EP2391020B1 - Verfahren und einrichtung für effiziente mehrbenutzer-mehrvarianten-parallelübertragung - Google Patents

Verfahren und einrichtung für effiziente mehrbenutzer-mehrvarianten-parallelübertragung Download PDF

Info

Publication number
EP2391020B1
EP2391020B1 EP09838685.7A EP09838685A EP2391020B1 EP 2391020 B1 EP2391020 B1 EP 2391020B1 EP 09838685 A EP09838685 A EP 09838685A EP 2391020 B1 EP2391020 B1 EP 2391020B1
Authority
EP
European Patent Office
Prior art keywords
ary
symbols
channel
data
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09838685.7A
Other languages
English (en)
French (fr)
Other versions
EP2391020A4 (de
EP2391020A1 (de
Inventor
Xinrui Ma
Shiping Duan
Yeping Xiao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WOASIS TELECOMM CO Ltd
Original Assignee
WOASIS TELECOMM CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WOASIS TELECOMM CO Ltd filed Critical WOASIS TELECOMM CO Ltd
Publication of EP2391020A1 publication Critical patent/EP2391020A1/de
Publication of EP2391020A4 publication Critical patent/EP2391020A4/de
Application granted granted Critical
Publication of EP2391020B1 publication Critical patent/EP2391020B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes

