EP2394944A1 - Faden-Flusen-Staubsensor-Anordnung - Google Patents

Faden-Flusen-Staubsensor-Anordnung Download PDF

Info

Publication number
EP2394944A1
EP2394944A1 EP10005999A EP10005999A EP2394944A1 EP 2394944 A1 EP2394944 A1 EP 2394944A1 EP 10005999 A EP10005999 A EP 10005999A EP 10005999 A EP10005999 A EP 10005999A EP 2394944 A1 EP2394944 A1 EP 2394944A1
Authority
EP
European Patent Office
Prior art keywords
sensor
lint
comb
dust
thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10005999A
Other languages
English (en)
French (fr)
Inventor
Steffen Dr. Heinz
Udo Neumann
Wolfgang Dr. Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sentex Chemnitz GmbH
Original Assignee
Sentex Chemnitz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sentex Chemnitz GmbH filed Critical Sentex Chemnitz GmbH
Priority to EP10005999A priority Critical patent/EP2394944A1/de
Publication of EP2394944A1 publication Critical patent/EP2394944A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H61/00Applications of devices for metering predetermined lengths of running material
    • B65H61/005Applications of devices for metering predetermined lengths of running material for measuring speed of running yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/06Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to presence of irregularities in running material, e.g. for severing the material at irregularities ; Control of the correct working of the yarn cleaner
    • B65H63/062Electronic slub detector
    • B65H63/064Electronic slub detector using capacitor sensing means, i.e. the defect signal is a variation of impedance
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • D03D47/3066Control or handling of the weft at or after arrival
    • D03D47/3073Detection means therefor
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D51/00Driving, starting, or stopping arrangements; Automatic stop motions
    • D03D51/18Automatic stop motions
    • D03D51/34Weft stop motions
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03JAUXILIARY WEAVING APPARATUS; WEAVERS' TOOLS; SHUTTLES
    • D03J1/00Auxiliary apparatus combined with or associated with looms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a thread-fluff-dust sensor arrangement, in particular for use in weaving machines for monitoring the thread arrival and / or in filter systems for residual dust monitoring.
  • the state of the art for detecting the thread arrival is the use of an optical light barrier system.
  • the task of the light barrier is to control the thread arrival, i. the recognition of the exact time of yarn arrival at a defined location.
  • the sensor signal is part of the weaving process and triggers a stop command of the thread transport.
  • the disadvantage is the fact that no simultaneous precise speed measurement can be performed.
  • the main disadvantage is that the mounting of the light barrier system requires an inevitable division of the reed of the loom, which is associated with considerable overhead.
  • a dust particle moving past the sensor, a strip conductor arrangement called the sensor comb only generates a short pulse train. From this short pulse train of a single particle, the fundamental frequency can hardly and in particular can not be determined in real time. Certain materials will cause faulty sensor messages. The cause of these faults are lint, small particles of dust that move in the reed channel and generate a "sensor signal", thus erroneously signaling the arrival.
  • the object of the invention is to develop a thread-fluff-dust sensor arrangement, which allows the detection of the charge of passing yarns, dust and / or lint particles without contact, which can calculate speed by means of the described method and beyond a fast, ie made in a few milliseconds, distinction between thread and lint (dust particles) allowed.
  • the advantage of the invention is that the thread fluff dust sensor arrangement according to the invention can also be used for dusty environments and / or dust-generating materials and that, in addition to the measurement of the speed, detection of further interference states, e.g. in web processes, e.g. to distinguish between thread and lint, or to determine a disturbed threadline (referred to as ball formation) or a thread breakage is possible.
  • the thread-lint-dust sensor arrangement is also suitable for controlling the dust content in flowing gases. Compared to conventional methods, the speed of the dust particles and thus the gas flow velocity can be measured simultaneously.
  • basically known stripline arrangements serve as charge sensors.
  • the effect of the electric field between particles and the individual strip conductors of the sensor comb results in a charge shift (influence) in the sensor comb.
  • this charge shift generates a charge spectrum in the time domain.
  • the arrangement is also suitable for the detection of dust particles in flowing gases.
  • the double comb arrangement according to the invention is suitable for this purpose.
  • FIG. 2 shows the block diagram of a thread-lint-dust sensor assembly. It consists of at least one double comb arrangement 1 with two sensor combs K1 and K2 arranged one behind the other, wherein a preamplifier 2 is assigned to each sensor comb K1 and K2.
  • the two sensor combs K1 and K2 serve for charge detection by means of influence.
  • the double comb arrangement 1 is connected via an analog part 3, a digital part 4 downstream.
  • the comb structures consist of two nested sensor combs K1 and K2.
  • the two preamplifiers 2 e.g., TLC072DGN
