EP2386767B1 - Helico-axial pump and method for bearing a rotor in a helico-axial pump - Google Patents

Helico-axial pump and method for bearing a rotor in a helico-axial pump Download PDF

Info

Publication number
EP2386767B1
EP2386767B1 EP11161758.5A EP11161758A EP2386767B1 EP 2386767 B1 EP2386767 B1 EP 2386767B1 EP 11161758 A EP11161758 A EP 11161758A EP 2386767 B1 EP2386767 B1 EP 2386767B1
Authority
EP
European Patent Office
Prior art keywords
stabilization
rotor
helico
gap
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11161758.5A
Other languages
German (de)
French (fr)
Other versions
EP2386767A3 (en
EP2386767A2 (en
Inventor
Paul Meuter
Thomas Welschinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Management AG
Original Assignee
Sulzer Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Management AG filed Critical Sulzer Management AG
Priority to EP11161758.5A priority Critical patent/EP2386767B1/en
Publication of EP2386767A2 publication Critical patent/EP2386767A2/en
Publication of EP2386767A3 publication Critical patent/EP2386767A3/en
Application granted granted Critical
Publication of EP2386767B1 publication Critical patent/EP2386767B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time

Definitions

  • the invention relates to a helico-axial pump for pumping multiphase mixtures and a method for mounting a rotor in a helico-axial pump.
  • Such pumping or compression devices for multiphase mixtures with an increased gas content are, for example, already from the US 2001/005483 A1 , the GB-A-1 561 454 , the EP 0 486 877 or the U.S. 5,961,282 known.
  • the hybrid pump is according to U.S. 5,961,282 a system for compressing a multiphase mixture which, in addition to a liquid phase, can in particular comprise a considerable proportion of gas.
  • the pump includes a multi-stage axial flow pump to reduce the relative gas proportion, i.e. the axial flow pump is used to increase the density of the multiphase mixture so that it can finally be pumped from a lower level to a higher level by another conventional centrifugal pump, for example from the bottom of the Marine to an oil rig, ship, or land-based facility.
  • document US 2002/0187037 A1 shows a hybrid pump system for conveying a multi-phase mixture consisting of a production pump which can be supplemented with several modularly connectable compression pumps.
  • the compression pump includes a multi-stage axial flow pump to reduce the relative gas proportion so that it can then be pumped to a higher level with greater efficiency by a conventional centrifugal pump.
  • the helico-axial pump acting as a compressor comprises a rotor with several compression stages, in practice for example with up to sixteen or more stages, so that the multiphase mixture gradually changes from a relatively low density to a high relative Volume fraction of gas can be compressed up to a highly compressed multiphase mixture with such a high density that the highly compressed mixture can be conveyed further with a conventional feed pump.
  • FIG. 1a A known compression stage K 'of a rotor 2' of a helico-axial pump 1 'is shown schematically in FIG Figures 1a and 1b shown, where for clarity in Figure 1b a section II of a section according to Fig. 1a is shown parallel to the longitudinal axis A '.
  • Each compression stage K ' comprises a rotating impeller 3' with screw 31 ', the rotating impeller 3' resembling a short Archimedean screw, and an adjoining stator 4 'consisting of a plurality of static, i.e. non-rotating blades 41' .
  • Impeller 3 'and stator 4' are mounted in relation to a common pump shaft 5 'in such a way that the impeller 3' is set in rotation by the pump shaft 5 'in the operating state, while the stator 4' is caused by the rotary movement of the pump shaft 5 ' is decoupled and therefore does not rotate with respect to the impeller 3 '.
  • the pump shaft 5 ' extends along a longitudinal axis A'.
  • the majority of the compression stages K ' are arranged in series one behind the other in an essentially tubular pump housing 6'.
  • the rotating screw 31 ' conveys the multiphase mixture M' in the direction of the arrow, for example from an in Figures 1a and 1b previous compression stage K ', not shown, in the stator 4', whereby kinetic energy is converted into pressure energy in the stator 4 ', which leads to the compression of the multiphase mixture M'.
  • the efficiency of the pumps 1 ' can also be reduced and in the worst case even damage to the pump 1' is to be feared if the rotor 2 'begins to vibrate so strongly and uncontrollably that parts of the rotor 2' such as the impellers 3 'come into contact, for example, with the pump housing as a result of the oscillating movement.
  • the type and intensity of the vibrations of the rotor 2 ' depends not only on the special geometry but also on the operating state of the pump 1', the multiphase mixture M 'to be pumped, the speed of the pump 1' and other known and sometimes not exactly known parameters so that it is hardly possible to get the problems with the damaging vibrations of the rotor 2 'under control simply by adapting the geometrical relationships of known pumps 1' or by using new materials.
  • the object of the invention is therefore to propose a helico-axial pump for pumping multiphase mixtures, in which the damaging vibrations of the rotor are largely avoided and the vibrations of the rotor are reduced or damped to a predeterminable level, so that on the one hand an improved running of the Rotor can be achieved in the operating state and the pump can be operated on the other hand at speeds or in a field of rotation in which the from the state Helico-axial pumps known from the art cannot be operated due to the damaging vibrations of the rotor described above.
  • the new pump should alternatively or simultaneously be equipped with more compression stages than is possible with the pumps previously known in the prior art, in which the length of the pump and thus the maximum number of compression stages are limited by the vibrations of the rotor in the operating state is.