Definitions

  • the present invention relates to a multi-ary parallel transmission technology for wireless communication systems, in particular, to a multi-ary coded modulation transmission technology which combined with multi-ary codes based on factor graphs, more particularly, to a method and a device for multi-user multi-ary codes parallel transmission based on the said multi-ary coded modulation.
  • TCM Trellis-coded modulation
  • AWGN AWGN channel
  • Ungerboeck also gave the definition of Euclidean space metrics of good TCM codes in AWGM channel, which is different from the traditional use of Hamming distances as criteria of good codes.
  • Block coded modulation (BCM) based on the same idea uses block codes to replace convolutional codes in TCM.
  • TCM bit-interleaved coded modulation
  • BICM bit-interleaved coded modulation
  • the working principle of BICM is simple. Coded streams of bits run through the bit interleaver, and then are mapped to modulation constellation points by sequence. Here, Gray map is adopted for constellation map.
  • the bit interleaver can be elaborately designed, but a random interleaver is sufficient to secure satisfactory performance.
  • BICM BICM seeks maximized Hamming distances at the cost of some Euclidean distance characteristics, which makes maximum code subsets and high robustness in Rayleigh fading channels; 2) in the case of ideal interleaving, the separation of coder and modulator realizes high flexibility of design.
  • most wireless communications system such as those of 2G, 3G and WiMax, use BICM and coded evolution methods developed on BICM.
  • the mainstream channel codes used in present system are binary codes, such as Turbo codes and LDPC codes.
  • binary codes such as Turbo codes and LDPC codes.
  • bit correlation exists when coded bits are mapped to modulation symbols information may be lost when bit likelihood information is obtained during demodulation. This is an inherent defect of binary codes.
  • Use of methods, such as iterative demodulation and decoding, may partially offsets the loss by increasing complexity and processing time delay.
  • MIMO Multiple-input-multiple-output
  • V-BLAST MIMO multiplexing
  • each antenna at the transmission end sends independent data
  • data received at each antenna at the receiving end is the superposition of all data from the transmission end at the same time.
  • the receiving end uses a certain receiving method which can demodulate data.
  • the capability of channels can be significantly increased, along with increase of the number of antennas.
  • the precondition is that channel conditions are favorable and the spatial channel correlation of MIMO is small.
  • Both binary Turbo codes and LDPC codes can be presented with factor graphs, and decoded with the binary BP (belief propagation) algorithm. While graph structures of multi-ary codes which based on factor graphs, such as multi-ary LDPC codes, multi-ary LDGM codes, and multi-ary RA/iRA codes, are similar to those of binary codes. The difference lies in that different paths correspond to different non-zero factors.
  • the BP algorithm may also be used to decode multi-ary codes on factor graphs. In the case of short- and medium-length blocks, multi-ary codes based on factor graphs have better performance than that of binary codes. Multi-ary codes are used hereinafter to refer to multi-ary codes based on factor graphs.
  • a multi-ary code coding symbol (such as a GF (256) coding symbol) is mapped to 2 modulation symbols (such as 16QAM modulation), and is transmitted with 2 antennas; the receiving end directly get the soft information of the GF (256) coding symbol with the composite signal at each receiving antenna for multi-ary decoding.
  • BICM in the fading channel, because the performance gain from optimal detection can offset the time diversity loss caused by non-bit-interleaving, this makes this option have low detection time delay without loss of optimality.
  • WO-A-2008/045001 discloses a method for data transmission in a multiple input multiple output (MIMO) system which comprises: receiving multiple input data streams and performing low density parity check (LDPC) encoding of the input data streams utilising a parity check matrix.
  • the parity check matrix comprises a plurality of sub-parity check matrices for encoding respective ones of the input data streams and performing space time encoding for transmitting the LDPC encoded input data streams over a plurality of antennas.
  • WO 2008/082277 A2 describes a method for indicating a combination between a codeword and a layer in a MIMO communication, system, a layer mapping method, and a data transmission method using the same.
  • a minimum number of codeword- layer mapping combinations from among all available combinations based on the numbers of all codewords and all layers are pre-defined in consideration of a ratio of a codeword to a layer, a reception performance of a receiver, and reduction of combinations, so that a data transmission method using the predefined combinations is implemented. If a specific one code word is mapped to at least two layers, a diversity gain can be acquired.
  • the object of the present invention is to provide a method and a device for multi-user multi-ary parallel transmission for wireless communication systems.
  • a method for multi-user multi-ary parallel transmission comprising the following steps:
  • the appropriate mapping rules include: each constellation point on the constellation diagram and all its adjacent constellation points are multiplied by all non-zero elements on GF (q) to calculate the distance between them.
  • mapping relationships may be traversed to the greatest extent, to select the relationship with the longest distance as the final mapping rule.
  • a device for multi-user multi-ary parallel transmission comprising:
  • a wireless communication method for multi-user multi-ary parallel transmission and reception comprising:
  • a wireless communication system comprising:
  • each of the coding means of the multiple GF multi-ary coding devices conducts GP multi-ary coding for corresponding one-channel of data symbols among the m-channel user data symbols in multiple cells, and the N t transmission antennas are obtained by combining antennas of multiple cells for transmission.
  • scenario of one user and one-layer data is the simplest scenario of the present invention.
  • Another scenario of the present invention comprises one user and multi-layer data.
  • Use of the methods and devices of the present invention can not only increase the user data rate, but also avoid interference between cells, and thus increase the system capacity.
  • the MIMO+OFDM (A) technology plays an increasingly important role in the next generation of wireless communication systems.
  • a 3GPP LTE system based on the MIMO+OFDMA technology is used to detail the basic principles, mathematic description and details of implementation of the present invention.
  • FIG. 1 illustrates the QCM transmission framework.
  • the p i bits corresponding to he q i -ary symbols after coding are partitioned and mapped to obtain the bit stream of layer k i .
  • L modulated symbols are obtained after modulation and then go through pre-coding at the dimension of N t ⁇ L.
  • N t symbols are outputted to ports of N t transmission antennas.
  • Figure 2 gives details of the processing of multi-ary symbol partitioning and layer-mapping.
  • E 1 corresponds to a constellation point on the signal constellation diagram at the transmission end. Due to the impact of channels and noise, E 1 deviates from the reference constellation point at the receiving end.
  • mapping rule is the size of its product distance. The larger the product distance, the better the QCM scheme under mapping rule.
  • the 16QAM constellation diagram in Figure 3 is taken as the example used below.
  • Figure 4 illustrates the receiving framework of QCM, and only related MIMO modules such as detection and decoding are given here, other modules such as synchronization and balancing are not marked.
  • the i-th user terminal has N ri receiving antennas, 1 ⁇ i ⁇ m, and each terminal of which work independently. Only receiving by the i-th user is described below, and processing at other users are similar.
  • the receiver takes other channels of data as interference, and only demodulates the i-th channel of signals.
  • the impact of interference signals entering the MIMO detection module can be within the acceptable extent.
  • Y i represents the signal vectors to be demodulated after processing received by N ri antennas.
  • H i represents the equivalent estimated MIMO channels.
  • N i represents equivalent noise vector.
  • the Euclidean distances of all points are used to obtain the likelihood information of symbols.
  • Sphere decoding is a simple-state algorithm which only searches for the overlapping signal points with the minimal Euclidean distances, and its complexity depends on the radius of search. Sphere decoding algorithm can always find the maximal likelihood signals rather than accurate likelihood information of all symbols.
  • MMSE is another detection algorithm with low complexity, its principle is maximization of signal to interference plus noise ratio (SINR). Because MMSE is a linear detection algorithm, its performance has certain loss.
  • SINR signal to interference plus noise ratio
  • Different multi-ary decoding algorithms require input of different types of symbol likelihood information.
  • the use of the BP algorithm or the FFT-BP algorithm requires input of all normalization symbol probability information of symbol variables.
  • the use of the Log-FFT-BP algorithm or the minimal sum (MS) algorithm requires input of the logarithm likelihood ratio information of symbol variables.
  • the use of the expanded minimal sum (MS) algorithm requires only input of logarithm likelihood ratio information of partial symbol variables.
  • the symbol likelihood information entering the decoder is based on the Euclidean distance Ed j described above.
  • Figure 5 and Figure 6 gives the QCM transmission and receiving frameworks based on MIMO+OFDMA systems.
  • the maximum product distance mapping proposed by the present invention is used for modulation. If the regular Gray mapping is adopted, the BLER performance may be slightly impaired.
  • the total number of mapping layers L is 3.
  • N t the number of transmission antennas
  • P 3 ⁇ 4 pre-coding matrix P
  • Row 1 of the pre-coding matrix P corresponds to the 1 layer of data of user 1
  • rows 2 and 3 corresponds to the 2 layers of data of user 2.
  • the data of the two users arrives at the pre-coding matrix P respectively after multi-ary coding, symbol partitioning, layer-mapping and modulation.
  • the length of each of the three layers of data is N
  • data streams of the 4 channels which with a length of N are output to each antenna ports, where date streams are mapped to corresponding physical time frequency resources and inserted pilot frequency, and then are transmitted after carrying out IFFT.
  • signals are synchronized and estimated at the receiving end after having passed channels, and then the received signals from the two antennas are respectively carried out by a FFT.
  • MIMO detection of 16 dimensions is conducted for signals of each sub-carrier frequency and directly outputs multi-dimensional symbol soft information, which is then de-symbol mapped to obtain the symbol likelihood information of GF(16) for multi-ary code decoding.
  • MIMO detection of 64 dimensions is conducted for signals of each sub-carrier frequency and directly outputs multi-dimensional symbol soft information, which is then de-symbol mapped to obtain the symbol likelihood information of GF(64) for multi-ary code decoding.
  • Decoding can adopt algorithms such as BP, FFT-BP, Log-FFT-BP, MS and EMS, etc.
  • the hard decision outputs the decision symbol after iterative convergence or when the maximum number of iterations is met. Finally, the decision symbol is converted to bit outputs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Claims (9)

