EP2396838A1 - Procédé et dispositif de classification d'une batterie - Google Patents

Procédé et dispositif de classification d'une batterie

Info

Publication number
EP2396838A1
EP2396838A1 EP10707604A EP10707604A EP2396838A1 EP 2396838 A1 EP2396838 A1 EP 2396838A1 EP 10707604 A EP10707604 A EP 10707604A EP 10707604 A EP10707604 A EP 10707604A EP 2396838 A1 EP2396838 A1 EP 2396838A1
Authority
EP
European Patent Office
Prior art keywords
battery
group
aging
elements
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10707604A
Other languages
German (de)
English (en)
Inventor
Denis Porcellato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2396838A1 publication Critical patent/EP2396838A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5011Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature for several cells simultaneously or successively
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5044Cells or batteries structurally combined with cell condition indicating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method and a device for classifying a battery, in particular a battery for a motor vehicle.
  • the battery of a vehicle gradually loses its performance, with consequences that can be detrimental to the operation of a vehicle, including a vehicle with electric traction.
  • the document FR2841385 provides for calculating several degrees of deterioration, each associated with a detected state quantity. A total degree of deterioration is then calculated based on the degrees of deterioration associated with the state variables.
  • the disadvantage of the device and method disclosed in this document is that each of the degrees of deterioration relates to the battery as a whole.
  • An automobile traction battery generally consists of several modules themselves made up of several cells.
  • document US7075194 describes a system that makes it possible to configure a battery in real time by connecting the elements differently to one another according to usage.
  • a parallel connection of elements is favorable for a consumer-intensive use.
  • a series connection of elements is favorable for a demanding use of high voltages.
  • the aging of the elements is not uniform because it depends on the thermal environment specific to each element, initial characteristics elements, drifts in the manufacturing process sources of early aging, the situation in the vehicle which can cause an imbalance in the power circuit from the point of view for example of the interconnection impedance.
  • the dispersion of characteristics specific to each element amplifies over time and the battery loses all or part of these performances.
  • the loss of performance of the battery has a direct effect on the performance of the vehicle, its consumption and therefore the emission of greenhouse gases.
  • the subject of the invention is a method of classifying a battery made by assembling accumulators of electricity distributed in groups, comprising the steps of:
  • the degree of aging of at least one group is evaluated by an impedance measurement method or a method of estimating the internal resistance as a function of a current measurement that passes through the group of elements and a measurement. Of voltage .
  • the method comprises a step of replacing at least a first group by a second group so as to maintain the classification level of the battery.
  • the first group is replaced by permutation in the battery with the second exposed group, before permutation, to lower utilization constraints than the first group.
  • the use constraints include a temperature.
  • the first group is replaced by a second group from another battery with a lower degree of aging.
  • the first group is replaced by a second group with a zero degree of aging.
  • a group includes all the elements of the battery, some elements or a single element of the battery.
  • the statistical distribution parameters comprise an average of the degrees of aging and / or a higher value of the estimated degrees of aging.
  • the subject of the invention is also a device for classifying a battery made by assembling accumulators of electricity distributed in groups, comprising a component arranged to: - evaluate degrees of aging, each associated with a distinct group; assigning to the battery, according to statistical distribution parameters of the aging levels evaluated, a classification level which is representative of the potential performance of the battery in use.
  • the component is arranged to evaluate the degree of aging of at least one group by an impedancemetry method or a method of estimating the internal resistance as a function of a measurement of current that passes through the group of elements and a measurement of tension.
  • the device comprises slides that hold the accumulators of electricity to achieve the battery and that replace at least a first group by a second group so as to maintain the classification level of the battery.
  • the component comprises communication means of the classification level and the degrees of aging evaluated.
  • a group may comprise all the elements of the battery, some elements or a single element of the battery.
  • the statistical distribution parameters comprise an average of the degrees of aging and / or a higher value of the estimated degrees of aging.
  • FIG. 1 is a schematic view of the device according to the invention
  • FIG. 2 shows process steps according to the invention
  • Fig. 3 is a statistical distribution curve as a function of a characteristic value
  • FIG. 4 shows an example of possible classification as a function of a displacement of the curve of FIG. 3.
  • a battery is made by assembling accumulator elements 1, 2, 3, 4, 5 between two output terminals.
  • the accumulator elements 1, 2, 3, 4, 5 provide an electric voltage and an internal impedance between two pads 20 and 21.
  • the accumulator elements 1, 2, 3, 4, 5 are distributed in groups in which they can be connected to each other. parallel or in series and the groups can in turn be connected to each other respectively in series or in parallel.
  • the stud 20 of an element is connected to the terminal 15 or to the stud 21 of a previous element.
  • the battery represented as a group comprising five elements connected in series or five groups connected in series and each comprising a single element.
  • An ammeter 13 upstream of the terminal 16 makes it possible to measure the current generated by the battery when it is used. If the elements of the battery in total are five in the example illustrated, it will be understood that all the elements can be in any number indifferently less than or greater than five.
  • the rails or slides 18 are mounted on the vertical walls of a not shown locker and on the bottom of which is printed a bus to connect the pad of an element to the pad of another element, for example as shown in thick line in Figure 1.
  • the pads 20, 21, are directed down to make contact with the bus when the elements are pushed between the slides in the bin.
  • the arrangement of the studs 20, 21, under the elements and directed downwards, makes it possible to avoid short circuits, in particular by means of a lid, not shown, which by closing the top of the rack, presses on the accumulator elements electricity 1, 2, 3, 4, 5 to ensure good electrical contact of the pads with the bus.
  • a loop 19 disposed on the top of each element allows to lift the element after opening the lid and thus disconnect the bus element. During the lifting operation, there is no risk of short circuit with the other elements because they are protected by the orientation of their pads, directed towards the bottom of the rack.
  • a component 22 is arranged to implement process steps explained now with reference to FIG. 2.
  • a step 101 is to evaluate a degree of aging individually associated with a distinct group, including a group comprising a single element.
  • the degree of aging of an element can be evaluated in different ways. It can be evaluated while the battery is being used by measuring the current delivered by the battery by means of the ammeter 13 and by connecting a voltmeter on the studs 20, 21 to measure the voltage delivered by the element so as to to deduce the degree of aging. It can be evaluated by means of a clock that measures a time that separates the present moment from a previous moment in which the element has been inserted in the battery basket with a known degree of aging.
  • the degree of aging is advantageously evaluated by an impedancemetry method.
  • the impedancemetry method consists in injecting a variable current of known values into the element or group of elements to be monitored and measuring the resulting variations of voltage across the element or group of elements.
  • the variable current is injected to add only in the element or group of elements, the zero or non-zero base current flowing normally in the battery. It is thus possible to measure the impedance of each element or group of elements, taken in isolation without having to know the no-load voltage or the voltage drop on element pads which is caused by a flow of the base current.