  • the analog part 3 consists of two instrumentation amplifiers 5, e.g. from two instrumentation amplifiers of type INA2128AU with programmable potentiometers for setting the amplification and the switching thresholds of two Schmitt triggers 6.
  • the core of the digital part 4 forms, for example, a microprocessor 7, for example one of the type ATMega324p, which is connected to a display 8, eg an LCD display. It serves the signal evaluation.
  • a microprocessor 7 For the communication with the microprocessor 7, an interface 9, for example an RS-232 interface, and a programming input 10 are arranged.
  • the entire electronics can also be realized with the help of one or more ASICs (Application-Specific Integrated Circuit).
  • ASICs Application-Specific Integrated Circuit
  • the two sensor combs K1 and K2, FIG. 3 lie in this embodiment in the direction of movement of the objects to be detected one behind the other.
  • the front-end electronics for signal evaluation and processing must be mounted relatively close to the sensor combs K1 and K2.
  • the sensor arrangement or the double comb arrangement 1 is fitted from above and at any point in the thread channel, the sensor combs K1 and K2 may be strip-shaped or cylindrical.
  • FIG. 3 are three variants of the sensor combs K1 and K2, which are similar in a double comb assembly 1, and the associated preamplifier electronics.
  • both the distance and the width of the strips of both sensor combs K1 and K2 and the spacing and the width of the strips within a sensor comb K1 or K2 can vary.
  • threshold value switch To distinguish between thread and lint the evaluation of the charge signals by means of threshold value switch (comparator) is sufficient. The difference between “signal” and “no signal” is evaluated.
  • the thresholds for the "signal” and “no signal” decision are variable and programmable in the described embodiment.
  • the evaluation of the charge spectrum is omitted for the time being, but this can be done in addition. The omission of the spectrum evaluation significantly reduces the circuit complexity for the application.
  • the thread fluff dust sensor arrangement according to the invention offers several advantages over the prior art.
  • the comb assembly is relatively insensitive to dirt accumulation and provides a simultaneous uptake of gas velocity. This can be done on the one hand with the help of time measurement by the sensor combs and evaluation and on the other hand by evaluation of the charge spectrum.
  • the combination of particle number and velocity measurement and a database with regard to the relationship between charge spectrum and particle size / particle mass make it possible to directly deduce the dust content per unit volume.
  • FIG. 4 is the basic structure of a dust filter with a thread-lint-dust sensor arrangement shown.
  • a filter cartridge 11 of the dust filter filters particles from a dirty air stream 12 from the raw gas side to the clean gas side of the dust filter flows through.
  • the dust particles still contained in the clean air stream 13 on the clean gas side generate charge impulses on the residual dust sensor (as described above with double comb arrangement 1).
  • the particle velocity and thus the air velocity are determined by the method described above. With a low particle concentration, the velocity determination takes place with the aid of the double comb arrangement 1; with a higher particle concentration, the time domain frequency domain transformation from the charge spectrum can be used.
  • the residual dust control has been required by law in the wood processing industry for air returning filter systems since 2008.
  • the monitoring obligation for other industries is expected.
  • Various sensor principles are suitable for controlling the dust content.
  • a fundamental distinction can be made in optical methods and methods with charge evaluation. In the optical methods scattered light and transmitted light detectors are used. They achieve high precision at a high cost.
  • the monitoring of the particle and dust content of the clean gas side of a ventilation or filter system is preferably carried out by means of the triboelectric effect.
  • the use of triboelectric sensors is inexpensive and state of the art.
  • a charge exchange between particle and sensor takes place.
  • the sensor thus records the particle contact on a sensor rod made of metal by impulses. It creates a count pulse sequence.
  • a relation to the residual dust content (unit mg / m 3 ) can be produced only indirectly. This requires additional information, namely the volume flow of the air (flow velocity and tube volume) and the mean mass of the particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Quality & Reliability (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Aufgabe der Erfindung ist es, eine Faden-Flusen-Staubsensor-Anordnung zu entwickeln, die berührungslos die Erfassung der Ladung von sich vorbei bewegenden Fäden, Staubund/oder Flusen-Partikeln ermöglicht, die Geschwindigkeit mithilfe des beschriebenen Verfahrens berechnen kann und darüber hinaus auch eine schnelle, d.h. in wenigen Millisekunden getroffene, Unterscheidung zwischen Faden und Flusen (Staubpartikeln) erlaubt. Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass dass sie aus mindestens einer Doppelkammanordnung (1) mit zwei hintereinander angeordneten Sensorkämmen (K1; K2) besteht, wobei jedem Sensorkamm (K1; K2) ein Vorverstärker (2) zugeordnet ist. Die Erfindung betrifft eine Faden-Flusen-Staubsensor-Anordnung, insbesondere zum Einsatz in Webmaschinen zur Überwachung der Fadenankunft und/oder in Filteranlagen zur Reststaubüberwachung.