  • the invention thus relates to a helico-axial pump for pumping a multiphase mixture according to claim 1, which helico-axial pump comprises a rotor rotatably mounted in a pump housing about a longitudinal axis, with a first partial rotor and a second partial rotor, the first partial rotor and the second partial rotor comprises a compression stage with a helico-axial impeller and a stator for compressing the multiphase mixture.
  • a hydrodynamic stabilization bushing with a stabilization surface is provided and configured between the first partial rotor and the second partial rotor in such a way that a stabilization gap is formed in front of the stabilization surface, so that in the operating state a hydrodynamic stabilization layer can be formed from a stabilization medium in the stabilization gap.
  • a hydrodynamic stabilization bushing with a stabilization surface is provided in the pump housing, so that a stabilization gap is formed in front of the stabilization surface, in which stabilization gap a hydrodynamic stabilization layer is formed when the pump is in operation.
  • the rotor dynamics are therefore decisively improved by the present invention, because the damping and rigidity of the oscillatable rotor system are decisively increased by the stabilization layer.
  • the damaging vibrations of the rotor are largely avoided by the formation of the stabilization layer in the stabilization gap in front of the stabilization surface of the stabilization bushing and are reduced or damped at least to a predeterminable tolerable amount, so that the pump can also be operated at one speed or in a specific field of rotation where this has hitherto no longer been possible without using the stabilizing layer according to the invention.
  • a higher efficiency of the pump and a smoother, improved run of the rotor in the operating state can possibly even be achieved.
  • Another particular advantage is that the invention makes it possible for the first time to design pumps with a much higher number of compression stages than was previously possible.
  • the possible number of compression stages was limited by the massively increasing vibrations of the rotor with the increasing number of compression stages.
  • the rotor can be safely stabilized practically at any length.
  • the stabilization layer in the stabilization gap along the essentially axially extending stabilization surface of the hydrodynamic stabilization bushing forms quasi automatically, so that in a simple embodiment, which, however, is of particular importance in practice, apart from a suitable setting of the Size or the shape of the stabilization gap or the stabilization bushing and / or its stabilization surface, no further structural measures need to be undertaken.
  • a pressure difference between the multiphase mixture located in the first partial rotor and the one located in the second partial rotor forms in the operating state across the stabilization gap such that a specifiable flow of multiphase mixture from the second partial rotor via the stabilization gap back to the first partial rotor is automatically established, whereby a stabilization layer for stabilizing or damping the damaging vibrations of the rotor is automatically formed.
  • the degree that is to say the strength of the damping, can be adapted in a simple manner depending on the technical requirements or specifications in a helico-axial pump according to the invention. This can be done, for example, by a suitable choice of the geometry, for example the geometric shape or width of the stabilization gap.
  • a helico-axial pump according to the invention is designed in the form of a so-called back-to-back arrangement.
  • the person skilled in the art understands a back-to-back arrangement to be an arrangement of two pump rotors in series, which thus forms a pump with two pressure stages.
  • the medium to be pumped is fed to the first pressure stage via a suction opening of the pump, the medium passing through the first pressure stage in a first axial direction, the pressure of the medium to be pumped being increased to a first intermediate pressure.
  • the medium is then fed to the second pressure stage via a channel system in such a way that the medium passes through the second pressure stage in a second axial direction, which is opposite to the first axial direction of the first pressure stage.
  • the second pressure stage that becomes The medium is then brought to the desired final pressure and discharged from the pump via a pressure opening for further use.
  • the back-to-back arrangement of the pumps known from the prior art It is essential for the back-to-back arrangement of the pumps known from the prior art that the direction of flow of the medium in the first pressure stage is opposite to the direction of flow in the second pressure stage.
  • the back-to-back arrangement serves exclusively to at least partially compensate for the enormous thrust forces which act in the axial direction on the bearings of the pump shaft and thus to relieve the bearings.
  • the enormous axial thrust forces are due to the fact that in these pumps known from the prior art, very high pressures with very large components are generated in the axial direction.
  • Vibrations of the pump rotor play a very subordinate role here because the rotors themselves usually do not have a large axial extension and / or only consist of one compression stage and / or an additional mechanical bearing, for example a mechanical bearing, between the first pressure stage and the second pressure stage Ball bearing is provided that additionally mechanically supports the pump rotor in the middle.
  • the essential finding of the invention is therefore that the back-to-back arrangement can be used successfully in the case of helico-axial pumps if a stabilizing bushing according to the invention is provided between the first partial rotor and the second partial rotor so that Due to the pressure gradient between the first partial rotor and the second partial rotor in the stabilization gap, a stabilization layer can form from the stabilization medium, which is particularly preferably the multiphase mixture to be pumped itself, so that the vibrations of the rotor are dampened to a predetermined, harmless level by the stabilization layer.