  1. Verfahren zur Mehrbenutzer-mehr-stelligen Parallelübertragung, umfassend die folgenden Schritte:
    Galoiskörper-mehr-stelliges Kodieren von qi-stelligen Symbolen im i-ten Kanal von GF(gi)-Daten unter m-Kanal-Benutzerdaten, um mehr-stellig kodierte qi-stellige Symbole zu erhalten, wobei qi = 2 pi , 1 ≤ im und m>1 gilt;
    Partitionieren und Abbilden von pi-Bits, die den mehr-stellig-kodierten qi-stelligen Symbolen entsprechen, um einen ki-Schicht-Bitstrom für den i-ten Datenkanal zu erhalten, wobei der j-te-Schicht-Bitstrom ptj-Bits enthält und 1 <=j<=j<=kj und j = 1 k i p ij = p i
    Figure imgb0021
    gilt;
    Modulieren und Abbilden von pij-Bits, die auf den j-ten Schicht-Bitstrom abgebildet werden, auf Konstellationspunkte, um einen Benutzerdatenblock für den i-ten Datenkanal zu erhalten, wobei die Anzahl der modulierten Konstellationspunkte cij = 2 pij ist, und gleichzeitig Datenblöcke von m Benutzern durch ein Schicht-Abbildungsmodul auf L-Schichten abgebildet werden, wobei L = i = 1 m k i
    Figure imgb0022
    ist und L-Modulationssymbole nach der Modulation erhalten werden;
    Vorkodierung der L-Symbole auf Dimensionen von Nt x L, um Nt-Symbole an Anschlüssen von entsprechenden Nt Übertragungsantennen auszugeben.
  2. Verfahren nach Anspruch 1, wobei für die pij Bits, die auf jede Schicht abgebildet werden, eine geeignete Abbildungsregel ausgewählt wird, um die pij Bits auf Konstellationen von cij = 2 pij Dimensionen zu modulieren und abzubilden;
    wobei die entsprechenden Abbildungsregeln Folgendes beinhalten:
    jeder Konstellationspunkt im Konstellationsdiagramm und alle seine benachbarten Konstellationspunkte werden mit allen nicht-Null-Elementen auf dem Galoiskörper GF(gi) multipliziert, um den Abstand zwischen ihnen zu berechnen;
    alle möglichen Abbildungsbeziehungen werden im größten Ausmaß durchlaufen, um die Beziehung mit der größten Entfernung als endgültige Abbildungsregel auszuwählen.
  3. Verfahren nach Anspruch 1 oder 2, wobei pt Bits, die qi-stelligen Symbolen nach der Kodierung entsprechen, partitioniert und abgebildet werden, um einen ki-Schicht-Bitstrom zu erhalten, umfassend:
    p Bitvektoren, die mit b1b2...bp Bitvektoren für jedes q-stellige Symbol dargestellt werden, werden in k-Schicht-Bitströme aufgeteilt, wobei die Bitströme auf der j-ten Schicht gegeben ist durch b s = 1 j p s p j + 1 b s = 1 j p s p j + 2 b s = 1 j p s
    Figure imgb0023
    mit 1 ≤ jk, und jeweils auf entsprechende Schichten abgebildet werden.
  4. Verfahren nach Anspruch 1 oder 2, wobei, wenn mehr-stellige Kodes gleichzeitig von mehreren Benutzern in mehreren Zellen gesendet werden, die m-Kanal-Benutzerdatensymbole von mehreren Zellen stammen und die Nt Übertragungsantennen durch Kombinieren von Antennen mehrerer Zellen zur Übertragung erhalten werden.
  5. Vorrichtung zur Mehrfachnutzer mehr-stelligen parallelen Übertragung, umfassend:
    mehrere Galoiskörper-, GF-, mehr-stellige Kodier-Mittel, von denen jedes Galoiskörper-mehr-stellige Kodierung für den entsprechenden i-ten Datenkanal von einkanaligen mehr-stelligen Datensymbolen GF(gi) unter m-Kanal-Benutzerdaten durchführt, um m-Kanal mehr-stellige kodierte mehrwertige Symbole zu erhalten, wobei qi = 2 pi , 1 ≤ im und m> 1 gilt;
    mehrere Partitionierungs- und Schicht-Abbildungs-Mittel für mehr-stellige Symbole, von denen jedes einkanalige mehr-stellig kodierte mehr-stellige Symbole unter den mehr-stellig-kodierten m-Kanal-mehr-stelligen Symbolen, die einer mehr-stelligen Kodierung von den entsprechenden Galoiskörper GF(gi)-mehr-stelligen Kodier-Mitteln unterzogen wurden, empfängt, und mehrerer Bits, die den einkanaligen mehr-stellig kodierten Symbolen entsprechen, partitioniert und abbildet, um einen mehrschichtigen Bitstrom für den einkanaligen Kanal und damit m-Mehrschicht-Bitströme zu erhalten;
    mehrere mehrdimensionale Modulationsmittel, die verwendet werden, um jeden mehrschichtigen Bitstrom unter den m mehrschichtigen Bitströmen auf entsprechende Konstellationspunkte zu modulieren und abzubilden, um L-Modulationssymbole für m Benutzer zu erhalten, wobei L = i = 1 m k i