Description

  • Die Erfindung betrifft eine Faden-Flusen-Staubsensor-Anordnung, insbesondere zum Einsatz in Webmaschinen zur Überwachung der Fadenankunft und/oder in Filteranlagen zur Reststaubüberwachung.
  • Stand der Technik zur Erfassung der Fadenankunft ist der Einsatz eines optischen Lichtschrankensystems. Aufgabe der Lichtschranke ist die Kontrolle der Fadenankunft, d.h. das Erkennen des exakten Zeitpunktes der Fadenankunft an einem definierten Ort. Das Sensorsignal ist Bestandteil des Webprozesses und löst einen Stopp-Befehl des Fadentransports aus. Nachteilig ist der Umstand, dass keine gleichzeitige präzise Geschwindigkeitsmessung ausgeführt werden kann. Der Hauptnachteil besteht jedoch darin, dass die Anbringung des Lichtschrankensystems eine zwangsläufige Teilung des Reeds der Webmaschine erfordert, was mit erheblichem Mehraufwand verbunden ist.
  • Es wurden bereits ein Verfahren zur berührungslosen Kontrolle der Dicke einer auf ein Gam aufgebrachten Präparationsschicht und eine Schaltungsanordnung zur Durchführung des Verfahrens vorgeschlagen, bei dem mithilfe einer Zeitbereichs-FrequenzbereichsTransformation aus dem Ladungsspektrum eine der Geschwindigkeit proportionale Grundfrequenz gefiltert wird. Dabei entsteht ein kontinuierliches Messsignal durch den Fadenlauf. Ein am Sensor, einer Streifenleiteranordnung, genannt Sensorkamm, sich vorbei bewegender Staubpartikel generiert aber nur eine kurze Impulsfolge. Aus dieser kurzen Impulsfolge eines einzelnen Partikels kann die Grundfrequenz kaum und vor allem nicht in Echtzeit bestimmt werden. Bei bestimmten Materialien kommt es zur fehlerhaften Sensormeldung. Ursache für diese Fehler sind Flusen, also kleine Staubpartikel, die sich im Fadenkanal (Reed-channel) bewegen und ein "Sensorsignal" generieren und somit irrtümlich die Ankunft signalisieren.
  • Aufgabe der Erfindung ist es, eine Faden-Flusen-Staubsensor-Anordnung zu entwickeln, die berührungslos die Erfassung der Ladung von sich vorbei bewegenden Fäden, Staubund/oder Flusen-Partikeln ermöglicht, die Geschwindigkeit mithilfe des beschriebenen Verfahrens berechnen kann und darüber hinaus auch eine schnelle, d.h. in wenigen Millisekunden getroffene, Unterscheidung zwischen Faden und Flusen (Staubpartikeln) erlaubt.
  • Erfindungsgemäß wird die Aufgabe durch die Merkmale des Hauptanspruchs gelöst. Ausgestaltungen der Erfindung sind in den Unteransprüchen dargestellt.
  • Der Vorteil der Erfindung besteht darin, dass die erfindungsgemäße Faden-Flusen-Staubsensor-Anordnung auch für staubbelastete Umgebungen und/oder stauberzeugende Materialien eingesetzt werden kann und dass neben der Messung der Geschwindigkeit auch eine Erfassung von weiteren Störzuständen z.B. bei Webprozessen, z.B. zur Unterscheidung von Faden und Flusen, oder zur Feststellung eines gestörten Fadenlaufes (bezeichnet als Knäuelbildung) oder eines Fadenrisses möglich ist. Darüber hinaus eignet sich die Faden-Flusen-Staubsensor-Anordnung auch zur Kontrolle des Staubgehaltes in strömenden Gasen. Gegenüber herkömmlichen Verfahren kann gleichzeitig die Geschwindigkeit der Staubpartikel und damit annähernd die Gasströmungsgeschwindigkeit gemessen werden.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispieles näher erläutert. Die dazugehörige Zeichnung zeigt
