EP2401552B1 - Method for autolytic combustion of sludge - Google Patents

Method for autolytic combustion of sludge Download PDF

Info

Publication number
EP2401552B1
EP2401552B1 EP10706501A EP10706501A EP2401552B1 EP 2401552 B1 EP2401552 B1 EP 2401552B1 EP 10706501 A EP10706501 A EP 10706501A EP 10706501 A EP10706501 A EP 10706501A EP 2401552 B1 EP2401552 B1 EP 2401552B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
sludge
slurry
combustion
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10706501A
Other languages
German (de)
French (fr)
Other versions
EP2401552A1 (en
Inventor
Kaden Michael
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FRODENO CHRISTA JOSEFINE
Original Assignee
Frodeno Christa Josefine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frodeno Christa Josefine filed Critical Frodeno Christa Josefine
Priority to PL10706501T priority Critical patent/PL2401552T3/en
Publication of EP2401552A1 publication Critical patent/EP2401552A1/en
Application granted granted Critical
Publication of EP2401552B1 publication Critical patent/EP2401552B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/12Sludge, slurries or mixtures of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/00001Exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50213Preheating processes other than drying or pyrolysis

Definitions

  • the invention relates to a method for the automatic combustion of sludge.
  • sludges for their disposal are self-contained, that burned without external thermal energy.
  • Such sludges can be formed in particular by sewage sludge.
  • the mechanically dewatered sludge is fed to a dryer, for example a drum, disc or stacker dryer, by methods known in the art.
  • the sludge dried there is then fed to a combustion unit, for example a fluidized bed furnace, where it is incinerated.
  • the running of the combustion unit, hot flue gas is used in these methods as a heating medium in the dryer.
  • a major disadvantage here is that the design effort and thus the cost of implementing the method is undesirably large.
  • a further disadvantage is that during drying of the sludge in the dryer, in particular when the sludge is sewage sludge, exhaust gases with organic constituents are formed which have to be filtered out with an exhaust system such as activated carbon filters. This represents another significant cost factor.
  • sewage sludge but also other protein-containing sludges change their physical properties at a solids content of about 30-70% in the way that they go through the so-called glue phase.
  • the viscosity of the sludge increases significantly and there are problems in conveying the sludge.
  • the sludge is heated to a temperature of, for example, greater than 180 ° C, the long-chain molecules contained in the sludge break up and the sludge hydrolyzes, and thus no glue phase is produced when the dry matter increases and the sludge has a much lower viscosity.
  • the DE 31 03 417 A1 relates to a process for the oxidation of solids and aqueous sludges, in particular solid waste such as waste and sewage sludge in an oven.
  • aqueous sludges, especially sewage sludge in a predetermined amount with solids, especially crushed combustible solid waste (garbage), mixed intensively, fed without dewatering in the oven and burned under pressure, strigwelt or gasified.
  • the EP 0 304 783 A1 relates to a process for burning aqueous sewage sludge in fluidized bed, wherein aqueous mixtures of sewage sludge and TDI residues having a solids content of 25 to 98 wt .-% and their content of TDI residue 25 to 95 wt .-%, based on The solids content is burned without further input of energy carrier.
  • the invention has for its object to provide a method of the type mentioned, by means of which a cost-effective and efficient combustion of sludge is made possible without additional thermal energy supply.
  • the inventive method is used for the automatic combustion of sludge with a high water content.
  • the sludge is heated under pressure before being fed to a combustion unit in a heat exchanger, so that the water contained in the sludge does not evaporate but remains in a liquid phase.
  • the sludge to be incinerated has a high water content because prior mechanical dehydration typically can not lower the water content of the sludge to below about 75%.
  • the feed of this hydrous sludge to the incineration unit takes place in conduits through which the sludge is pumped at high pressures, typically at least 40 bar. In these lines, the sludge is heated by means of the heat exchanger. Due to the high pressure, the sludge can absorb large amounts of heat without the water evaporating in the sludge. The sludge water thus remains in the liquid phase and the sludge thus remains pumpable.
  • the sludge When the sludge is heated under pressure, it hydrolyzes, ie large organic molecules are broken up and the viscosity of the sludge decreases considerably. This is an essential prerequisite for a controlled supply of sludge to the combustion unit and a compact design of the system components. There, the pre-heated sludge can be burned energy-efficient.
  • the pumpability of the sludge to be supplied to the heat exchanger is considerably improved by recycling a portion of the sludge heated in the heat exchanger and mixing it with fresh sludge forming sludge before being fed to the heat exchanger under pressure.
  • the temperature of the raw sludge mixed with the recycled sludge is increased so that in this case the formation of a glue phase in the heat exchanger
  • Shape of a tough mud avoided or at least partially reduced.
  • this raw sludge is preheated before entering the heat exchanger.
  • the raw sludge is heated to such an extent by the mixture with sludge already passed through the heat exchanger that the mixture thus obtained is at such a high temperature that it no longer passes through any glue phase in the heat exchanger.
  • the mixture is made so that it passes through the glue phase only very short and incomplete in the heat exchanger. In any case, achieved by the sludge recirculation avoidance of the glue phase is achieved, that the sludge remains well pumpable when passing through the heat exchanger and thus can pass well this.
  • Essential for an automatic combustion of the sludge without external thermal energy supply in this case is that the heat exchanger for heating the sludge, the flue gas is supplied as a heat exchange medium.
  • the heat exchanger for heating the sludge is designed as a thermal oil heat exchanger, wherein the thermal oil is heated by means of the flue gas.
  • a heat exchanger with high-pressure steam or high-pressure hot water can be used as a heat exchange medium.
  • thermal oil as a heat carrier between the flue gas and the sludge is an alternative embodiment of the method. It is particularly advantageous, however, that the heat exchanger for heating the Sludge the flue gas is supplied as a heat exchange medium. Coils are expediently installed for heating the sludge under pressure in the flue gas duct behind a fluidized bed combustion as a combustion unit. This could also be realized by immersion heating surfaces built into the fluidized-bed combustion or by radiant heating surfaces in the combustion chamber.
  • This method has as an additional advantage that the sludge can be heated directly by the exhaust gas stream, so that it is possible to dispense with thermal oil heat exchangers or a corresponding unit.
  • FIG. 1 shows schematically the structure of a known from the prior art plant 1a for the spontaneous combustion of sludge.
  • sewage sludge is always mentioned as an example of a sludge to be disposed of.
  • the sewage sludge is first supplied from a reservoir 2 of a mechanical drainage 3, which is formed by a press or the like. There, the water content of sewage sludge is reduced by mechanical means to about 75%. From the mechanical dewatering the sewage sludge is fed to a system 4a for self-combustion to burn the sewage sludge without additional thermal energy supply.
  • the sewage sludge is first fed via a line 5 to a dryer 6, which is typically designed as a tube dryer. In the dryer 6, the sewage sludge is dried. In order to filter the resulting exhaust gases, the dryer 6 is associated with a filter system, not shown, such as an activated carbon filter.
  • the exhaust air of the dryer 6 is discharged from the system 4a via a line 7.
  • the sewage sludge dried in the drier 6 is fed via a line 8 to a combustion unit, which is formed, for example, by a fluidized-bed furnace 9.
  • the combustion unit is supplied via a line 10 combustion air.
  • the resulting in the fluidized bed combustion 9 hot flue gas is carried out via a line 11 from the fluidized bed furnace 9 and fed to the dryer 6 as a heating medium.
  • the combustion air is heated by using the heat of the noise gas.
  • the Figures 2 and 3 show embodiments of the system 1 according to the invention for the spontaneous combustion of sludge, which is again exemplified as sewage sludge.
  • the sewage sludge is supplied from a reservoir 2 to a mechanical drainage 3 such as a press. There, the mechanical content of the water content sewage sludge is reduced to about 75%.
  • the sewage sludge is fed to a system 4 for automatic combustion.
  • the sewage sludge Due to the high pressure prevailing in the line 5, the sewage sludge remains liquid when heated and can thus be supplied with compact plant components, in particular lines 5 of the combustion unit.
  • the emerging from the combustion unit hot flue gases are used to heat the sewage sludge, whereby a closed system 4 is obtained without external thermal energy supply.
  • the sludge is fed in the line 5 a combustion unit in the form of a fluidized bed 9.
  • the combustion unit (as in the following embodiment according to FIG. 3 ) be formed by a cyclone furnace or a rotary kiln.
  • the sewage sludge in the line 5 is heated by means of a heat exchanger system in the form of a thermal oil heat exchanger 13.
  • the heating of the sludge is carried out under high pressure, so that the water contained in the sludge remains in the liquid phase until it is released during combustion.
  • the flue gas generated in the fluidized bed combustion 9 during the combustion of the sewage sludge is fed via a line 14 to an air preheater 15 to heat there via a line 16 to the system 4 supplied combustion air which is fed to the fluidized bed 9.
  • the flue gas stream in the line 14 ' is supplied to the thermal oil heat exchanger 13 for heating the thermal oil.
  • the flue gas stream is fed via line 14 "to another air preheater 17 for a first heating of the combustion air and then via line 14"'out of the system executed.
  • the air preheaters 15, 17 for heating the combustion air form further heat exchanger systems.
  • FIG. 3 points to the embodiment according to FIG. 2 an even more simplified and therefore more cost-effective construction.
  • the sewage sludge is in turn supplied from the reservoir 2 to a mechanical drainage 3 and then fed via the line 5 of the fluidized bed furnace 9.
  • no thermal oil heat exchanger 13 is required for heating the sewage sludge in the line 5, but only a simple heat exchanger 18.
  • This heat exchanger 18, the flue gas generated in the fluidized bed 9, and performed via a line 19 is supplied as a heat exchange medium.
  • the heat exchanger 18 is preceded by an air preheater 20 in the flue gas flow as another heat exchanger system, wherein in the air preheater 20 via a line 21 of the fluidized bed combustion 9 supplied combustion air is heated.
  • the flue gas stream at the outlet of the heat exchanger 18 is discharged from the system 4 via a line 19 '.
  • the heat exchangers for sludge heating and air preheating are usefully installed in the flue gas duct behind the combustion.
  • FIG. 4 shows a TQ diagram, that is, a temperature-heat diagram for the system 1 according to FIG. 2 ,
  • I the temperature-heat curve of the discharged from the fluidized bed 9 flue gas.
  • the direct outlet of the flue gas from the fluidized bed furnace 9 is designated by a.
  • the temperature of the flue gas at the exit from the fluidized bed combustion 9 is about 800 ° C, as shown FIG. 4 is apparent.
  • the temperature-heat curve forms a monotonically decreasing straight line up to the point b, which forms the exit of the flue gas from the system 4.
  • the outlet temperature of the flue gas is about 270 ° C.
  • the flue gas is supplied within the system 4 the two air preheaters 15, 17 and the thermal oil heat exchanger 13, where the flue gas emits heat to the local heat exchanger media.
  • FIG. 4 is denoted by II the temperature-heat curve of heated in the air preheater 15, the fluidized bed combustion 9 supplied combustion air.
  • FIG. 4 III denotes the temperature-heat curve of the thermal oil of the thermal oil heat exchanger 13.
  • FIG. 4 IV denotes the temperature-heat curve of the heated in the air preheater 17, introduced into the system 4 cold air.
  • the slope of the curve II is greater than the slope of the curve I, since the amount of air in the air preheater 15 is considerably less than the amount of flue gas.
  • the flue gas After heating the air in the air preheater 15, the flue gas is fed to the thermal oil heat exchanger 13. The flue gas releases heat to the thermal oil so that the flue gas cools from the temperature of 654 ° C (point c on curve I) to a temperature of about 375 ° C (point d on curve I).
  • the flue gas is supplied from the outlet of the thermal oil heat exchanger 13 to the further air preheater 17, where the introduced into the system 4 cold air is heated.
  • FIG. 4 can be seen by the heat emission of the flue gas, the air in the air preheater 17 from the temperature 375 ° C (point d on the curve I) to the outlet temperature 270 ° C (point b cooled on the curve I).
  • the air in the air preheater 17 is heated from the inlet temperature 20 ° C (right end of the curve IV) to about 319 ° C (left end of the curve IV).
  • Appendix 1 are to be interpreted as meaning that the exit temperature of the flue gas at exit from the system 4 is as low as possible, so that much heat of the flue gas is transferred to the components of the system 1, namely the thermal oil heat exchanger 13 and the air preheaters 15, 17.
  • This requirement is in accordance with Appendix 1a FIG. 2 relatively well fulfilled, since the starting temperature of the flue gas (point b on the curve I) is about 270 ° C.
  • Another requirement is that the distances between the curves II, III, IV to the temperature-heat curve of the flue gas are as large as possible, since then large temperature differences are realized in the system components, whereby the sizes of the system components can be selected small. Also this requirement is how out FIG. 4 can be seen in Appendix 1 according to FIG. 2 relatively well met.
  • FIG. 5 shows a TQ diagram for the system 1 according to FIG. 3 , Analogous to FIG. 4 is also referred to in the TQ diagram with I the temperature-heat curve of the flue gas.
  • a is the direct exit of the flue gas from the fluidized bed 9, where the temperature of the flue gas is about 800 ° C.
  • the temperature of the flue gas decreases until it leaves the system 4 to an outlet temperature of 182 ° C (point b of the curve I).
  • FIG. 5 II denotes the temperature-heat curve of the combustion air in the air preheater 20.
  • FIG. 5 III denotes the temperature of the sewage sludge, denoted by d (right end of curve III) the entry of the sewage sludge in the heat exchanger 18, and e designates the exit of the sewage sludge from the heat exchanger 18 or the inlet of sewage sludge in the fluidized bed 9 is.
  • the flue gas is cooled from 800 ° C (point a of the curve I) to a temperature of about 615 ° C (point c of curve I).
  • the combustion air for the fluidized bed combustion 9 in the air preheater 20 from a starting temperature of 20 ° C when entering the system 4 (right end of the curve II) is heated to a temperature of 548 ° C (left end of the curve II). Since the amount of flue gas is considerably larger than the amount of combustion air, the slope of the curve I for the flue gas is smaller than the slope of the curve II for the combustion air.
  • the flue gas is cooled from the temperature 615 ° C (point c on the curve I) to the outlet temperature of the system 4 of 182 ° C (point b on the curve I).
  • the sewage sludge is heated from a temperature of 20 ° C (point d on curve III) to a temperature of about 288 ° C (point e on curve III). Since the sewage sludge is under pressure, the water of the sludge remains in the liquid phase.
  • the invention is not limited to the specific designs of the systems according to the FIGS. 4 and 5 limited.
  • Plant designs are possible in which an exit temperature of the flue gas is obtained from the system 4, which is at 80 ° C or even lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Treatment Of Sludge (AREA)
  • Air Supply (AREA)