  • the component 22 is arranged to inject the variable current by means of a current generator 23.
  • the current generator 23 is produced in a known manner, for example by means of a bipolar electrical generator controlled by current by operational amplifiers, with safety saturation in tension.
  • the component 22 is a portable instrument (not on board) which comprises measuring lugs, each connected to a pole of the current generator 23. The lugs of the component 22 are then connected. on the studs 20 and 21 of an element or at the ends of a group of elements. From a measurement of voltage variation between the lugs, the component 22 deduces the impedance of the element or group of elements, from which it estimates a degree of aging, directly equal to or in function the deduced impedance. The estimated degree of aging is stored in a memory 24 in association with a mark of the controlled element or group of elements. The degree of aging is indicated on a display by a communication means 17.
  • the component 22 is embedded in the vehicle.
  • One pole of the generator 23 is connected to a first series of relays 6, 8, 10 and another pole of the generator 23 is connected to a second series of relays 7, 9, 11.
  • the relay 6 is connected to a bus portion which connects the terminal 15 to the pad 20 of the element 1.
  • the relay 8 is connected to a bus portion which connects the pad 21 of the element 2 to the pad 20 of the element 3.
  • the relay 10 is connected to a bus part which connects the pad 21 of the element 4 to the pad 20 of the element 5.
  • the relay 7 is connected to a bus part which connects the pad 21 of the 1 to the stud 20 of the element 2.
  • the relay 9 is connected to a bus portion which connects the stud 21 of the element 3 to the stud 20 of the element 4.
  • the relay 11 is connected to a part of bus that connects the pad 21 of the element 5 to the terminal 16.
  • the embedded component 22 is programmed to sequentially close the relays 6 and 7 so as to measure the impedance of the element 1, the relays 7 and 8 so as to measure the impedance of the element 2, the relays 8 and 9 in order to measure the impedance of the element 3, the relays 9 and 10 so as to measure the impedance of the element 4, the relays 10 and 11 so as to measure the impedance of the element 5.
  • Measurement of impedance is carried out by measurement of voltage in module and in phase by means of voltmeter 14.
  • the degrees of aging correlated with each impedance measurement are successively stored in an associative table indexed by an element reference.
  • the associative table is for example stored in the memory 24 of the component 22.
  • the impedance for example at a given current frequency which varies in alternative form, constitutes a characteristic value of degree of aging.
  • Other characteristic values may be envisaged such as, for example, a temporal integral of the temperature undergone by the element or an age of the element.
  • each element is individually controlled voltage, for example in the case of a Li-ion battery, knowing the value of the current flowing through the element and measuring its voltage, we can deduce its internal resistance which can then be a characteristic to determine the degree of aging of the element. This operation can be done in both driving and parking mode at the garage.
  • the communication means 17 are arranged to transfer information contained in the memory 24, for example to a diagnosis socket of the vehicle (not shown). Incidentally, the communication means 17 are arranged to transfer information to the memory 24, for example since the diagnosis of the vehicle.
  • a step 102 consists in assigning a classification level to the battery.
  • the potential performance of the battery in use depend on all the elements that constitute it but also elements considered individually. To be representative, the level of classification explained now takes into account these two components on which the performance of the battery depends.
  • FIG. 3 shows a distribution curve D of the elements or groups of elements of a battery as a function of a characteristic variable Vc of degree of aging.
  • the elements are generally distributed around an average value M with a frequency of occurrence generally higher in the vicinity of the average value and decreasing on both sides.
  • the more homogeneous the set of elements the more the values of their characteristic variable will be grouped around the average.
  • the more heterogeneous the set of elements the more the values of their characteristic variable will be dispersed with the effect of flattening the curve centered on the average.
  • the characteristic variable is the impedance of the element, its age, or the amount of its charge and discharge cycles
  • performance will be higher for the values of the weakest characteristic variable on the left. of the curve and lower for the values of the highest characteristic variable to the right of the curve.
  • the component 22 contains an arithmetic and logic unit and a few program lines for calculating the average M of the values contained in the memory 24 and measured in the previous step.
  • the component 22 contains in memory 24, different possible values M A , M B , M c , of average.
  • a distribution of elements corresponding to the average value M A is statistically represented by the left curve.
  • the statistical distribution D of average M A corresponds to a classification level from which one can expect the best performances in use of the battery because the values of the characteristic variable Vc which represents the degree of aging, are mainly the weakest.
  • a distribution of the elements corresponding to the average value M c is statistically represented by the curve of right.
  • the statistical distribution D of mean M c corresponds to a classification level from which it can be expected that passable performances in use of the battery because the values of the characteristic variable Vc which represents the degree of aging, are mostly the highest.
  • a distribution of elements corresponding to the average value M B is statistically represented by the central curve.
  • the statistical distribution D of mean M B corresponds to a classification level from which one can expect performances in use of the battery lower than those obtained with the average M A but better than those obtained with the average M c .
  • An additional requirement may also be that, in addition, not only must the average belong to one of the ranges defined above, but no element must have a characteristic that exceeds a certain threshold.
  • the component 22 If the classification level is A, B or respectively C and the component 22 detects an element whose value of the characteristic variable is greater than a threshold S A , S B , or respectively S 0 , the component 22 generates an alarm and communicates the mark of the characteristic value element which is too high for the class to which it belongs.
  • the number of classification levels may be higher than three.
  • the ranking may be based on other methods than those based on the average of the characteristic variable followed by the different elements or groups of elements constituting the battery and where each class corresponds to a value range of this characteristic.
  • classification is based on the value of the characteristic of the weakest element or the average of the x weakest elements. There are many other methods of classification.
  • control shows that the battery has passed from class A (new battery) to class B, the user has the choice of accepting a battery classification or asking to exchange the most important elements. weak to maintain the battery in class A.
  • a step 103 consists in replacing the defective elements with elements that have already been used and which are recycled and whose classification has been determined beforehand at a level a, b, c as being the most suitable respectively for being integrated into a level battery.
  • A take the example of a removed element to maintain a battery in class A, the characteristic followed by the element showing a state of aging higher than the criterion of class A.
  • this element is classified b.
  • This element can then be used later to mount a class C battery in class B.
  • the standard exchange of elements or groups of elements by new or used elements, is facilitated by the mechanical design of the battery basket shown in Figure 1, which is optimized in terms of volume, weight and safety.
  • each element can vary greatly from one element to another and therefore the degree of aging of each can be very different.
  • One solution is to change the most degraded elements by the temperature.
  • Another solution is as a preventive measure, to periodically switch the elements of the hottest locations, for example closer to the engine, with those of the coldest locations, for example the farthest from the engine, to allow a more homogeneous aging possible drums. This is also facilitated by an individual control of each element or each group of elements and a battery basket design that allows the permutation of elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