  • Fig. 1:
    die Struktur des Programmablaufs einer Faden-Flusen-Staubsensor-Anordnung,
    Fig. 2:
    das Blockschaltbild einer Faden-Flusen-Staubsensors-Anordnung,
    Fig. 3:
    Ausführungsformen von Sensorkämmen und eine Doppelkammanordnung
    Fig. 4:
    den prinzipiellen Aufbau eines Staubfilters mit einer Faden-Flusen-StaubsensorAnordnung.
  • Als Ladungssensoren dienen im Ausführungsbeispiel grundsätzlich bekannte Streifenleiteranordnungen, genannt Sensorkämme. Durch die Wirkung des elektrischen Feldes zwischen Partikel und den einzelnen Streifenleitern des Sensorkamms entsteht eine Ladungsverschiebung (Influenz) im Sensorkamm. Infolge der Partikelbewegung erzeugt diese Ladungsverschiebung ein Ladungsspektrum im Zeitbereich. Infolge der hohen Empfindlichkeit der Sensoranordnung gegenüber Staubpartikeln eignet sich die Anordnung auch zur Detektion von Staubpartikeln in strömenden Gasen. Dazu eignet sich insbesondere die erfindungsgemäße Doppelkammanordnung.
  • In Figur 1 ist die Struktur eines möglichen Programmablaufs zur Initialisierung und Auswertung einer Faden-Flusen-Staubsensor-Anordnung dargestellt. Varianten des Programmablaufes, z.B. durch Auslassen von bestimmten Abfragen und Unterroutinen sind möglich. Der Ablauf erfolgt folgendermaßen:
    • Vor dem Start des Programms können prinzipielle Einstellung vorgenommen, gespeichert oder ausgelesen werden. Zu diesen Einstellungen zählen die prozessbedingten Verzögerungs- und Wartezeiten. Der eigentliche Auswerteprozess beginnt mit dem Punkt Start. Das Programm wartet anschließend auf das Startsignal der Maschine (Faden-Start).
  • Nach erfolgtem Startsignal wird der Timer aktiviert. Nach einer im Initialisierungsmodus definierten Zeitspanne und keinem Sensorsignal wird an dieser Stelle der fehlerhafte Fadenlauf, Fehler 1, detektiert. Der Programmablauf wird weiter verfolgt, wenn innerhalb der Zeitspanne zuerst am Sensorkamm K1 und anschließend am Sensorkamm K2 ein Ladungssignal registriert wird. Mithilfe der Zeitdifferenz zwischen den Kammsignalen kann eine Geschwindigkeitsabschätzung erfolgen (VGrob) Weiterhin überprüft das Ablaufprogramm, die Gleichzeitigkeit des Sensorsignals an beiden Sensorkämmen K1 und K2 (K1 & K2) oder den Fall, das die Sensorkämme K1 und K2 nacheinander ein Signal detektieren (K1\ & K2). Aus dieser Überprüfung wird das erste Kriterium zur Unterscheidung Faden oder Flusen gewonnen. Das zweite Kriterium wird aus der Geschwindigkeitsabschätzung und dem Vergleich mit einer vorher abgespeicherten Maximalgeschwindigkeit gewonnen, Fehler 2. Zusätzlich kann der Fadenabriss nach gegebenem Stoppsignal detektiert werden, Fehler 3. Für eine sichere Prozessführung stellt die Faden-Flusen-Staubsensor-Anordnung also den Unterschied zwischen Faden und Flusen mittels zweier Kriterien fest:
  • Kriterium 1:
    Gleichzeitigkeit der Signale an Sensorkamm K1 und Sensorkamm K2. Ein Flusen erzeugt ein Signal nur an einem Sensorkamm K1 oder K2.
    Kriterium 2:
    Zeitunterschied zwischen Signal von Sensorkamm K1 und Sensorkamm K2. Die Flusen bewegen sich deutlich schneller als der Webfaden.
