EP2401330A1 - Zusammensetzung und verfahren zur herstellung von bahnschwellen - Google Patents
Zusammensetzung und verfahren zur herstellung von bahnschwellenInfo
- Publication number
- EP2401330A1 EP2401330A1 EP10745762A EP10745762A EP2401330A1 EP 2401330 A1 EP2401330 A1 EP 2401330A1 EP 10745762 A EP10745762 A EP 10745762A EP 10745762 A EP10745762 A EP 10745762A EP 2401330 A1 EP2401330 A1 EP 2401330A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- railway tie
- plastic
- composition according
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 103
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000000034 method Methods 0.000 title claims description 14
- 229920003023 plastic Polymers 0.000 claims abstract description 42
- 239000004033 plastic Substances 0.000 claims abstract description 42
- 239000002131 composite material Substances 0.000 claims abstract description 33
- 238000005728 strengthening Methods 0.000 claims abstract description 24
- 239000003365 glass fiber Substances 0.000 claims abstract description 18
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 15
- -1 polypropylene Polymers 0.000 claims description 31
- 239000010426 asphalt Substances 0.000 claims description 25
- 239000004743 Polypropylene Substances 0.000 claims description 13
- 229920001155 polypropylene Polymers 0.000 claims description 12
- 239000012815 thermoplastic material Substances 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 239000012744 reinforcing agent Substances 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 229920001059 synthetic polymer Polymers 0.000 claims description 2
- 241000238631 Hexapoda Species 0.000 abstract description 4
- 239000000945 filler Substances 0.000 abstract description 4
- 238000000465 moulding Methods 0.000 abstract description 3
- 229920000271 Kevlar® Polymers 0.000 abstract 1
- 239000000463 material Substances 0.000 description 42
- 229920001903 high density polyethylene Polymers 0.000 description 8
- 239000004700 high-density polyethylene Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 238000009472 formulation Methods 0.000 description 6
- 229920001684 low density polyethylene Polymers 0.000 description 6
- 239000004702 low-density polyethylene Substances 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000004567 concrete Substances 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 229940063583 high-density polyethylene Drugs 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- WHRZCXAVMTUTDD-UHFFFAOYSA-N 1h-furo[2,3-d]pyrimidin-2-one Chemical compound N1C(=O)N=C2OC=CC2=C1 WHRZCXAVMTUTDD-UHFFFAOYSA-N 0.000 description 3
- 235000006173 Larrea tridentata Nutrition 0.000 description 3
- 244000073231 Larrea tridentata Species 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229960002126 creosote Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000011121 hardwood Substances 0.000 description 3
- 239000000383 hazardous chemical Substances 0.000 description 3
- 239000010819 recyclable waste Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 229920000426 Microplastic Polymers 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002990 reinforced plastic Substances 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 240000007182 Ochroma pyramidale Species 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 235000013310 margarine Nutrition 0.000 description 1
- 239000003264 margarine Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 235000021400 peanut butter Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920000090 poly(aryl ether) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920000638 styrene acrylonitrile Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/06—Rod-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/269—Extrusion in non-steady condition, e.g. start-up or shut-down
- B29C48/2694—Intermittent extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B3/00—Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
- E01B3/44—Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from other materials only if the material is essential
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B3/00—Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
- E01B3/46—Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from different materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/12—Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/15—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/288—Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
- B29C48/2886—Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/297—Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2095/00—Use of bituminous materials as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/12—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/26—Scrap or recycled material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2709/00—Use of inorganic materials not provided for in groups B29K2703/00 - B29K2707/00, for preformed parts, e.g. for inserts
- B29K2709/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/06—Rods, e.g. connecting rods, rails, stakes
Definitions
- This invention relates to novel material compositions for railway ties and to methods for the fabrication thereof.
- Rail ties which are used to support railway tracks on a roadbed of ballast or concrete, are typically made of wood. Wood is the generally preferred constituent material because it can withstand climatic changes, and wooden ties are relatively easy to install and replace. Since thousands of miles of railway tracks are in use throughout the world, a vast number of railway ties is needed each year to replace those which have been worn out over time.
