereich auf, der unter anderem von der Einbauhöhe des Sende- und Empfangsmoduls 10 im Fahrzeug und dem vertikalen Öffnungswinkel des Radarbeams abhängig ist. Bei großer Einbauhöhe wird die Radarstrahlung erst in größerem Abstand auf die Fahrbahn treffen, und der Bodenclutter wird entsprechend erst bei höheren Frequenzen auftreten, wird dann jedoch mit weiter zunehmendem Abstand aufgrund der Abnahme der Signalintensität schwächer werden. Da die Relativgeschwindigkeit der Fahrbahnoberfläche bis auf das Vorzeichen mit der Eigengeschwindigkeit V des Fahrzeugs übereinstimmt, unterliegt der Bodenclutter auch einer entsprechenden Dopplerverschiebung.However, the bottom clutter occurs in the spectrum only in a certain frequency range, which depends inter alia on the installation height of the transmitting and receiving module 10 in the vehicle and the vertical opening angle of the radar team. At high installation height, the radar radiation will hit the road at a greater distance, and the ground clutter will accordingly only occur at higher frequencies, but will then become weaker as the distance decreases due to the decrease in the signal intensity. Since the relative speed of the road surface coincides except for the sign with the vehicle's own velocity V, the bottom cutter is also subjected to a corresponding Doppler shift.
Ein Maß für die Stärke des Bodenclutters und damit für die noch vorhandene Empfindlichkeit des Radarsensors läßt sich gewinnen, indem im Spektrum über denjenigen Frequenzbereich integriert wird, in dem Bodenclutter zu erwarten ist, in dem jedoch normalerweise keine "echten" Objekte auftreten. Für eine sichere Detektion ist es dabei vorteilhaft, wenn der Bodenclutter über einen möglichst großen Teil des auswertbaren Bereiches des Spektrums verteilt ist.A measure of the strength of the bottom clutter and thus the remaining sensitivity of the radar sensor can be obtained by integrating in the spectrum over the frequency range in which bottom clutter is to be expected, but in which normally no "real" objects occur. For a reliable detection, it is advantageous if the bottom clutter is distributed over as large a part of the evaluable range of the spectrum.
Fig. 3 zeigt, wie sich bei unterschiedlichen Eigengeschwindigkeiten V des Fahrzeugs die Lage des Bodenclutters im Spektrum durch Verändern der Rampendauer T der Modulationsrampe (bei konstantem Frequenzhub) beeinflussen läßt. Auf der waagerechten Achse sind in Fig. 3 die Nummern k der sogenannten Frequenzbins aufgetragen, in die das Spektrum des Zwischenfrequenzsignals unterteilt ist. Diese Nummern k entsprechen bis auf eine Normierungskonstante den verschiedenen Frequenzen im Spektrum und reichen in der Praxis beispielsweise von 0 bis 511. In Fig. 3 ist nur der untere Teil des Spektrums dargestellt. Der auswertbare Bereich 26 des Spektrums ist in Fig. 3 schraffiert dargestellt und beginnt erst bei Bin Nr. 5. Der Bodenclutterbereich 28, also der Frequenzbereich, in dem sich Bodenclutter feststellen (und integrieren) läßt, ist für verschiedene Kombinationen aus Rampendauer T und Eigengeschwindigkeit V dargestellt. Wenn die Rampendauer T nur 2 ms beträgt, so tritt bei einer Geschwindigkeit V von 40 km/h der Bodenclutter nur in einem schmalen Frequenzbereich am unteren Ende des auswertbaren Bereiches 26 auf. Auch eine Erhöhung der Geschwindigkeit V auf 100 km/h führt nur zu einer geringfügigen Dehnung und Verschiebung des Bodenclutterbereiches. Wenn dagegen die Rampendauer T der Modulationsrampe auf 10 ms erhöht wird, so wird der Bodenclutterbereich 28 deutlich gespreizt, und zwar um so mehr, je höher die Eigengeschwindigkeit V ist. Für die Erkennung von Bodenclutter und damit für die Überprüfung, daß der Radarsensor nicht blind ist, erweist sich daher eine relative große Rampendauer T als vorteilhaft. Die längere Rampendauer hat auch den Vorteil, daß durch die Integration über ein größeres Frequenzintervall ein stabileres Resultat für den Bodenclutter-Indikator erreicht wird. Weiterhin nimmt mit der Rampendauer T auch die Samplezeit zu, in der das Spektrum aufgezeichnet wird, und dies wirkt sich positiv in einer Verringerung des Rauschens aus, so daß die Bodenclutter- und andere auswertbare Signale ein günstigeres