EP2396746A2 - Procédé de détection d'objets - Google Patents
Procédé de détection d'objetsInfo
- Publication number
- EP2396746A2 EP2396746A2 EP10703018A EP10703018A EP2396746A2 EP 2396746 A2 EP2396746 A2 EP 2396746A2 EP 10703018 A EP10703018 A EP 10703018A EP 10703018 A EP10703018 A EP 10703018A EP 2396746 A2 EP2396746 A2 EP 2396746A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- determined
- segments
- segment
- height
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
Definitions
- the invention relates to a method for object detection according to the preamble of claim 1.
- a distance image is determined by means of a sensor system via horizontal and vertical angles, wherein a depth map of an environment is determined from the distance image.
- a free space boundary line is defined that bounds an obstacle-free area of the environment, segmenting the depth map outside and along the free space boundary line by forming segments of appropriate equal widths of pixels of equal or similar distance from a plane, with a height of each segment as a part of an object located outside the obstacle-free area, so that each segment is characterized by a two-dimensional position of a foot point (eg given by distance and angle to a vehicle longitudinal axis) and by its height.
- the three-dimensional environment described by the distance image and the depth map is approximated by the obstacle-free area (also called the free space area).
- the obstacle-free area is, for example, a drivable area, which, however, does not necessarily have to be planar.
- the obstacle-free area is limited by the rod-like segments, which in their entirety model the objects surrounding the obstacle-free area. These segments are in the simplest case on the ground and approximate a mean height of the object in the region of the respective segment. Variable height objects, such as cyclists from the side, are thus described by a piecewise constant height function.
- the resulting segments represent a compact and robust representation of the objects and require only a limited amount of data, regardless of the density of the stereo correspondence analysis used to create the depth map.
- Location and altitude are stored for each stixel. These Representation is optimally suitable for any subsequent steps, such as object formation and scene interpretation.
- the stixel representation represents an ideal interface between application-independent stereo analysis and application-specific evaluations.
- Fig. 1 is a two-dimensional representation of an environment with a
- Free space boundary and a number of segments for modeling objects in the environment are free space boundary and a number of segments for modeling objects in the environment.
- FIG. 1 shows a two-dimensional representation of an environment 1 with a free-space delimitation line 2 and a number of segments 3 for modeling objects 4.1 to 4.6 in the environment 1.
- the segments 3 or stixels model the objects 4.1 to 4.6 that are defined by the free-space delimiting line 2 limit free travel.
- a method is used in which two images of an environment are recorded and a disparity image is determined by means of stereo image processing.
- stereo image processing the method described in [H. Hirschmüller: "Accurate and efficient stereo processing by semi-global matching and mutual information.” CVPR 2005, San Diego, CA. Volume 2. (June 2005), pp. 807-814.].
- a depth map of the environment is determined, for example as described in [H.Badino, U. Franke, R.Mester: "Free Space Computation Using Stochastic Occupancy Grids and Dynamic Programming", In Dynamic Programming Workshop for ICCV 07, Rio de Janeiro, Brasil].
- the free space boundary line 2 is identified which delimits the obstacle-free area of the surroundings 1.
- the depth map is segmented by forming the segments 3 with a predetermined width of pixels of equal or similar distance to an image plane of a camera or multiple cameras.
- the segmentation may be accomplished, for example, by the method described in [H.Badino, U.Franke, R.Mester: "Free Space Computation using Stochastic Occupancy Grids and Dynamic Programming", In Dynamic Vision Workshop for ICCV 07, Rio de Janeiro, Brasil] ,
- An approximation of the found free space boundary line 2 in segments 3 (bars, stixels) of predetermined width provides the distance of the segments; with known orientation of the camera to the environment (for example, a road in front of a vehicle on which the camera is arranged) and known 3D curve results in a respective base point of the segments 3 in the image.
- each segment 3 is characterized by a two-dimensional position of a foot point and its height.