Description

Die Erfindung betrifft ein Verfahren zur selbstgängigen Verbrennung von Schlamm.The invention relates to a method for the automatic combustion of sludge.

Bei dem in Rede stehenden Verfahren werden Schlämme zu deren Entsorgung selbstgängig, das heißt ohne äußere thermische Energiezufuhr verbrannt. Derartige Schlämme können insbesondere von Klärschlämmen gebildet sein.In the process in question, sludges for their disposal are self-contained, that burned without external thermal energy. Such sludges can be formed in particular by sewage sludge.

Nach einer mechanischen Entwässerung mittels Pressen, Dekanter oder dergleichen weisen diese typischerweise einen Feststoffgehalt von etwa 18 bis 30 Prozent auf. Um diese Schlämme zu Zwecken der Entsorgung weiter zu behandeln wird nach aus dem Stand der Technik bekannten Verfahren der mechanisch entwässerte Schlamm einem Trockner, zum Beispiel einem Trommel-, Scheiben- oder Etagentrockner zugeführt. Der dort getrocknete Schlamm wird dann einer Verbrennungseinheit, beispielsweise einer Wirbelschichtfeuerung, zugeführt und dort verbrannt. Das aus der Verbrennungseinheit ausgeführte, heiße Rauchgas wird bei diesen Verfahren als Heizmedium im Trockner genutzt.After mechanical dewatering by means of presses, decanters or the like, these typically have a solids content of about 18 to 30 percent. To further treat these sludges for disposal purposes, the mechanically dewatered sludge is fed to a dryer, for example a drum, disc or stacker dryer, by methods known in the art. The sludge dried there is then fed to a combustion unit, for example a fluidized bed furnace, where it is incinerated. The running of the combustion unit, hot flue gas is used in these methods as a heating medium in the dryer.

Ein wesentlicher Nachteil hierbei ist, dass der konstruktive Aufwand und damit auch der Kostenaufwand zur Durchführung des Verfahrens unerwünscht groß ist. Weiterhin ist nachteilig, dass bei der Trocknung des Schlamms im Trockner, insbesondere dann, wenn es sich bei dem Schlamm um Klärschlamm handelt, Abgase mit organischen Bestandteilen entstehen, die mit einer Abgasanlage wie Aktivkohlefiltern ausgefiltert werden müssen. Dies stellt einen weiteren wesentlichen Kostenfaktor dar.A major disadvantage here is that the design effort and thus the cost of implementing the method is undesirably large. A further disadvantage is that during drying of the sludge in the dryer, in particular when the sludge is sewage sludge, exhaust gases with organic constituents are formed which have to be filtered out with an exhaust system such as activated carbon filters. This represents another significant cost factor.