Le dispositif permet de classifier une batterie réalisée par assemblage d'éléments accumulateurs d'électricité (1, 2, 3, 4, 5) répartis par groupes. Dans le dispositif, un composant (22) est agencé pour évaluer des degrés de vieillissement, associés chacun à un groupe distinct, et pour attribuer à la batterie, en fonction de paramètres de distribution statistique des degrés de vieillissements évalués, un niveau de classification qui est représentatif de performances potentielles de la batterie en utilisation.

Description

" Procédé et dispositif de classification d'une batterie. "
La présente invention concerne un procédé et un dispositif de classification d'une batterie, notamment d'une batterie pour véhicule automobile.
Au cours de son utilisation, la batterie d'un véhicule perd peu à peu ses performances, avec des conséquences qui peuvent être fâcheuses pour le fonctionnement d'un véhicule, notamment d'un véhicule à traction électrique.
Dans le but de contrôler cette perte de performances, des dispositifs et procédés ont déjà été envisagés pour calculer un degré de détérioration d'une batterie.
Ainsi, le document FR2841385 prévoit de calculer plusieurs degrés de détérioration, associés chacun à une grandeur d'état détectée. Un degré de détérioration total est ensuite calculé sur la base des degrés de détérioration, associés aux grandeurs d'états. L'inconvénient du dispositif et du procédé divulgués dans ce document, est que chacun des degrés de détérioration concerne la batterie prise dans son ensemble.
Une batterie de traction automobile est généralement constituée de plusieurs modules eux-mêmes constitués de plusieurs cellules.
Ainsi, le document US7075194 décrit un système qui permet de configurer une batterie en temps réel en connectant différemment les éléments entre eux en fonction de l'usage. Une connexion en parallèle d'éléments, est favorable à un usage fortement consommateur en courant. Une connexion en série d'éléments, est favorable à un usage demandeur de tensions élevées. Cependant le vieillissement des éléments n'est pas uniforme car il dépend de l'environnement thermique propre à chaque élément, des caractéristiques initiales des éléments, de dérives dans le processus de fabrication sources de vieillissement précoce, de la situation dans le véhicule qui peut entraîner un déséquilibre dans le circuit de puissance du point de vue par exemple de l'impédance d'interconnexion.
La dispersion de caractéristiques propres à chaque élément, s'amplifie au cours du temps et la batterie perd tout ou partie de ces performances. La perte de performances de la batterie a un effet direct sur les performances du véhicule, sur sa consommation et par conséquent sur l'émission de gaz à effets de serre.
Dans l'état antérieur de la technique, on envisage d'analyser la batterie entière et de juger de son état selon ses caractéristiques globales, sans prendre en compte la dispersion des caractéristiques des éléments qui la composent. En suivant une telle démarche, on est conduit à changer la batterie alors qu'il ne suffirait que de changer certains éléments.
Cependant, abandonner la connaissance de caractéristiques globales de la batterie pour se focaliser localement sur des états individuels d'éléments, n'est pas envisageable car les caractéristiques globales impactes directement l'extérieur de la batterie, notamment le fonctionnement du véhicule.
Pour remédier aux inconvénients de l'état antérieur de la technique, l'invention a pour objet un procédé de classification d'une batterie réalisée par assemblage d'éléments accumulateurs d'électricité répartis par groupes, comprenant des étapes consistant à:
- évaluer des degrés de vieillissement, associés chacun à un groupe distinct ; et
- attribuer à la batterie, en fonction de paramètres de distribution statistique des degrés de vieillissements évalués, un niveau de classification qui est représentatif de performances potentielles de la batterie en utilisation. Particulièrement, le degré de vieillissement d'au moins un groupe est évalué par une méthode d' impédancemétrie ou une méthode d'estimation de la résistance interne en fonction d'une mesure de courant qui traverse le groupe d'éléments et d'une mesure de tension .
Avantageusement, le procédé comprend une étape consistant à remplacer au moins un premier groupe par un deuxième groupe de façon à maintenir le niveau de classification de la batterie.
Particulièrement, le premier groupe est remplacé par permutation dans la batterie avec le deuxième groupe exposé, avant permutation, à des contraintes d'utilisation plus faibles que le premier groupe. Plus particulièrement, les contraintes d'utilisation comprennent une température.
Alternativement, le premier groupe est remplacé par un deuxième groupe en provenance d'une autre batterie avec un degré de vieillissement plus faible. Alternativement encore, le premier groupe est remplacé par un deuxième groupe avec un degré de vieillissement nul.
Parmi différents modes de mise en œuvre possibles, un groupe comprend la totalité des éléments de la batterie, quelques éléments ou un seul élément de la batterie .
De préférence, les paramètres de distribution statistique comprennent une moyenne des degrés de vieillissements et/ou une valeur la plus élevée des degrés de vieillissement évalués.
L'invention a aussi pour objet un dispositif de classification d'une batterie réalisée par assemblage d'éléments accumulateurs d'électricité répartis par groupes, comprenant un composant agencé pour: - évaluer des degrés de vieillissement, associés chacun à un groupe distinct ; - attribuer à la batterie, en fonction de paramètres de distribution statistique des degrés de vieillissements évalués, un niveau de classification qui est représentatif de performances potentielles de la batterie en utilisation.
Particulièrement, le composant est agencé pour évaluer le degré de vieillissement d'au moins un groupe par une méthode d' impédancemétrie ou une méthode d'estimation de la résistance interne en fonction d'une mesure de courant qui traverse le groupe d'éléments et d'une mesure de tension.