Signal/Rauschverhältnis erhalten. Bei dieser niedrigen Eigengeschwindigkeit, beispielsweise bei V = 0 wird überhaupt erst durch die Verlängerung der Rampendauer T erreicht, daß ein nennenswerter Teil des Bodenclutterbereiches 28 innerhalb des auswertbaren Bereichs 26 liegt.FIG. 3 shows how the position of the bottom clutters in the spectrum can be influenced by varying the ramp duration T of the modulation ramp (with a constant frequency deviation) at different intrinsic speeds V of the vehicle. On the horizontal axis in Fig. 3, the numbers k of the so-called frequency bins are plotted, in which the spectrum of the intermediate frequency signal is divided. These numbers k correspond, apart from a normalization constant, to the various frequencies in the spectrum and in practice, for example, range from 0 to 511. FIG. 3 shows only the lower part of the spectrum. The evaluable region 26 of the spectrum is shown hatched in Fig. 3 and begins only at Bin no. 5. The Ground clutter region 28, ie the frequency range in which ground clutter can be detected (and integrated), is shown for different combinations of ramp duration T and airspeed V. If the ramp duration T is only 2 ms, at a speed V of 40 km / h the bottom clutter occurs only in a narrow frequency range at the lower end of the evaluable range 26. Even an increase in the speed V to 100 km / h leads only to a slight elongation and displacement of Bodenclutterbereiches. On the other hand, if the ramp duration T of the modulation ramp is increased to 10 ms, the bottom clutter region 28 is significantly spread, and more so, the higher the intrinsic velocity V is. For the detection of bottom clutter and thus for the verification that the radar sensor is not blind, therefore proves a relatively large ramp duration T advantageous. The longer ramp duration also has the advantage that a more stable result for the bottom clutter indicator is achieved by integration over a larger frequency interval. Furthermore, with the ramp duration T, the sample time in which the spectrum is recorded also increases, and this has a positive effect of reducing the noise, so that the bottom clutter and other evaluable signals receive a more favorable signal-to-noise ratio. At this low airspeed, for example at V = 0, it is not until the extension of the ramp duration T that an appreciable part of the bottom clutter region 28 lies within the evaluatable region 26 is reached.
Ein anderer Blindheitsindikator beruht auf der Detektion des sogenannten Regenclutters, der durch Reflexion des Radarsignals an Regentropfen verursacht wird, allerdings nur in einem Abstandsbereich von etwa 0 bis 10 m, da in größeren Abständen die schwachen Radarechos der Regentropfen nicht mehr detektierbar sind.Another blindness indicator is based on the detection of the so-called rain clutter, which is caused by reflection of the radar signal to raindrops, but only in a distance range of about 0 to 10 m, since at longer distances the weak radar returns of raindrops are no longer detectable.
Wenn Regenclutter detektiert wird, so bedeutet dies, daß die Intensität des Radarstrahls durch den Regen stark geschwächt wird und deshalb die Reichweite und Empfindlichkeit des Radarsensors deutlich herabgesetzt ist. Die Detektion von starkem Regen ist somit gleichbedeutend mit der Feststellung, daß der Radarsensor ganz oder teilweise erblindet ist. Fig. 4 zeigt, wie sich die Veränderung der Rampendauer T bei verschiedenen Geschwindigkeiten (V = O bzw. 40 km/h) auf den Regenclutterbereich 30 auswirkt, also den Frequenzbereich, in dem Regenclutter detektierbar ist. Man sieht, daß der Regenclutterbereich 30 mit zunehmender Rampendauer T zu höheren Frequenzen verschoben aber nicht gespreizt wird. Daß hier anders als bei dem Bodenclutterbereich 28 keine Spreizung auftritt, liegt daran, daß die an den Regentropfen reflektierten Radarstrahlen hauptsächlich parallel zur Fahrtrichtung verlaufen und deshalb unabhängig vom Abstand der Tropfen stets der gleichen Dopplerverschiebung unterliegen, während die vom Boden reflektierten Radarstrahlen beim Bodenclutter oder weniger schräg zum Boden verlaufen, so daß die Komponente, die von der Dopplerverschiebung beeinflußt wird, hier vom jeweiligen Abstand abhängig ist.If rain clutter is detected, this means that the intensity of the radar beam is greatly weakened by the rain and therefore the range and sensitivity of the radar sensor is significantly reduced. The detection of heavy rain is thus synonymous with the statement that the radar sensor is completely or partially blinded. 