- Height estimation is most easily accomplished by histogram-based analysis of all 3D points in the segment area. This step can be solved by dynamic programming.
- Areas that have no segments 3, are those in which no objects were found by the free space analysis.
- Multiple images can be sequentially acquired and processed, and from changes in the depth map and disparity image, motion information can be extracted and assigned to segments 3.
- moving scenes can also be represented and, for example, used to predict an expected movement of the objects 4.1 to 4.6.
- This kind of motion tracking is also called tracking.
- a vehicle own motion can be determined and used for compensation.
- the compactness and robustness of the segments 3 results from the integration of many pixels in the area of the segment 3 and - in the tracking variant - from the additional integration over time.
- the membership of each of the segments 3 to one of the objects 4.1 to 4.6 can also be stored with the remaining information about each segment. However, this is not mandatory.
- the movement information can be obtained, for example, by integration of the optical flow, so that a real movement can be estimated for each of the segments 3.
- Corresponding methods are for. B. from works on the 6D vision, which are published in DE 102005008131 A1, known. This motion information further simplifies the grouping into objects, as compatible movements can be checked.
- the position of the foot point, the height and the motion information of the segment 3 can be determined by means of Scene Flow.
- the Scene Flow is a class of procedures that attempts to determine the correct movement in space plus its SD position from at least 2 consecutive stereo image pairs for as many pixels as possible; See [Sundar Vedulay, Simon Bakery, Peter Randeryz, Robert Collinsy, and Takeo Kanade, "Three Dimensional Scene Flow,” Appeared in the 7th International Conference on Computer Vision, Corfu, Greece, September 1999.]
- information for a driver assistance system can be generated in a vehicle on which the cameras are arranged.
- a remaining time until collision of the vehicle with an object 4.1 to 4.6 formed by segments 3 can be estimated.
- a driving corridor 5 can be placed in the obstacle-free area to be used by the vehicle, wherein a lateral distance of at least one of the objects 4.1 to 4.6 to the driving corridor 5 is determined.
- Information from other sensors can be combined with the driver assistance system information associated with segments 3 (sensor fusion).
- active sensors such as a LIDAR
- the segments 3 have unique neighborhood relationships, which makes them very easy to group into objects 4.1 through 4.6. In the simplest case, only distance and height are to be transmitted to each segment 3, with known width of the segment 3 results in an angle (columns in the image) from an index.
- the distance image can be determined by means of any sensor system over horizontal and vertical angle, wherein from the distance image, the depth map of the environment is determined.
- two images of the surroundings (1) can each be recorded by means of one camera and a disparity image can be determined by means of stereo image processing, the distance image and the depth map being determined from the disparities determined.