Avantageusement, le dispositif comprend des glissières qui maintiennent les éléments accumulateurs d'électricité pour réaliser la batterie et qui permettent de remplacer au moins un premier groupe par un deuxième groupe de façon à maintenir le niveau de classification de la batterie.
Plus particulièrement, le composant comprend des moyens de communication du niveau de classification et des degrés de vieillissement évalués.
Dans le dispositif, un groupe peut comprendre la totalité des éléments de la batterie, quelques éléments ou un seul élément de la batterie.
De préférence, les paramètres de distribution statistique comprennent une moyenne des degrés de vieillissements et/ou une valeur la plus élevée des degrés de vieillissement évalués.
L'invention sera mieux comprise, et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement dans la description explicative qui va suivre faite en référence aux dessins schématiques annexés donnés uniquement à titre d'exemple illustrant un mode de réalisation de l'invention et dans lesquels : - la figure 1 est une vue schématique de dispositif conforme à l'invention ; - la figure 2 montre des étapes de procédé conforme à l'invention ; la figure 3 est une courbe de distribution statistique en fonction d'une valeur de caractéristique ; - la figure 4 montre un exemple de classification possible en fonction d'un déplacement de la courbe de la figure 3.
En référence à la figure 1, une batterie est réalisée par assemblage d'éléments accumulateurs d'électricité 1, 2, 3, 4, 5 entre deux bornes de sortie
15 et 16. Chaque élément accumulateur d'électricité 1, 2,
3, 4, 5, fournit une tension électrique et une impédance interne entre deux plots 20 et 21. Les éléments accumulateurs d'électricité 1, 2, 3, 4, 5 sont répartis par groupes au sein desquels ils peuvent être connectés entre eux en parallèle ou en série et les groupes peuvent être à leur tour connectés entre eux respectivement en série ou en parallèle.
Dans l'exemple illustré en figure 1, le plot 20 d'un élément est connecté à la borne 15 ou au plot 21 d'un élément précédent. Nous pouvons ainsi observer la batterie représentée comme un groupe comprenant cinq éléments connectés en série ou cinq groupes connectés en série et comprenant chacun un seul élément. Un ampèremètre 13 en amont de la borne 16, permet de mesurer le courant généré par la batterie lorsqu'elle est utilisée. Si les éléments de la batterie en totalité sont au nombre de cinq dans l'exemple illustré, on comprendra que la totalité des éléments peut être en un nombre quelconque indifféremment inférieur ou supérieur à cinq.
Chaque élément accumulateur d'électricité 1, 2, 3,
4, 5, est inséré sur des rails ou entre des glissières 18 qui permettent de faire coulisser aisément les éléments pour faciliter leur démontage individuellement ou en groupe.
Les rails ou glissières 18 sont montées sur les parois verticales d'un casier non représenté et sur le fond duquel est imprimé un bus pour connecter le plot d'un élément au plot d'un autre élément, par exemple comme représenté en trait épais sur la figure 1. Idéalement les plots 20, 21, sont dirigés vers le bas pour entrer en contact avec le bus quand les éléments sont enfoncés entre les glissières dans le casier. La disposition des plots 20, 21, sous les éléments et dirigés vers le bas, permet d'éviter les courts-circuits, notamment par un couvercle, non représenté, qui en fermant le dessus du casier, vient appuyer sur les éléments accumulateurs d'électricité 1, 2, 3, 4, 5 pour assurer un bon contact électrique des plots avec le bus. Une anse 19 disposée sur le dessus de chaque élément, permet de soulever l'élément après ouverture du couvercle et de déconnecter ainsi l'élément du bus. Lors de la manœuvre de soulèvement, on ne risque aucun court-circuit avec les autres éléments car ces derniers sont protégés par l'orientation de leurs plots, dirigée vers le fond du casier . Un composant 22 est agencé pour mettre en œuvre des étapes de procédé expliquées à présent en référence à la figure 2.
Une étape 101 consiste à évaluer un degré de vieillissement associé individuellement à un groupe distinct, notamment à un groupe comprenant un élément unique .
Le degré de vieillissement d'un élément, pris individuellement, peut être évalué de différentes manières. Il peut être évalué pendant que la batterie est utilisée en mesurant le courant délivré par la batterie au moyen de l'ampèremètre 13 et en branchant un voltmètre sur les plots 20, 21 pour mesurer la tension délivrée en charge par l'élément de façon à en déduire le degré de vieillissement. Il peut être évalué au moyen d'une horloge qui mesure une durée qui sépare l'instant présent d'un instant antérieur lors duquel l'élément a été inséré dans le panier de batterie avec un degré de vieillissement connu.
Le degré de vieillissement est avantageusement évalué par une méthode d' impédancemétrie . La méthode d' impédancemétrie consiste à injecter un courant variable de valeurs connues dans l'élément ou le groupe d'éléments à contrôler et de mesurer les variations de tension qui en résultent aux bornes de l'élément, respectivement du groupe d'éléments. Le courant variable est injecté de façon à s'ajouter uniquement dans l'élément ou le groupe d'éléments, au courant de base nul ou non nul circulant normalement dans la batterie. Il est ainsi possible de mesurer l'impédance de chaque élément ou groupe d'éléments, pris isolément sans avoir à connaître la tension à vide ou la chute de tension sur des plots d'élément qui est provoquée par une circulation du courant de base.
Le composant 22 est agencé pour injecter le courant variable au moyen d'un générateur de courant 23. Le générateur de courant 23 est réalisé de façon connue, par exemple au moyen d'un générateur électrique bipolaire asservi en courant par des amplificateurs opérationnels, avec saturation de sécurité en tension.