4 shows how the change in the ramp duration T at different speeds (V = O or 40 km / h) affects the rain-clutter area 30, ie the frequency range in which rain clutter can be detected. It can be seen that the rain-clutter region 30 is shifted to higher frequencies with increasing ramp duration T, but is not spread. That here, unlike the Bodenclutterbereich 28 no spread occurs, is because the radar rays reflected at the raindrops are mainly parallel to the direction of travel and therefore always subject to the same Doppler shift regardless of the distance of the drops, while the radar rays reflected from the ground at the bottom clutter or less run obliquely to the ground, so that the component, which is influenced by the Doppler shift, here depends on the respective distance.
Auch beim Regenclutter hat aber die Verlängerung der Rampendauer T den positiven Effekt, daß der Regenclutterbereich 30 schon bei kleineren Geschwindigkeiten vollständig in den auswertbaren Bereich 26 verschoben wird.Even with the rain chute, however, the extension of the ramp duration T has the positive effect that the rain clutter region 30 is shifted completely into the evaluable region 26 even at lower speeds.
Fig. 5 zeigt ein Beispiel für ein mögliches Modulationsschema beim abwechselnden Betrieb des Radarsensors im Meßmodus MM und im Testmodus TM. Im unteren Teil des Diagramms in Fig. 5 ist die modulierte Frequenz f des gesendeten Signals gegen die Zeit t aufgetragen. Im Meßmodus erfolgt die Modulation abwechselnd mit steigenden und fallenden Rampen mit konstanter, relativ kleiner Rampendauer. Der Modulationshub wird im gezeigten Beispiel während des Meßmodus fortlaufend variiert, beispielsweise um die Reichweite des Radarsensors an die jeweilige Verkehrssituation anzupassen.Fig. 5 shows an example of a possible modulation scheme in the alternate operation of the radar sensor in the measurement mode MM and in the test mode TM. In the lower part of the diagram in FIG. 5, the modulated frequency f of the transmitted signal is plotted against time t. In the measuring mode, the modulation takes place alternately with rising and falling ramps with a constant, relatively short ramp duration. The modulation stroke is continuously varied in the example shown during the measurement mode, for example, to adjust the range of the radar sensor to the respective traffic situation.
Im Testmodus TM werden dagegen nur fallende Frequenzrampen gefahren, und zwar mit deutlich verlängerter Rampendauer und auch (leicht) erhöhtem Modulationshub. Die Verwendung von fallenden Rampen ist für die Blindheitserkennung, insbesondere für die Detektion von Regenclutter von Vorteil, da dann die abstands- und relativgeschwindigkeitsabhängigen Anteile der Frequenzverschiebung so zusammenwirken, daß der Regenclutterbereich in den auswertbaren Bereich verschoben wird.In test mode TM, on the other hand, only falling frequency ramps are driven, with significantly longer ramp times and also (slightly) increased modulation stroke. The use of falling ramps is for blindness detection, in particular for the detection of rain clutter advantage, since then the distance and relative speed-dependent components of the frequency shift so cooperate, that the rain clutter area is moved to the evaluable area.
Außerdem wird im Testmodus die Modulationsdauer T konstant gehalten, was die Auswertung der empfangenen Signale vereinfacht.In addition, the modulation period T is kept constant in the test mode, which simplifies the evaluation of the received signals.