- a photonic mixer device and / or a three-dimensional camera and / or a lidar and / or a radar can be used as the sensor system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
L'invention concerne un procédé de détection d'objets, selon lequel deux images des alentours (1) sont enregistrées et une image de disparité est calculée au moyen d'un traitement d'image stéréo, une carte de profondeur des alentours (1) étant déterminée à partir des disparités calculées, carte de profondeur dans laquelle une ligne de délimitation de l'espace libre (2) est identifiée, laquelle délimite une zone sans obstacle des alentours (1), la carte de profondeur étant segmentée en dehors et le long de la ligne de délimitation de l'espace libre (2), en ce sens que des segments (3) d'une largeur appropriée sont formés de pixels à distance identique ou similaire d'un plan d'image, une hauteur de chaque segment (3) étant estimée comme partie d'un objet (4.1 à 4.6) se trouvant en dehors de la zone sans obstacle de sorte que chaque segment (3) est caractérisé par la position en deux dimensions de son extrémité inférieure (fournie par exemple par la distance et l'angle par rapport à l'axe longitudinal du véhicule) et sa hauteur.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009009047A DE102009009047A1 (de) | 2009-02-16 | 2009-02-16 | Verfahren zur Objektdetektion |
PCT/EP2010/000671 WO2010091818A2 (fr) | 2009-02-16 | 2010-02-04 | Procédé de détection d'objets |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2396746A2 true EP2396746A2 (fr) | 2011-12-21 |
Family
ID=42338731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10703018A Withdrawn EP2396746A2 (fr) | 2009-02-16 | 2010-02-04 | Procédé de détection d'objets |
Country Status (5)
Country | Link |
---|---|
US (1) | US8548229B2 (fr) |
EP (1) | EP2396746A2 (fr) |
CN (1) | CN102317954B (fr) |
DE (1) | DE102009009047A1 (fr) |
WO (1) | WO2010091818A2 (fr) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10776635B2 (en) | 2010-09-21 | 2020-09-15 | Mobileye Vision Technologies Ltd. | Monocular cued detection of three-dimensional structures from depth images |
JP5316572B2 (ja) * | 2011-03-28 | 2013-10-16 | トヨタ自動車株式会社 | 物体認識装置 |
DE102011111440A1 (de) | 2011-08-30 | 2012-06-28 | Daimler Ag | Verfahren zur Umgebungsrepräsentation |
CN103164851B (zh) * | 2011-12-09 | 2016-04-20 | 株式会社理光 | 道路分割物检测方法和装置 |
DE102012000459A1 (de) | 2012-01-13 | 2012-07-12 | Daimler Ag | Verfahren zur Objektdetektion |
US20150022664A1 (en) | 2012-01-20 | 2015-01-22 | Magna Electronics Inc. | Vehicle vision system with positionable virtual viewpoint |
US8824733B2 (en) | 2012-03-26 | 2014-09-02 | Tk Holdings Inc. | Range-cued object segmentation system and method |
US8768007B2 (en) | 2012-03-26 | 2014-07-01 | Tk Holdings Inc. | Method of filtering an image |
CN103390164B (zh) * | 2012-05-10 | 2017-03-29 | 南京理工大学 | 基于深度图像的对象检测方法及其实现装置 |
TWI496090B (zh) * | 2012-09-05 | 2015-08-11 | Ind Tech Res Inst | 使用深度影像的物件定位方法與裝置 |
US9349058B2 (en) | 2012-10-31 | 2016-05-24 | Tk Holdings, Inc. | Vehicular path sensing system and method |
DE102012021617A1 (de) | 2012-11-06 | 2013-05-16 | Daimler Ag | Verfahren zur Objektdetektion |
US20140139632A1 (en) * | 2012-11-21 | 2014-05-22 | Lsi Corporation | Depth imaging method and apparatus with adaptive illumination of an object of interest |
CN103871042B (zh) * | 2012-12-12 | 2016-12-07 | 株式会社理光 | 基于视差图的视差方向上连续型物体检测方法和装置 |