    Figure imgb0024
    und Ki die i-te Mehr-Schicht von m-Mehr-Schichten ist;
    Vorkodiermittel, die verwendet werden, um eine Vorkodierung der Nt x L-Dimensionen der L-Symbole durchzuführen, um Nt-Symbole an Ports entsprechender Nt Übertragungsantennen auszugeben.
  6. Parallele Übertragungsvorrichtung nach Anspruch 5, wobei jedes der Partitionierungs- und Schichtabbildungsmittel für mehr-stellige Symbole eine Partitionierung und Schichtabbildung von mehr-stelligen Symbolen durch die folgenden Mittel realisiert:
    p Bitvektoren, die mit b1b2...bp Bitvektoren für jedes mehr-stellige Symbol dargestellt werden, werden in k-Schicht-Bitströme aufgeteilt, wobei der Bitstrom auf der j-ten Schicht gegeben ist durch b s = 1 j p s p j + 1 b s = 1 j p s p j + 2 b s = 1 j p s ,
    Figure imgb0025
    wobei 1 ≤ jk ist, und jeweils auf entsprechende Schichten abgebildet werden.
  7. Die Vorrichtung nach Anspruch 5 oder 6, wobei jedes der Kodierungsmittel der Vielzahl von Galois-Körper-, GF-, mehr-stellige Galois-Körper-, GF-mehr-stellige-Kodierung für entsprechende Einkanal-Datensymbole unter den m-Kanal-Benutzerdatensymbolen in mehreren Zellen ausführt, und wobei die Nt Sendeantennen durch Kombinieren von Antennen mehrerer Zellen zur Übertragung erhalten werden.
  8. Drahtloses Kommunikationsverfahren für Mehrbenutzer mehr-stelliges paralleles Senden und Empfangen, umfassend:
    Durchführen des Mehrbenutzer mehr-stelligen Parallelübertragungsverfahrens nach einem der Ansprüche 1 bis 4; und
    ferner umfassend die folgenden Schritte:
    ein Empfänger, der das i-te Nutzdatensignal in den m-Kanal-Nutzdatensignalen über Ni-Empfangsantennen empfängt, wobei 1 ≤ im ist;
    nachdem die empfangenen i-ten Nutzdaten synchronisiert und abgeglichen sind, wird das Signal eingeben in ein Multiple-Input-Multi-Output (MIMO)-Erkennungsmodul für die Trennung von überlappenden Signalen und Soft-Symbol-Dekodierung, um die qi-stelligen Symbol-Wahrscheinlichkeitsinformationen zu erhalten und Betrachten der anderen Datenkanäle als Interferenz;
    Rück-Abbilden des qi-stelligen-Symbols auf die qi-stellige Wahrscheinlichkeitsinformationen, um Informationen über die Wahrscheinlichkeit des Eingangssymbols zu erhalten, die für die mehr-stellige-Dekodierung erforderlich sind; Dekodieren der Wahrscheinlichkeitsinformationen der erforderlichen Eingabe zum Erhalten von qi-stelligen Symbolen; und
    Umwandeln der qi-stelligen Datensymbole in entsprechende Datenbits.
  9. Drahtloses Kommunikationssystem, umfassend:
    Die Vorrichtung zur Mehrbenutzer- mehr-stelligen parallelen Übertragung von einem der Ansprüche 5 bis 7;
    und
    eine Vorrichtung zum Mehrbenutzer-Parallelempfang, umfassend:
    Antennen zum Empfangen des i-ten Benutzerdatensignals in den m-Kanal-Benutzerdatensignalen, wobei 1 ≤ im gilt;
    Mittel zum Synchronisieren und Abgleichen der empfangenen i-ten Nutzdaten;
    Mittel zum Verarbeiten der Trennung von überlappenden Signalen und der Symbol-Softdemodulation der synchronisierten und abgeglichen i-ten Nutzdaten, um die qi-stelligen Symbolwahrscheinlichkeitsinformationen zu erhalten und Betrachten andere Datenkanäle als Interferenz;
    Mittel zum Rück-Abbilden des qi-stelligen-Symbols von der qi-stelligen Wahrscheinlichkeitsinformation, um die für die mehr-stellige Dekodierung erforderlichen Informationen über die Wahrscheinlichkeit des Eingangssymbols zu erhalten;
    Mittel zum Dekodieren der Wahrscheinlichkeitsinformationen der erforderlichen Eingangssymbole, um qi-Stellige Symbole zu erhalten; und
    Mittel zum Umwandeln der qi-stelligen Datensymbole in entsprechende Datenbits.
EP09838685.7A 2009-01-20 2009-12-31 Verfahren und einrichtung für effiziente mehrbenutzer-mehrvarianten-parallelübertragung Not-in-force EP2391020B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101030925A CN101515844B (zh) 2009-01-20 2009-01-20 高效的多用户多元并行传输方法及装置
PCT/CN2009/076351 WO2010083718A1 (zh) 2009-01-20 2009-12-31 高效的多用户多元并行传输方法及装置