Insbesondere Klärschlämme, aber auch andere eiweißhaltige Schlämme verändern Ihre Stoffwerte bei einem Feststoffgehalt von ca. 30 - 70 % in der Art, dass sie die sogenannte Leimphase durchlaufen. Hierbei erhöht sich die Viskosität des Schlamms erheblich und es treten Probleme beim Fördern des Schlamms auf. Wird der Schlamm jedoch auf eine Temperatur von zum Beispiel größer 180 °C erhitzt so brechen die im Schlamm enthaltenen langkettigen Moleküle auf, der Schlamm hydrolisiert, und somit entsteht bei Erhöhung der Trockensubstanz keine Leimphase und der Schlamm hat eine wesentlich geringere Viskosität.In particular sewage sludge, but also other protein-containing sludges change their physical properties at a solids content of about 30-70% in the way that they go through the so-called glue phase. Here, the viscosity of the sludge increases significantly and there are problems in conveying the sludge. However, if the sludge is heated to a temperature of, for example, greater than 180 ° C, the long-chain molecules contained in the sludge break up and the sludge hydrolyzes, and thus no glue phase is produced when the dry matter increases and the sludge has a much lower viscosity.

Die DE 31 03 417 A1 betrifft ein Verfahren zur Oxidation von festen Stoffen und wässrigen Schlämmen, insbesondere von festen Abfallstoffen wie Müll und Klärschlämmen in einem Ofen. Gemäß diesem Verfahren werden wässrige Schlämme, insbesondere Klärschlämme, in einer vorgebbaren Menge mit festen Stoffen, insbesondere zerkleinerten brennbaren, festen Abfallstoffen (Müll), intensiv vermischt, ohne Entwässerung in den Ofen eingespeist und unter Druck verbrannt, verschwelt oder vergast.The DE 31 03 417 A1 relates to a process for the oxidation of solids and aqueous sludges, in particular solid waste such as waste and sewage sludge in an oven. According to this method, aqueous sludges, especially sewage sludge, in a predetermined amount with solids, especially crushed combustible solid waste (garbage), mixed intensively, fed without dewatering in the oven and burned under pressure, verschwelt or gasified.

Die EP 0 304 783 A1 betrifft ein Verfahren zum Verbrennen von wässrigen Klärschlämmen in Wirbelschichtöfen, wobei wässrige Mischungen von Klärschlämmen und TDI-Rückständen, die einen Feststoffgehalt von 25 bis 98 Gew.-% aufweisen und deren Anteil an TDI-Rückstand 25 bis 95 Gew.-%, bezogen auf den Feststoffgehalt, beträgt, ohne weitere Energieträgerzufuhr verbrannt werden.The EP 0 304 783 A1 relates to a process for burning aqueous sewage sludge in fluidized bed, wherein aqueous mixtures of sewage sludge and TDI residues having a solids content of 25 to 98 wt .-% and their content of TDI residue 25 to 95 wt .-%, based on The solids content is burned without further input of energy carrier.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art bereitzustellen, mittels dessen eine kostengünstige und effiziente Verbrennung von Schlämmen ohne zusätzliche thermische Energiezufuhr ermöglicht wird.The invention has for its object to provide a method of the type mentioned, by means of which a cost-effective and efficient combustion of sludge is made possible without additional thermal energy supply.

Zur Lösung dieser Aufgabe sind die Merkmale des Anspruchs 1 vorgesehen. Vorteilhafte Ausführungsformen und zweckmäßige Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.To solve this problem, the features of claim 1 are provided. Advantageous embodiments and expedient developments of the invention are described in the subclaims.

Das erfindungsgemäße Verfahren dient zur selbstgängigen Verbrennung von Schlamm mit hohem Wassergehalt. Der Schlamm wird vor Zuführung zu einer Verbrennungseinheit in einem Wärmetauscher unter Druck erhitzt, so dass das im Schlamm enthaltene Wasser nicht verdampft, sondern in einer flüssigen Phase bleibt.The inventive method is used for the automatic combustion of sludge with a high water content. The sludge is heated under pressure before being fed to a combustion unit in a heat exchanger, so that the water contained in the sludge does not evaporate but remains in a liquid phase.

Durch die erfindungsgemäße Erhitzung des Schlamms in einem Wärmetauscher vor der Zuführung zur Verbrennungseinheit kann eine signifikante Reduzierung des Kostenaufwands bei der selbstgängigen Verbrennung von Schlämmen erzielt werden. Dies beruht im Wesentlichen darauf, dass bei dem Verfahren kein kostenaufwendiger Trockner zum Trocknen von Schlamm mehr eingesetzt werden muss. Der Umstand, dass bei dem erfindungsgemäßen Verfahren kein Trockner mehr benötigt wird, ist insbesondere bei der Verbrennung von Klärschlamm vorteilhaft. Die in einem Trockner beim Trocknen von Klärschlamm auffallenden Abgase entfallen nun, so dass auch hierfür keine entsprechende Abgasbehandlung, insbesondere zur Abscheidung von organischen Bestandteilen und auch Geruchsstoffen mehr vorgesehen werden muss, da diese bei der Verbrennung vollkommen zersetzt werden.By heating the sludge in a heat exchanger according to the invention before it is fed to the combustion unit, a significant reduction in the cost of self-contained sludge incineration can be achieved. This is essentially due to the fact that in the process no costly dryer for drying sludge must be used more. The fact that in the method according to the invention no more dryer is needed, is particularly advantageous in the combustion of sewage sludge. The in a dryer when drying sewage sludge striking exhaust gases are now eliminated, so that there is no corresponding Exhaust gas treatment, especially for the separation of organic constituents and odors must be provided more, since they are completely decomposed during combustion.

Außerdem werden die Probleme, welche in Verbindung mit der Leimphase bei der Erhöhung des Feststoffgehalts auftreten, gelöst.In addition, the problems associated with the glue phase in increasing the solids content are solved.

Der zu verbrennende Schlamm weist einen hohen Wassergehalt auf, da durch eine vorab durchzuführende mechanische Entwässerung der Wassergehalt des Schlammes typischerweise nicht unter etwa 75 % gesenkt werden kann. Die Zufuhr dieses wasserhaltigen Schlamms zur Verbrennungseinheit erfolgt in Leitungen, durch welche der Schlamm mit hohen Drücken, die typischerweise bei mindestens 40 bar liegen, gepumpt werden. In diesen Leitungen wird der Schlamm mittels des Wärmetauschers erhitzt. Aufgrund des hohen Drucks kann der Schlamm hohe Wärmemengen aufnehmen, ohne dass hierbei das Wasser im Schlamm verdampft. Das Schlammwasser verbleibt somit in der flüssigen Phase und der Schlamm bleibt somit weiter pumpfähig. Bei der Erhitzung des Schlamms unter Druck, hydrolisiert dieser, das heißt große organische Moleküle werden aufgebrochen und die Viskosität des Schlammes verringert sich erheblich. Dies ist eine wesentliche Voraussetzung für eine kontrollierte Zufuhr des Schlamms zur Verbrennungseinheit und eine kompakte Auslegung der Anlagenkomponenten. Dort kann der vorab erhitzte Schlamm energieeffizient verbrannt werden.The sludge to be incinerated has a high water content because prior mechanical dehydration typically can not lower the water content of the sludge to below about 75%. The feed of this hydrous sludge to the incineration unit takes place in conduits through which the sludge is pumped at high pressures, typically at least 40 bar. In these lines, the sludge is heated by means of the heat exchanger. Due to the high pressure, the sludge can absorb large amounts of heat without the water evaporating in the sludge. The sludge water thus remains in the liquid phase and the sludge thus remains pumpable. When the sludge is heated under pressure, it hydrolyzes, ie large organic molecules are broken up and the viscosity of the sludge decreases considerably. This is an essential prerequisite for a controlled supply of sludge to the combustion unit and a compact design of the system components. There, the pre-heated sludge can be burned energy-efficient.

Erfindungsgemäß wird die Pumpfähigkeit des dem Wärmetauscher zuzuführenden Schlamms dadurch noch erheblich verbessert, dass ein Teil des im Wärmetauscher erhitzten Schlamms rückgeführt und neuem, Rohschlamm bildenden Schlamm vor Zuführung zum Wärmetauscher unter Druck zugemischt wird. Dadurch wird die Temperatur des mit dem rückgeführten Schlamm gemischten Rohschlamms so erhöht, dass bei diesem im Wärmetauscher die Bildung einer Leimphase inAccording to the invention, the pumpability of the sludge to be supplied to the heat exchanger is considerably improved by recycling a portion of the sludge heated in the heat exchanger and mixing it with fresh sludge forming sludge before being fed to the heat exchanger under pressure. As a result, the temperature of the raw sludge mixed with the recycled sludge is increased so that in this case the formation of a glue phase in the heat exchanger

Form eines zähen Schlamms vermieden oder zumindest teilweise reduziert wird.Shape of a tough mud avoided or at least partially reduced.