- wooden railway ties provide durability and withstand well the static and dynamic loads of freight and passenger trains, they are susceptible to attack from fungi and Insects which will weaken and eventually deteriorate the railway ties.
- the lifespan of wooden railway ties can be prolonged by the use of preservatives, in particular creosote, but such preservatives result in potential environmental hazards, both during the treatment procedure for the manufacture of ties, and by reason of leaching of creosote into the surrounding soil and the water table in the region of the railroad.
- preservatives in particular creosote
- U.S. Patent No. 4,405,727 patented September 20, 1983 by T. F. Brownscombe is directed to reinforced polymer compositions.
- Such polymer reinforcing material consisted of a particulate mineral material, e.g., silicates, aluminosilicates, glasses, mica, talc, clays, bentonites, kaolins, vermiculite, asbestos, calcium silicates, wollastonite silica and alumina, having, as reactive surface sites, oxygen atoms or hydroxy!
- atoms or a filamentary mineral material, e.g., standard glass fibers, chopped or continuous or milled or natural fibrous materials, e.g., asbestos, having a very thin film of organic molecules, e.g., polypropylenes, polyethylenes, S-B-S thermoplastic elastomers, poly-l-butene, poly(vinyl arene) homopolymers and copolymers polystyrene, ABS SAN, polyesters, polybutylene terephthalate, polyethylene terephthalate poly(phenoxy) poly(aryl ether) nylons and polyurethanes which are chemically bonded to its surface.
- U.S. Patent No. 5,367,007 discloses a multi-layer molded composite paving block.
- the first layer of the multilayer molded composite paving block was formed from recycled asphalt, a thermosetting or thermosetting synthetic plastic, a monofilament fibre material and an elastic material.
- the second layer of the multi-layer molded composite paving block was formed from a synthetic thermoplastic material, e.g., polyethylene or a thermosetting synthetic plastic and an aggregate material.
- the synthetic plastic material of each of the layers was heated and was sure bonded to one another. This forms an interlocked structural interface to provide a single integral block.
- the binding constituent was a synthetic plastic material and the aggregate material was in the form of irregular multi-faceted pieces, e.g., gravel limestone or granite.
- the binding constituent held the aggregate material together.
- the railway tie may also include an inner strengthening core of high tensile strength material.
- There is no explicit or implicit teaching of a composition comprising asphalt and a mixture of glass fibre-filled polypropylene and high density and/or low density polyethylene.
- U.S. Patent No. 5,722,589 patented March 3, 1998 by Richards, provides a composite load bearing structure including a main body portion made of a binding constituent and an aggregate material.
- the structure included an inner strengthening member of high tensile strength material within the body.
- Such an inner strengthening member comprised reinforcing bars, rolled drawn or cast ferrous sections, rolled drawn or cast composite alloy sections, plastic metallic or carbon based fibres, wire mesh or expanded metal mesh.
- U.S. Patent No. 5,789,477 patented August 4, 1998 by Nosker, provides a composite building material formed from recyclable waste.
- the composite material comprised a mixture of high-density polyethylene and a thermoplastic-coated fibre, e.g., glass fibres.
- U.S. Patent No. 6,191,228, patented February 20, 2001 by Nosker provides a railway tie formed from a synthetic plastic composite material.
- Such plastic composite material included a polystyrene component forming a first phase and a polyolef ⁇ n component forming a second phase.
- Such two phases intertwine and remain continuous throughout the composite railway tie.
- U.S. Patent No. 6,247,651 patented June 19, 2001 by Marinelli, provides a railway tie shaped like an I-beam made from a combination of recycled materials.
- Such combination of recycled materials was composed of recycled high- density polyethylene and polypropylene, scrapped and granulated rubber tires and screened waste glass fibres
- U.S. Patent No. 7,122,594 patented Oct. 17, 2006 by N. Kubo et al is directed to modified block copolymer compositions.
