EP2399015A1 - Procede et estimateur d'une masse d'air frais dans une chambre de combustion, procede d'estimation de remplissage total, support d'enregistrement pour ces procedes et vehicule equipe de cet estimateur - Google Patents

Procede et estimateur d'une masse d'air frais dans une chambre de combustion, procede d'estimation de remplissage total, support d'enregistrement pour ces procedes et vehicule equipe de cet estimateur

Info

Publication number
EP2399015A1
EP2399015A1 EP10707320A EP10707320A EP2399015A1 EP 2399015 A1 EP2399015 A1 EP 2399015A1 EP 10707320 A EP10707320 A EP 10707320A EP 10707320 A EP10707320 A EP 10707320A EP 2399015 A1 EP2399015 A1 EP 2399015A1
Authority
EP
European Patent Office
Prior art keywords
mass
fresh air
combustion chamber
gases
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10707320A
Other languages
German (de)
English (en)
Other versions
EP2399015B1 (fr
Inventor
Emmanuel Sedda
Frédéric TRELLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
GM Global Technology Operations LLC
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2399015A1 publication Critical patent/EP2399015A1/fr
Application granted granted Critical
Publication of EP2399015B1 publication Critical patent/EP2399015B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the invention relates to an estimating method and an estimator of a mass Ma of fresh air admitted inside a combustion chamber of a cylinder of a motor during a motor cycle.
  • the invention also relates to a method of estimating the total charge of fresh air supercharged from the combustion chamber and a vehicle equipped with the estimator.
  • An engine cycle successively comprises the exhaust of the burnt gases from the combustion chamber, the admission of fresh air and fuel into the combustion chamber and the explosion of the mixture in this combustion chamber.
  • an engine cycle is two round trips of piston in the cylinder between the two extreme positions of its stroke, that is to say the top dead center (TDC) and the point low death (PMB).
  • the power delivered by an internal combustion engine is a function of the amount of air introduced into the combustion chamber of the engine. This quantity of air is itself proportional to the density of this air. Therefore, in case of high power demand, it is expected to increase the amount of air by means of compression of the air before it is admitted into the combustion chamber.
  • This operation is more commonly known as supercharging and can be performed by a supercharging device such as a turbocharger or a driven compressor such as a screw compressor.
  • this scanning is obtained by simultaneously opening the exhaust and intake valves of the same combustion chamber for a few degrees to a few tens of degrees of angle. rotation of the crankshaft. Typically, this occurs at the end of the flue gas exhaust and at the beginning of the intake of fresh air. Specifically, the fact that the air pressure at the open intake valve is higher than the pressure at the exhaust valve creates a flow of air that passes directly from the intake to the exhaust valve. exhaust resulting in passing part of the residual burnt gases present in the combustion chamber. This period during which the intake and exhaust valves are simultaneously open is called "valve crossing".
  • valve crossover In the case of atmospheric engines, that is to say engines without supercharging, a valve crossover can also be provided. In this case, during the crossing of valves, flue gases are sucked into the combustion chamber. It is said that the flue gases are re-aspirated. This feature is known by the acronym IGR (Internal Gas Recirculation) or Internal Recirculation of Exhaust Gas.
  • the invention aims to overcome this disadvantage by providing a more accurate method for estimating the amount of fresh air admitted into a combustion chamber.
  • the estimates of the total mass Mtot and the mass Mb of burnt gases can be established precisely without measuring the pressure or the temperature inside the combustion chamber. Therefore, this method of estimating the mass Ma is more accurate.
  • the embodiments of this method of estimating the mass Ma may comprise one or more of the characteristics corresponding to the variants described hereinafter.
  • the estimate of the mass Mb of burnt gas comprises the estimation of a mass Mb_resi of residual burnt gas contained in the combustion chamber at the end of the exhaust of the burnt gases, and the estimating a mass Mb_reasp of burnt gases re-aspirated inside the combustion chamber during the crossing of valves.
  • the estimation of the mass Mb_resi is obtained from a pressure P ECH of the burnt gases, an internal volume of the combustion chamber at the end of the exhaust of the burnt gases, d a temperature T ECH of the burnt gases and a correction coefficient A ECH of the pressure P ECH whose value is a function of an end-of-exhaust angle and the engine speed.
  • This mode also makes it possible to obtain an accurate estimate of the mass of residual burnt gases in the combustion chamber at the end of the exhaust without it being necessary to measure the pressure or the temperature inside the combustion chamber. combustion.
  • the estimation of the mass Mb_reasp is obtained using the following relation:
  • r is a constant equal to the following ratio R / M where R is the universal constant of perfect gases and M is the molar mass in kg. mol "1 of flue gases,
  • - Sbase is a corrective value depending on the engine speed and the difference between angles FE and OA, respectively, of exhaust closure and intake opening and,
  • - Scor is a corrective value according to the difference between the angles FE and OA and the engine speed
  • is the ratio of the heat capacity at constant pressure of the flue gases to the heat capacity at constant volume of the flue gases, - ⁇ O (PADM / PECH) is defined by the following relation:
  • the estimate of the total mass Mtot is obtained from an admission pressure P ADM of the air, a volume of the combustion chamber at the end of the admission, of a temperature T m ang ang du of the mixture of fresh air and flue gas contained in the combustion chamber at the end of the intake of fresh air, and a correction coefficient A ADM whose value is obtained from a prerecorded cartography according to an angle FA end of admission and the engine speed.
  • the estimate of the mass Ma of fresh air is a solution of the system of equations. next :
  • - AADM is a correction coefficient whose value depends on the engine speed and the end of intake angle
  • Vcyl_FA is the geometric volume of the combustion chamber calculated at the end angle of admission
  • Tmixture is the temperature of the mixture of fresh air and flue gases contained in the combustion chamber
  • r is a constant equal to the ratio R / M where R is the universal constant of perfect gases and M is the molar mass in kg mol -1 of the mixed gases,
  • cpa and cpb are the constant pressure mass heat capacities, respectively, of fresh air and flue gases
  • Ta and Tb are the temperatures, respectively, of fresh air and flue gases.
  • the invention also relates to a method of estimating the total filling fill_tot supercharged fresh air of a combustion chamber of a cylinder of a motor during a motor cycle, wherein this method comprises estimating a mass Ma of fresh air admitted into the combustion chamber using the above method, estimating a mass Mbal_tot of gas swept (air or flue gas) during the crossing of the valves, and estimating the total filling repl_tot fresh air supercharged from the fresh air mass Ma and the mass Mbal_tot estimated gas swept
  • the estimate of the total filling is a solution of the following equation system:
  • Mo is an air reference mass under normal conditions of temperature and pressure
  • Mb is a mass of burnt gases contained in the combustion chamber at the end of the exhaust of the burned gases
  • Mbal_tot is the total mass of swept gas (air or flue gas) during the valve crossing
  • Mbal is the mass of gas swept (air) between the intake and the exhaust during the crossing of valves
  • Max true and Min true are respectively the functions returning the maximum and the minimum.
  • I is the absolute value.
  • the invention also relates to an information recording medium comprising instructions for performing one of the above methods, when these instructions are executed by an electronic computer.
  • the invention also relates to an estimator of a mass Ma of fresh air admitted inside a combustion chamber of a cylinder of a motor during an engine cycle, in which this estimator comprises a module for estimating a total mass Mtot of gas contained in the combustion chamber at the end of the admission of fresh air, a module for estimating a mass Mb of burnt gases contained in the chamber at the end of the flue gas exhaust, and a module for estimating the mass Ma of fresh air from the difference between the total mass Mtot and the estimated mass Mb of flue gases.
  • the invention also relates to a vehicle comprising the estimator above.
  • FIG. 1 is a schematic illustration of a vehicle in which the mass Ma and the total fillage fill_tot are estimated;
  • FIG. 2 is a graph schematically illustrating movements of the exhaust and intake valves during an engine cycle
  • FIG. 3 is a more detailed illustration of the architecture of an electronic calculator implementing an estimator of the mass Ma and of the total fill, fill_tot, and
  • FIG. 1 schematically shows a vehicle 2 equipped with an internal combustion engine.
  • the vehicle 2 is a motor vehicle such as a car.
  • the engine of the vehicle 2 is equipped with several cylinders. However, to simplify the illustration, only a cylinder 6 of this combustion engine is shown in Figure 1. Inside the cylinder 6, a piston 8 is mounted movably in translation between a top dead center (TDC) and a bottom dead center (PMB). This piston 8 rotates a crank 10 of a crankshaft 12 via a connecting rod 14. The crankshaft 12 drives in rotation, through a mechanism (not shown), the driving wheels of the vehicle 2 such that the wheel 16.
  • TDC top dead center
  • PMB bottom dead center
  • the cylinder 6 defines a combustion chamber 18 defined by the upper part of the piston 8 and a cylinder head not shown.
  • a fresh air intake duct 20 opens into the chamber 18 through an inlet opening.
  • An inlet valve 24 is movable between a closed position in which it closes the intake opening in a fresh airtight manner, and an open position in which fresh air can be admitted into the interior of the chamber. chamber 18 through the intake opening.
  • the valve 24 is moved between its open position and its closed position by an actuator 26 of intake valves.
  • a fuel injector 28 is provided in the conduit 20 to inject fuel into the fresh air admitted to the interior of the chamber 18.
  • the fresh air / fuel mixture starts at occur inside the intake air duct.
  • the conduit 20 is fluidly connected to a compressor 30 of a turbocharger 32 adapted to compress the fresh air admitted to the interior of the chamber 18.
  • the fresh air thus compressed is called fresh air supercharged.
  • a candle 34 clean to ignite the fresh air / fuel mixture opens into the chamber 18. This candle is controlled by an ignition device 36.
  • An exhaust duct 40 also opens into the chamber 18 through an exhaust opening.
  • This exhaust opening is closable by a valve 44 movable between a closed position, and an open position in which the burnt gases contained inside the chamber 18 can escape via the conduit 40.
  • This valve 44 is moved between these open and closed positions by a valve actuator 46.
  • the valve actuators 26 and 46 may be mechanical valve actuators.
  • the end of the duct 40 opposite its opening which opens into the chamber 18 is fluidly connected to a turbine 48 of the turbocharger 32.
  • This turbine 48 allows in particular to relax the exhaust before sending them in a line d exhaust 50.
  • the various engine equipment that can be controlled such as the actuators, the ignition device or the fuel injector are connected to a motor control unit 60 also known by the acronym ECU (Engine Control Unit).
  • ECU Engine Control Unit
  • FIG. 1 the connections between this unit 60 and the various equipment items ordered have not been represented.
  • the unit 60 is also connected to many sensors such as for example a sensor 62 of the position of the crankshaft 12 and a sensor 64 of the engine speed.
  • the engine speed is defined here as being the number of revolutions per minute performed by the motor drive shaft.
  • Figure 2 shows, in the form of a graph, the movements of the valves 24 and 44 relative to the movements of the piston 8 during a motor cycle.