Dans un premier mode de réalisation (non représenté) , le composant 22 est un instrument portatif (non embarqué) qui comprend des cosses de mesure, reliées chacune à un pôle du générateur de courant 23. On branche alors les cosses de mesure du composant 22 sur les plots 20 et 21 d'un élément ou en extrémités d'un groupe d'éléments. A partir d'une mesure de variation de tension entre les cosses, le composant 22 en déduit l'impédance de l'élément ou du groupe d'éléments, à partir de laquelle il estime un degré de vieillissement, directement égal à ou en fonction de l'impédance déduite. Le degré de vieillissement estimé est mémorisé dans une mémoire 24 en association avec un repère de l'élément ou du groupe d'éléments contrôlé. Le degré de vieillissement est indiqué sur un afficheur par un moyen de communication 17. On branche alors les cosses de mesure du composant 22 sur les plots 20 et 21 d'un élément suivant ou en extrémités d'un groupe suivant d'éléments. Dans un deuxième mode de réalisation, illustré par la figure 1, le composant 22 est embarqué dans le véhicule. Un pôle du générateur 23 est raccordé à une première série de relais 6, 8, 10 et un autre pôle du générateur 23 est raccordé à une deuxième série de relais 7, 9, 11. A titre purement illustratif et non limitatif sur la figure 1, le relais 6 est raccordé à une partie de bus qui relie la borne 15 au plot 20 de l'élément 1. Le relais 8 est raccordé à une partie de bus qui relie le plot 21 de l'élément 2 au plot 20 de l'élément 3. Le relais 10 est raccordé à une partie de bus qui relie le plot 21 de l'élément 4 au plot 20 de l'élément 5. Le relais 7 est raccordé à une partie de bus qui relie le plot 21 de l'élément 1 au plot 20 de l'élément 2. Le relais 9 est raccordé à une partie de bus qui relie le plot 21 de l'élément 3 au plot 20 de l'élément 4. Le relais 11 est raccordé à une partie de bus qui relie le plot 21 de l'élément 5 à la borne 16.
Le composant 22 embarqué est programmé pour fermer séquentiellement les relais 6 et 7 de façon à mesurer l'impédance de l'élément 1, les relais 7 et 8 de façon à mesurer l'impédance de l'élément 2, les relais 8 et 9 de façon à mesurer l'impédance de l'élément 3, les relais 9 et 10 de façon à mesurer l'impédance de l'élément 4, les relais 10 et 11 de façon à mesurer l'impédance de l'élément 5. La mesure d'impédance est effectuée par mesure de tension en module et en phase au moyen du voltmètre 14. Les degrés de vieillissement corrélés à chaque mesure d'impédance sont successivement mémorisés dans une table associative indexée par un repère d'élément. La table associative est par exemple stockée dans la mémoire 24 du composant 22. Dans la table associative, il est intéressant de faire correspondre à chaque repère d'élément, une date exprimée en termes de kilomètres parcourus par le véhicule depuis que l'élément appartient à la batterie, une date exprimée en termes de d 'Ah échangés par l'élément ou une date exprimée en termes de durée depuis une mise en service de l'élément.
Nous venons de développer le cas où l'impédance, par exemple à une fréquence donnée de courant qui varie sous forme alternative, constitue une valeur caractéristique de degré de vieillissement. D'autres valeurs caractéristiques peuvent être envisagées telles que par exemple une intégrale temporelle de la température subie par l'élément ou un âge de l'élément. D'autre part dans le cas où chaque élément est contrôlé individuellement en tension, par exemple dans le cas d'une batterie Li-ion, en connaissant la valeur du courant qui traverse l'élément et en mesurant sa tension, on peut en déduire sa résistance interne qui peut alors être une caractéristique permettant de déterminer le degré de vieillissement de l'élément. Cette opération peut se faire aussi bien en roulage qu'en mode parking chez le garagiste .
Les moyens de communication 17 sont agencés pour transférer des informations contenues dans la mémoire 24, par exemple vers une prise de diagnostique du véhicule (non représentée) . Accessoirement, les moyens de communication 17 sont agencés pour transférer des informations vers la mémoire 24, par exemple depuis la prise de diagnostique du véhicule.
Une étape 102 consiste à attribuer un niveau de classification à la batterie. Les performances potentielles de la batterie en utilisation, dépendent de l'ensemble des éléments qui la constituent mais aussi des éléments considérés individuellement. Pour être représentatif, le niveau de classification expliqué à présent, tient compte de ces deux composantes dont dépendent les performances de la batterie. La figure 3 présente une courbe de distribution D des éléments ou groupes d'éléments d'une batterie en fonction d'une variable caractéristique Vc de degré de vieillissement. Les éléments se répartissent généralement autour d'une valeur moyenne M avec une fréquence d'occurrence généralement plus élevée au voisinage de la valeur moyenne et qui décroît de part et d'autre. Plus l'ensemble d'éléments est homogène, plus les valeurs de leur variable caractéristiques seront regroupées autour de la moyenne. A l'inverse, plus l'ensemble d'éléments est hétérogène, plus les valeurs de leur variable caractéristiques seront dispersées avec pour effet d'aplatir la courbe centrée sur la moyenne.
Considérant des degrés de vieillissement pour lesquels la variable caractéristique est l'impédance de l'élément, son âge ou la quantité de ses cycles de charge et de décharge, les performances seront plus élevées pour les valeurs de la variable caractéristique les plus faibles à gauche de la courbe et plus basses pour les valeurs de la variable caractéristique les plus élevées à droite de la courbe.
Le composant 22 contient une unité arithmétique et logique et quelques lignes de programme pour calculer la moyenne M des valeurs contenues dans la mémoire 24 et mesurées dans l'étape précédente.