Im oberen Diagramm in Fig. 5 ist die von der Antenne 16 abgestrahlte Leistung P gegen die Zeit aufgetragen. Man erkennt, daß diese Leistung im Testmodus TM zwischen mindestens zwei Werten variiert wird, im gezeigten Beispiel zwischen einem höheren Wert auf einer Modulationsrampe und einem niedrigeren Wert auf einer anderen Modulationsrampe. Diese Leistungsvariation erlaubt eine noch empfindlichere und verläßlichere Erkennung von Zuständen, in denen die Empfindlichkeit des Radarsensors herabgesetzt ist. Faktoren, die die Empfindlichkeit herabsetzen, werden sich nämlich bei verminderter Leistung besonders stark auswirken. Ein Vergleich zwischen den Signalen, die im Testmodus einerseits bei hoher Leistung und andererseits bei verminderter Leistung empfangen werden, läßt deshalb die Blindheitsindikatoren deutlicher hervortreten und macht außerdem die Blindheitserkennung robuster gegenüber Temperatur- und Alterungseffekten, die das Verhalten der Sende- und Empfangselektronik beeinflussen.In the upper diagram in Fig. 5, the radiated from the antenna 16 power P is plotted against time. It can be seen that in the test mode TM this power is varied between at least two values, in the example shown between a higher value on a modulation ramp and a lower value on a different modulation ramp. This power variation allows even more sensitive and reliable detection of conditions in which the sensitivity of the radar sensor is degraded. Factors that lower sensitivity will have a greater impact on performance. A comparison between the signals that are received in the test mode on the one hand at high power and the other at reduced power, therefore, makes the blindness indicators more prominent and also makes the blindness detection robust against temperature and aging effects that affect the behavior of the transmitting and receiving electronics.
Wenn im Testmodus der Modulationshub H deutlich vergrößert wird, so lassen sich auch Fälle von Erblindung erkennen, die auf einen Schmutzbelag oder Wasserfilm auf dem Radom 18 (Fig. 1 ) zurückzuführen sind. Ein solcher Belag führt nämlich dazu, daß ein Teil der von der Antenne 16 emittieren Strahlung schon am Radom 18 reflektiert wird. Dieser Belag kann deshalb als ein "Radarziel" betrachtet werden, das sich in extrem geringem Abstand zu der Antenne 16 befindet. Mit dem normalen Auswertungsverfahren, das auf einer Analyse des Spektrums des Zwischenfrequenzsignals beruht, sind Objekte in so geringen Abständen jedoch nicht detektierbar. Eine Vergrößerung des Modulationshubes H bringt in diesen Fällen die Frequenz des Zwischenfrequenzsignals näher an den auswertbaren Bereich heran. Wenn man nun nicht das Spektrum auswertet, sondern direkt das Zeitsignal, aus dem das Spektrum gewonnen wird, so resultiert die am Radom 18 reflektierte Strahlung in einem sinusförmigen Signal mit einer charakteristischen (entsprechend dem geringen Abstand sehr kleinen) Frequenz. Bei hinreichend großem Modulationshub H wird diese Frequenz so weit erhöht, daß das sinusförmige Signal innerhalb des relativ kleinen Zeitfensters (von der Dauer der Modulationsrampe T) als Sinussignal mit der für den Radomabstand charakteristischen Frequenz erkennbar ist, so daß sich Reflexionen am Radombelag direkt nachweisen lassen. If the modulation stroke H is significantly increased in the test mode, cases of blindness attributable to a dirt deposit or water film on the radome 18 (FIG. 1) can also be detected. Namely, such a coating leads to the fact that a part of the radiation emitted by the antenna 16 is already reflected at the radome 18. This deposit can therefore be considered as a "radar target" which is located at an extremely short distance from the antenna 16. With the normal evaluation method, which is based on an analysis of the spectrum of the intermediate frequency signal, however, objects at such close intervals are not detectable. An increase in the modulation H in these cases brings the frequency of the intermediate frequency signal closer to the evaluable range. If one does not evaluate the spectrum, but directly the time signal from which the spectrum is obtained, the radiation reflected at the radome 18 results in a sinusoidal signal with a characteristic frequency (very small corresponding to the small distance). With a sufficiently large modulation H, this frequency is increased so that the sinusoidal signal within the relatively small time window (of the duration of the modulation ramp T) is recognizable as a sine wave with the frequency characteristic for the Radomabstand, so that reflections can be directly detected at Radombelag ,