  • an axis 70 of the abscissa represents the displacement of the piston 8 between its top dead center and its bottom dead center, noted respectively, PMH and PMB on this graph.
  • the y-axis represents the amplitude of the displacement of the intake and exhaust valves. This amplitude is zero when the intake valve or the exhaust valve is closed. It is maximum when these same valves are completely open.
  • the displacement of the valve 44 is represented by a curve 72 and the displacement of the valve 24 is represented by a curve 74.
  • the axis 70 is graduated in degrees of rotation angle of the crankshaft. The origin of this axis is confused with the top dead center of fresh air intake.
  • the exhaust valve begins to open at an angle OE located substantially around the bottom dead center of relaxation and closes at an angle FE.
  • the angle FE is located after the top dead center.
  • the inlet valve begins to open at an angle OA and closes at an angle FA.
  • this graph is represented in the particular case where a valve crossing exists. Indeed, the angle OA precedes the angle FE, which indicates that during a period of time of a few degrees, the intake and exhaust valves are simultaneously open.
  • FIG. 3 represents in more detail a possible architecture for the unit 60 for estimating the mass Ma and the total filling rate_tot.
  • the unit 60 implements an estimator 80 of a temperature T ECH of the burnt gases, an estimator 82 of a pressure P ECH of the gases, an estimator 84 of a temperature T ADM of the air charge admitted inside the chamber 18 via the conduit 20, and an estimator 86 of a pressure P ADM of the fresh air admitted inside the chamber 18.
  • estimators 80, 82, 84 and 86 are connected to an estimator 88 of the mass Ma and the total fill fill_tot.
  • This estimator 88 is also connected to a motor control block 90.
  • This block 90 makes it possible in particular to control the various actuators, injectors and ignition devices of the engine according to the estimates of the mass Ma and the total fill fill_tot.
  • the block 90 is able to adjust the quantity of fuel injected and to advance the ignition timing of the fresh air / fuel mixture injected into the chamber 18 or to adjust the opening of a butterfly valve to adjust the amount of fresh air admitted into the room 18.
  • the estimator 88 comprises a module 92 for estimating a mass Mb of burnt gas contained in the chamber 18 at the end of the exhaust of the flue gases, an estimator 94 of a mass Mbal of gas swept from the admission to the exhaust at the crossing of valves, an estimator 96 of the temperature Tb of the flue gases, an estimator 98 of the mass Ma of fresh air admitted into the chamber 18, and an estimator 100 of the total filling repl_tot.
  • the module 92 has a submodule 102 for estimating a mass Mb_resi of residual burnt gas contained in the chamber 18 at the end of the exhaust, and a submodule 104 for estimating a mass Mb_reasp of burnt gases sucked off at the crossing of the valves inside the chamber 18.
  • modules 92 to 100 will be described in more detail with reference to FIG. 4.
  • the unit 60 is typically made from a programmable computer capable of executing instructions stored in an information storage means.
  • the unit 60 is connected to a memory 106 containing the various instructions and data necessary for the execution of the method of FIG. 4.
  • the various maps used to implement the method of FIG. 4 are recorded in this memory 106. These maps are for example constructed experimentally so as to minimize errors between the estimated values and the real values.
  • the general principle is based on a mass balance on an engine cycle of the gas entering and leaving the chamber 18. This mass balance is decomposed into several calculations that take place throughout the engine cycle.
  • the mass Mb of flue gases in the chamber 18 is estimated.
  • the total mass Mtot of gas contained inside the chamber 18 is estimated. From these two estimates, and because the total mass of gas is preserved on a motor cycle, the mass Ma of air contained inside the chamber 18 during a motor cycle can be obtained by subtraction of the mass Mb to the mass Mtot.
  • the mass Ma is given by the following relation: where Mtot is the total mass of gas in chamber 18 at the end of admission, and Mb is the total mass of flue gases in chamber 18 at the end of the exhaust.
  • the estimate of the mass Mb is decomposed into an estimate of the mass Mb_resi of residual burnt gases not removed via the leads 40 at the end of the exhaust and mass Mb_reasp of flue gas re-aspirated during the crossing of valves.
  • Mb Mb_resi + Mb_reasp
  • Mb_resi is the mass of residual burned gas that could not be evacuated during the exhaust.
  • Mb_reasp is the mass of burned gas re-sucked at the crossing of valves.
  • Total fill_tot is the total amount of fresh air admitted through the intake opening during an engine cycle.
  • Mbal the exhaust
  • Mbal is the mass of gases swept from the intake to the exhaust during the crossing of valves
  • Mo is an air reference mass under normal conditions of temperature and pressure.
  • Fresh air filling fill_cyl is defined by the following relationship:
  • Mo where Ma is the air mass contained in chamber 18 at the end of admission, and Mo is the reference mass.
  • the quantities fill_tot, fill_cyl and the ratio Mbal / Mo are dimensionless quantities.
  • the Mbal mass exists only in the case of supercharged engines.
  • the description of the process which follows is made in the most complete case, that is to say the case where the estimates of the Mb_reasp and Mbal masses are both carried out.
  • the skilled person can easily simplify the process that follows to adapt it only to the case of atmospheric engines or only in the case of supercharged engines.
  • the process starts with a step 120 of estimation of the mass Mb_resi of burnt gas contained in the chamber 18 at the end of the exhaust.
  • the submodule 102 estimates the mass Mb_resi using the following relation: ⁇ / fU . * cyl FE ⁇ * cyl FE V ⁇ ECff * ⁇ ECH / X ⁇ cyl FE
  • r is a constant equal to the following ratio R / M where R is the universal constant of perfect gases and M is the molar mass in kg. mol "1 of flue gases,
  • Vcyi FE is the geometric volume of the chamber 18 at the end of the exhaust that is to say for the angle FE.
  • V cy ⁇ _ FE The volume V cy ⁇ _ FE is given by the following relation:
  • Vcyi FE (FE) - + - ⁇ [+ TO - COs (FE) - ⁇ A 2 Sm 2 (FE))
  • the ratio ⁇ and the rate ⁇ are known characteristics of a motor. It is simply recalled here that the ratio ⁇ is the ratio between the length of the rod 14 divided by the half-length of the crank 18.
  • the pressures P ECH and PADM and the temperatures TECH and T A DM are the pressures and temperatures estimated by the estimators 80, 82, 84 and 86 from physical magnitudes. measured in the engine.
  • the sub-module 104 estimates the Mb_reasp mass of flue gases re-aspired during the crossing of valves.
  • this estimate is given by the following relation: , "Mb reasp
  • Mb_reasp is the flow rate of re-aspirated burned gases expressed in kg / h
  • K is a coefficient making it possible to pass from the flow rate to an admitted mass per engine cycle in the chamber 18.
  • N is the engine speed
  • Cylinder_number is the engine cylinder number
  • Nbre_revolutioncycle is the number of crankshaft revolution during a motor cycle
  • 60 is used to convert the N engine speed given in a revolution per minute in number of revolutions per hour.
  • Sbase is a predetermined map that gives a first corrective value as a function of the difference between the angles FE and OA and the engine speed
  • Scor is a predetermined map which gives a second corrective value as a function of the difference between the angles FE and OA and the engine speed
  • - POND is a predetermined mapping that gives a third corrective value depending on the position of the valve crossing and the engine speed.
  • is the ratio of the heat capacity at constant pressure of the flue gases to the heat capacity at constant volume of the flue gases. For example, this ratio is equal to 1, 4.
  • the module 94 estimates the total mass Mbal_tot of gas swept between the intake and the exhaust during the crossing of valves.
  • the mass Mbal_tot is obtained using the following relation:
  • K is the same coefficient as previously defined for passing from the flow rate to an admitted mass per engine cycle in chamber 18.
  • the flow Mbal _tot is estimated from the law of Barrier Saint Venant corrected in the following way to take into account crossover valves:
  • S is a predetermined map making it possible to obtain a corrective value as a function of the difference between the angles FE and OA and of the engine speed, and
  • - POND is a predetermined map to obtain a corrective value depending on the position of the valve crossing and the engine speed.
  • the position of the crossing of valves is equal to the following value: (FE + OA) / 2.
  • the module 96 estimates the temperature Tb of the flue gases.
  • this temperature Tb is obtained by a calculation of enthalpy mixture between the residual gases and the re-aspirated flue gases.
  • the temperature Tb is obtained from the following relation:
  • Mb_resi is the mass of residual burned gas previously estimated
  • - Mb_reasp is the mass of burned gases re-aspirated at the crossing of valves
  • - cpb_reasp is the mass heat capacity at constant pressure of the re-aspirated flue gas
  • Tb_reasp is the temperature of the flue gases that have been sucked off during the valve crossover
  • Tb_resi is the residual flue gas temperature obtained from an adiabatic expansion calculation.
  • the temperature Tb_reasp is taken equal to the temperature TECH.
  • the temperature Tb_resi is calculated from the following relation:
  • the module 98 estimates the mass Ma by solving the following system of equations:
  • Vcyi FA is the geometric volume of the chamber 18 calculated at the angle FA
  • a ADM is a correction coefficient
  • r is a constant equal to the ratio R / M where R is the universal constant of perfect gases and M is the molar mass in kg. mol "1 of the mixed gases,
  • Tmégege is the temperature of the mixture of fresh air and flue gases contained in chamber 18, and cpa and cpb are the constant pressure mass capacities, respectively, of fresh air and flue gases, and
  • Ta and Tb are the temperatures, respectively, of fresh air and flue gases.
  • the volume V cy ⁇ _ FA is calculated using the following relation:
  • the correction coefficient A ADM is obtained using the following relation:
  • AADM_ATMO is a corrective value obtained from a predetermined cartography as a function of the angle FA and the engine speed
  • AADM_TURBO is a corrective value obtained from a predetermined cartography according to the angel FA and the engine speed
  • the coefficient kATMO_TURBO is a corrective coefficient given by the following relation:
  • PATMO is the atmospheric pressure
  • Po is the reference pressure which is here equal to 1013 mbar
  • fA (N, FA) is a corrective value obtained from a predetermined mapping as a function of the engine speed and the angle FA
  • fB (N) is a corrective value obtained from a predetermined mapping according to the regime engine.
  • the relationship defining the temperature T me iang ⁇ is obtained by a calculation of enthalpy mixture between the mass of burnt gas and the fresh air mass contained in the chamber 18.
  • the estimate of the mass Ma is given by the following relation in the particular case where cpb and cpa are equal:
  • the estimate of the mass Ma obtained after solving the system of equations is corrected according to the inverse of the temperature Ta of the fresh air.
  • the mass Ma is corrected using the following relation:
  • f (1 / Ta) is a correction coefficient whose value is obtained from a prerecorded cartography giving the value of this correction coefficient as a function of the inverse of the temperature Ta.
  • the module 100 estimates the total filling repl_tot fresh air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé d'estimation de la masse Ma d'air frais admise à l'intérieur d'une chambre de combustion d'un cylindre d'un moteur lors d'un cycle moteur, caractérisé en ce que ce procédé comprend l'estimation (128) d'une masse totale Mtot de gaz contenue dans la chambre de combustion à la fin de l'admission de l'air frais, l'estimation (120, 124) d'une masse Mb de gaz brûlés contenue dans la chambre de combustion à la fin de l'échappement des gaz brûlés, et l'estimation (128) de la masse Ma d'air frais à partir de la différence entre la masse totale Mtot et la masse Mb de gaz brûlés estimées.