WO2014152470A2 (fr) | 2013-03-15 | 2014-09-25 | Tk Holdings, Inc. | Détection de trajectoire utilisant un éclairage structuré |
CN104723953A (zh) * | 2013-12-18 | 2015-06-24 | 青岛盛嘉信息科技有限公司 | 一种行人检测装置 |
GB201407643D0 (en) * | 2014-04-30 | 2014-06-11 | Tomtom Global Content Bv | Improved positioning relatie to a digital map for assisted and automated driving operations |
EP3283843B1 (fr) * | 2015-04-01 | 2024-01-10 | Vayavision Sensing Ltd. | Génération de cartes en trois dimensions d'une scène à l'aide de mesures passives et actives |
US9928430B2 (en) * | 2015-04-10 | 2018-03-27 | GM Global Technology Operations LLC | Dynamic stixel estimation using a single moving camera |
EP3998455A1 (fr) | 2015-08-03 | 2022-05-18 | TomTom Global Content B.V. | Procédés et systèmes de génération et d'utilisation de données de référence de localisation |
JP6326641B2 (ja) | 2015-08-21 | 2018-05-23 | パナソニックIpマネジメント株式会社 | 画像処理装置および画像処理方法 |
US9761000B2 (en) * | 2015-09-18 | 2017-09-12 | Qualcomm Incorporated | Systems and methods for non-obstacle area detection |
US10482331B2 (en) * | 2015-11-20 | 2019-11-19 | GM Global Technology Operations LLC | Stixel estimation methods and systems |
CN106909141A (zh) * | 2015-12-23 | 2017-06-30 | 北京机电工程研究所 | 障碍物探测定位装置及避障系统 |
KR101795270B1 (ko) | 2016-06-09 | 2017-11-07 | 현대자동차주식회사 | 장애물의 지면경계 정보를 이용한 물체 측면 검출 방법 및 장치 |
CN105974938B (zh) * | 2016-06-16 | 2023-10-03 | 零度智控(北京)智能科技有限公司 | 避障方法、装置、载体及无人机 |
US10321114B2 (en) * | 2016-08-04 | 2019-06-11 | Google Llc | Testing 3D imaging systems |
EP3293668B1 (fr) * | 2016-09-13 | 2023-08-30 | Arriver Software AB | Système de vision et procédé pour véhicule à moteur |
US10535142B2 (en) | 2017-01-10 | 2020-01-14 | Electronics And Telecommunication Research Institute | Method and apparatus for accelerating foreground and background separation in object detection using stereo camera |
US10445928B2 (en) | 2017-02-11 | 2019-10-15 | Vayavision Ltd. | Method and system for generating multidimensional maps of a scene using a plurality of sensors of various types |
US10474908B2 (en) * | 2017-07-06 | 2019-11-12 | GM Global Technology Operations LLC | Unified deep convolutional neural net for free-space estimation, object detection and object pose estimation |
JP6970577B2 (ja) * | 2017-09-29 | 2021-11-24 | 株式会社デンソー | 周辺監視装置および周辺監視方法 |
DE102017123984A1 (de) | 2017-10-16 | 2017-11-30 | FEV Europe GmbH | Fahrerassistenzsystem mit einem Nanodraht zur Erfassung eines Objektes in einem Umfeld eines Fahrzeugs |
DE102017123980A1 (de) | 2017-10-16 | 2017-11-30 | FEV Europe GmbH | Fahrerassistenzsystem mit einer frequenzgesteuerten Ausrichtung eines Senders zur Erfassung eines Objektes in einem Umfeld eines Fahrzeugs |
DE102018202244A1 (de) | 2018-02-14 | 2019-08-14 | Robert Bosch Gmbh | Verfahren zur Abbildung der Umgebung eines Fahrzeugs |
DE102018202753A1 (de) | 2018-02-23 | 2019-08-29 | Audi Ag | Verfahren zur Ermittlung einer Entfernung zwischen einem Kraftfahrzeug und einem Objekt |
DE102018114987A1 (de) | 2018-06-21 | 2018-08-09 | FEV Europe GmbH | Fahrerassistenzsystem zur Bestimmung einer Farbe eines Objektes in einer Fahrzeugumgebung |
DE102018005969A1 (de) | 2018-07-27 | 2020-01-30 | Daimler Ag | Verfahren zum Betreiben eines Fahrerassistenzsvstems mit zwei Erfassungseinrichtungen |
DE102018214875A1 (de) * | 2018-08-31 | 2020-03-05 | Audi Ag | Verfahren und Anordnung zum Erzeugen einer Umgebungsrepräsentation eines Fahrzeugs und Fahrzeug mit einer solchen Anordnung |