Durch die Rückführung eines Teils des im Wärmetauscher erhitzten Schlamms und dessen Mischung mit Rohschlamm, das heißt neuem, erstmalig dem Wärmetauscher zugeführten Schlamm, wird dieser Rohschlamm bereits vor Eintritt in den Wärmetauscher vorerhitzt. Vorzugsweise wird der Rohschlamm durch die Mischung mit bereits durch den Wärmetauscher gelaufenen Schlamm so stark erhitzt, dass die so erhaltene Mischung bei so hoher Temperatur liegt, dass sie im Wärmetauscher überhaupt keine Leimphase mehr durchläuft. Alternativ erfolgt die Mischung so, dass diese dann im Wärmetauscher nur sehr kurz und unvollständig die Leimphase durchläuft. In jedem Fall wird die durch die Schlammrückführung erzielte Vermeidung der Leimphase erreicht, dass der Schlamm bei Durchgang durch den Wärmetauscher gut pumpfähig bleibt und diesen somit gut passieren kann.By returning a portion of the heated in the heat exchanger sludge and its mixture with raw sludge, that is new, the first time the heat exchanger supplied sludge, this raw sludge is preheated before entering the heat exchanger. Preferably, the raw sludge is heated to such an extent by the mixture with sludge already passed through the heat exchanger that the mixture thus obtained is at such a high temperature that it no longer passes through any glue phase in the heat exchanger. Alternatively, the mixture is made so that it passes through the glue phase only very short and incomplete in the heat exchanger. In any case, achieved by the sludge recirculation avoidance of the glue phase is achieved, that the sludge remains well pumpable when passing through the heat exchanger and thus can pass well this.

Wesentlich für eine selbstgängige Verbrennung des Schlamms ohne äußere thermische Energiezufuhr ist hierbei, dass dem Wärmetauscher zum Erhitzen des Schlamms das Rauchgas als Wärmetauschermedium zugeführt wird.Essential for an automatic combustion of the sludge without external thermal energy supply in this case is that the heat exchanger for heating the sludge, the flue gas is supplied as a heat exchange medium.

Gemäß einer weiteren Variante der Erfindung ist der Wärmetauscher zum Erhitzen des Schlamms als Thermalöl-Wärmetauscher ausgebildet, wobei mittels des Rauchgases das Thermalöl erhitzt wird. Anstelle des Thermalöl-Wärmetauschers kann auch ein Wärmetauscher mit Hochdruckdampf oder Hochdruckheißwasser als Wärmetauschermedium verwendet werden.According to a further variant of the invention, the heat exchanger for heating the sludge is designed as a thermal oil heat exchanger, wherein the thermal oil is heated by means of the flue gas. Instead of the thermal oil heat exchanger and a heat exchanger with high-pressure steam or high-pressure hot water can be used as a heat exchange medium.

Bereits mit dieser Variante wird eine effiziente und kostengünstige Verbrennung des Schlamms ermöglicht.Already with this variant, an efficient and cost-effective combustion of the sludge is possible.

Die Verwendung von Thermalöl als Wärmeträger zwischen dem Rauchgas und dem Schlamm stellt eine alternative Ausführungsart des Verfahrens dar. Besonders vorteilhaft ist jedoch, dass dem Wärmetauscher zum Erhitzen des Schlamms das Rauchgas als Wärmetauschermedium zugeführt wird. Rohrschlangen sind dabei zum Erhitzen des Schlamms unter Druck zweckmäßig in den Rauchgaskanal hinter einer Wirbelschichtverbrennung als Verbrennungseinheit eingebaut. Diese könnte auch durch in die Wirbelschichtverbrennung eingebaute Tauchheizflächen oder durch Strahlungsheizflächen im Feuerraum verwirklicht werden.The use of thermal oil as a heat carrier between the flue gas and the sludge is an alternative embodiment of the method. It is particularly advantageous, however, that the heat exchanger for heating the Sludge the flue gas is supplied as a heat exchange medium. Coils are expediently installed for heating the sludge under pressure in the flue gas duct behind a fluidized bed combustion as a combustion unit. This could also be realized by immersion heating surfaces built into the fluidized-bed combustion or by radiant heating surfaces in the combustion chamber.

Dieses Verfahren weist als zusätzlichen Vorteil auf, dass der Schlamm unmittelbar durch den Abgasstrom erhitzt werden kann, so dass auf Thermalöl Wärmetauscher oder eine entsprechende Einheit verzichtet werden kann.This method has as an additional advantage that the sludge can be heated directly by the exhaust gas stream, so that it is possible to dispense with thermal oil heat exchangers or a corresponding unit.

Damit weist die Anlage zur Durchführung dieser Verfahrensvariante einen besonders kompakten und kostengünstigen Aufbau auf, wobei insbesondere auch die Baugrößen und Gewichte der Anlagenkomponenten gegenüber der Variante mit einem zwischengeschalteten Wärmeträger noch weiter signifikant reduziert sind.Thus, the system for implementing this method variant on a particularly compact and inexpensive construction, in particular, the sizes and weights of the system components compared to the variant with an intermediate heat transfer medium are further significantly reduced.

Die Erfindung wird im Folgenden anhand der Zeichnungen erläutert. Es zeigen:

Figur 1:
Anlage zur selbstgängigen Verbrennung von Schlamm gemäß dem Stand der Technik.
Figur 2:
Erstes Ausführungsbeispiel einer erfindungsgemäßen Anlage zur selbstgängigen Verbrennung von Schlamm.
Figur 3:
Zweites Ausführungsbeispiel einer erfindungsgemäßen Anlage zur selbstgängigen Verbrennung von Schlamm.
Figur 4:
T-Q-Diagramm für die Anlage gemäß Figur 2.
Figur 5:
T-Q-Diagramm für die Anlage gemäß Figur 3.
The invention will be explained below with reference to the drawings. Show it:
FIG. 1:
Plant for the automatic incineration of sludge according to the prior art.
FIG. 2:
First embodiment of a plant according to the invention for the automatic combustion of sludge.
FIG. 3:
Second embodiment of a plant according to the invention for the automatic combustion of sludge.
FIG. 4:
TQ diagram for the system according to FIG. 2 ,
FIG. 5:
TQ diagram for the system according to FIG. 3 ,

Figur 1 zeigt schematisch den Aufbau einer aus dem Stand der Technik bekannten Anlage 1a zur selbstgängigen Verbrennung von Schlamm. Dabei ist im Folgenden stets von Klärschlamm als Beispiel für einen zu entsorgenden Schlamm die Rede. FIG. 1 shows schematically the structure of a known from the prior art plant 1a for the spontaneous combustion of sludge. In the following, sewage sludge is always mentioned as an example of a sludge to be disposed of.

Der Klärschlamm wird zunächst aus einem Reservoir 2 einer mechanischen Entwässerung 3 zugeführt, die von einer Presse oder dergleichen gebildet ist. Dort wird auf mechanischem Weg der Wassergehalt des Klärschlamms auf etwa 75 % reduziert. Von der mechanischen Entwässerung wird der Klärschlamm einem System 4a zur selbstgängigen Verbrennung zugeführt um den Klärschlamm ohne zusätzliche thermische Energiezufuhr zu verbrennen. Dabei wird der Klärschlamm zuerst über eine Leitung 5 einem Trockner 6 zugeführt, der typischerweise als Röhrentrockner ausgebildet ist. In dem Trockner 6 wird der Klärschlamm getrocknet. Um dabei entstehende Abgase zu filtern ist dem Trockner 6 eine nicht dargestellte Filteranlage wie zum Beispiel ein Aktivkohlefilter zugeordnet. Die Abluft des Trockners 6 wird aus dem System 4a über eine Leitung 7 ausgeleitet.The sewage sludge is first supplied from a reservoir 2 of a mechanical drainage 3, which is formed by a press or the like. There, the water content of sewage sludge is reduced by mechanical means to about 75%. From the mechanical dewatering the sewage sludge is fed to a system 4a for self-combustion to burn the sewage sludge without additional thermal energy supply. The sewage sludge is first fed via a line 5 to a dryer 6, which is typically designed as a tube dryer. In the dryer 6, the sewage sludge is dried. In order to filter the resulting exhaust gases, the dryer 6 is associated with a filter system, not shown, such as an activated carbon filter. The exhaust air of the dryer 6 is discharged from the system 4a via a line 7.