Description

PROCEDE ET ESTIMATEUR D'UNE MASSE D'AIR FRAIS DANS UNE CHAMBRE DE COMBUSTION, PROCEDE D'ESTIMATION DE REMPLISSAGE TOTAL, SUPPORT D'ENREGISTREMENT POUR CES PROCEDES ET VEHICULE
EQUIPE DE CET ESTIMATEUR
[0001] La présente invention revendique la priorité de la demande française 0951 133 déposée le 23 février 2009 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
[0002] L'invention concerne un procédé d'estimation et un estimateur d'une masse Ma d'air frais admise à l'intérieur d'une chambre de combustion d'un cylindre d'un moteur lors d'un cycle moteur. L'invention a également pour objet un procédé d'estimation du remplissage total en air frais suralimenté de la chambre de combustion et un véhicule équipé de l'estimateur.
[0003] Un cycle moteur comprend successivement l'échappement des gaz brûlés de la chambre de combustion, l'admission d'air frais et de carburant dans la chambre de combustion et l'explosion du mélange dans cette chambre de combustion. Dans le cas d'un moteur quatre temps, un cycle moteur correspond à deux allers-retours de piston dans le cylindre entre les deux positions extrêmes de sa course, c'est-à-dire le point mort haut (PMH) et le point mort bas (PMB).
[ooo4] L'échappement de gaz brûlés dure tant que la ou les soupapes d'échappement sont ouvertes. De façon similaire, l'admission d'air frais dure tant que la ou les soupapes d'admission sont ouvertes.
[oooδ] Comme cela est connu, la puissance délivrée par un moteur à combustion interne est fonction de la quantité d'air introduite dans la chambre de combustion de ce moteur. Cette quantité d'air est elle-même proportionnelle à la densité de cet air. De ce fait, en cas de demande de forte puissance, il est prévu d'augmenter cette quantité d'air aux moyens d'une compression de l'air avant qu'il ne soit admis dans cette chambre de combustion. Cette opération est plus communément appelée suralimentation et peut être réalisée par un dispositif de suralimentation comme un turbocompresseur ou un compresseur entraîné tel qu'un compresseur à vis.
[0006] Afin d'augmenter encore plus cette quantité d'air admise dans le cylindre, il peut être prévu de réaliser un mode d'admission avec un balayage des gaz brûlés résiduels. Ce balayage permet d'évacuer les gaz brûlés présents dans la chambre de combustion pour les remplacer par de l'air suralimenté.
[0007] Comme cela est expliqué dans le brevet US 4 217 866, ce balayage est obtenu en ouvrant simultanément les soupapes d'échappement et d'admission d'une même chambre de combustion pendant quelques degrés à quelques dizaines de degrés d'angle de rotation du vilebrequin. Typiquement, cela se produit en fin d'échappement des gaz brûlés et en début d'admission de l'air frais. Concrètement, le fait que la pression de l'air au niveau de la soupape d'admission ouverte est plus élevée que la pression au niveau de la soupape d'échappement crée un courant d'air qui passe directement de l'admission à l'échappement entraînant au passage une partie des gaz brûlés résiduels présents dans la chambre de combustion. Cette période pendant laquelle les soupapes d'admission et d'échappement sont simultanément ouvertes s'appelle « croisement de soupapes».
[oooδ] Dans le cas des moteurs atmosphériques, c'est-à-dire des moteurs dépourvus de suralimentation, un croisement de soupapes peut également être prévu. Dans ce cas, pendant le croisement de soupapes, des gaz brûlés sont aspirés dans la chambre de combustion. On dit que les gaz brûlés sont ré-aspirés. Cette fonctionnalité est connue sous l'acronyme d'IGR (Internai Gaz Recirculation) ou Recirculation Interne de Gaz d'échappement.
[0009] Des procédés d'estimation du débit d'air frais admis à l'intérieur d'une chambre de combustion d'un cylindre d'un moteur sont connus. Toutefois, ces procédés sont peu précis et ne permettent pas véritablement d'obtenir une estimation de la quantité d'air frais admise dans chaque chambre de combustion. Or cette estimation est importante pour commander correctement le moteur. Par exemple, cette estimation est utile pour déterminer la quantité de carburant à injecter ou pour régler l'avance à l'allumage.
[ooio] L'invention vise à remédier à cet inconvénient en proposant un procédé plus précis permettant d'estimer la masse d'air frais admise à l'intérieur d'une chambre de combustion.
[0011] Elle a donc pour objet un procédé d'estimation d'une masse Ma d'air frais admise à l'intérieur d'une chambre de combustion d'un cylindre d'un moteur lors d'un cycle moteur, dans lequel ce procédé comprend l'estimation d'une masse totale Mtot de gaz contenue dans la chambre de combustion à la fin de l'admission de l'air frais, l'estimation d'une masse Mb de gaz brûlés contenue dans la chambre de combustion à la fin de l'échappement des gaz brûlés, et l'estimation de la masse Ma d'air frais à partir de la différence entre la masse totale Mtot et la masse Mb de gaz brûlés estimées.
[0012] Les estimations de la masse totale Mtot et de la masse Mb de gaz brûlés peuvent être établies précisément sans mesurer la pression ou la température à l'intérieur de la chambre de combustion. Par conséquent, ce procédé d'estimation de la masse Ma est plus précis.
[0013] Les modes de réalisation de ce procédé d'estimation de la masse Ma peuvent comporter une ou plusieurs des caractéristiques correspondant aux variantes décrites ci-après.
[0014] Dans une variante, l'estimation de la masse Mb de gaz brûlés comprend l'estimation d'une masse Mb_resi de gaz brûlés résiduels contenue dans la chambre de combustion à la fin de l'échappement des gaz brûlés, et l'estimation d'une masse Mb_reasp de gaz brûlés ré-aspirés à l'intérieur de la chambre de combustion pendant le croisement de soupapes. Ce mode de réalisation permet d'obtenir une estimation de la masse Mb plus précise puisque la masse résiduelle de gaz brûlés et la masse des gaz brûlés réaspirés lors d'un croisement de soupapes sont simultanément prises en compte.
[0015] Dans une variante, l'estimation de la masse Mb_resi est obtenue à partir d'une pression PECH des gaz brûlés, d'un volume intérieur de la chambre de combustion à la fin de l'échappement des gaz brûlés, d'une température TECH des gaz brûlés et d'un coefficient correcteur AECH de la pression PECH dont la valeur est fonction d'un angle de fin d'échappement et du régime moteur. Ce mode permet également d'obtenir une estimation précise de la masse de gaz brûlés résiduels dans la chambre de combustion à la fin de l'échappement sans qu'il soit nécessaire de mesurer la pression ou la température à l'intérieur de la chambre de combustion.
[0016] Dans une variante qui permet d'accroitre la précision de l'estimation en tenant compote du croisement des soupapes, l'estimation de la masse Mb_reasp est obtenue à l'aide de la relation suivante :
Mb _ reasp = x POND ou :
- Mb _reasp est le débit de gaz brûlés ré-aspirés,
- PECH est la pression échappement des gaz brûlés,
- PADM est la pression admission de l'air ,
- TECH est la température des gaz brûlés,
- r est une constante égale au rapport suivant R/M où R est la constante universelle des gaz parfaits et M est la masse molaire en kg. mol"1 des gaz brûlés,
- Sbase est une valeur corrective fonction du régime moteur et de la différence entre des angles FE et OA, respectivement, de fermeture d'échappement et d'ouverture d'admission et,
- Scor est une valeur corrective fonction de la différence entre les angles FE et OA et du régime moteur,
- POND est une valeur corrective fonction du régime moteur et d'une position du croisement de soupapes donné par la relation suivante (FE + OA) / 2,
- Γ(PADM/PECH) est défini par la relation suivante :
où γ est le rapport de la capacité calorifique à pression constante des gaz brûlés sur la capacité calorifique à volume constant des gaz brûlés, - ΓO(PADM/PECH) est défini par la relation suivante :
[0017] Dans une variante, l'estimation de la masse totale Mtot est obtenue à partir d'une pression admission PADM de l'air, d'un volume de la chambre de combustion à la fin de l'admission, d'une température Tιangθ du mélange d'air frais et de gaz brûlés contenu dans la chambre de combustion à la fin de l'admission d'air frais, et d'un coefficient correcteur AADM dont la valeur est obtenue à partir d'une cartographie préenregistrée en fonction d'un angle FA de fin d'admission et du régime moteur. Ceci permet d'obtenir une estimation précise de cette masse Mtot puisqu'il est tenu compte des échanges de matières lors du croisement de soupapes.
[0018] Dans une variante qui permet d'estimer la masse Ma sans connaître la température et la pression à l'intérieur de la chambre de combustion, l'estimation de la masse Ma d'air frais est une solution du système d'équations suivant :
V X -* mélange )
Ma = MtOt -Mb
_ MaxcpaxTa + MbxcpbxTb mélange , ^- , ^7 7
Ma x cpa + Mb x cpb
ou :
- AADM est un coefficient correcteur dont la valeur est fonction du régime moteur et de l'angle de fin d'admission,
- PADM est la pression admission de l'air,