  • Die wichtigste Entscheidung der Faden-Flusen-Staubsensor-Anordnung, Faden oder Flusen, wird durch diese zwei Kriterien überprüft, wodurch eine hohe Zuverlässigkeit für die Unterscheidung erreicht wird. Alle weiteren Fehlersignale sind zusätzliche Informationen. Gleichzeitig kann mittels der Faden-Flusen-Staubsensor-Anordnung eine präzise Geschwindigkeitsmessung mittel Zeitbereichs-Frequenzbereichstransformation und Auswertung der Grundfrequenz realisiert werden.
  • Figur 2 zeigt das Blockschaltbild einer Faden-Flusen-Staubsensor-Anordnung. Sie besteht aus mindestens einer Doppelkammanordnung 1 mit zwei hintereinander angeordneten Sensorkämmen K1 und K2, wobei jedem Sensorkamm K1 und K2 ein Vorverstärker 2 zugeordnet ist. Die beiden Sensorkämme K1 und K2 dienen der Ladungsdetektion mittels Influenz.
  • Der Doppelkammanordnung 1 ist über ein Analogteil 3 ein Digitalteil 4 nachgeschaltet. Die Kammstrukturen, bestehen aus je zwei ineinander gesetzten Sensorkämmen K1 und K2. Die beiden Vorverstärker 2 (z.B. TLC072DGN) befinden sich mit auf einer Sensorplatine. Der Analogteil 3 besteht aus zwei Instrumentationsverstärkern 5, z.B. aus zwei Instrumentationsverstärkern vom Typ INA2128AU mit programmierbaren Potentiometern zur Einstellung der Verstärkung und der Schaltschwellen zweier Schmitt-Trigger 6.
  • Den Kern des Digitalteils 4 bildet zum Beispiel ein Mikroprozessor 7, z.B. einer vom Typ ATMega324p, der mit einem Display 8, z.B. einem LCD-Display, verbunden ist. Er dient der Signalauswertung. Für die Kommunikation mit dem Mikroprozessor 7 sind eine Schnittstelle 9, z.B. eine RS-232 Schnittstelle, und ein Programmiereingang 10 angeordnet. Die gesamte Elektronik kann auch mit Hilfe eines oder mehrerer ASICs (AnwendungsSpezifischer Integrierter Schaltkreis) realisiert werden.
  • Die beiden Sensorkämme K1 und K2, Figur 3, liegen in diesem Ausführungsbeispiel in Bewegungsrichtung der zu detektierenden Objekte hintereinander. Die Front-end Elektronik zur Signalauswertung und Aufbereitung muss relativ dicht an den Sensorkämmen K1 und K2 angebracht werden. Die Sensoranordnung bzw. die Doppelkammanordnung 1 wird von oben und an jeder beliebigen Stelle in den Fadenkanal eingepasst, die Sensorkämme K1 und K2 können streifen- oder zylinderförmig ausgebildet sein. In Figur 3 sind drei Varianten der Sensorkämme K1 und K2, die in einer Doppelkammanordnung 1 gleichartig ausgebildet sind, und die dazugehörige Vorverstärkerelektronik dargestellt. In Abhängigkeit des jeweiligen Einsatzes können sowohl der Abstand und die Breite der Streifen beider Sensorkämme K1 und K2 als auch der Abstand und die Breite der Streifen innerhalb eines Sensorkammes K1 oder K2 variieren.
  • Zur Unterscheidung zwischen Faden und Flusen genügt die Auswertung der Ladungssignale mittels Schwellwertschalter (Komparator). Es wird dabei der Unterschied zwischen "Signal" und "kein Signal" ausgewertet. Die Schwellen für die Entscheidung "Signal" und "Kein Signal" sind variabel und in der beschriebenen Ausführungsform programmierbar. Auf die Auswertung des Ladungsspektrums wird vorerst verzichtet, diese kann jedoch zusätzlich erfolgen. Der Verzicht der Spektrumsauswertung reduziert den Schaltungsaufwand für den Einsatzfall deutlich.