Der im Trockner 6 getrocknete Klärschlamm wird über eine Leitung 8 einer Verbrennungseinheit zugeführt, die zum Beispiel von einer Wirbelschichtfeuerung 9 gebildet ist. Ebenso wird der Verbrennungseinheit über eine Leitung 10 Verbrennungsluft zugeführt. Das in der Wirbelschichtfeuerung 9 entstehende heiße Rauchgas wird über eine Leitung 11 aus der Wirbelschichtfeuerung 9 ausgeführt und dem Trockner 6 als Heizmedium zugeführt. Mittels einer Wärmetauschereinheit 12 wird die Verbrennungsluft unter Verwendung der Wärme des Rauschgases erhitzt.The sewage sludge dried in the drier 6 is fed via a line 8 to a combustion unit, which is formed, for example, by a fluidized-bed furnace 9. Likewise, the combustion unit is supplied via a line 10 combustion air. The resulting in the fluidized bed combustion 9 hot flue gas is carried out via a line 11 from the fluidized bed furnace 9 and fed to the dryer 6 as a heating medium. By means of a heat exchanger unit 12, the combustion air is heated by using the heat of the noise gas.

Die Figuren 2 und 3 zeigen Ausführungsbeispiele der erfindungsgemäßen Anlage 1 zur selbstgängigen Verbrennung von Schlamm, wobei dieser wieder beispielhaft als Klärschlamm ausgebildet ist. Bei beiden Ausführungsbeispielen wird der Klärschlamm aus einem Reservoir 2 einer mechanischen Entwässerung 3 wie einer Presse zugeführt. Dort wird auf mechanischem Weg der Wassergehalt des Klärschlamms auf etwa 75 % reduziert. Dann wird bei beiden Ausführungsbeispielen der Klärschlamm einem System 4 zur selbstgängigen Verbrennung zugeführt. Dort wird der Klärschlamm in einer Leitung 5 bei hohen Drücken, die typischerweise bei ca. 40 bar liegen, einer Verbrennungseinheit zugeführt, wobei jedoch der in der Leitung 5 geführte Klärschlamm zuvor unter Druck in einem Wärmetauschersystem erhitzt wird. Aufgrund des in der Leitung 5 herrschenden hohen Druckes bleibt der Klärschlamm bei der Erhitzung flüssig und kann so mit kompakten Anlagenbauteilen, insbesondere Leitungen 5 der Verbrennungseinheit zugeführt werden. Die aus der Verbrennungseinheit austretenden heißen Rauchgase werden dabei zur Erhitzung des Klärschlamms verwendet, wodurch ein geschlossenes System 4 ohne externe thermische Energiezufuhr erhalten wird.The Figures 2 and 3 show embodiments of the system 1 according to the invention for the spontaneous combustion of sludge, which is again exemplified as sewage sludge. In both embodiments, the sewage sludge is supplied from a reservoir 2 to a mechanical drainage 3 such as a press. There, the mechanical content of the water content sewage sludge is reduced to about 75%. Then, in both embodiments, the sewage sludge is fed to a system 4 for automatic combustion. There, the sewage sludge in a line 5 at high pressures, which are typically about 40 bar, fed to a combustion unit, but the run in the line 5 sewage sludge is previously heated under pressure in a heat exchanger system. Due to the high pressure prevailing in the line 5, the sewage sludge remains liquid when heated and can thus be supplied with compact plant components, in particular lines 5 of the combustion unit. The emerging from the combustion unit hot flue gases are used to heat the sewage sludge, whereby a closed system 4 is obtained without external thermal energy supply.

Bei dem Ausführungsbeispiel gemäß Figur 2 wird der Klärschlamm in der Leitung 5 einer Verbrennungseinheit in Form einer Wirbelschichtfeuerung 9 zugeführt. Alternativ kann die Verbrennungseinheit (ebenso wie beim folgenden Ausführungsbeispiel gemäß Figur 3) von einer Zyklonfeuerung oder einem Drehrohrofen gebildet sein. Der Klärschlamm in der Leitung 5 wird mittels eines Wärmetauschersystems in Form eines Thermalöl-Wärmetauschers 13 erhitzt. Die Erhitzung des Klärschlamms erfolgt unter hohem Druck, so dass das im Schlamm enthaltene Wasser bis zur Entspannung in der Verbrennung in der flüssigen Phase bleibt.In the embodiment according to FIG. 2 the sludge is fed in the line 5 a combustion unit in the form of a fluidized bed 9. Alternatively, the combustion unit (as in the following embodiment according to FIG. 3 ) be formed by a cyclone furnace or a rotary kiln. The sewage sludge in the line 5 is heated by means of a heat exchanger system in the form of a thermal oil heat exchanger 13. The heating of the sludge is carried out under high pressure, so that the water contained in the sludge remains in the liquid phase until it is released during combustion.

Das in der Wirbelschichtfeuerung 9 bei der Verbrennung des Klärschlamms generierte Rauchgas wird über eine Leitung 14 einem Luftvorwärmer 15 zugeführt, um dort über eine Leitung 16 dem System 4 zugeführte Verbrennungsluft, die der Wirbelschichtfeuerung 9 zugeführt wird, zu erhitzen. Dann wird der Rauchgasstrom in der Leitung 14' dem Thermalöl-Wärmetauscher 13 zur Erhitzung des Thermalöls zugeführt. Schließlich wird der Rauchgasstrom über die Leitung 14" einem weiteren Luftvorwärmer 17 zu einer ersten Erhitzung der Verbrennungsluft zugeführt und dann über die Leitung 14"' aus dem System ausgeführt. Die Luftvorwärmer 15, 17 zur Erhitzung der Verbrennungsluft bilden weitere Wärmetauschersysteme.The flue gas generated in the fluidized bed combustion 9 during the combustion of the sewage sludge is fed via a line 14 to an air preheater 15 to heat there via a line 16 to the system 4 supplied combustion air which is fed to the fluidized bed 9. Then, the flue gas stream in the line 14 'is supplied to the thermal oil heat exchanger 13 for heating the thermal oil. Finally, the flue gas stream is fed via line 14 "to another air preheater 17 for a first heating of the combustion air and then via line 14"'out of the system executed. The air preheaters 15, 17 for heating the combustion air form further heat exchanger systems.

Das Ausführungsbeispiel gemäß Figur 3 weist gegenüber der Ausführungsform gemäß Figur 2 einen noch weiter vereinfachten und damit noch kostengünstigeren Aufbau auf.The embodiment according to FIG. 3 points to the embodiment according to FIG. 2 an even more simplified and therefore more cost-effective construction.

Der Klärschlamm wird wiederum aus dem Reservoir 2 einer mechanischen Entwässerung 3 zugeführt und dann über die Leitung 5 der Wirbelschichtfeuerung 9 zugeführt. Im Unterschied zur Ausführungsform gemäß Figur 2 wird im vorliegenden Fall kein Thermalöl-Wärmetauscher 13 zur Erhitzung des Klärschlamms in der Leitung 5 benötigt, sondern nur ein einfacher Wärmetauscher 18. Diesem Wärmetauscher 18 wird das in der Wirbelschichtfeuerung 9 generierte, und über eine Leitung 19 ausgeführte Rauchgas als Wärmetauschermedium zugeführt. Dabei ist dem Wärmetauscher 18 im Rauchgasstrom ein Luftvorwärmer 20 als weiteres Wärmetauschersystem vorgeordnet, wobei in dem Luftvorwärmer 20 über eine Leitung 21 der Wirbelschichtfeuerung 9 zugeführte Verbrennungsluft erhitzt wird. Der Rauchgasstrom am Ausgang des Wärmetauschers 18 wird über eine Leitung 19' aus dem System 4 ausgeleitet. Die Wärmetauscher zur Schlammerhitzung und Luftvorwärmung sind sinnvollerweise im Rauchgaskanal hinter der Verbrennung eingebaut.The sewage sludge is in turn supplied from the reservoir 2 to a mechanical drainage 3 and then fed via the line 5 of the fluidized bed furnace 9. In contrast to the embodiment according to FIG. 2 In the present case, no thermal oil heat exchanger 13 is required for heating the sewage sludge in the line 5, but only a simple heat exchanger 18. This heat exchanger 18, the flue gas generated in the fluidized bed 9, and performed via a line 19 is supplied as a heat exchange medium. In this case, the heat exchanger 18 is preceded by an air preheater 20 in the flue gas flow as another heat exchanger system, wherein in the air preheater 20 via a line 21 of the fluidized bed combustion 9 supplied combustion air is heated. The flue gas stream at the outlet of the heat exchanger 18 is discharged from the system 4 via a line 19 '. The heat exchangers for sludge heating and air preheating are usefully installed in the flue gas duct behind the combustion.