- Vcyl_FA est le volume géométrique de la chambre de combustion calculé à l'angle de fin d'admission,
- Tmélange est la température du mélange d'air frais et de gaz brûlés contenu dans la chambre de combustion,
- r est une constante égale au rapport suivant R/M où R est la constante universelle des gaz parfaits et M est la masse molaire en kg.mol-1 des gaz mélangés,
- cpa et cpb sont les capacités calorifiques massiques à pression constante, respectivement, de l'air frais et des gaz brûlés, et
- Ta et Tb sont les températures, respectivement, de l'air frais et des gaz brûlés. [0019] L'invention a également pour objet un procédé d'estimation du remplissage total rempl_tot en air frais suralimenté d'une chambre de combustion d'un cylindre d'un moteur lors d'un cycle moteur, dans lequel ce procédé comprend l'estimation d'une masse Ma d'air frais admis à l'intérieur de la chambre de combustion à l'aide du procédé ci-dessus, l'estimation d'une masse Mbal_tot de gaz balayé (air ou gaz brûlé) lors du croisement de soupapes, et l'estimation du remplissage total rempl_tot en air frais suralimenté à partir de la masse d'air frais Ma et de la masse Mbal_tot de gaz balayés estimées
[0020] Le procédé ci-dessus est plus précis car on tient compte de la masse de gaz balayés vers l'échappement lors du croisement de soupapes.
[0021] Dans une variante de l'invention, l'estimation du remplissage total est une solution du système d'équation suivant :
ou :
Mtot est la masse totale de gaz contenue dans la chambre de combustion à la fin de l'admission de l'air frais définie précédemment,
Mo est une masse de référence d'air dans les conditions normales de températures et de pression
Mb est une masse de gaz brûlés contenue dans la chambre de combustion à la fin de l'échappement des gaz brûlés
Mbal_tot est la masse totale de gaz balayé (air ou gaz brûlé) pendant le croisement de soupapes, Mbal est la masse de gaz balayé (air) entre l'admission et l'échappement pendant le croisement de soupapes,
Max(...) et Min(...) sont respectivement les fonctions retournant le maximum et le minimum, et
I ... I est la valeur absolue.
[0022] L'utilisation d'une solution de l'équation ci-dessus permet d'accroître la précision puisque l'on tient compte du fait que la masse d'air admise remplit le volume de la chambre de combustion jusqu'à ce qu'il n'y ait plus de gaz brûlés dans celle-ci.
[0023] L'invention a également pour objet un support d'enregistrement d'informations comprenant des instructions pour l'exécution d'un des procédés ci- dessus, lorsque ces instructions sont exécutées par un calculateur électronique.
[0024] L'invention a également pour objet un estimateur d'une masse Ma d'air frais admise à l'intérieur d'une chambre de combustion d'un cylindre d'un moteur lors d'un cycle moteur, dans lequel cet estimateur comprend un module d'estimation d'une masse totale Mtot de gaz contenue dans la chambre de combustion à la fin de l'admission d'air frais, un module d'estimation d'une masse Mb de gaz brûlés contenue dans la chambre de combustion à la fin de l'échappement de gaz brûlés, et un module d'estimation de la masse Ma d'air frais à partir de la différence entre la masse totale Mtot et la masse Mb de gaz brûlés estimées.
[0025] Enfin, l'invention a également pour objet un véhicule comprenant l'estimateur ci-dessus.
[0026] L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en se référant aux dessins sur lesquels :
• la figure 1 est une illustration schématique d'un véhicule dans lequel la masse Ma et le remplissage total rempl_tot sont estimés ;
• la figure 2 est un graphe illustrant schématiquement des déplacements des soupapes d'échappement et d'admission lors d'un cycle moteur, • la figure 3 est une illustration plus détaillée de l'architecture d'un calculateur électronique implémentant un estimateur de la masse Ma et du remplissage total rempl_tot, et
• la figure 4 est un organigramme d'un procédé d'estimation de la masse Ma et du remplissage total rempl_tot dans le véhicule de la figure 1.
[0027] La figure 1 représente schématiquement un véhicule 2 équipé d'un moteur à combustion interne. Par exemple, le véhicule 2 est un véhicule automobile tel qu'une voiture.
[0028] Le moteur du véhicule 2 est équipé de plusieurs cylindres. Toutefois, pour simplifier l'illustration, seul un cylindre 6 de ce moteur à combustion est représenté sur la figure 1. A l'intérieur du cylindre 6, un piston 8 est monté déplaçable en translation entre un point mort haut (PMH) et un point mort bas (PMB). Ce piston 8 entraîne en rotation une manivelle 10 d'un vilebrequin 12 par l'intermédiaire d'une bielle 14. Le vilebrequin 12 entraîne en rotation, par l'intermédiaire d'un mécanisme non représenté, les roues motrices du véhicule 2 telles que la roue 16.
[0029] Le cylindre 6 définit une chambre 18 de combustion délimitée par la partie supérieure du piston 8 et une culasse non représentée. Un conduit 20 d'admission d'air frais débouche dans la chambre 18 par l'intermédiaire d'une ouverture d'admission. Une soupape 24 d'admission est déplaçable entre une position fermée dans laquelle elle ferme de façon étanche à l'air frais l'ouverture d'admission, et une position ouverte dans laquelle l'air frais peut être admis à l'intérieur de la chambre 18 par l'intermédiaire de l'ouverture d'admission. La soupape 24 est déplacée entre sa position ouverte et sa position fermée par un actionneur 26 de soupapes d'admission.
[0030] Dans le cas particulier représenté ici, un injecteur 28 de carburant est prévu dans le conduit 20 pour injecter du carburant dans l'air frais admis à l'intérieur de la chambre 18. Ainsi, le mélange air frais/carburant commence à se produire à l'intérieur du conduit d'air d'admission.
[0031] Le conduit 20 est fluidiquement raccordé à un compresseur 30 d'un turbocompresseur 32 propre à comprimer l'air frais admis à l'intérieur de la chambre 18. L'air frais ainsi comprimé est appelé air frais suralimenté. [0032] Une bougie 34 propre à allumer le mélange air frais/carburant débouche dans la chambre 18. Cette bougie est commandée par un dispositif d'allumage 36.
[0033] Un conduit 40 d'échappement débouche également à l'intérieur de la chambre 18 par l'intermédiaire d'une ouverture d'échappement. Cette ouverture d'échappement est obturable par une soupape 44 déplaçable entre une position fermée, et une position ouverte dans laquelle les gaz brûlés contenus à l'intérieur de la chambre 18 peuvent s'échapper par l'intermédiaire du conduit 40. Cette soupape 44 est déplacée entre ces positions ouverte et fermée par un actionneur de soupapes 46.
[0034] Les actionneurs de soupapes 26 et 46 peuvent être des actionneurs de soupapes mécaniques.
[0035] L'extrémité du conduit 40 opposée à son ouverture qui débouche dans la chambre 18 est fluidiquement raccordée à une turbine 48 du turbocompresseur 32. Cette turbine 48 permet notamment de détendre les gaz d'échappement avant de les envoyer dans une ligne d'échappement 50.
[0036] Les différents équipements du moteur susceptibles d'être commandés tels que les actionneurs, le dispositif d'allumage ou encore l'injecteur de carburant sont raccordés à une unité 60 de commande du moteur également connu sous l'acronyme ECU (Engine Control Unit). Pour simplifier la figure 1 , les connexions entre cette unité 60 et les différents équipements commandés n'ont pas été représentées.
[0037] L'unité 60 est également raccordée à de nombreux capteurs tels que par exemple un capteur 62 de la position du vilebrequin 12 et un capteur 64 du régime moteur. On définit ici le régime moteur comme étant le nombre de tours par minute effectués par l'arbre d'entraînement du moteur.
[0038] La figure 2 représente, sous la forme d'un graphe, les déplacements des soupapes 24 et 44 par rapport aux déplacements du piston 8 lors d'un cycle moteur. Sur ce graphe, un axe 70 des abscisses représente le déplacement du piston 8 entre son point mort haut et son point mort bas notés, respectivement, PMH et PMB sur ce graphe. L'axe des ordonnées représente l'amplitude du déplacement des soupapes d'admission et d'échappement. Cette amplitude est nulle lorsque la soupape d'admission ou la soupape d'échappement est fermée. Elle est maximale lorsque ces mêmes soupapes sont complètement ouvertes. Ici, le déplacement de la soupape 44 est représenté par une courbe 72 et le déplacement de la soupape 24 est représenté par une courbe 74.
[0039] L'axe 70 est gradué en degrés d'angle de rotation du vilebrequin. L'origine de cet axe est confondue avec le point mort haut d'admission d'air frais.
[0040] Comme représenté sur cette figure 2, la soupape d'échappement commence à s'ouvrir à un angle OE situé sensiblement autour du point mort bas de détente et se ferme à un angle FE. Dans le cas particulier représenté sur la figure 2, l'angle FE est situé après le point mort haut d'admission.
[0041] La soupape d'admission commence à s'ouvrir à un angle OA et se ferme à un angle FA.