  • Die erfindungsgemäße Faden-Flusen-Staubsensor-Anordnung bietet gegenüber dem Stand der Technik mehrere Vorteile. Die Kammanordnung ist relativ unempfindlich gegenüber Schmutzansammlung und sie bietet eine gleichzeitige Aufnahme der Gasgeschwindigkeit. Das kann einerseits mithilfe der Zeitmessung durch die Sensorkämme und Auswertung und andererseits durch Auswertung des Ladungsspektrums erfolgen. Durch die Kombination von Partikelanzahl- und Geschwindigkeitsmessung und einer Datenbasis hinsichtlich des Zusammenhangs zwischen Ladungsspektrum und Partikelgröße/Partikelmasse, ist ein direkter Rückschluss auf den Staubgehalt pro Volumeneinheit möglich.
  • In den Figur 4 ist der prinzipielle Aufbau eines Staubfilters mit einer Faden-Flusen-Staubsensor-Anordnung dargestellt. Eine Filterkartusche 11 des Staubfilter filtert Partikel aus einem Schmutzluftstrom 12 der von der Rohgasseite zur Reingasseite den Staubfilter durchströmt. Die auf der Reingasseite noch im Reinluftstrom 13 enthaltenen Staubpartikel erzeugen am Reststaubsensor (wie oben beschrieben, mit Doppelkammanordnung 1) Ladungsimpulse. Mit Hilfe einer Datenbasis kann auf die Größe und somit auf die Masse der detektierten Staubpartikel geschlossen werden. Zusätzlich wird über das oben beschriebene Verfahren die Partikelgeschwindigkeit und somit die Luftgeschwindigkeit bestimmt. Bei geringer Partikelkonzentration erfolgt die Geschwindigkeitsbestimmung mit Hilfe der Doppelkammanordnung 1, bei höherer Partikelkonzentration kann die Zeitbereichs-Frequenzbereichs-Transformation aus dem Ladungsspektrum genutzt werden.
  • Die Reststaubkontrolle ist in der holzverarbeitenden Industrie für luftrückführende Filteranlagen seit 2008 gesetzlich vorgeschrieben. Die Überwachungspflicht für weitere Industriezweige wird erwartet. Zur Kontrolle des Staubgehaltes eignen sich verschieden Sensorprinzipien. Eine grundsätzliche Unterscheidung kann in optische Verfahren und Verfahren mit Ladungsauswertung getroffen werden. Bei den optischen Verfahren werden Streulicht und Durchlichtdetektoren verwendet. Sie erzielen eine hohe Präzision bei hohem Kostenaufwand. Die Überwachung des Partikel- und Staubgehaltes der Reingasseite einer Lüftungs- bzw. Filteranlage wird vorzugsweise mittels des triboelektrischen Effektes durchgeführt. Der Einsatz triboelektrischer Sensoren ist kostengünstig und Stand der Technik. Beim triboelektrischen Effekt findet ein Ladungsaustausch zwischen Partikel und Sensor statt. Der Sensor zeichnet somit die Partikelberührung an einem Sensorstab aus Metall durch Impulse auf. Es entsteht eine Zählimpulsfolge. Ein Zusammenhang zum Reststaubgehalt (Einheit mg/m3) kann nur über Umwege hergestellt werden. Dafür sind zusätzliche Informationen nötig, nämlich der Volumenstrom der Luft (Strömungsgeschwindigkeit und Rohrvolumen) und die mittlere Masse der Partikel.
  • Aufstellung der Bezugszeichen
  • 1
    Doppelkammanordnung
    2
    Vorverstärker
    3
    Analogteil
    4
    Digitalteil
    5
    Instrumentationsverstärker
    6
    Schmitt-Trigger
    7
    Mikroprozessor
    8
    Display
    9
    Schnittstelle
    10
    Programmiereingang
    11
    Filterkartusche
    12
    Schmutzluftstrom
    13
    Reinluftstrom
    K1
    erster Sensorkamm
    K2
    zweiter Sensorkamm