Figur 4 zeigt ein T-Q-Diagramm, das heißt ein Temperatur-Wärme-Diagramm für die Anlage 1 gemäß Figur 2. In dem Diagramm gemäß Figur 4 ist mit I die Temperatur-Wärme-Kurve des aus der Wirbelschichtfeuerung 9 ausgeleiteten Rauchgases bezeichnet. Dabei ist mit a der ummittelbare Austritt des Rauchgases aus der Wirbelschichtfeuerung 9 bezeichnet. Die Temperatur des Rauchgases bei Austritt aus der Wirbelschichtfeuerung 9 beträgt ca. 800°C, wie aus Figur 4 ersichtlich ist. Die Temperatur-Wärme-Kurve bildet eine monoton fallende Gerade bis zu dem Punkt b, der den Austritt des Rauchgases aus dem System 4 bildet. Dort beträgt die Austrittstemperatur des Rauchgases etwa 270°C. FIG. 4 shows a TQ diagram, that is, a temperature-heat diagram for the system 1 according to FIG. 2 , In the diagram according to FIG. 4 is denoted by I the temperature-heat curve of the discharged from the fluidized bed 9 flue gas. In this case, the direct outlet of the flue gas from the fluidized bed furnace 9 is designated by a. The temperature of the flue gas at the exit from the fluidized bed combustion 9 is about 800 ° C, as shown FIG. 4 is apparent. The temperature-heat curve forms a monotonically decreasing straight line up to the point b, which forms the exit of the flue gas from the system 4. There, the outlet temperature of the flue gas is about 270 ° C.

Das Rauchgas wird innerhalb des Systems 4 den beiden Luftvorwärmern 15, 17 und dem Thermalöl-Wärmetauscher 13 zugeführt, wo das Rauchgas jeweils Wärme an die dortigen Wärmetauschermedien abgibt. In Figur 4 ist mit II die Temperatur-Wärme-Kurve der im Luftvorwärmer 15 erhitzten, der Wirbelschichtfeuerung 9 zugeführten Verbrennungsluft bezeichnet. Weiter ist in Figur 4 mit III die Temperatur-Wärme-Kurve des Thermalöls des Thermalöl-Wärmetauschers 13 bezeichnet. Schließlich ist in Figur 4 mit IV die Temperatur-Wärme-Kurve der im Luftvorwärmer 17 erhitzten, in das System 4 eingeleiteten kalten Luft bezeichnet.The flue gas is supplied within the system 4 the two air preheaters 15, 17 and the thermal oil heat exchanger 13, where the flue gas emits heat to the local heat exchanger media. In FIG. 4 is denoted by II the temperature-heat curve of heated in the air preheater 15, the fluidized bed combustion 9 supplied combustion air. Next is in FIG. 4 III denotes the temperature-heat curve of the thermal oil of the thermal oil heat exchanger 13. Finally, in FIG. 4 IV denotes the temperature-heat curve of the heated in the air preheater 17, introduced into the system 4 cold air.

Durch die Wärmezufuhr des Rauchgases wird im Luftvorwärmer 15 die der Wirbelschichtfeuerung 9 zuzuführende, bereits im Luftvorwärmer 17 vorerhitzte Verbrennungsluft weiter erhitzt und zwar von einer Temperatur von etwa 320°C (unteres Ende der Kurve II) bis auf eine Temperatur von etwa 734°C (oberes Ende der Kurve II). Dementsprechend kühlt sich dabei das Rauchgas von der Ausgangstemperatur von 800°C (Punkt a der Kurve I) bis auf eine Temperatur von etwa 654°C als (Punkt c auf der Kurve I) ab.Due to the heat input of the flue gas, the combustion air to be supplied to the fluidized bed furnace 9, which is already preheated in the air preheater 17, is heated further in the air preheater 15 from a temperature of about 320 ° C. (lower end of the curve II) to a temperature of about 734 ° C. ( upper end of the curve II). Accordingly, the flue gas cools from the starting temperature of 800 ° C (point a of curve I) to a temperature of about 654 ° C as (point c on the curve I) from.

Dabei ist die Steigung der Kurve II größer als die Steigung der Kurve I, da die Luftmenge im Luftvorwärmer 15 erheblich geringer ist als die Rauchgasmenge.The slope of the curve II is greater than the slope of the curve I, since the amount of air in the air preheater 15 is considerably less than the amount of flue gas.

Nach der Erhitzung der Luft im Luftvorwärmer 15 wird das Rauchgas dem Thermalöl-Wärmetauscher 13 zugeführt. Dabei gibt das Rauchgas Wärme an das Thermalöl ab, so dass sich das Rauchgas von der Temperatur vom 654°C (Punkt c auf der Kurve I) auf eine Temperatur von etwa 375°C (Punkt d auf der Kurve I) abkühlt.After heating the air in the air preheater 15, the flue gas is fed to the thermal oil heat exchanger 13. The flue gas releases heat to the thermal oil so that the flue gas cools from the temperature of 654 ° C (point c on curve I) to a temperature of about 375 ° C (point d on curve I).

Schließlich wird das Rauchgas vom Ausgang des Thermalöl-Wärmetauschers 13 dem weiteren Luftvorwärmer 17 zugeführt, wo die in das System 4 eingeleitete kalte Luft erhitzt wird. Wie aus Figur 4 ersichtlich, wird durch die Wärmeabgabe des Rauchgases die Luft im Luftvorwärmer 17 von der Temperatur 375°C (Punkt d auf der Kurve I) auf die Austrittstemperatur 270°C (Punkt b auf der Kurve I) abgekühlt. Dadurch wird die Luft im Luftvorwärmer 17 von der Eintrittstemperatur 20°C (rechtes Ende der Kurve IV) auf etwa 319°C (linkes Ende der Kurve IV) erhitzt.Finally, the flue gas is supplied from the outlet of the thermal oil heat exchanger 13 to the further air preheater 17, where the introduced into the system 4 cold air is heated. How out FIG. 4 can be seen by the heat emission of the flue gas, the air in the air preheater 17 from the temperature 375 ° C (point d on the curve I) to the outlet temperature 270 ° C (point b cooled on the curve I). As a result, the air in the air preheater 17 is heated from the inlet temperature 20 ° C (right end of the curve IV) to about 319 ° C (left end of the curve IV).

Die Komponenten der Anlage 1 sind auszulegen, dass die Ausgangstemperatur des Rauchgases bei Austritt aus dem System 4 möglichst gering ist, damit viel Wärme des Rauchgases auf die Komponenten der Anlage 1, nämlich den Thermalöl-Wärmetauscher 13 und die Luftvorwärmer 15, 17 übertragen wird. Diese Anforderung ist bei der Anlage 1a gemäß Figur 2 relativ gut erfüllt, da die Ausgangstemperatur des Rauchgases (Punkt b auf der Kurve I) bei etwa 270°C liegt. Eine weitere Anforderung besteht darin, dass die Abstände der Kurven II, III, IV zur Temperatur-Wärme-Kurve des Rauchgases möglichst groß sind, da dann große Temperaturdifferenzen in den Anlagenkomponenten realisiert werden, wodurch die Baugrößen der Anlagenkomponenten klein gewählt werden können. Auch diese Anforderung ist, wie aus Figur 4 ersichtlich, bei der Anlage 1 gemäß Figur 2 relativ gut erfüllt.The components of Appendix 1 are to be interpreted as meaning that the exit temperature of the flue gas at exit from the system 4 is as low as possible, so that much heat of the flue gas is transferred to the components of the system 1, namely the thermal oil heat exchanger 13 and the air preheaters 15, 17. This requirement is in accordance with Appendix 1a FIG. 2 relatively well fulfilled, since the starting temperature of the flue gas (point b on the curve I) is about 270 ° C. Another requirement is that the distances between the curves II, III, IV to the temperature-heat curve of the flue gas are as large as possible, since then large temperature differences are realized in the system components, whereby the sizes of the system components can be selected small. Also this requirement is how out FIG. 4 can be seen in Appendix 1 according to FIG. 2 relatively well met.

Figur 5 zeigt ein T-Q-Diagramm für die Anlage 1 gemäß Figur 3. Analog zu Figur 4 ist auch im T-Q-Diagramm mit I die Temperatur-Wärme-Kurve des Rauchgases bezeichnet. Dabei ist wieder mit a der unmittelbare Austritt des Rauchgases aus der Wirbelschichtfeuerung 9 bezeichnet, wo die Temperatur des Rauchgases etwa bei 800°C liegt. Durch die Verwendung des Rauchgases als Wärmetauschermedium für den Luftvorwärmer 20 und den Wärmetauscher 18 sinkt die Temperatur des Rauchgases bis zum Austritt aus dem System 4 auf eine Austrittstemperatur von 182°C ab (Punkt b der Kurve I). FIG. 5 shows a TQ diagram for the system 1 according to FIG. 3 , Analogous to FIG. 4 is also referred to in the TQ diagram with I the temperature-heat curve of the flue gas. Again, a is the direct exit of the flue gas from the fluidized bed 9, where the temperature of the flue gas is about 800 ° C. By using the flue gas as the heat exchanger medium for the air preheater 20 and the heat exchanger 18, the temperature of the flue gas decreases until it leaves the system 4 to an outlet temperature of 182 ° C (point b of the curve I).