- Such compositions consisted of a mixture of a particular block copolymer, e.g., of vinyl aromatic hydrocarbons and conjugated dienes and a suitable filler, e.g., silica-based inorganic fillers, metal oxides and metal hydroxides.
- composition comprises an elastomeric precursor e.g., poly (dimethylsiloxane) poly ⁇ soprene, polybutadiene, poly ⁇ sobutylene, etc.
- elastomeric precursor e.g., poly (dimethylsiloxane) poly ⁇ soprene, polybutadiene, poly ⁇ sobutylene, etc.
- compositions and methods of manufacture for providing railway ties which are not susceptible to damage from harsh weather conditions and excessive sunlight; not susceptible to attack from fungi and insects which weaken and eventually deteriorate the railway ties; which are free of preservatives, e.g., creosote, which can result in environmental hazards; and which are composed of substantially recycled materials having a lower polymer/plastic content than many current alternative railway ties.
- the invention provides in a first aspect an extrudable composition suitable for the forming of railway ties and other articles requiring the ability to support the high loads and impacts encountered in use.
- Composites according to this aspect comprise (A) from about 20 % to about 85% by weight of an asphaltic portion, and (B) correspondingly, from about 80% to about 15% by weight of a polymeric portion comprising a mixture of (i) a recyclable plastic and (ii) a strengthening mixture made up of virgin or recycled polypropylene or a functionally equivalent synthetic polymer reinforced by the inclusion of glass fibres, fibres which are functionally equivalent to glass fibres; or functionally similar reinforcing agents.
- a railway tie which is formed from a composition according to the invention as aforesaid by molding.
- a railway tie having a first portion formed of a first selected composition according to the invention and a second portion formed from a second selected composition according to the invention.
- the present invention in a still further aspect is directed to a method for producing a railway tie having a first portion and a second portion of differing composition, by charging the first channel of a dual material die with a first composition according to the invention and the second channel of the dual material die with the second composition according to the invention, then pumping the two mixtures through the dual material die into a flow mold to shape and cool the composite into a railway tie
- the single drawing Figure illustrates the process according to the invention for preparing a composite article, such as a railway tie, having a first region made of a first synthetic asphalt/plastic material of the present invention ("Formula 1") and a second region made of a second formulation of this kind (“Formula II").
- Forma 1 refers to the composition which makes up a portion of the railway tie which is of special strength and durability and Is disposed within the strategically-located area of the railway tie where fasteners are to be located. This could, for example, be a central core section of the formed railway tie.
- the balance of the railway tie is composed of a "standard mix” identified as Formula II, a less costly material than Formula II, but having properties which are more than adequate for its intended use.
- the extruded products of Formulas I and II could be in horizontally layered cross-sections of the composite article.
- extrudable asphalt/plastic compositions comprise (A) an asphaltic portion and (B) a polymeric composition which itself is made up of a mixture of (i) a recyclable plastic and (ii) a strengthening mixture.
- plastics refers to various organic compounds produced by polymerization, capable of being molded, extruded, cast into various shapes, including polymer or recycled thermoplastic material.
- the recyclable plastic component may be selected from a wide range of readily available, potentially waste products. As examples:
- Breaking strengths in a three-point flexure test (on a 6" span of fabricated railway tie) exhibited breaking strengths generally in a range from 1600-2000 p.s.i. or greater.
- a wide variety of possible polymeric materials and strengtheners were found to produce good results when the weight ratio of asphalt ⁇ c portion/recyclable plastic/strengthening mixture was 75%/12,5%/12.5%
- Formula I the "strengthened mix" in DUROPARTM formulations contains from 15% to 75% asphaltic material and from 85% to 25% of a first polymeric composition, which itself is comprised of (i) about 50% recyclable thermoplastic material (hereinafter “Formula I, Part 2(i)”) and ( ⁇ ) about 50% of a glass fibre-filled recyclable thermoplastic material, such as a glass fibre-filled polypropylene, as strengthening agent, or with an alternative filler of equivalent strengthening effect(hereinafter "Formula 1, Part 2( ⁇ )").