Publications (3)

Publication Number Publication Date
EP2391020A1 EP2391020A1 (de) 2011-11-30
EP2391020A4 EP2391020A4 (de) 2014-07-02
EP2391020B1 true EP2391020B1 (de) 2019-11-13

Family

ID=41040155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09838685.7A Not-in-force EP2391020B1 (de) 2009-01-20 2009-12-31 Verfahren und einrichtung für effiziente mehrbenutzer-mehrvarianten-parallelübertragung

Country Status (3)

Country Link
EP (1) EP2391020B1 (de)
CN (1) CN101515844B (de)
WO (1) WO2010083718A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515844B (zh) * 2009-01-20 2012-01-18 重庆无线绿洲通信技术有限公司 高效的多用户多元并行传输方法及装置
GB2481051B (en) * 2010-06-10 2016-06-01 Samsung Electronics Co Ltd Method for mapping and de-mapping of non-binary symbols in data communication systems
CN102263766B (zh) * 2011-08-29 2014-03-12 清华大学 基于单载波发送的变带宽fmt频分多址接入方法
CN103117837A (zh) * 2013-01-18 2013-05-22 北京邮电大学 一种改进的t-ppm编码调制方法
CN104321992B (zh) * 2013-03-29 2017-10-17 华为技术有限公司 数据处理方法及装置
CN105471543B (zh) * 2014-08-01 2020-08-14 株式会社Ntt都科摩 发送装置和发送方法
US10484230B2 (en) * 2017-05-01 2019-11-19 Google Llc Mitigating optical modulator impairment for coherent optical communication systems
CN107911151A (zh) * 2017-05-25 2018-04-13 北京邮电大学 一种多天线编码调制方法和装置
CN109426433A (zh) * 2017-08-23 2019-03-05 重庆无线绿洲通信技术有限公司 读写控制、车联网数据处理方法及服务后台、车联网系统
WO2021115618A1 (en) * 2019-12-13 2021-06-17 Huawei Technologies Co., Ltd. First and second communication devices for pilot-less transmissions in a communication system
CN111954244B (zh) * 2020-08-04 2024-10-22 工业互联网创新中心(上海)有限公司 5g信号仿真方法、装置、电子设备及存储介质
CN112821895B (zh) * 2021-04-16 2021-07-09 成都戎星科技有限公司 一种实现信号高误码率下的编码识别方法
CN115133937B (zh) * 2022-06-20 2024-09-24 北京科技大学 一种多元ldpc码译码方法和译码器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082277A2 (en) * 2007-01-05 2008-07-10 Lg Electronics Inc. Layer mapping method and data transmission metho for mimo system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838653A (zh) * 2005-03-24 2006-09-27 松下电器产业株式会社 低功耗通信装置、低功耗多天线通信系统及其操作方法
US8464120B2 (en) * 2006-10-18 2013-06-11 Panasonic Corporation Method and system for data transmission in a multiple input multiple output (MIMO) system including unbalanced lifting of a parity check matrix prior to encoding input data streams
CN101170530A (zh) * 2006-10-27 2008-04-30 中兴通讯股份有限公司 正交频分复用多载波数字电视数据成帧传输装置及方法
CN101286773B (zh) * 2007-04-13 2012-12-19 中兴通讯股份有限公司 一种多入多出空时分组编码调制的数据发送装置及方法
CN101521514B (zh) * 2008-10-13 2012-01-18 重庆无线绿洲通信技术有限公司 结合重复累积码的多元编码调制方法及装置
CN101515844B (zh) * 2009-01-20 2012-01-18 重庆无线绿洲通信技术有限公司 高效的多用户多元并行传输方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082277A2 (en) * 2007-01-05 2008-07-10 Lg Electronics Inc. Layer mapping method and data transmission metho for mimo system