In Figur 5 ist mit II die Temperatur-Wärme-Kurve der Verbrennungsluft im Luftvorwärmer 20 bezeichnet. Schließlich ist in Figur 5 mit III die Temperatur des Klärschlamms bezeichnet, wobei mit d (rechtes Ende der Kurve III) der Eintritt des Klärschlamms in den Wärmetauscher 18 bezeichnet ist, und mit e der Austritt des Klärschlamms aus dem Wärmetauscher 18 beziehungsweise der Eintritt des Klärschlamms in die Wirbelschichtfeuerung 9 bezeichnet ist. Durch die Erhitzung der Verbrennungsluft für die Wirbelschichtfeuerung 9 im Luftvorwärmer 20 mittels des Rauchgases wird das Rauchgas von 800°C (Punkt a der Kurve I) auf eine Temperatur von etwa 615°C (Punkt c der Kurve I) abgekühlt. Entsprechend wird die Verbrennungsluft für die Wirbelschichtfeuerung 9 im Luftvorwärmer 20 von einer Ausgangstemperatur von 20°C bei Eintritt in das System 4 (rechtes Ende der Kurve II) auf eine Temperatur von 548°C (linkes Ende der Kurve II) erhitzt. Da die Rauchgasmenge erheblich größer ist als die Menge der Verbrennungsluft, ist die Steigung der Kurve I für das Rauchgas kleiner als die Steigung der Kurve II für die Verbrennungsluft.In FIG. 5 II denotes the temperature-heat curve of the combustion air in the air preheater 20. Finally, in FIG. 5 III denotes the temperature of the sewage sludge, denoted by d (right end of curve III) the entry of the sewage sludge in the heat exchanger 18, and e designates the exit of the sewage sludge from the heat exchanger 18 or the inlet of sewage sludge in the fluidized bed 9 is. By heating the combustion air for the fluidized bed combustion 9 in the air preheater 20 by means of the flue gas, the flue gas is cooled from 800 ° C (point a of the curve I) to a temperature of about 615 ° C (point c of curve I). Accordingly, the combustion air for the fluidized bed combustion 9 in the air preheater 20 from a starting temperature of 20 ° C when entering the system 4 (right end of the curve II) is heated to a temperature of 548 ° C (left end of the curve II). Since the amount of flue gas is considerably larger than the amount of combustion air, the slope of the curve I for the flue gas is smaller than the slope of the curve II for the combustion air.

Durch die Erhitzung des Klärschlamms im Wärmetauscher 18 mittels des Rauchgases wird das Rauchgas von der Temperatur 615°C (Punkt c auf der Kurve I) bis auf die Austrittstemperatur aus dem System 4 von 182°C (Punkt b auf der Kurve I) abgekühlt. Dabei wird der Klärschlamm ausgehend von der Temperatur 20°C (Punkt d auf der Kurve III) bis auf eine Temperatur von etwa 288°C (Punkt e auf der Kurve III) erhitzt. Da der Klärschlamm unter Druck steht verbleibt das Wasser des Schlamms in der flüssigen Phase.By heating the sewage sludge in the heat exchanger 18 by means of the flue gas, the flue gas is cooled from the temperature 615 ° C (point c on the curve I) to the outlet temperature of the system 4 of 182 ° C (point b on the curve I). The sewage sludge is heated from a temperature of 20 ° C (point d on curve III) to a temperature of about 288 ° C (point e on curve III). Since the sewage sludge is under pressure, the water of the sludge remains in the liquid phase.

Wie aus dem Vergleich der Figuren 4 und 5 ersichtlich, weist die Anlage 1 gemäß Figur 3 bessere Leistungswerte als die Anlage 1a gemäß Figur 2 auf. So wird bei dem Diagramm gemäß Figur 5 mit 182°C eine Austrittstemperatur des Rauchgases bei Austritt aus dem System 4 erhalten, die erheblich geringer ist als die Austrittstemperatur von 270°C bei dem Diagramm gemäß Figur 4. Weiterhin werden bei dem Diagramm gemäß Figur 5 höhere Temperaturdifferenzen zwischen der Kurve I des Rauchgases und den restlichen Kurven II, III erzielt, als dies bei dem Diagramm gemäß Figur 4 der Fall ist. Daraus folgt, dass für die Anlage 1 gemäß Figur 3, wo kein Thermalöl-Wärmetauscher 13 benötigt wird, erheblich energieeffizienter arbeitet als die Anlage 1 gemäß Figur 2, wo ein Thermalöl-Wärmetauscher 13 benötigt wird. Zudem können die Baugrößen der Anlagenkomponenten bei der Anlage 1 gemäß Figur 3 erheblich kleiner dimensioniert werden als bei der Anlage 1 gemäß Figur 2.As from the comparison of FIGS. 4 and 5 can be seen, the Appendix 1 according to FIG. 3 better performance than Annex 1a FIG. 2 on. This is the case in the diagram according to FIG. 5 obtained at 182 ° C, an exit temperature of the flue gas at the exit from the system 4, which is considerably lower than the outlet temperature of 270 ° C in the diagram according to FIG. 4 , Furthermore, in the diagram according to FIG. 5 higher temperature differences between the curve I of the flue gas and the remaining curves II, III achieved, as in the diagram according to FIG. 4 the case is. It follows that for Annex 1, see FIG. 3 where no thermal oil heat exchanger 13 is needed, operates considerably more energy efficient than the plant 1 according to FIG. 2 where a thermal oil heat exchanger 13 is needed. In addition, the sizes of the system components in Appendix 1 can FIG. 3 are considerably smaller dimensions than in the Appendix 1 according to FIG. 2 ,

Die Erfindung ist nicht auf die konkreten Auslegungen der Anlagen gemäß den Figuren 4 und 5 begrenzt.The invention is not limited to the specific designs of the systems according to the FIGS. 4 and 5 limited.

Insbesondere für die Ausführungsform gemäß Figur 5 sind Anlagenauslegungen möglich, bei denen eine Austrittstemperatur des Rauchgases aus dem System 4 erhalten wird, die bei 80°C oder sogar darunter liegt.In particular, for the embodiment according to FIG. 5 Plant designs are possible in which an exit temperature of the flue gas is obtained from the system 4, which is at 80 ° C or even lower.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

(1)(1)
Anlageinvestment
(1a)(1a)
Anlageinvestment
(2)(2)
Reservoirreservoir
(3)(3)
Entwässerungdrainage
(4)(4)
Systemsystem
(4')(4 ')
Systemsystem
(5)(5)
Leitungmanagement
(6)(6)
Trocknerdryer
(7)(7)
Leitungmanagement
(8)(8th)
Leitungmanagement
(9)(9)
Wirbelschichtfeuerungfluidised bed combustion
(10)(10)
Leitungmanagement
(11)(11)
Leitungmanagement
(12)(12)
Wärmetauscherheat exchangers
(13)(13)
Thermalöl-WärmetauscherThermal oil heat exchanger
(14)(14)
Leitungmanagement
(14')(14 ')
Leitungmanagement
(14")(14 ")
Leitungmanagement
(15)(15)
Luftvorwärmerair preheater
(16)(16)
Leitungmanagement
(17)(17)
Luftvorwärmerair preheater
(18)(18)
Wärmetauscherheat exchangers
(19)(19)
Leitungmanagement
(19')(19 ')
Leitungmanagement
(20)(20)
Luftvorwärmerair preheater
(21)(21)
Leitungmanagement

Claims (12)