DE102018128538A1 (de) | 2018-11-14 | 2019-01-24 | FEV Europe GmbH | Fahrerassistenzsystem mit einem Sender mit einer frequenzgesteuerten Abstrahlrichtung und einem Konverter zur Frequenzangleichung |
DE102019107310A1 (de) | 2019-03-21 | 2019-06-19 | FEV Europe GmbH | Fahrerassistenzsystem zur Erkennung fremder Signale |
DE102019211582A1 (de) * | 2019-08-01 | 2021-02-04 | Robert Bosch Gmbh | Verfahren zum Erstellen einer Höhenkarte |
CN110659578A (zh) * | 2019-08-26 | 2020-01-07 | 中国电子科技集团公司电子科学研究院 | 基于检测跟踪技术的客流统计方法、系统及设备 |
US11669092B2 (en) * | 2019-08-29 | 2023-06-06 | Rockwell Automation Technologies, Inc. | Time of flight system and method for safety-rated collision avoidance |
EP3882813A1 (fr) | 2020-03-20 | 2021-09-22 | Aptiv Technologies Limited | Procédé de génération d'un réseau d'occupation dynamique |
EP3905106A1 (fr) | 2020-04-27 | 2021-11-03 | Aptiv Technologies Limited | Procédé de détermination d'une zone carrossable |
EP3905105A1 (fr) | 2020-04-27 | 2021-11-03 | Aptiv Technologies Limited | Procédé pour déterminer un espace exempt de collision |
DE102020208068A1 (de) | 2020-06-30 | 2021-12-30 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Erkennung eines in einem Überwachungsbereich erscheinenden Objekts, Computerprogramm, Speichermedium und Steuereinrichtung |
DE102020208066B3 (de) | 2020-06-30 | 2021-12-23 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren Objekterkennung Computerprogramm, Speichermedium und Steuereinrichtung |
CA3125623C (fr) | 2020-07-21 | 2023-06-27 | Leddartech Inc. | Dispositif de pointage de faisceau, en particulier pour des systemes lidar |
WO2022016277A1 (fr) | 2020-07-21 | 2022-01-27 | Leddartech Inc. | Systèmes et procédés pour lidar grand angle faisant appel à une optique de grossissement non uniforme |
CA3125718C (fr) | 2020-07-21 | 2023-10-03 | Leddartech Inc. | Dispositifs de pointage de faisceau et methodes pour des applications lidar |
DE102020210816A1 (de) * | 2020-08-27 | 2022-03-03 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Erkennung dreidimensionaler Objekte, Computerprogramm, Maschinenlesbares Speichermedium, Steuergerät, Fahrzeug und Videoüberwachungssystem |
EP4009228A1 (fr) * | 2020-12-02 | 2022-06-08 | Aptiv Technologies Limited | Méthode pour déterminer un espace libre sémantique |
DE102022115447A1 (de) | 2022-06-21 | 2023-12-21 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Assistenzsystem zum Unterstützen einer Fahrzeugführung basierend auf einem Fahrschlauch und einer Begrenzungsschätzung und Kraftfahrzeug |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9913687D0 (en) * | 1999-06-11 | 1999-08-11 | Canon Kk | Image processing apparatus |
CN1343551A (zh) * | 2000-09-21 | 2002-04-10 | 上海大学 | 机器视觉分层模块结构模型 |
WO2005020147A1 (fr) * | 2003-08-21 | 2005-03-03 | Philips Intellectual Property & Standards Gmbh | Dispositif et procede permettant de fondre deux images |
US8330814B2 (en) * | 2004-07-30 | 2012-12-11 | Panasonic Corporation | Individual detector and a tailgate detection device |
EP1668384B1 (fr) * | 2004-09-17 | 2008-04-16 | Matsushita Electric Works, Ltd. | Capteur d'images à gamme de longueur |
DE102005008131A1 (de) | 2005-01-31 | 2006-08-03 | Daimlerchrysler Ag | Objektdetektion auf Bildpunktebene in digitalen Bildsequenzen |
JP4797794B2 (ja) | 2006-05-24 | 2011-10-19 | 日産自動車株式会社 | 歩行者検出装置および歩行者検出方法 |