Le composant 22 contient en mémoire 24, différentes valeurs possibles MA, MB, Mc, de moyenne. En référence à la figure 4, une distribution des éléments correspondant à la valeur moyenne MA est statistiquement représentée par la courbe de gauche. La distribution statistique D de moyenne MA correspond à un niveau de classification dont on peut attendre les meilleures performances en utilisation de la batterie car les valeurs de la variable caractéristique Vc qui représente le degré de vieillissement, sont majoritairement les plus faibles. Une distribution des éléments correspondant à la valeur moyenne Mc est statistiquement représentée par la courbe de droite. La distribution statistique D de moyenne Mc correspond à un niveau de classification dont on peut attendre que des performances passables en utilisation de la batterie car les valeurs de la variable caractéristique Vc qui représente le degré de vieillissement, sont majoritairement les plus élevées. Une distribution des éléments correspondant à la valeur moyenne MB est statistiquement représentée par la courbe centrale. La distribution statistique D de moyenne MB correspond à un niveau de classification dont on peut attendre des performances en utilisation de la batterie moindres que celles obtenues avec la moyenne MA mais meilleures que celles obtenues avec la moyenne Mc.
Le composant 22 contient quelques lignes de programme pour comparer la valeur moyenne M calculée aux valeurs possibles MA, MB et Mc, dans une plage de tolérance prédéterminée de façon à attribuer un niveau de classification NC à la batterie, en utilisant des formules du type : M<3MA + MB^NC:=A
2 _^ xNτ(--_ ._ _β,
3MB+MC < M => NC := C
2
On peut aussi mettre une exigence supplémentaire comme le fait qu'en plus, non seulement la moyenne doit appartenir à l'un des intervalles définis ci-dessus, mais qu'aucun élément ne doit avoir une caractéristique dépassant un certain seuil.
Si le niveau de classification est A, B ou respectivement C et que le composant 22 détecte un élément dont la valeur de la variable caractéristique est supérieure à un seuil SA, SB, ou respectivement S0, le composant 22 génère une alarme et communique le repère de l'élément de valeur caractéristique trop élevée pour la classe à laquelle il appartient. Le nombre de niveaux de classification peut être plus élevé que trois. Le classement peut se baser sur d'autres méthodes que celles basées sur la moyenne de la variable caractéristique suivie des différents éléments ou groupes d'éléments constituant la batterie et où chaque classe correspond à un intervalle de valeur de cette caractéristique .
Un autre exemple de méthode est celui selon lequel la classification est basée sur la valeur de la caractéristique de l'élément le plus faible ou sur la moyenne des x éléments les plus faibles. Il existe bien d'autres méthodes de classification.
Si le contrôle montre que la batterie est passée du niveau de la classe A (batterie neuve) à celui de la classe B, l'utilisateur a le choix d'accepter une dé classification de la batterie ou de demander à échanger les éléments les plus faibles pour maintenir la batterie en classe A.
Si le contrôle montre que la Batterie est classée C, le client a le choix d'accepter cette dé classification de la batterie ou de demander à échanger les éléments les plus faibles pour maintenir la batterie en classe B ou éventuellement la passer en classe A.
Une étape 103 consiste à remplacer les éléments défaillants par des éléments qui ont déjà servis et qui sont recyclés et dont la classification a été déterminée préalablement à un niveau a, b, c comme étant le plus apte respectivement à être intégré dans une batterie de niveau de classification A, B, C. Prenons l'exemple d'un élément retiré afin de maintenir une batterie en classe A, la caractéristique suivie de l'élément montrant un état de vieillissement supérieur au critère de la classe A. Supposons que cet élément est classé b. Cet élément pourra alors servir ultérieurement à faire monter une batterie de la classe C en classe B. Les échanges standard d'éléments ou de groupes d'élément par des éléments neuf ou d'occasion, est facilité par la conception mécanique du panier de batterie représenté en figure 1, lequel est optimisé au niveau volume, poids et sécurité.
Le contrôle individuel de chaque élément ou chaque groupe d'éléments et la conception du panier de batterie conçu pour remplacer les éléments ou groupes d'éléments les plus dégradés, permet de conserver la batterie au meilleur de ses performances. En retirant de la batterie tout au long de sa vie, les éléments les plus dégradés, tous les éléments vieillissent de façon homogène.
Dans le cas par exemple d'une batterie Li-ion, il est nécessaire de ne pas dépasser un seuil bas de tension pour chaque élément la constituant lors de la décharge et un seuil haut pour chaque élément lors de la charge. Par conséquent, c'est l'élément qui aura par exemple l'impédance ou la résistance interne la plus élevée qui limitera la capacité de la batterie Li-ion. C'est pour cela, qu'il est important d'avoir une cartographie des caractéristiques liées à la performance de chaque élément composant la batterie pour pouvoir échanger les éléments limitant la performance de la batterie globale.
D'autre part, selon leur emplacement dans le véhicule, l'environnement thermique de chaque élément peut beaucoup varier d'un élément à l'autre et par conséquent le degré de vieillissement de chacun peut être très différent. Une solution est de changer les éléments les plus dégradés par la température. Une autre solution est par mesure préventive, de permuter périodiquement les éléments des emplacements les plus chauds, par exemple les plus proches du moteur, avec ceux des emplacements les plus froids, par exemple les plus éloignés du moteur, pour permettre un vieillissement plus homogène possible de la batterie. Ceci également est facilité par un contrôle individuel de chaque élément ou chaque groupe d'éléments et une conception du panier de batterie qui permet la permutation des éléments.