[0042] Ici, ce graphe est représenté dans le cas particulier où un croisement de soupapes existe. En effet, l'angle OA précède l'angle FE, ce qui indique que pendant une période de temps de quelques degrés, les soupapes d'admission et d'échappement sont simultanément ouvertes.
[0043] La figure 3 représente plus en détail une architecture possible pour l'unité 60 pour estimer la masse Ma et le remplissage total rempl_tot.
[0044] A cet effet, l'unité 60 implémente un estimateur 80 d'une température TECH des gaz brûlés, un estimateur 82 d'une pression PECH des gaz, un estimateur 84 d'une température TADM de l'air frais admis à l'intérieur de la chambre 18 par l'intermédiaire du conduit 20, et un estimateur 86 d'une pression PADM de l'air frais admis à l'intérieur de la chambre 18.
[0045] Ces estimateurs 80, 82, 84 et 86 sont raccordés à un estimateur 88 de la masse Ma et du remplissage total rempl_tot. Cet estimateur 88 est également raccordé à un bloc 90 de commandes du moteur. Ce bloc 90 permet notamment de commander les différents actionneurs, injecteurs et dispositifs d'allumage du moteur en fonction des estimations de la masse Ma et du remplissage total rempl_tot. Par exemple, le bloc 90 est apte à régler la quantité de carburant injectée et à avancer l'instant d'allumage du mélange air frais/carburant injecté dans la chambre 18 ou à régler l'ouverture d'une vanne papillon permettant d'ajuster la quantité d'air frais admise à l'intérieur de la chambre 18. [0046] L'estimateur 88 comprend un module 92 d'estimation d'une masse Mb de gaz brûlés contenue dans la chambre 18 à la fin de l'échappement des gaz brûlés, un estimateur 94 d'une masse Mbal de gaz balayés de l'admission vers l'échappement lors du croisement de soupapes, un estimateur 96 de la température Tb des gaz brûlés, un estimateur 98 de la masse Ma d'air frais admis dans la chambre 18, et un estimateur 100 du remplissage total rempl_tot.
[0047] Le module 92 présente un sous module 102 d'estimation d'une masse Mb_resi de gaz brûlés résiduels contenue dans la chambre 18 à la fin de l'échappement, et un sous module 104 d'estimation d'une masse Mb_reasp de gaz brûlés réaspirés lors du croisement de soupapes à l'intérieur de la chambre 18.
[0048] Ces modules 92 à 100 seront décrits plus en détail en regard de la figure 4.
[0049] L'unité 60 est typiquement réalisée à partir d'un calculateur programmable apte à exécuter des instructions enregistrées dans un moyen de stockage d'informations. Ici, à cet effet, l'unité 60 est raccordée à une mémoire 106 contenant les différentes instructions et données nécessaires pour l'exécution du procédé de la figure 4. En particulier, les différentes cartographies utilisées pour mettre en œuvre le procédé de la figure 4 sont enregistrées dans cette mémoire 106. Ces cartographies sont par exemple construites expérimentalement de manière à minimiser les erreurs entre les valeurs estimées et les valeurs réelles.
[0050] Le fonctionnement de l'unité 60 du véhicule 2 va maintenant être décrit plus en détail en regard du procédé de la figure 4 dans le cas particulier du moteur décrit en regard de la figure 1.
[0051] Avant de rentrer dans le détail du procédé d'estimation de la masse Ma et du remplissage total rempl_tot, le principe général de ce procédé est d'abord décrit.
[0052] Le principe général est basé sur un bilan des masses sur un cycle moteur des gaz entrant et sortant de la chambre 18. Ce bilan des masses est décomposé en plusieurs calculs qui ont lieu tout au long du cycle moteur.
[0053] Dans un premier temps, à la fin de l'échappement, la masse Mb de gaz brûlés dans la chambre 18 est estimée. Dans un second temps, à la fin de l'admission, la masse totale Mtot de gaz contenue à l'intérieur de la chambre 18 est estimée. [0054] A partir de ces deux estimations, et parce que la masse total de gaz est préservée sur un cycle moteur, la masse Ma d'air contenue à l'intérieur de la chambre 18 lors d'un cycle moteur peut être obtenue par soustraction de la masse Mb à la masse Mtot.
[0055] Plus précisément, d'après le bilan des masses des gaz admis et évacués lors d'un cycle moteur, la masse Ma est donnée par la relation suivante : où Mtot est la masse totale de gaz dans la chambre 18 à la fin de l'admission, et Mb est la masse totale de gaz brûlés dans la chambre 18 à la fin de l'échappement.
[0056] Dans le cas particulier où une partie des gaz brûlés sont ré-aspirés lors du croisement de soupapes, l'estimation de la masse Mb se décompose en une estimation de la masse Mb_resi de gaz brûlés résiduels non évacuée par l'intermédiaire du conduit 40 à la fin de l'échappement et de la masse Mb_reasp de gaz brûlés ré-aspirée pendant le croisement de soupapes.
[0057] La masse de gaz brûlés Mb est alors définie par la relation suivante : Mb = Mb_resi + Mb_reasp
où :
- Mb_resi est la masse de gaz brûlé résiduelle qui n'a pas pu être évacuée lors de l'échappement, et
- Mb_reasp est la masse de gaz brûlés ré-aspirée lors du croisement de soupapes.
[0058] Dans le cas particulier d'un moteur suralimenté avec croisement de soupapes, on cherche aussi à estimer le remplissage total rempl_tot en air frais suralimenté. Le remplissage total rempl_tot est la quantité totale d'air frais admise par l'intermédiaire de l'ouverture d'admission lors d'un cycle moteur. Dans le cas d'un moteur suralimenté avec croisement de soupapes, une partie de l'air frais admis par l'intermédiaire de l'ouverture d'admission est immédiatement évacuée par l'échappement (Mbal). Ainsi, le remplissage total rempl_tot est, en première approximation, donné par la relation suivante : Mbal rempl _ tôt = rempl _ cyl + Mo
ou :
- rempl_tot est le remplissage total en air frais total,
- rempl_cyl est le remplissage en air frais de la chambre 18,
- Mbal est la masse des gaz balayés de l'admission vers l'échappement pendant le croisement de soupapes, et
- Mo est une masse de référence d'air dans les conditions normales de températures et de pression.
[0059] Le remplissage en air frais rempl_cyl est défini par la relation suivante :
Ma rempl _ cyl =
Mo où Ma est la masse d'air contenu dans la chambre 18 à la fin de l'admission, et Mo est la masse de référence.
[0060] Ici, les conditions normales de température et de pression correspondent à une température de 298,15 K, à une pression de 1013 mbar, et à un volume égal au volume de la cylindrée unitaire.
[0061] Les grandeurs rempl_tot, rempl_cyl et le rapport Mbal/Mo sont des grandeurs sans dimension.
[0062] Généralement, la masse Mbal n'existe que dans le cas des moteurs suralimentés. Toutefois, la description du procédé qui suit est faite dans le cas le plus complet, c'est-à-dire le cas où les estimations des masses Mb_reasp et Mbal sont toutes les deux réalisées. En effet, l'homme du métier peut aisément simplifier le procédé qui suit pour l'adapter uniquement au cas des moteurs atmosphériques ou uniquement au cas des moteurs suralimentés.
[0063] Le procédé débute par une étape 120 d'estimation de la masse Mb_resi de gaz brûlés contenue dans la chambre 18 à la fin de l'échappement.
[0064] Lors de l'étape 120, le sous-module 102 estime la masse Mb_resi à l'aide de la relation suivante : Λ /fU . * cyl FE ^ * cyl FE V^ECff * ^ECH /X ^ cyl FE
Mb resi = — ^ — — = — —
1 Λ λ ECH ' Λ λ ECH où :
- PCyi_FE est la pression à l'intérieur de la chambre 18,
- PECH est la pression échappement des gaz brûlés,
- TECH est la température des gaz brûlés évacués par l'intermédiaire du conduit 40,
- r est une constante égale au rapport suivant R/M où R est la constante universelle des gaz parfaits et M est la masse molaire en kg. mol"1 des gaz brûlés,
- AECH est un coefficient correcteur permettant de corriger la pression PECH pour obtenir une pression proche de Pcyι_FE, dont la valeur est donnée par une cartographie en fonction de l'angle FE et du régime moteur, et
- Vcyi FE est le volume géométrique de la chambre 18 à la fin de l'échappement c'est- à-dire pour l'angle FE.
[0065] Le volume Vcyι_FE est donné par la relation suivante :
Vcyi FE (FE) = — + — {[ + À - COs(FE) -^A2 Sm2 (FE) )
où :λ est le rapport bielle/manivelle, Cu est la cylindrée unitaire du cylindre 6, et ε est le taux de compression du moteur.
[0066] Le rapport λ et le taux ξ sont des caractéristiques connues d'un moteur. On rappelle simplement ici que le rapport λ est le rapport entre la longueur de la bielle 14 divisée par la demi-longueur de la manivelle 18.
[0067] Dans la relation ci-dessus et dans les relations suivantes, les pressions PECH et PADM et les températures TECH et TADM sont les pressions et températures estimées par les estimateurs 80, 82, 84 et 86 à partir de grandeurs physiques mesurées dans le moteur.
[0068] Ensuite, lors d'une étape 122, le sous-module 104 estime la masse Mb_reasp de gaz brûlés réaspirés lors du croisement de soupapes. Ici, cette estimation est donnée par la relation suivante : , „ Mb reasp
Mb reasp = =
" K
où Mb_reasp est le débit de gaz brûlés ré-aspirés exprimé en kg/h, et K est un coefficient permettant de passer du débit à une masse admise par cycle moteur dans la chambre 18.
[0069] Par exemple, le coefficient K est donné par la relation suivante :