- a first polymeric composition which itself is comprised of (i) about 50% recyclable thermoplastic material (hereinafter “Formula I, Part 2(i)") and ( ⁇ ) about 50% of a glass fibre-filled recyclable thermoplastic material, such as a glass fibre-filled polypropylene, as strengthening agent, or with an alternative filler of equivalent strengthening effect(hereinafter "Formula 1, Part 2( ⁇ )").
- Exemplary Formula I embodiments include, without limitation, compositions with ranges of (a) 65- 75%/35-25% (asphaltic material/first polymeric composition) and (b) 70 -75%/ 12- 15%/12-15% (asphaltic material/Formula I, Part 2( ⁇ )/Formula I, Part 2( ⁇ i)).
- Formula II in DUROPARTM formulations comprises from about 20% to about 85% by weight of an asphalt ⁇ c portion and from about 15% to about 80% by weight of a second polymeric portion comprising (i) recyclable thermoplastic material (hereinafter "Formula II, Part 2( ⁇ )”) and ( ⁇ ) optionally a glass fibre-filled recyclable thermoplastic material as a strengthening agent, or with an alternative filler of equivalent strengthening effect(here ⁇ nafter "Formula II, Part 2(ii)").
- a second polymeric portion comprising (i) recyclable thermoplastic material (hereinafter “Formula II, Part 2( ⁇ )”) and ( ⁇ ) optionally a glass fibre-filled recyclable thermoplastic material as a strengthening agent, or with an alternative filler of equivalent strengthening effect(here ⁇ nafter "Formula II, Part 2(ii)").
- Exemplary Formula II embodiments include, without limitation, compositions with ranges of (a) 70-80%/30-20% (asphaltic material/second polymeric composition) and (b) 73-77%/12-15%/12-15% (asphaltic material/ Formula II, Part 2(i)/Formula II, Part 2( ⁇ )).
- about 50% of the strengthening agent is used.
- less than, but up to 50% of the strengthening agent may be used, depending on the desired strength of the overall formulation. Of course, more than 50% of the strengthening agent may also be used.
- the asphaltic portion may be a conventional mixture of asphalt binder and aggregate. It is preferred, however, that the asphaltic portion which Is mixed with the plastic portion in preparing a charge of Formula I or Formula II be made up of asphalt particles of a size such that at least 75% of such particles would pass through a screen having 0.50" square openings.
- a suitable material for this purpose are 3/8" and/or 1/4" fines of asphalt readily available from asphalt manufacturers.
- thermoplastic material is used in the description and claims herein, it will be understood to include the materials listed above as potential waste products. However, virgin or recycled polypropylene or polyethylene (high-density and/or low-density), or other thermoplastic material, may be substituted if recycled materials are not available.
- the aforementioned strengthening agent is preferably glass fibre-filled high-density polypropylene.
- Composite blocks in the shape of railway ties formulated from asphaltic/plastic compositions according to the present invention may be manufactured in a number of ways.
- the composition may be heated to workable condition (250 - 400° F) and molded under a suitable pressure, either in cavity molds to provide a plurality of individual railway ties, or in a continuous mold, followed by subdivision of the molded product into a plurality of individual railway ties.
- railway ties having excellent properties can be made in a continuous process on a production line illustrated in the schematic drawing of the Figure.
- Each production line requires two heated auger processors (one for Formula I and one for Formula II) and each auger processor is fed by a batching hopper feeding into two blenders.
- the plastic (and in the case of Formula II reinforced plastic) component and the granular asphalt component are charged into a batching hopper in the desired relative amounts, whence they are fed into rotating blenders to produce the plastic/asphaltic mixture which is fed into the processor.