Claims (8)

  1. Faden-Flusen-Staubsensor-Anordnung unter Verwendung eines Sensorkammes, dadurch gekennzeichnet, dass sie aus mindestens einer Doppelkammanordnung (1) mit zwei hintereinander angeordneten Sensorkämmen (K1; K2) besteht, wobei jedem Sensorkamm (K1; K2) ein Vorverstärker (2) zugeordnet ist.
  2. Faden-Flusen-Staubsensor-Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Doppelkammeranordnung (1) über ein Analogteil (3) ein Digitalteil (4) nachgeschaltet ist, dass der Analogteil (3) aus zwei Instrumentationsverstärkern (5) mit je einem Schmitt-Trigger (6) besteht und dass der Digitalteil (4) einen Mikroprozessor (7) enthält, der mit einem Display (8) und einem Programmiereingang (10) verbunden ist und eine Schnittstelle (9) aufweist.
  3. Faden-Flusen-Staubsensor-Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die beiden Vorverstärker (2) auf der Sensorplatine der Doppelkammanordnung (1) angeordnet sind.
  4. Faden-Flusen-Staubsensor-Anordnung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass ein Teil der Komponenten Analogteil (3), Digitalteil (4), Instrumentationsverstärker (5), Schmitt-Trigger (6), Mikroprozessor (7),
    Schnittstelle (9) und Programmiereingang (10) oder alle Komponenten als anwendungsspezifischer Schaltkreis (ASIC) integriert ausgeführt und auf der Sensorplatine angeordnet ist.
  5. Faden-Flusen-Staubsensor-Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Sensorkämme (K1; K2) streifenförmig sind.
  6. Faden-Flusen-Staubsensor-Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Sensorkämme (K1; K2) zylinderförmig sind.
  7. Faden-Flusen-Staubsensor-Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in Abhängigkeit des jeweiligen Einsatzes der Abstand und die Breite der Streifen der Sensorkämme (K1; K2) variieren.
  8. Faden-Flusen-Staubsensor-Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Abstand und die Breite der Streifen der
    Sensorkämme (K1; K2) innerhalb eines Sensorkammes (K1; K2) variieren.
EP10005999A 2010-06-10 2010-06-10 Faden-Flusen-Staubsensor-Anordnung Withdrawn EP2394944A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10005999A EP2394944A1 (de) 2010-06-10 2010-06-10 Faden-Flusen-Staubsensor-Anordnung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10005999A EP2394944A1 (de) 2010-06-10 2010-06-10 Faden-Flusen-Staubsensor-Anordnung

Publications (1)

Publication Number Publication Date
EP2394944A1 true EP2394944A1 (de) 2011-12-14

Family

ID=43012793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10005999A Withdrawn EP2394944A1 (de) 2010-06-10 2010-06-10 Faden-Flusen-Staubsensor-Anordnung

Country Status (1)

Country Link
EP (1) EP2394944A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192106A (zh) * 2014-08-08 2016-12-07 索若德国两合股份有限公司 多站式纺织机
WO2017174381A1 (en) * 2016-04-08 2017-10-12 Koninklijke Philips N.V. Fiber quality sensor
CN110670214A (zh) * 2019-09-19 2020-01-10 苏州伟创电气科技股份有限公司 一种探纬器及喷水织机系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1912510A1 (de) * 1969-03-12 1970-09-24 Glanzstoff Ag Verfahren und Vorrichtung zur beruehrungslosen Messung von Faden- oder Garngeschwindigkeiten
US3927356A (en) * 1973-07-13 1975-12-16 Nat Res Dev Yarn detection devices
CH596344A5 (de) * 1975-09-29 1978-03-15 Luwa Ag
GB1539541A (en) * 1975-03-21 1979-01-31 Ltg Lufttechnische Gmbh Control apparatus in textile machines
DE9216181U1 (de) * 1992-11-27 1993-02-18 Otto Stüber GmbH & Co KG, 73266 Bissingen Kapazitiver elektronischer Fadenwächter mit Dual-Elektroden
WO2010028642A1 (de) * 2008-09-15 2010-03-18 Neumann Elektronik Gmbh Verfahren zur berührungslosen kontrolle der dicke einer auf ein garn aufgebrachten präparationsschicht und schaltungsanordnung zur durchführung des verfahrens
DE102009018720B3 (de) * 2009-04-27 2010-09-16 Neumann Elektrotechnik Gmbh Faden-Flusen-Staubsensor-Anordnung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1912510A1 (de) * 1969-03-12 1970-09-24 Glanzstoff Ag Verfahren und Vorrichtung zur beruehrungslosen Messung von Faden- oder Garngeschwindigkeiten
US3927356A (en) * 1973-07-13 1975-12-16 Nat Res Dev Yarn detection devices
GB1539541A (en) * 1975-03-21 1979-01-31 Ltg Lufttechnische Gmbh Control apparatus in textile machines
CH596344A5 (de) * 1975-09-29 1978-03-15 Luwa Ag
DE9216181U1 (de) * 1992-11-27 1993-02-18 Otto Stüber GmbH & Co KG, 73266 Bissingen Kapazitiver elektronischer Fadenwächter mit Dual-Elektroden
WO2010028642A1 (de) * 2008-09-15 2010-03-18 Neumann Elektronik Gmbh Verfahren zur berührungslosen kontrolle der dicke einer auf ein garn aufgebrachten präparationsschicht und schaltungsanordnung zur durchführung des verfahrens
DE102009018720B3 (de) * 2009-04-27 2010-09-16 Neumann Elektrotechnik Gmbh Faden-Flusen-Staubsensor-Anordnung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192106A (zh) * 2014-08-08 2016-12-07 索若德国两合股份有限公司 多站式纺织机
CN106192106B (zh) * 2014-08-08 2019-02-12 索若德国两合股份有限公司 多站式纺织机
WO2017174381A1 (en) * 2016-04-08 2017-10-12 Koninklijke Philips N.V. Fiber quality sensor
CN110670214A (zh) * 2019-09-19 2020-01-10 苏州伟创电气科技股份有限公司 一种探纬器及喷水织机系统
CN110670214B (zh) * 2019-09-19 2021-04-27 苏州伟创电气科技股份有限公司 一种探纬器及喷水织机系统