Λ T Nbre cylindre rr.
K = Nx — x60
Nbre_revolutioncycle
où N est le régime moteur, « Nbre_cylindre » est le nombre de cylindre du moteur, « Nbre_revolutioncycle » est le nombre de révolution du vilebrequin lors d'un cycle du moteur, et « 60 » permet de convertir le régime moteur N donné en tour par minute en nombre de tours par heure.
[0070] Par exemple, pour un moteur quatre temps équipé de quatre cylindres, le coefficient K est égal à K = N x 2 x 60.
[0071] Le débit de gaz brûlés ré-aspirés Mb _reasp est calculé à partir de la loi de Barré Saint Venant corrigée de la façon suivante pendant le croisement de soupapes
Mb _ reasp = x POND
où :
- PECH est la pression échappement des gaz brûlés,
- PADM est la pression admission de l'air admis par l'intermédiaire du conduit 20,
- TECH est la température des gaz brûlés,
- Sbase est une cartographie prédéterminée qui donne une première valeur corrective en fonction de la différence entre les angles FE et OA et du régime moteur,
- Scor est une cartographie prédéterminée qui donne une seconde valeur corrective en fonction de la différence entre les angles FE et OA et du régime moteur, - POND est une cartographie prédéterminée qui donne une troisième valeur corrective en fonction de la position du croisement de soupapes et du régime moteur.
[0072] La position du croisement de soupapes est donné par la relation suivante (FE + OA) / 2.
[0073] Γ(PADM/PECH) est défini par la relation suivante :
où γ est le rapport de la capacité calorifique à pression constante des gaz brûlés sur la capacité calorifique à volume constant des gaz brûlés. Par exemple, ce rapport est égal à 1 ,4.
L'équation ci-dessus distingue le cas d'un écoulement subsonique d'un écoulement sonique.
ΓO(PADM/PECH) est défini par la relation suivante :
[0074] Ensuite, lors d'une étape 124, le module 94 estime la masse totale Mbal_tot de gaz balayés entre l'admission et l'échappement pendant le croisement de soupapes.
[0075] La masse Mbal_tot est obtenue à l'aide de la relation suivante :
Mbal _ tôt
Mbal tôt = K ou :
- Mbal _tot est le débit de gaz balayés de l'admission vers l'échappement pendant le croisement de soupapes exprimé en kg/h, et
- K est le même coefficient que précédemment défini pour passer du débit à une masse admise par cycle moteur dans la chambre 18.
[0076] Le débit Mbal _tot est estimé à partir de la loi de Barré Saint Venant corrigée de la façon suivante pour tenir compte des croisements de soupapes :
où :
- PECH, et PADM ont déjà été définis précédemment,
- TADM est la température de l'air admis dans la chambre 18
- S est une cartographie prédéterminée permettant d'obtenir une valeur corrective en fonction de la différence entre les angles FE et OA et du régime moteur, et
- POND est une cartographie prédéterminée permettant d'obtenir une valeur corrective en fonction de la position du croisement de soupapes et du régime moteur.
[0077] Le ratio Γ(PECH/PADM) a déjà été défini ci-dessus.
[0078] La position du croisement de soupapes est égale à la valeur suivante : (FE + OA) / 2.
[0079] Ensuite, lors d'une étape 126, le module 96 estime la température Tb des gaz brûlés. Pour cela, cette température Tb est obtenue par un calcul de mélange enthalpique entre les gaz résiduels et les gaz brûlés ré-aspirés. Par exemple, la température Tb est obtenue à partir de la relation suivante :
_,, Mb reasp x cpb reasp xTb reasp + Mb resixcpb resixTb resi
I b =
Mb _ reasp x cpb _ reasp + Mb _ resi x cpb _ resi
ou : - Mb_resi est la masse de gaz brûlés résiduels précédemment estimée,
- Mb_reasp est la masse de gaz brûlés ré-aspirés lors du croisement de soupapes,
- cpb_resi est la capacité calorifique massique à pression constante des gaz brûlés résiduels,
- cpb_reasp est la capacité calorifique massique à pression constante des gaz brûlés réaspirés,
- Tb_reasp est la température des gaz brûlés réaspirés lors du croisement de soupape, et
- Tb_resi est la température des gaz brûlés résiduels obtenue à partir d'un calcul de détente adiabatique.
[0080] Pour simplifier, par exemple, les capacités cpb_resi et cpb_reasp sont prises égales.
[0081] La température Tb_reasp est prise égale à la température TECH. [0082] La température Tb_resi est calculée à partir de la relation suivante :
où toutes les variables ont déjà précédemment été définies.
Ensuite, lors d'une étape 128, le module 98 estime la masse Ma en résolvant le système d'équations suivant :
ou :
PADM, Mb, Ma ont déjà été définis précédemment,
Vcyi FA est le volume géométrique de la chambre 18 calculé à l'angle FA,
AADM est un coefficient correcteur, r est une constante égale au rapport suivant R/M où R est la constante universelle des gaz parfaits et M est la masse molaire en kg. mol"1 des gaz mélangés,
Tméiange est la température du mélange d'air frais et de gaz brûlés contenu dans la chambre 18, et cpa et cpb sont les capacités calorifiques massiques à pression constante, respectivement, de l'air frais et des gaz brûlés, et
Ta et Tb sont les températures, respectivement, de l'air frais et des gaz brûlés. Le volume Vcyι_FA est calculé à l'aide de la relation suivante :
VC_FA (FA) = — + — (l + λ - COS(FA) - J% - sin2 (FA) )
[0083] Le coefficient correcteur AADM est obtenu à l'aide de la relation suivante :
A — A A- k * ( A — A
^1ADM ^1ADM ATMO τ 1^ATMO TURBO Λ V1ADM TURBO ^1 ADM AT TMMOO ) . ou :
AADM_ATMO est une valeur corrective obtenue à partir d'une cartographie prédéterminée en fonction de l'angle FA et du régime moteur,
AADM_TURBO est une valeur corrective obtenue à partir d'une cartographie prédéterminée en fonction de l'ange FA et du régime moteur,
Le coefficient kATMO_TURBO est un coefficient correcteur donné par la relation suivante :
1ATMO TURBO = max 0 ; min ou :
PATMO est la pression atmosphérique,
Po est la pression de référence qui est ici égale à 1013 mbar, fA(N, FA) est une valeur corrective obtenue à partir d'une cartographie prédéterminée en fonction du régime moteur et de l'angle FA, et fB(N) est valeur corrective obtenue à partir d'une cartographie prédéterminée en fonction du régime moteur.
[0084] La relation définissant la température Tiangθ est obtenue par un calcul de mélange enthalpique entre la masse de gaz brûlés et la masse d'air frais contenues dans la chambre 18.
[0085] Le système d'équations décrit ci-dessus est un système d'équation à trois inconnus et à trois équations. La résolution de ce système permet d'obtenir des estimations de la masse Ma, de la température Tιangθ et de la masse totale Mtot.
[0086] Plus précisément, l'estimation de la masse Ma est donnée par la relation suivante dans le cas particulier où cpb et cpa sont égaux :
[0087] Eventuellement, lors de l'étape 128, l'estimation de la masse Ma obtenue après avoir résolu le système d'équations est corrigée en fonction de l'inverse de la température Ta de l'air frais. Par exemple, la masse Ma est corrigée à l'aide de la relation suivante :
Ma =f [^)Ma
Ta 1
où f (1/Ta) est un coefficient correcteur dont la valeur est obtenue à partir d'une cartographie préenregistrée donnant la valeur de ce coefficient correcteur en fonction de l'inverse de la température Ta.
[0088] Enfin, lors d'une étape 130, le module 100 estime le remplissage total rempl_tot en air frais. Ce remplissage total rempl_tot est par exemple obtenu à l'aide de la relation suivante : a = — xf ^ADM X P^ )* VC _FA _ maφMb _Mbal_toήχTb ) + min{0; Mb -Mbal_tot] Ta { r j où l'ensemble des variables de cette relation ont déjà été définis précédemment, Max(...) et Min(...) sont respectivement les fonctions retournant le maximum et le minimum, et |...| est la valeur absolue.
[0089] Pour obtenir cette dernière relation, on a considéré que le gaz balayé de l'admission vers l'échappement pendant le croisement de soupapes remplissait d'abord entièrement le volume de la chambre 18 avant de passer ensuite directement de l'admission vers l'échappement. Ainsi, tant que la masse Mbal_tot de gaz balayés est inférieure à la masse Mb de gaz brûlés, on considère qu'il n'y a pas de balayage. A l'inverse, dès que la masse Mbal_tot est supérieure à la masse Mb de gaz brûlés, on considère qu'il n'y a plus que du balayage de gaz entre l'admission et l'échappement. La masse Mbal définie au début de cette description correspond uniquement au dernier terme de la relation ci-dessus.
[0090] De nombreux autres modes de réalisation sont possibles. Par exemple, si le moteur n'est pas un moteur suralimenté mais simplement un moteur atmosphérique, alors, les formules qui ont été précédemment décrites peuvent être simplifiées puisqu'il n'existe pas de balayage des gaz de l'admission vers l'échappement. En d'autres termes, la masse Mbal_tot est nulle.
[0091] Ce qui a été décrit ci-dessus peut également être appliqué à un moteur dépourvu de déphaseur d'arbre à cames à l'admission ou à l'échappement.
[0092] Enfin, ce qui a été décrit ci-dessus peut également être adapté au cas où il n'existe pas de croisement de soupapes. Dans ce cas, la masse Mb_reasp et la masse Mbal_tot sont nulles, ce qui simplifie les relations précédentes.