Claims

REVENDICATIONS
1. Procédé de classification d'une batterie réalisée par assemblage d'éléments accumulateurs d'électricité répartis par groupes, comprenant des étapes consistant à:
- évaluer des degrés de vieillissement, associés chacun à un groupe distinct ;
- attribuer à la batterie, en fonction de paramètres de distribution statistique des degrés de vieillissements évalués, un niveau de classification qui est représentatif de performances potentielles de la batterie en utilisation ; ledit procédé étant caractérisé en ce que le degré de vieillissement d'au moins un groupe est évalué par une méthode d' impédancemétrie en fonction d'une mesure de courant qui traverse le groupe d'éléments et d'une mesure de tension.
2. Procédé selon la revendication 1, caractérisé en ce qu'il comprend une étape consistant à :
- remplacer au moins un premier groupe par un deuxième groupe de façon à maintenir le niveau de classification de la batterie.
3. Procédé selon la revendication 2, caractérisé en ce que le premier groupe est remplacé par permutation dans la batterie avec le deuxième groupe exposé, avant permutation, à des contraintes d'utilisation plus faibles que le premier groupe.
4. Procédé selon la revendication 3, caractérisé en ce que les contraintes d'utilisation comprennent une température .
5. Procédé selon la revendication 2, caractérisé en ce que le premier groupe est remplacé par un deuxième groupe en provenance d'une autre batterie avec un degré de vieillissement plus faible.
6. Procédé selon la revendication 2, caractérisé en ce que le premier groupe est remplacé par un deuxième groupe avec un degré de vieillissement nul.
7. Procédé selon l'une des revendications 1 et 2 ou 5 et 6, caractérisé en ce qu'un groupe comprend la totalité des éléments de la batterie.
8. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'un groupe comprend un seul élément de la batterie.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que les paramètres de distribution statistique comprennent une moyenne des degrés de vieillissements et/ou une valeur la plus élevée des degrés de vieillissement évalués.
10. Dispositif de classification d'une batterie réalisée par assemblage d'éléments accumulateurs d'électricité (1, 2, 3, 4, 5) répartis par groupes, comprenant un composant (22) agencé pour:
- évaluer des degrés de vieillissement, associés chacun à un groupe distinct ;
- attribuer à la batterie, en fonction de paramètres de distribution statistique des degrés de vieillissements évalués, un niveau de classification qui est représentatif de performances potentielles de la batterie en utilisation ; ledit dispositif étant caractérisé en ce que le composant (22) est agencé pour évaluer le degré de vieillissement d'au moins un groupe par une méthode d' impédancemétrie en fonction d'une mesure de courant qui traverse le groupe d'éléments et d'une mesure de tension.
11. Dispositif selon la revendication 10, caractérisé en ce qu'il comprend des glissières (18) qui maintiennent les éléments accumulateurs d'électricité (1, 2, 3, 4, 5) pour réaliser la batterie et qui permettent de remplacer au moins un premier groupe par un deuxième groupe de façon à maintenir le niveau de classification de la batterie.
12. Dispositif selon l'une des revendications 10 et
11, caractérisé en ce que le composant (22) comprend des moyens de communication du niveau de classification et des degrés de vieillissement évalués.
13. Dispositif selon l'une des revendications 10 à
12, caractérisé en ce qu'un groupe comprend la totalité des éléments de la batterie.
14. Dispositif selon l'une des revendications 10 à 12, caractérisé en ce qu'un groupe comprend un seul élément de la batterie.
15. Dispositif selon l'une des revendications 10 à 14, caractérisé en ce que les paramètres de distribution statistique comprennent une moyenne des degrés de vieillissements et/ou une valeur la plus élevée des degrés de vieillissement évalués.
EP10707604A 2009-02-13 2010-01-28 Procédé et dispositif de classification d'une batterie Withdrawn EP2396838A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950908A FR2942323B1 (fr) 2009-02-13 2009-02-13 Procede et dispositif de classification d'une batterie
PCT/FR2010/050131 WO2010092275A1 (fr) 2009-02-13 2010-01-28 Procédé et dispositif de classification d'une batterie

Publications (1)

Publication Number Publication Date
EP2396838A1 true EP2396838A1 (fr) 2011-12-21

Family

ID=41076781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10707604A Withdrawn EP2396838A1 (fr) 2009-02-13 2010-01-28 Procédé et dispositif de classification d'une batterie

Country Status (5)