Claims

Ansprüche claims
1. Radarsensor mit einer zugehörigen Auswertungs- und Steuereinrichtung (12), die einen Meßmodus (MM) zur Ortung von Radarzielen aufweist und eine Blindheitserkennungseinrichtung einschließt, die dazu ausgebildet ist, eine Erblindung des Radarsensors anhand der von dem Radarsensor selbst empfangenen Signale zu erkennen, dadurch gekennzeichnet, daß die Auswertungs- und Steuereinrichtung (12) einen Testmodus (TM) aufweist, in dem die Steuerung des Radarsensors auf der Grundlage von Parametern erfolgt, die von den Parametern für den Meßmodus (MM) verschieden und für die Blindheitserkennungseinrichtung optimiert sind, und daß die Auswertungsund Steuereinrichtung eine Schalteinrichtung (24) zur Umschaltung zwischen dem Meßmodus (MM) und dem Testmodus (TM) aufweist.A radar sensor having associated evaluation and control means (12) having a measurement mode (MM) for locating radar targets and including blindness detection means adapted to detect blindness of the radar sensor based on the signals received from the radar sensor itself, characterized in that the evaluation and control device (12) has a test mode (TM) in which the control of the radar sensor is performed on the basis of parameters different from the parameters for the measurement mode (MM) and optimized for the blindness recognition device, and in that the evaluation and control device has a switching device (24) for switching between the measuring mode (MM) and the test mode (TM).
2. Radarsensor nach Anspruch 1 , dadurch gekennzeichnet, daß die Auswertungs- und Steuereinrichtung (12) dazu ausgebildet ist, die Frequenz des gesendeten Radarsignals rampenförmig zu modulieren, und daß im Testmodus (TM) die Rampendauer (T) gegenüber der Rampendauer im Meßmodus (MM) verändert ist.2. Radar sensor according to claim 1, characterized in that the evaluation and control device (12) is adapted to ramp the frequency of the transmitted radar signal, and that in the test mode (TM) the ramp duration (T) compared to the ramp duration in the measuring mode ( MM) is changed.
3. Radarsensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Auswertungs- und Steuereinrichtung (12) dazu ausgebildet ist, die Frequenz des gesendeten Radarsignals rampenförmig zu modulieren, und daß im Testmodus (TM) der Modulationshub (H) gegenüber dem Modulationshub im Meßmodus (M) verändert ist. 3. Radar sensor according to claim 1 or 2, characterized in that the evaluation and control device (12) is adapted to ramp the frequency of the transmitted radar signal, and that in the test mode (TM) of the modulation (H) over the Modulationshub in Measuring mode (M) is changed.
4. Radarsensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Auswertungs- und Steuereinrichtung (12) dazu ausgebildet ist, den Radarsensor im Testmodus (TM) mit einer anderen Sendeleistung (P) als im Meßmodus (MM) anzusteuern.4. Radar sensor according to one of the preceding claims, characterized in that the evaluation and control device (12) is adapted to control the radar sensor in the test mode (TM) with a different transmission power (P) than in the measuring mode (MM).
5. Radarsensor nach Anspruch 4, dadurch gekennzeichnet, daß die Auswertungs- und Steuereinrichtung (12) dazu ausgebildet ist, die Sendeleistung (P) im Testmodus (TM) zu variieren. 5. Radar sensor according to claim 4, characterized in that the evaluation and control device (12) is adapted to vary the transmission power (P) in the test mode (TM).
EP10704106A 2009-03-02 2010-01-08 Radar sensor having blindness recognition device Withdrawn EP2404191A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910001265 DE102009001265A1 (en) 2009-03-02 2009-03-02 Radar sensor with Blinheitserkennungseinrichtung
PCT/EP2010/050119 WO2010099988A1 (en) 2009-03-02 2010-01-08 Radar sensor having blindness recognition device

Publications (1)

Publication Number Publication Date
EP2404191A1 true EP2404191A1 (en) 2012-01-11

Family

ID=42077934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10704106A Withdrawn EP2404191A1 (en) 2009-03-02 2010-01-08 Radar sensor having blindness recognition device

Country Status (4)