  1. Method for self-feeding combustion of slurry with high water content, wherein the slurry prior to supply to a combustion unit is heated in a heat exchanger (18) under pressure so that the water contained in the slurry is not evaporated, but remains in liquid phase, characterised in that a part of the slurry heated in the heat exchanger (18) is fed back and new raw slurry is admixed under pressure prior to supply to the heat exchanger (18), wherein the temperature of the raw slurry mixed with the slurry fed back is increased to such an extent that prior to entry into the heat exchanger this hydrolises and thus the viscosity of the slurry is substantially reduced.
  2. Method according to claim 1, characterised in that heat present in flue gas conducted out of the combustion unit is used for heating the slurry.
  3. Method according to claim 2, characterised in that the flue gas is fed as heat exchange medium to the heat exchanger (18) for heating the slurry.
  4. Method according to claim 3, characterised in that the heat exchanger (18) for heating the slurry is constructed as a thermal oil heat exchanger (13).
  5. Method according to claim 4, characterised in that the thermal oil is heated by means of the flue gas.
  6. Method according to one of claims 4 and 5, characterised in that a heat exchanger (18) with high-pressure steam or high-pressure hot water as heat exchange medium is used instead of the thermal oil heat exchanger (13).
  7. Method according to any one of claims 2 to 6, characterised in that an air preheater (15, 20) for heating air fed to the combustion unit is arranged in the flue gas flow upstream and/or downstream of the heat exchanger (18) for heating slurry.
  8. Method according to any one of claims 1 to 7, characterised in that a fluidised bed furnace (9), a cyclonic furnace or a drum furnace is used as combustion unit.
  9. Method according to any one of claims 1 to 8, characterised in that a self-feeding combustion of sewage sludge is performed by that.
  10. Method according to claim 9, characterised in that the sewage sludge is subjected to mechanical removal of water prior to the combustion.
  11. Method according to claim 10, characterised in that the sewage sludge after the mechanical removal of water has a solids content in the range of 18 to 30%.
  12. Method according to claim 11, characterised in that the sewage sludge after the mechanical removal of water has a solids content of approximately 25%.
EP10706501A 2009-02-24 2010-02-06 Method for autolytic combustion of sludge Not-in-force EP2401552B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10706501T PL2401552T3 (en) 2009-02-24 2010-02-06 Method for autolytic combustion of sludge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009010118A DE102009010118B4 (en) 2009-02-24 2009-02-24 Process for the automatic incineration of sewage sludge
PCT/EP2010/000749 WO2010097162A1 (en) 2009-02-24 2010-02-06 Method for autolytic combustion of sludge

Publications (2)

Publication Number Publication Date
EP2401552A1 EP2401552A1 (en) 2012-01-04
EP2401552B1 true EP2401552B1 (en) 2012-11-21

Family

ID=42211934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10706501A Not-in-force EP2401552B1 (en) 2009-02-24 2010-02-06 Method for autolytic combustion of sludge

Country Status (6)

Country Link
EP (1) EP2401552B1 (en)
DE (1) DE102009010118B4 (en)
DK (1) DK2401552T3 (en)
ES (1) ES2395531T3 (en)
PL (1) PL2401552T3 (en)
WO (1) WO2010097162A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215637A (en) * 1979-04-02 1980-08-05 Envirotech Corporation System for combustion of wet waste materials
DE3103417A1 (en) * 1981-02-02 1982-08-12 Saarberg-Fernwärme GmbH, 6600 Saarbrücken Process and apparatus for the oxidation of solid substances and aqueous sludges
DE3728398A1 (en) * 1987-08-26 1989-03-09 Bayer Ag BURNING OF SEVERAL CLAUSE FLUIDS THROUGH THE SWITCHING PROCESS
ES2042869T3 (en) * 1988-05-24 1993-12-16 Siemens Ag PROCEDURE AND DEVICE FOR THE DRYING OF ACTIVATED SLUDGE.
DD294684A5 (en) * 1990-05-30 1991-10-10 Petrolchemisches Kominat Schwedt,De PROCESS FOR PROCESSING WATER-CONTAINING OIL SLUDGE
DE4217729A1 (en) * 1992-05-29 1993-12-02 Dessau Zement Maschbau Gmbh Process and technical circuit for drying and burning waste materials
DE4431564A1 (en) * 1994-07-13 1996-01-18 Kloeckner Humboldt Deutz Ag Process and technical circuit for drying and burning sewage sludge
ATE196000T1 (en) * 1994-12-06 2000-09-15 Steinmueller Gmbh L & C METHOD FOR COMBUSTING SEWAGE SLUDGE AND SYSTEM FOR IMPLEMENTING THE METHOD
DE19604506C2 (en) * 1995-02-23 1999-09-02 Julia Innotec Gmbh Process for the use of residual heat energy resulting from the combustion and / or gasification of sewage sludge and device for using this residual heat energy
FR2758100B1 (en) * 1997-01-06 1999-02-12 Youssef Bouchalat OPTIMIZED PROCESSING AND ENERGY RECOVERY OF SLUDGE FROM URBAN AND INDUSTRIAL PURIFICATION PLANTS
DE19859052C2 (en) * 1998-12-21 2001-01-25 Dieter Steinbrecht Process and device for thermal waste recycling and waste disposal of solid, liquid and pumpable inhomogeneous flammable mixtures and thermal cleaning of contaminated materials in a fluidized bed furnace
WO2001038818A1 (en) * 1999-11-19 2001-05-31 Munehiro Tokashiki Scale with variable gauge
DE19956562A1 (en) * 1999-11-24 2001-06-13 Bbp Environment Gmbh Process for cleaning a heat exchanger surface and solid blowing medium for carrying out the process

Also Published As

Publication number Publication date
ES2395531T3 (en) 2013-02-13
DE102009010118B4 (en) 2011-03-31
WO2010097162A1 (en) 2010-09-02
DK2401552T3 (en) 2013-01-21
PL2401552T3 (en) 2013-04-30
EP2401552A1 (en) 2012-01-04
DE102009010118A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
DE2609330C3 (en) Process for converting solid waste materials initially containing water into economically usable or environmentally harmless products and device for carrying out the process
EP2230477B1 (en) Wood chips drying plant for drying wood chips and method for drying wood chips
DE2901723C2 (en) Method and apparatus for drying a solid material
EP0343431B1 (en) Process and apparatus for sewage sludge drying
EP2424955B1 (en) Device and method for drying and torrefying at least one carbon-containing substance stream in a multiple-hearth furnace
DE2940164C2 (en) Process for heat recovery when drying solid fuels from hydrous organic materials
EP2508494B1 (en) Method and device for manufacturing cement clinker
DE102012013877B4 (en) Process for the treatment of biomass in a plant for the production of cement and the corresponding plant
EP0465479B1 (en) A method of reprocessing sewage sludge
WO2008095524A2 (en) Method and system for drying fuels in the form of dust, particularly to be fed to a gasification process
EP0716264B1 (en) Method and installation for sludge combustion
EP0851194A2 (en) Dryer with exhaust gas purification by thermal afterburning
EP1921375A2 (en) Method and assembly for combustion of biomass and/or organic waste as secondary fuel in pulverised coal fuel firing
DE2902323A1 (en) METHOD AND DEVICE FOR DRYING AND TREATMENT OF MOISTURE CONTAINING SOLID PARTICLES WITH ORGANIC AND / OR MINERAL INORGANIC COMPONENTS
DE2810479C2 (en) Process for drying raw lignite in a feed suspension produced with liquid hydrocarbons
DE4434447A1 (en) Method and device for reducing the water content of carbon-containing solid materials
DE19531379C1 (en) Process for the incineration of sewage sludge and plant for carrying out the process
EP2401552B1 (en) Method for autolytic combustion of sludge
DE2726157B2 (en) Kiln plant for solid goods
EP0692679A2 (en) Method and plant layout for drying and incinerating sewage sludge
DE2535683A1 (en) METHOD AND DEVICE FOR INCINERATION OF SLUDGE WITH THE HELP OF RECUPERATIVE SLUDGE DRYING
DE19501736C1 (en) Process for the incineration of sewage sludge and plant for carrying out the process
EP3859207B1 (en) Combustion installation with heat accumulator
EP0571722A2 (en) Process and plant layout for drying and burning waste materials
DE29918945U1 (en) Mobile drainage device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRODENO, CHRISTA JOSEFINE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MICHAEL KADEN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 585286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010001698

Country of ref document: DE

Effective date: 20130117

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2395531

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130213

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20121121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20130221

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130219

Year of fee payment: 4

Ref country code: CZ

Payment date: 20130130

Year of fee payment: 4

Ref country code: FR

Payment date: 20130301

Year of fee payment: 4

Ref country code: NO

Payment date: 20130214

Year of fee payment: 4

Ref country code: IE

Payment date: 20130219

Year of fee payment: 4

Ref country code: ES

Payment date: 20130227

Year of fee payment: 4

Ref country code: FI

Payment date: 20130213

Year of fee payment: 4

Ref country code: MC

Payment date: 20130213

Year of fee payment: 4

Ref country code: DK

Payment date: 20130218

Year of fee payment: 4

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20130213

Year of fee payment: 4

Ref country code: PL

Payment date: 20130123

Year of fee payment: 4

Ref country code: NL

Payment date: 20130219

Year of fee payment: 4

Ref country code: BE

Payment date: 20130220

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010001698

Country of ref document: DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20130129

Year of fee payment: 4

BERE Be: lapsed

Owner name: FRODENO, CHRISTA JOSEFINE

Effective date: 20140228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140901

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140207

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150218

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150219

Year of fee payment: 6

Ref country code: TR

Payment date: 20150204

Year of fee payment: 6

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100206

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140207

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010001698

Country of ref document: DE

Ref country code: DE

Ref legal event code: R409

Ref document number: 502010001698

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 585286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 502010001698

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160709

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010001698

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160206