US8385599B2 (en) * | 2008-10-10 | 2013-02-26 | Sri International | System and method of detecting objects |
-
2009
- 2009-02-16 DE DE102009009047A patent/DE102009009047A1/de not_active Withdrawn
-
2010
- 2010-02-04 WO PCT/EP2010/000671 patent/WO2010091818A2/fr active Application Filing
- 2010-02-04 CN CN201080007837.9A patent/CN102317954B/zh not_active Expired - Fee Related
- 2010-02-04 EP EP10703018A patent/EP2396746A2/fr not_active Withdrawn
- 2010-02-04 US US13/201,241 patent/US8548229B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2010091818A2 * |
Also Published As
Publication number | Publication date |
---|---|
DE102009009047A1 (de) | 2010-08-19 |
US8548229B2 (en) | 2013-10-01 |
CN102317954A (zh) | 2012-01-11 |
WO2010091818A3 (fr) | 2011-10-20 |
CN102317954B (zh) | 2014-09-24 |
US20110311108A1 (en) | 2011-12-22 |
WO2010091818A2 (fr) | 2010-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2396746A2 (fr) | Procédé de détection d'objets | |
DE102013209415B4 (de) | Dynamische Hinweisüberlagerung mit Bildbeschneidung | |
DE102007002419B4 (de) | Fahrzeugumgebungsüberwachungsgerät, -verfahren und -programm | |
DE69937699T2 (de) | Vorrichtung zum Überwachen der Umgebung eines Fahrzeuges | |
DE69624980T2 (de) | Objektüberwachungsverfahren und -gerät mit zwei oder mehreren Kameras | |
DE10030421B4 (de) | Fahrzeugumgebungsüberwachungssystem | |
EP2394234B1 (fr) | Procédé et dispositif de détermination d'un marquage de voie de circulation en vigueur | |
DE10251880B4 (de) | Bilderkennungsvorrichtung | |
WO2013029722A2 (fr) | Procédé de représentation de l'environnement | |
DE102015203016B4 (de) | Verfahren und Vorrichtung zur optischen Selbstlokalisation eines Kraftfahrzeugs in einem Umfeld | |
DE102012101014A1 (de) | Fahrzeugdetektionsvorrichtung | |
DE102016210254A9 (de) | Fahrzeugortung an kreuzungen anhand von visuellen anhaltspunkte, stationären objekten und durch gps | |
EP3731187A1 (fr) | Procédé et dispositif de détermination de la position géographique et de l'orientation d'un véhicule | |
EP3520024B1 (fr) | Détection et validation d'objets provenant d'images séquentielles d'une caméra en utilsant des homographies | |
DE112018007484T5 (de) | Hindernis-Detektionsvorrichtung, automatische Bremsvorrichtung unter Verwendung einer Hindernis-Detektionsvorrichtung, Hindernis-Detektionsverfahren und automatisches Bremsverfahren unter Verwendung eines Hindernis-Detektionsverfahrens | |
DE102017218366A1 (de) | Verfahren und system zur fussgängererfassung in einem fahrzeug | |
EP3520023B1 (fr) | Détection et validation d'objets provenant d'images séquentielles d'une caméra | |
DE102015115012A1 (de) | Verfahren zum Erzeugen einer Umgebungskarte einer Umgebung eines Kraftfahrzeugs anhand eines Bilds einer Kamera, Fahrerassistenzsystem sowie Kraftfahrzeug | |
DE102014112820A1 (de) | Fahrzeugaußenumgebungerkennungsvorrichtung | |
EP2707862B1 (fr) | Détermination de distance au moyen d'un capteur de caméra | |
DE102012000459A1 (de) | Verfahren zur Objektdetektion | |
DE102018121008A1 (de) | Kreuzverkehrserfassung unter verwendung von kameras | |
DE102009022278A1 (de) | Verfahren zur Ermittlung eines hindernisfreien Raums | |
DE102018123393A1 (de) | Erkennung von Parkflächen | |
DE112021000482T5 (de) | Erkennung von fremdkörpern in einem fahrzeugweg |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110702 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160901 |