Also Published As

Publication number Publication date
CN101515844B (zh) 2012-01-18
WO2010083718A1 (zh) 2010-07-29
EP2391020A4 (de) 2014-07-02
CN101515844A (zh) 2009-08-26
EP2391020A1 (de) 2011-11-30

Similar Documents

Publication Publication Date Title
EP2391020B1 (de) Verfahren und einrichtung für effiziente mehrbenutzer-mehrvarianten-parallelübertragung
US9819404B2 (en) Reordered sub-block decoding
US20170331589A1 (en) Scheme for communication using integer-forcing scheme in wireless communication system
US8732563B2 (en) Method for mapping and de-mapping of non-binary symbols in data communication systems
Koca et al. Bit-interleaved coded spatial modulation
US10411754B2 (en) Apparatus and method for non-orthogonal transmissions
CN106982106B (zh) 递归子块解码
Han et al. The uplink and downlink design of MIMO-SCMA system
US8223874B2 (en) Full diversity high-rate coded transmit beamforming techniques using partial-algebraic precoding, and associated near-optimal low-complexity receivers
EP2064825A1 (de) Übertragung mit mehreren eingängen und mehreren ausgängen unter verwendung von nichtbinärer ldpc-kodierung
US9503305B1 (en) Method for low complexity decision metric compression of higher-order square-QAM constellation
Tomasi et al. Low-complexity receiver for multi-level polar coded modulation in non-orthogonal multiple access
Alnawayseh et al. Cooperative versus receiver coded diversity with low-complexity encoding and decoding
Gupta et al. Analysis and comparison of the 4-PSK and 8-PSK STTC over Rayleigh fading Channels for determining Performance
Vargas et al. Enhanced MIMO spatial multiplexing with phase hopping for DVB-NGH
Chae et al. Integer-forcing receiver with practical binary codes and its performance analysis
Wadday et al. Turbo and convolutional codes assisted Space Time Block Code-Spatial Modulation
Pramanik et al. Performance comparison of orthogonal complex MIMO STBC with ML decoding and soft decision decoding
John et al. Index Modulation with Space Domain Coding
Yamamoto et al. Simple turbo MIMO scheme using arithmetic extended mapping and repetition codes
Gresset et al. Precoded BICM design for MIMO transmit beamforming and associated low-complexity algebraic receivers
KR101550761B1 (ko) 다중 입출력 시스템 및 이의 송신장치 및 수신장치
Vu et al. Performance Bound for LDPC Coded Unitary Space–Time Modulation
Yan et al. An improved decoding for constellation rotation QOSTBC concatenates RS code using interference cancellation
AbuFoul et al. Set Partitioning to Construct Block Coded Modulation with the Presence of Spatial Modulation in MIMO Systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20140603

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 1/06 20060101AFI20140527BHEP

Ipc: H03M 13/37 20060101ALI20140527BHEP

Ipc: H04B 7/04 20060101ALI20140527BHEP

Ipc: H04L 1/00 20060101ALI20140527BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170406

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190607

RIN1 Information on inventor provided before grant (corrected)

Inventor name: XIAO, YEPING

Inventor name: MA, XINRUI

Inventor name: DUAN, SHIPING

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1202784

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009060455

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200214

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200313

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200121

Year of fee payment: 11

Ref country code: FI

Payment date: 20200122

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009060455

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1202784

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200814

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200113

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091231

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113