- the raw materials for the plant process of the present Invention comprise two kinds of thermoplastic - typically polyethylene and polypropylene - in the form of pellets, flakes, etc. and crushed asphalt pavement.
- Plastic pellets are typically delivered in gaylords or in bulk, via truck or rail transport. Gaylords of plastic pellets are normally unloaded into onsite or shipping containers by the application of vacuum, or by tipping and gravity feeding into a receiving hopper or bin.
- the crushed asphalt used in the formulation is typically delivered in 25 to 60 ton dump truck loads.
- the three raw materials are delivered to the plant pre- processed ready to mix together in accordance with the formulas described above.
- a preliminary blender which may incorporate preheating means to dry the mixture, mixes Formula I or Formula II components to a homogeneous dry consistency and, on demand, continuously feeds that mix to the dedicated DUROPARTM heated auger processor at a rate dictated by the speed of operation of the processor.
- each production line includes two such processors and each processor requires two blenders to maintain a steady flow of mixed materials to the respective auger processors.
- the DUROPARTM processor used in the method of the invention is, in effect, a heated auger mechanism having a rotating screw inside a barrel of a length from 6 to 15 feet.
- the role of the heated auger in combining plastic and asphalt to produce Formula I or Formula II is three-fold:
- the metal barrel encasing the auger is heated to a suitable temperature, depending upon the mix being processed, but typically between about 320 0 F and 550 0 F.
- the objective is to heat the plastic/asphalt mix itself to the melting temperature of the plastics.
- the melting range of thermoplastic materials useful in this invention will be roughly in the range of from 300 0 C to 34O 0 C
- a gradient of temperatures zones is maintained in the processor, so that there is a higher temperature where processing and discharge of the formula is under way, to speed up heat transfer to the material, with a lower temperature maintained while the processor is idle. It is important to note that the Formula I blenders feed the Formula I auger processor while the other blender is being refilled or the mixture is being blended in the batching hopper blenders, and conversely. That is to say, one blender is filling or mixing while the other is feeding.
- the semi-fluid composite exiting from the processor is fed into a pump which injects the formula at about 2000 ps ⁇ . through a conventional "dual material" die into a flow mold (tie mold).
- the flow mold both shapes and cools the composite until it stabilizes enough to emerge from the mold.
- the process is analogous to extrusion molding in plastics technology.
- the tie can be textured, to better grip the ballast the tie will be laid on and decrease movement of the tie once installed.
- the texturing is typically administered to three sides of the tie, so that the top side, to which the rail is attached, remains smooth.
- Texturing can be in any suitable pattern, for example, a diamond pattern, and can use any texturing means.
- texturing of the tie can be through the embossing of a pattern onto the tie using one or more embossing wheels, which are subject to heat and which rotate as the tie is passed through them. Texturing can also be through a stamping process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Moulding By Coating Moulds (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20243409P | 2009-02-27 | 2009-02-27 | |
PCT/CA2010/000245 WO2010096911A1 (en) | 2009-02-27 | 2010-02-26 | Composition and method for the production of railway ties |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2401330A1 true EP2401330A1 (de) | 2012-01-04 |