Claims

REVENDICATIONS
1. Procédé d'estimation de la masse Ma d'air frais admise à l'intérieur d'une chambre de combustion d'un cylindre d'un moteur lors d'un cycle moteur, caractérisé en ce que ce procédé comprend l'estimation (128) d'une masse totale Mtot de gaz contenue dans la chambre de combustion à la fin de l'admission de l'air frais, l'estimation (120, 124) d'une masse Mb de gaz brûlés contenue dans la chambre de combustion à la fin de l'échappement des gaz brûlés, et l'estimation (128) de la masse Ma d'air frais à partir de la différence entre la masse totale Mtot et la masse Mb de gaz brûlés estimées.
2. Procédé selon la revendication 1 , dans lequel l'estimation de la masse Mb de gaz brûlés comprend l'estimation (120) d'une masse Mb_resi de gaz brûlés résiduels contenue dans la chambre de combustion à la fin de l'échappement des gaz brûlés, et l'estimation (122) d'une masse Mb_reasp de gaz brûlés ré-aspirés à l'intérieur de la chambre de combustion pendant le croisement de soupapes.
3. Procédé selon la revendication 2, dans lequel l'estimation (120) de la masse Mb_resi est obtenue à partir d'une pression PECH des gaz brûlés, d'un volume intérieur de la chambre de combustion à la fin de l'échappement des gaz brûlés, d'une température TECH des gaz brûlés et d'un coefficient correcteur AECH de la pression PECH dont la valeur est fonction d'un angle de fin d'échappement et du régime moteur.
4. Procédé selon l'une quelconques des revendications précédentes, dans lequel l'estimation (128) de la masse totale Mtot est obtenue à partir d'une pression admission PADM de l'air , d'un volume de la chambre de combustion à la fin de l'admission, d'une température Tiangθ du mélange d'air frais et de gaz brûlés contenu dans la chambre de combustion à la fin de l'admission d'air frais, et d'un coefficient correcteur AADM dont la valeur est obtenue à partir d'une cartographie préenregistrée en fonction d'un angle FA de fin d'admission et du régime moteur.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'estimation (128) de la masse Ma d'air frais est une solution du système d'équations suivant :
où :
AADM est un coefficient correcteur dont la valeur est fonction du régime moteur et de l'angle de fin d'admission, - PADM est la pression admission de l'air ,
Vcyi FA est le volume géométrique de la chambre de combustion calculé à l'angle de fin d'admission,
Tméiange est la température du mélange d'air frais et de gaz brûlés contenu dans la chambre de combustion, r est une constante égale au rapport suivant R/M où R est la constante universelle des gaz parfaits et M est la masse molaire en kg. mol"1 des gaz mélangés, cpa et cpb sont les capacités calorifiques massiques à pression constante, respectivement, de l'air frais et des gaz brûlés, et
Ta et Tb sont les températures, respectivement, de l'air frais et des gaz brûlés.
6. Procédé d'estimation d'un remplissage total rempl_tot en air frais suralimenté d'une chambre de combustion d'un cylindre d'un moteur lors d'un cycle moteur, caractérisé en ce que ce procédé comprend l'estimation (128) d'une masse Ma d'air frais admis à l'intérieur de la chambre de combustion à l'aide d'un procédé conforme à l'une quelconque des revendications précédentes, l'estimation (124) d'une masse Mbal_tot de gaz balayés de l'admission vers l'échappement lors du croisement de soupapes, et l'estimation (130) du remplissage total rempl_tot en air frais suralimenté à partir de la masse d'air frais Ma et de la masse Mbal_tot de gaz balayés estimées.
7. Procédé selon la revendication 6, dans lequel l'estimation (130) du remplissage total est une solution du système d'équation suivant :
où :
Mtot est la masse totale de gaz contenue dans la chambre de combustion à la fin de l'admission de l'air frais définie précédemment,
Mo est une masse de référence d'air dans les conditions normales de températures et de pression
Mb est une masse de gaz brûlés contenue dans la chambre de combustion à la fin de l'échappement des gaz brûlés
Mbal_tot est la masse totale de gaz balayés (air et gaz brûlé) pendant le croisement de soupapes,
Mbal est la masse de gaz balayé (air) entre l'admission et l'échappement pendant le croisement de soupapes,
Max(...) et Min(...) sont respectivement les fonctions retournant le maximum et le minimum, et
| ... | est la valeur absolue.
8. Support (106) d'enregistrement d'informations, caractérisé en ce qu'il comporte des instructions pour l'exécution d'un procédé conforme à l'une quelconque des revendications précédentes, lorsque ces instructions sont exécutées par un calculateur électronique.
9. Estimateur d'une masse Ma d'air frais admise à l'intérieur d'une chambre de combustion d'un cylindre d'un moteur lors d'un cycle moteur, caractérisé en ce que cet estimateur comprend un module (98) d'estimation d'une masse totale Mtot de gaz contenue dans la chambre de combustion à la fin d'admission d'air frais, un module (92) d'estimation d'une masse Mb de gaz brûlés contenue dans la chambre de combustion à la fin de l'échappement de gaz brûlés, et un module (98) d'estimation de la masse Ma d'air frais à partir de la différence entre la masse totale Mtot et la masse Mb de gaz brûlés estimées.
10. Véhicule caractérisé en ce qu'il comprend un estimateur (88) conforme à la revendication 9.
EP10707320.7A 2009-02-23 2010-01-19 Procede d'estimation de remplissage total d'une chambre de combustion d'un moteur Active EP2399015B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951133A FR2942503B1 (fr) 2009-02-23 2009-02-23 Procede et estimateur d'une masse d'air frais dans une chambre de combustion, procede d'estimation de remplissage total, support d'enregistrement pour ces procedes et vehicule equipe de cet estimateur.
PCT/FR2010/050079 WO2010094870A1 (fr) 2009-02-23 2010-01-19 Procede et estimateur d'une masse d'air frais dans une chambre de combustion, procede d'estimation de remplissage total, support d'enregistrement pour ces procedes et vehicule equipe de cet estimateur