Country Link
US (1) US9140780B2 (en)
EP (1) EP2404191A1 (en)
DE (1) DE102009001265A1 (en)
WO (1) WO2010099988A1 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009001239A1 (en) * 2009-02-27 2010-09-02 Robert Bosch Gmbh Method for detecting sensitivity losses of an FMCW radar detector by diffuse loss sources
US10996073B2 (en) * 2010-12-02 2021-05-04 Telenav, Inc. Navigation system with abrupt maneuver monitoring mechanism and method of operation thereof
DE102011079522A1 (en) * 2011-07-21 2013-01-24 Robert Bosch Gmbh DETECTION OF DEPRECIATION OF A RADAR SENSOR OF A VEHICLE
DE102012003373B4 (en) * 2012-02-22 2018-11-22 Krohne Messtechnik Gmbh Method for monitoring and method for operating a working according to the radar principle level measuring system and corresponding level measuring system
US9129185B1 (en) * 2012-05-21 2015-09-08 The Boeing Company System and method for reducing image clutter
EP2806286B1 (en) * 2013-05-23 2019-07-10 Veoneer Sweden AB FMCW radar blocking detection
DE102014209723A1 (en) 2014-05-22 2015-11-26 Robert Bosch Gmbh Determination of an indicator of blindness of a radar sensor
US10366285B2 (en) 2015-04-09 2019-07-30 Bendix Commercial Vehicle Systems Llc Method and apparatus for determining the operation of a vehicle safety system
US10042041B2 (en) * 2015-04-28 2018-08-07 Veoneer Us, Inc. Apparatus and method for detecting and correcting for blockage of an automotive radar sensor
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
WO2017175190A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
US10573959B2 (en) 2016-04-25 2020-02-25 Uhnder, Inc. Vehicle radar system using shaped antenna patterns
US9806914B1 (en) 2016-04-25 2017-10-31 Uhnder, Inc. Successive signal interference mitigation
EP3449272B1 (en) 2016-04-25 2022-11-02 Uhnder, Inc. Vehicle radar system with a shared radar and communication system, and method for managing such a system in a vehicle
US9599702B1 (en) 2016-04-25 2017-03-21 Uhnder, Inc. On-demand multi-scan micro doppler for vehicle
US9791564B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Adaptive filtering for FMCW interference mitigation in PMCW radar systems
US9772397B1 (en) 2016-04-25 2017-09-26 Uhnder, Inc. PMCW-PMCW interference mitigation
WO2017187330A1 (en) * 2016-04-25 2017-11-02 Uhnder, Inc. Software defined automotive radar
US9945935B2 (en) 2016-04-25 2018-04-17 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
US9791551B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Vehicular radar system with self-interference cancellation
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
AU2017221859B2 (en) 2016-09-02 2022-05-19 Preco Electronics, LLC Monitoring and alert apparatus and methods for radome performance affected by dirt or debris
WO2018051288A1 (en) 2016-09-16 2018-03-22 Uhnder, Inc. Virtual radar configuration for 2d array
DE102016223068A1 (en) * 2016-11-23 2018-05-24 Robert Bosch Gmbh Method for detecting blindness in radar sensors for motor vehicles
WO2018146632A1 (en) 2017-02-10 2018-08-16 Uhnder, Inc. Radar data buffering
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
US10908272B2 (en) 2017-02-10 2021-02-02 Uhnder, Inc. Reduced complexity FFT-based correlation for automotive radar
US10444341B2 (en) * 2017-03-06 2019-10-15 GM Global Technology Operations LLC Road clutter mitigation
DE202017103676U1 (en) 2017-06-21 2018-09-24 Sick Ag Radar device for detecting an object in a surveillance area
US10794992B2 (en) 2017-07-18 2020-10-06 Veoneer Us, Inc. Apparatus and method for detecting and correcting for blockage of an automotive radar sensor
JP6937631B2 (en) * 2017-07-25 2021-09-22 日立Astemo株式会社 Radar device
JP7033375B2 (en) * 2017-09-29 2022-03-10 株式会社デンソーテン Radar device and adjustment method of radar device
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
WO2020003349A1 (en) * 2018-06-25 2020-01-02 株式会社ソシオネクスト Frequency sweep circuit and radar device
WO2020049648A1 (en) * 2018-09-05 2020-03-12 株式会社ソシオネクスト Sensing method and sensing device
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
EP3671257A1 (en) 2018-12-20 2020-06-24 Sick Ag Secure radar device and method for securely detecting an object
US11681017B2 (en) 2019-03-12 2023-06-20 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
DE102019111679A1 (en) * 2019-05-06 2020-11-12 S.M.S Smart Microwave Sensors Gmbh Procedure for recording road users
DE102019208217A1 (en) * 2019-06-05 2020-12-10 Volkswagen Aktiengesellschaft Method and device for monitoring a sensor for detecting surroundings
US11899126B2 (en) 2020-01-13 2024-02-13 Uhnder, Inc. Method and system for multi-chip operation of radar systems
US11127301B1 (en) 2020-03-10 2021-09-21 Denso Corporation Systems and methods for adapting operation of an assistance system according to the presence of a trailer
DE102020203370A1 (en) 2020-03-17 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for detecting sensor blindness in a radar sensor of a vehicle
DE102021101247B4 (en) 2021-01-21 2023-05-04 Audi Aktiengesellschaft Method for determining performance information describing potential degradation for a radar sensor, motor vehicle, computer program and electronically readable data carrier
CN113009434A (en) * 2021-02-20 2021-06-22 纳瓦电子(上海)有限公司 Millimeter wave radar failure auxiliary device and method thereof
DE112022004328T5 (en) * 2021-09-06 2024-06-27 Denso Corporation RADAR DEVICE