Country Link
US (1) US20110295533A1 (fr)
EP (1) EP2396838A1 (fr)
CN (1) CN102318103B (fr)
FR (1) FR2942323B1 (fr)
WO (1) WO2010092275A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2819212A1 (fr) * 2009-09-01 2014-12-31 Boston-Power, Inc. Systèmes d'accumulateurs à grande échelle et procédé d'assemblage
EP2629109B1 (fr) * 2010-10-14 2022-06-29 Toyota Jidosha Kabushiki Kaisha Dispositif électrique de stockage
FR2976130A1 (fr) * 2011-05-30 2012-12-07 Peugeot Citroen Automobiles Sa Procede et dispositif de surveillance d'une source d'energie
US9465077B2 (en) 2011-12-05 2016-10-11 The United States Of America, As Represented By The Secretary Of The Navy Battery health monitoring system and method
ITBO20110698A1 (it) * 2011-12-07 2013-06-08 Magneti Marelli Spa Metodo di stima dello stato di carica e dello stato di salute di un sistema di accumulo in un veicolo a trazione ibrida o elettrica
CN102437385B (zh) * 2011-12-12 2014-03-12 中国电力科学研究院 一种电动汽车动力电池梯次利用的分级方法
DE102013012219B3 (de) * 2013-07-23 2014-11-06 Audi Ag Batterieprüfstand und Verfahren zum Prüfen von Batterien
FR3009754B1 (fr) * 2013-08-16 2016-12-09 Renault Sa Diagnostic de la resistance interne d'une batterie electrique
DE102014012542A1 (de) * 2014-08-28 2016-03-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Verfahren zum Bestimmen eines Betriebszustands eines Batteriesystems
JP6225924B2 (ja) * 2015-01-13 2017-11-08 トヨタ自動車株式会社 二次電池の検査方法
KR20180057046A (ko) * 2016-11-21 2018-05-30 삼성전자주식회사 배터리 온도 제어 방법 및 장치
CN107302112B (zh) * 2017-06-30 2020-03-24 奇瑞汽车股份有限公司 电池分档方法
EP3875975B1 (fr) * 2020-03-03 2022-09-14 Safion GmbH Procédé et dispositif de transfert de charge pour la spectroscopie à impédance électrochimique
CN117080588B (zh) * 2023-10-13 2024-01-02 快电动力(北京)新能源科技有限公司 对电池进行分类的处理方法、装置、系统和部件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2702885B1 (fr) * 1993-03-15 1995-04-21 Alcatel Converters Système de contrôle de vieillissement d'une batterie et procédé mis en Óoeuvre dans un tel système.
JP4001708B2 (ja) * 2000-04-28 2007-10-31 松下電器産業株式会社 二次電池の交換方法
KR100388314B1 (ko) * 2001-09-03 2003-06-25 금호석유화학 주식회사 전지의 임피던스 측정과 분석을 통한 전지 선택 최적화 방법
JP4042475B2 (ja) 2002-06-12 2008-02-06 トヨタ自動車株式会社 電池の劣化度算出装置および劣化度算出方法
DE10260373A1 (de) * 2002-12-13 2004-06-24 Volkswagen Ag Verfahren und Vorrichtung zur Funktionszustandsprüfung eines elektrischen Energie-Systems sowie ein zugehöriges elektrisches Energie-System
US7075194B2 (en) 2003-07-31 2006-07-11 The Titan Corporation Electronically reconfigurable battery
US7915860B2 (en) * 2003-12-30 2011-03-29 Batterycorp, Inc. Battery management system with runtime reserve analysis
US8446127B2 (en) * 2005-08-03 2013-05-21 California Institute Of Technology Methods for thermodynamic evaluation of battery state of health

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010092275A1 *

Also Published As

Publication number Publication date
FR2942323A1 (fr) 2010-08-20
WO2010092275A1 (fr) 2010-08-19
US20110295533A1 (en) 2011-12-01
CN102318103B (zh) 2014-03-26
CN102318103A (zh) 2012-01-11
FR2942323B1 (fr) 2011-05-20

Similar Documents

Publication Publication Date Title
EP2396838A1 (fr) Procédé et dispositif de classification d&#39;une batterie
EP3490099B1 (fr) Architecture de modules batterie connectés en parallèle
WO2013064759A2 (fr) Procede et systeme de gestion de charges electriques de cellules de batterie
EP2600462B1 (fr) Procédé d&#39;équiblibrage des tensions d&#39;éléments électrochimiques disposés dans plusieurs branches en parallèle
WO2022023200A1 (fr) BLOC MODULAIRE SÉRIE (BlMoSe)
FR3002045A1 (fr) Gestion de la charge d&#39;une batterie
EP2416468A2 (fr) Procédé d&#39;équilibrage pour batterie électrique et système de gestion pour batterie mettant en ouvre un tel procédé
WO2012172035A1 (fr) Procede de gestion et diagnostic d&#39;une batterie
WO2017050944A1 (fr) Procede et dispositif de determination d&#39;un indicateur d&#39;etat de sante d&#39;une batterie lithium
FR3015124A1 (fr) Charge d&#39;une batterie
EP3704504A1 (fr) Procédé de détermination de l&#39;état d&#39;une ligne électrique reliant une cellule de batterie d&#39;accumulateurs à une unité de contrôle et unité de contrôle correspondante
WO2015107299A1 (fr) Procede de gestion d&#39;un etat de charge d&#39;une batterie
FR3067878B1 (fr) Procede de charge de batteries pour un aeronef et systeme de stockage d&#39;energie electrique
FR3001086A1 (fr) Gestion de la charge d&#39;une batterie.
FR2923023A1 (fr) Systeme de determination de l&#39;etat de moyens de stockage d&#39;energie electrique
WO2021148324A1 (fr) Procede de diagnostic rapide et hors ligne d&#39;accumulateurs et dispositifs associes
WO2017215967A1 (fr) Procede et systeme de gestion de batteries electrochimiques d&#39;une installation d&#39;alimentation electrique en cas de defaillance de batterie(s).
EP1820039A1 (fr) Procede d&#39;evaluation de l&#39;etat de charge d&#39;une batterie electrique
WO2015032874A1 (fr) Systeme de gestion electrique des blocs d&#39;une batterie en fonction de la puissance requise de la batterie et de la charge des blocs
FR2970820A1 (fr) Procede de gestion de la charge d&#39;une batterie rechargeable d&#39;un vehicule automobile
FR3009754A1 (fr) Diagnostic de la resistance interne d&#39;une batterie electrique
FR3079489A1 (fr) Procédé pour surveiller un véhicule automobile ayant une fonction de conduite automatique
FR3061369A1 (fr) Securisation d&#39;une batterie au lithium
FR3130039A1 (fr) Estimation d’informations relatives à une batterie cellulaire
FR2886412A1 (fr) Systeme de determination de l&#39;etat des moyens de stockage d&#39;energie electrique embarques a bord d&#39;un vehicule automobile.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 10/44 20060101ALI20130215BHEP

Ipc: B60L 11/18 20060101ALI20130215BHEP

Ipc: H01M 10/48 20060101ALI20130215BHEP

Ipc: H01M 2/10 20060101AFI20130215BHEP

Ipc: H01M 6/50 20060101ALI20130215BHEP

Ipc: H01M 10/42 20060101ALI20130215BHEP

Ipc: G01R 31/36 20060101ALI20130215BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130719