EP2401330A4 EP2401330A4 (de) | 2012-10-03 |
Family
ID=42664964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10745762A Withdrawn EP2401330A4 (de) | 2009-02-27 | 2010-02-26 | Zusammensetzung und verfahren zur herstellung von bahnschwellen |
Country Status (5)
Country | Link |
---|---|
US (1) | US8252216B2 (de) |
EP (1) | EP2401330A4 (de) |
CA (1) | CA2784337C (de) |
RU (1) | RU2540641C2 (de) |
WO (1) | WO2010096911A1 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2956673B1 (fr) * | 2010-02-23 | 2012-11-30 | Arkema France | Utilisation d'une composition a base de resine thermoplastique pour la fabrication de traverses de chemin de fer |
EP2877635B1 (de) | 2013-09-26 | 2019-01-30 | Grigorij Wagner | Strukturkomponente |
US9267038B2 (en) | 2014-01-07 | 2016-02-23 | Honeywell International Inc. | Asphalt binder compositions and methods to make and use same |
KR101575314B1 (ko) * | 2014-03-18 | 2015-12-07 | 현대자동차 주식회사 | 차량용 알루미늄 휠 및 그 제조 방법 |
CA2852525A1 (en) * | 2014-05-15 | 2015-11-15 | Duropar Technologies Inc. | Rail assembly and composite polymer crossties therefor |
AU2015345936B2 (en) * | 2014-11-11 | 2020-05-21 | Braskem S.A. | Railway sleeper and railway-sleeper manufacturing method |
CA3016698A1 (en) | 2015-12-31 | 2017-07-06 | Triumvirate Environmental, Inc. | Plastic articles made from recycled medical and other plastic waste |
RU174683U1 (ru) * | 2017-06-21 | 2017-10-25 | Ханлар Шахлар оглы Бабаханов | Шпала |
CN110451851B (zh) * | 2019-08-08 | 2021-11-30 | 辽宁新发展公路科技养护有限公司 | 用沥青路面面层铣刨料再生制备预制边坡六棱护块的方法 |
RU2737711C1 (ru) * | 2020-05-26 | 2020-12-02 | Валерий Иванович Кондращенко | Устройство для изготовления композиционных армированных шпал |
CN112646254A (zh) * | 2020-12-24 | 2021-04-13 | 中国地质大学(北京) | 一种热塑性塑料玻纤挤出复合轨枕及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338231A (en) * | 1980-06-12 | 1982-07-06 | Owens-Corning Fiberglas Corporation | Modified asphalt compositions |
US5221702A (en) * | 1991-12-09 | 1993-06-22 | Enviropaver Inc. | Composite block & process for manufacturing |
US20060226247A1 (en) * | 2005-03-29 | 2006-10-12 | Duropar Technologies Inc. | Railway Ties and Structural Elements |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5367007A (en) * | 1991-12-09 | 1994-11-22 | Enviropaver Inc. | Multi-layer composite block & process for manufacturing |
US5722589A (en) * | 1995-01-05 | 1998-03-03 | Green Track Inc. | Composite load bearing structure |
US5609295A (en) * | 1995-01-05 | 1997-03-11 | Green Track Inc. | Composite railway tie and method of manufacture thereof |
RU15577U1 (ru) * | 2000-08-07 | 2000-10-27 | Общество с ограниченной ответственностью "Приморнефтегаз" | Шпала |
US6696125B2 (en) | 2002-04-25 | 2004-02-24 | Polyglass, U.S.A. | Self-adhered modified bitumen roofing material |
US20040175563A1 (en) * | 2003-03-05 | 2004-09-09 | Okerson C. Albert | Thick thermoplastic composites |
RU75857U1 (ru) * | 2008-04-21 | 2008-08-27 | Андрей Михайлович Паньшин | Шпала |
US7866569B2 (en) * | 2009-01-05 | 2011-01-11 | Dynamic Composites, LLC | Railroad cross tie and method of manufacture |
-
2010
- 2010-02-26 RU RU2011139327/05A patent/RU2540641C2/ru not_active IP Right Cessation
- 2010-02-26 WO PCT/CA2010/000245 patent/WO2010096911A1/en active Application Filing
- 2010-02-26 US US12/713,850 patent/US8252216B2/en not_active Expired - Fee Related
- 2010-02-26 EP EP10745762A patent/EP2401330A4/de not_active Withdrawn
- 2010-02-26 CA CA2784337A patent/CA2784337C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338231A (en) * | 1980-06-12 | 1982-07-06 | Owens-Corning Fiberglas Corporation | Modified asphalt compositions |