Similar Documents

Publication Publication Date Title
DE2409882C3 (de) Vorrichtung zum Erkennen des fehlerhaften Arbeiten« von Spinnmaschinen
DE60019399T2 (de) Optische messeinrichtung zur messung von objekten auf maschinen
DE2649779A1 (de) Verfahren zum feststellen des periodischen charakters der in einem zwischen einer garnbildungs- und einer garnaufwindestufe einer garnerzeugungsmaschine befindlichen garn enthaltenen garnunregelmaessigkeiten und vorrichtung zur durchfuehrung des verfahrens
DE4039521C2 (de) Drehzahl-Spaltfehler-Detektor für Schienenfahrzeuge
EP0415222B1 (de) Verfahren zum Einstellen der Ansprechgrenze elektronischer Garnreiniger
EP2050847B1 (de) Verfahren zum Transport eines Schussfadens durch das Webfach einer Webmaschine
EP2394944A1 (de) Faden-Flusen-Staubsensor-Anordnung
EP0715165A1 (de) Verfahren und Vorrichtung zur Erfassung von Eigenschaften an langgestreckten Körpern
EP2600113B1 (de) Verfahren und Vorrichtung zur Messung des Drehwinkels zweier relativ zueinander rotierender Objekte
DE2605736B2 (de) Verfahren und Vorrichtung zum Erkennen des fehlerhaften Arbeitens von Spinnaggregaten von Offen-End-Spinnmaschinen
DD268007A5 (de) Verfahren und vorrichtung zur on-line produktions- und qualitaetsueberwachung an textilmaschinen
DE102009018720B3 (de) Faden-Flusen-Staubsensor-Anordnung
DE2825792C2 (de) Elektronische Vorrichtung zur Kontrolle der Funktion eines elektronischen Garnreinigers
DE102015013486A1 (de) Textilmaschine mit einem entlang der Arbeitsstellen verfahrbaren Serviceaggregat und Verfahren zur Positionierung eines Serviceaggregats vor einer Arbeitsstelle
EP1339476B1 (de) Verfahren zur überwachung von filteranlagen
DE2528290C3 (de) Arbeitsverfahren und Vorrichtung zum Überwachen des gesponnenen Fadens an Offen-End-Rotorspinnmaschinen
DE10026389A1 (de) Vorrichtung zur Überwachung von Garnparametern eines laufenden Fadens
CH647279A5 (de) Elektronischer schussfadenwaechter an einer luftduesenwebmaschine.
DE19748602A1 (de) Achszählschalter
CH698212A2 (de) Verfahren und Vorrichtung zur optischen Bewertung der Qualität eines längsbewegten Faserstranges.
DE2750153B2 (de) Verfahren und Vorrichtung zur Auswertung von Garnsignalen zum Erkennen zumindest angenähert periodischer Querschnittsschwankungen an Offenendspinnmaschinen o.dgl
DE4414517B4 (de) Verfahren zur Ermittlung der Prozeßqualität bei der Herstellung und Aufspulung eines laufenden Fadens
DE2428898A1 (de) Ueberwachungsvorrichtung fuer fehlerhafte nadeln an laufenden wirk- und strickmaschinen
WO2014020119A1 (de) Auswerteverfahren und garnsensor
CH681158A5 (de)

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120615