Publications (2)

Publication Number Publication Date
EP2399015A1 true EP2399015A1 (fr) 2011-12-28
EP2399015B1 EP2399015B1 (fr) 2019-12-18

Family

ID=41138749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10707320.7A Active EP2399015B1 (fr) 2009-02-23 2010-01-19 Procede d'estimation de remplissage total d'une chambre de combustion d'un moteur

Country Status (4)

Country Link
EP (1) EP2399015B1 (fr)
FR (1) FR2942503B1 (fr)
RU (1) RU2525862C2 (fr)
WO (1) WO2010094870A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989114B1 (fr) * 2012-04-04 2014-04-18 Peugeot Citroen Automobiles Sa Procede de controle d'un moteur a combustion interne, systeme pour la mise en œuvre du procede et vehicule automobile equipe d'un tel systeme
FR2991383B1 (fr) * 2012-06-04 2015-11-27 Peugeot Citroen Automobiles Sa Procede d'estimation de la charge en air frais d'un moteur thermique en fonction de la teneur en ethanol du carburant
FR2996596B1 (fr) * 2012-10-05 2018-04-13 Psa Automobiles Sa. Procede de determination de la masse d'air frais admise a l'interieur d'une chambre de combustion, calculateur pour ce procede et vehicule equipe de ce calculateur
FR3046630B1 (fr) * 2016-01-11 2018-01-12 Peugeot Citroen Automobiles Sa Procede d'estimation d'une masse d'air frais admise a l'interieur d'une chambre de combustion de moteur a combustion interne a levee de soupape variable
FR3057297B1 (fr) 2016-10-10 2018-11-09 Peugeot Citroen Automobiles Sa Procede de pilotage d'une levee de soupapes d'un moteur a combustion interne a levee de soupapes variable
CN109781427B (zh) * 2018-12-12 2020-08-04 西安航天动力试验技术研究所 液体姿控发动机高模试验逆向稀薄来流模拟装置
FR3101672B1 (fr) 2019-10-03 2022-04-22 Renault Sas Système et procédé de détermination d’un modèle de remplissage d’air dans un cylindre d’un moteur à combustion interne d’un véhicule automobile

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR951133A (fr) 1947-07-02 1949-10-17 Appareil perfectionné pour provoquer la respiration artificielle
US4217866A (en) 1976-11-08 1980-08-19 Nissan Motor Company, Limited Four-stroke reciprocatory internal combustion engine and method of operating such an engine
CA2099983C (fr) * 1991-01-14 2000-05-30 Steven Ross Ahern Systeme de gestion du fonctionnement d'un moteur
DE19750496A1 (de) * 1997-11-14 1999-05-20 Bosch Gmbh Robert Verfahren zur Bestimmung der von einer Brennkraftmaschine angesaugten Luft und Sensor für eine Brennkraftmaschine
DE10061428A1 (de) * 2000-12-09 2002-06-27 Bayerische Motoren Werke Ag Verfahren zur Bestimmung des Restgasgehaltes im Verbrennungsraum eines Zylinders eines Viertakt Verbrennungsmotors sowie zur Ermittlung eines Zündwinkels
DE10213138B4 (de) * 2001-11-20 2017-02-16 Robert Bosch Gmbh Verfahren, Computerprogramm, Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine
DE10254475B3 (de) * 2002-11-21 2004-04-29 Siemens Ag Verfahren zum Ermitteln der Frischluft-, Restgas- und Gesamtgasmasse in einem Zylinder einer Brennkraftmaschine
FR2879659B1 (fr) * 2004-12-17 2007-03-02 Peugeot Citroen Automobiles Sa Methode de calcul par simulation du transfert des gaz d'un moteur essence de vehicule automobile
ATE413524T1 (de) * 2006-03-02 2008-11-15 Fiat Ricerche Brennkraftmaschine mit mitteln zur bestimmung frischluftmasse, und dazugehörige methode zur bestimmung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010094870A1 *

Also Published As

Publication number Publication date
FR2942503A1 (fr) 2010-08-27
RU2011138956A (ru) 2013-03-27
WO2010094870A1 (fr) 2010-08-26
FR2942503B1 (fr) 2011-03-04
RU2525862C2 (ru) 2014-08-20
EP2399015B1 (fr) 2019-12-18

Similar Documents

Publication Publication Date Title
EP2399015B1 (fr) Procede d'estimation de remplissage total d'une chambre de combustion d'un moteur
EP2567086B1 (fr) Procede d'estimation d'une quantite d'air frais, support d'enregistrement et estimateur pour ce procede, vehicule equipe de cet estimateur
EP2354499A1 (fr) Procédé de balayage des gaz brûlés résiduels d'un moteur multi cylindres à combustion interne suralimenté à injection directe fonctionnant à charges partielles
EP2956651B1 (fr) Procede de determination de la pression de gaz d'echappement en amont du turbocompresseur et du debit traversant sa turbine
EP2409010A1 (fr) Procede de determination de l'avance a l'allumage d'un moteur thermique
EP1952004B1 (fr) Procede d'estimation de la masse des gaz enfermee pendant chaque cycle de fonctionnement dans la chambre de combustion d'un cylindre d'un moteur a combustion interne
FR2847619A1 (fr) Procede de determination de la masse d'air frais, de la masse de gaz residuel et de la masse de gaz totale dans un cylindre d'un moteur a combustion interne
EP0522908B1 (fr) Procédé et système de calcul de la masse d'air frais dans un cylindre de moteur à combustion interne
WO2009047412A1 (fr) Estimation de parametres d'etat d'un moteur par mesure de la pression interne d'un cylindre
FR2835281A1 (fr) Procede d'estimation de la masse d'air admise dans une chambre de combustion d'un moteur, et vehicule de mise en oeuvre
FR2996596A1 (fr) Procede de determination de la masse d'air frais admise a l'interieur d'une chambre de combustion, calculateur pour ce procede et vehicule equipe de ce calculateur
WO2014095052A1 (fr) Procédé de détermination du débit d'air recycle et de la quantité d'oxygène disponible a l'entrée d'un cylindre d'un moteur a combustion interne
FR2688546A1 (fr) Procede et dispositif de commande d'un moteur a combustion interne.
FR2833998A1 (fr) Procede et dispositif pour determiner le flux massique de recyclage des gaz d'echappement d'un moteur a combustion interne
EP4015808A1 (fr) Système et procédé de commande d'un moteur à combustion interne basée sur le rendement de remplissage
FR3101672A1 (fr) Système et procédé de détermination d’un modèle de remplissage d’air dans un cylindre d’un moteur à combustion interne d’un véhicule automobile
WO2022073729A1 (fr) Procede d'estimation de la pression dans un collecteur d'admission
FR2851300A1 (fr) Procede et dispositif de regulation de l'injection de carburant dans un moteur a combustion diesel
FR2950970A3 (fr) Estimation du couple d'un moteur a combustion interne
FR2995363A1 (fr) Procede de determination de la masse d'air frais admise a l'interieur d'une chambre de combustion, calculateur pour ce procede et vehicule equipe de ce calculateur
FR2861805A1 (fr) Methode d'estimation de la concentration de certaines especes chimiques a l'interieur d'un cylindre de moteur a combustion, et application au controle d'un moteur a injection
WO2022069251A1 (fr) Procede de determination de la masse de gaz aspire dans un cylindre avec prise en compte des conditions reelles d'utilisation
FR3006372A1 (fr) Procede d'estimation des emissions polluantes d'un moteur a combustion interne et procede associe de pilotage du moteur
WO2011003540A2 (fr) Procede de determination de la fraction de la masse des gaz brules pour moteur a combustion interne de vehicule automobile
FR2933136A3 (fr) Procede d'estimation du volume d'une chambre de combustion d'un moteur a combustion interne a taux de compression variable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PEUGEOT CITROEN AUTOMOBILES SA

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC

Owner name: PSA AUTOMOBILES SA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010062410

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1214863

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200319

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010062410

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1214863

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191218

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200119

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PSA AUTOMOBILES SA

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC

26N No opposition filed

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200119

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211216

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221220

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 15