US5221702A (en) * | 1991-12-09 | 1993-06-22 | Enviropaver Inc. | Composite block & process for manufacturing |
US20060226247A1 (en) * | 2005-03-29 | 2006-10-12 | Duropar Technologies Inc. | Railway Ties and Structural Elements |
Non-Patent Citations (1)
Title |
---|
See also references of WO2010096911A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP2401330A4 (de) | 2012-10-03 |
US8252216B2 (en) | 2012-08-28 |
RU2540641C2 (ru) | 2015-02-10 |
CA2784337C (en) | 2017-01-17 |
US20100219257A1 (en) | 2010-09-02 |
CA2784337A1 (en) | 2010-09-02 |
RU2011139327A (ru) | 2013-04-10 |
WO2010096911A1 (en) | 2010-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2784337C (en) | Composition and method for the production of railway ties | |
CA2360148C (en) | Use of recycled plastics for preparing high performance composite railroad ties | |
US9816235B2 (en) | Thermoset composite material and structural component and method of making the same from engineered recycled rubber powder | |
EP0918817B1 (de) | Polymerzusammensetzungen und verfahren zur herstellung von baumaterialien daraus | |
US20030065082A1 (en) | Compositions comprising solid particles and binder | |
EP0644913A1 (de) | Recyclierts, faserverstärktes harz enthaltendes erzeugnis und verfahren und vorrichtung dafür | |
KR20030001325A (ko) | 보행로용 포장재 및 그것의 제조 방법 | |
US20070207314A1 (en) | Recycled Polymeric Composite Crossties and Methods of Manufacture | |
WO2004071740A1 (en) | Elastomeric structural elements | |
US20110278757A1 (en) | Unitary mat for playgrounds and the like and method for forming same | |
US9724852B1 (en) | High density composites comprising reclaimed carpet material | |
US20060226247A1 (en) | Railway Ties and Structural Elements | |
RU174683U1 (ru) | Шпала | |
US20090242655A1 (en) | Railroad tie that obviates the need for a tie plate | |
EP1354681A1 (de) | Thermoplastische Komponente und Füllstoff aufweisender Formkörper und dessen Herstellungsverfahren | |
US20070212437A1 (en) | Recycled Polymeric Composite Crossties and Methods of Manufacture | |
EP3976882A1 (de) | Eisenbahnschwelle | |
WO2017014718A1 (en) | A thermoset composite material and structural component and the method of making from engineered recycled rubber powder | |
Nosker et al. | Use of recycled plastics for preparing high performance composite railroad ties, US Patent 6,191,228 | |
RU2778526C1 (ru) | Линия производства железнодорожной шпалы из полиэтилена высокой плотности (HDPE) (в том числе и вторичного сырья), с добавлением различных композиционных материалов, а также различных материалов из минеральных и органических волокон | |
WO2006047733A2 (en) | Composite material and method of manufacture | |
EP2657302A1 (de) | Schaumglasprodukt für Baukonstruktionen und Herstellungsverfahren | |
MXPA99001959A (en) | Composite building materials from recyclable waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110926 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20120904 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E01B 3/44 20060101ALI20120829BHEP Ipc: C08L 23/12 20060101ALI20120829BHEP Ipc: B29C 47/00 20060101ALI20120829BHEP Ipc: E01B 3/46 20060101ALI20120829BHEP Ipc: C08L 95/00 20060101AFI20120829BHEP Ipc: C08L 23/06 20060101ALI20120829BHEP Ipc: C08K 7/14 20060101ALI20120829BHEP |
|
17Q | First examination report despatched |
Effective date: 20130131 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08L 23/12 20060101ALI20130320BHEP Ipc: C08L 95/00 20060101AFI20130320BHEP Ipc: B29C 47/00 20060101ALI20130320BHEP Ipc: E01B 3/44 20060101ALI20130320BHEP Ipc: C08K 7/14 20060101ALI20130320BHEP Ipc: C08L 23/06 20060101ALI20130320BHEP Ipc: E01B 3/46 20060101ALI20130320BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170901 |