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372234A (en) * 1991-06-21 1992-12-25 Fujitsu Ltd Transmission power control system
US5517196A (en) * 1992-08-14 1996-05-14 Pakett; Allan G. Smart blind spot sensor with object ranging
US5345470A (en) * 1993-03-31 1994-09-06 Alexander Richard O Methods of minimizing the interference between many multiple FMCW radars
GB9401361D0 (en) * 1994-01-25 1994-03-23 Philips Electronics Uk Ltd A radar system
JP3639056B2 (en) * 1996-08-16 2005-04-13 富士通株式会社 Radar device failure determination device
JP3428009B2 (en) * 1998-07-03 2003-07-22 トヨタ自動車株式会社 Radar equipment for vehicles
JP4564611B2 (en) * 1999-08-04 2010-10-20 本田技研工業株式会社 Radar equipment
DE19953790A1 (en) * 1999-11-09 2001-05-10 Bosch Gmbh Robert Object detection system for cars has a multiple beam FMCW radar sensor mounted on the car which measures the distance and speed of reflecting objects
US7852462B2 (en) * 2000-05-08 2010-12-14 Automotive Technologies International, Inc. Vehicular component control methods based on blind spot monitoring
US6469659B1 (en) * 2001-05-03 2002-10-22 Delphi Technologies, Inc. Apparatus and method for detecting radar obstruction
US6686872B2 (en) * 2001-08-10 2004-02-03 Honeywell International Inc. System and method for in-place, automated detection of radome condition
JP3988571B2 (en) * 2001-09-17 2007-10-10 株式会社デンソー Radar equipment
DE10209927B4 (en) * 2002-03-07 2004-04-29 Daimlerchrysler Ag Performance monitoring for radar systems
JP2007051888A (en) * 2005-08-16 2007-03-01 Mitsubishi Electric Corp Radar system
WO2009123957A1 (en) * 2008-03-31 2009-10-08 Valeo Radar Systems, Inc. Automotive radar sensor blockage detection apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010099988A1 *

Also Published As

Publication number Publication date
WO2010099988A1 (en) 2010-09-10
DE102009001265A1 (en) 2010-09-09
US20120050093A1 (en) 2012-03-01
US9140780B2 (en) 2015-09-22

Similar Documents

Publication Publication Date Title
EP2404191A1 (en) Radar sensor having blindness recognition device
EP1478942B1 (en) Radar sensor for motor vehicles with antenna sidelobe pointing at the road surface
EP1856555B1 (en) Motor vehicle radar system provided with an automatic function for measuring pre-crash speed
EP2936197B1 (en) Method for maintaining a warning signal in a motor vehicle on the basis of the presence of a target object in a warning region, in particular a blind spot region, corresponding driver assistance system, and motor vehicle
DE102006049879B4 (en) Radar system for automobiles
EP2391908B1 (en) Method for the detection of precipitation using a radar locating device for motor vehicles
DE69709100T2 (en) RADAR SYSTEM FOR VEHICLES
EP2392944B1 (en) Radar sensor and method for detecting precipitation with a radar sensor
EP2401633B1 (en) Fmcw radar locating apparatus having a device for detecting a radome coating
WO2014095965A1 (en) Method for setting a detection threshold for a received signal of a frequency-modulated continuous wave radar sensor of a motor vehicle on the basis of the noise level, radar sensor and motor vehicle
EP2401630B1 (en) Method for detecting icing at an angle-resolving radar sensor in a driver assistance system for motor vehicles
EP2376939A1 (en) Fmcw radar sensor for motor vehicles
EP2391909B1 (en) Method for the detection of precipitation using a radar locating device for motor vehicles
EP2659284A1 (en) Radar sensor for motor vehicles
EP1131651B1 (en) Method and device for identifying the state of a system for effecting the automatic longitudinal and/or lateral control of a motor vehicle
DE102009001239A1 (en) Method for detecting sensitivity losses of an FMCW radar detector by diffuse loss sources
EP2549289A2 (en) Detection of a mal-adjustment of a radar sensor of a vehicle
WO2015028175A1 (en) Radar sensor for motor vehicles
WO2004089678A1 (en) System for automatic distance control

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160302

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160713