  • the first partial rotor and the second partial rotor are thus provided in a back-to-back arrangement in the pump housing such that the multiphase mixture can be fed to a first input compression stage of the first partial rotor via a suction opening, a first annular space and a second annular space, and via a first output compression stage can be removed again from the first partial rotor into a first cross channel.
  • the multiphase mixture can then be fed via a third annular space to a second input compression stage of the second partial rotor and can be discharged again from the second partial rotor via a second output compression stage via a second cross channel, a fourth annular space and a pressure opening from the helico-axial pump.
  • the first output compression stage and the second output compression stage are each arranged adjacent to the stabilization bushing.
  • the stabilizing bushing is designed and arranged on the rotor in such a way that the stabilizing gap is formed between the stabilizing bushing and the pump housing.
  • the stabilizing bushing can be designed and arranged on the rotor in such a way that the stabilizing gap is formed between the stabilizing bushing and the rotor.
  • a hydrodynamic stabilizing element with a stabilizing surface is also provided and configured in such a way that the Stabilization gap is formed so that in the operating state a hydrodynamic stabilization layer can be formed from the stabilization medium in the stabilization gap, the additional stabilization element preferably being a cover ring which surrounds the helico-axial impeller in the circumferential direction so that the stabilization gap is formed between the cover ring and the pump housing .
  • the cover ring can be provided on all helico-axial impellers of a rotor, or only on selected individual impellers, which of course makes the manufacture of the rotor significantly less complex and cheaper.
  • the additional stabilizing element is provided in the form of a stabilizing sleeve between two adjacent compression stages on the rotor.
  • a stabilization sleeve can be provided between all adjacent compression stages of a rotor, whereby particularly good damping of the vibrations of the rotor can be achieved, especially with very high loads, or only between individual selected pairs of compression stages, which of course means that the manufacture of the rotor is significantly less becomes complex and cost-effective.
  • the stabilization sleeve can be designed and arranged on the rotor in such a way that the stabilization gap is formed between the stabilization sleeve and the pump housing, and / or the stabilization sleeve can also be designed and arranged on the rotor in such a way that the stabilization gap is formed between the stabilization sleeve and the rotor .
  • both variants can be implemented on one and the same rotor, as a result of which particularly smooth running and particularly good damping of the rotor vibrations can be achieved in certain cases.
  • a pressure difference between the multiphase mixture, which is at a higher pressure level and that which is at a lower pressure level, forms in the operating state above the stabilization gap is located in such a way that a predeterminable flow of multiphase mixture is automatically set via the stabilization gap from the higher pressure level back to the lower pressure level, which automatically creates a stabilization layer for additional stabilization or damping of the damaging vibrations of the rotor.
  • an already more highly compressed multiphase mixture which is taken from a compression stage in which the multiphase mixture is already more compressed than it is compressed in the stage in which it is used to form the stabilization layer.
  • a multiphase mixture compressed in the same compression stage can be used to form the hydrodynamic stabilization layer, as can be seen, for example, on the basis of FIG Fig. 4 will be explained in detail.
  • special channels or lines can be provided in or on the pump housing, for example, which connect a feed opening for feeding the multiphase mixture into the stabilization gap with the pressure outlet of a prescribable compression stage.
  • the stabilization medium for the formation of the stabilization layer can in special cases also be made available from other external sources, for example from a pressure accumulator or from a pump, which the medium for the formation of the stabilization layer under a predeterminable, in particular under provides a controllable and / or adjustable pressure for introduction into the stabilization gap.
  • the stabilization medium for forming the stabilization layer does not necessarily have to be the multiphase mixture to be pumped, but can also be a different stabilization medium, e.g. an oil, water or another liquid or gaseous stabilization medium or fluid.
  • the pressure of the multiphase mixture introduced into the stabilization gap is controlled and / or regulated by means of a valve known per se. It is also possible, for example, to feed the multiphase mixture simultaneously or alternatively from different compression stages to the stabilization gap, whereby the pressure in the stabilization gap and thus the degree of damping or the stiffness of the oscillating rotor can be adjusted very easily and very flexibly to different requirements and can be adapted to changing operating conditions.
  • the stabilization gap can be formed on the additional stabilization element and of course also on the stabilization bushing, for example between the stabilization surface and the pump housing and / or can also be provided between the stabilization surface and the rotor .
  • a feed channel can be provided which is designed and arranged in such a way that, in order to form the hydrodynamic stabilization layer in the stabilization gap, a multiphase mixture under a predeterminable pressure and, as a result, a predeterminable amount of multiphase mixture through the feed channel to the stabilization gap can be fed in, the feed channel preferably being provided in a split ring.
  • the stabilization element can be designed as a stator with a feed channel, the feed channel being designed and arranged on the stator in such a way that, for the formation of the hydrodynamic stabilization layer in the stabilization gap, a predeterminable amount of a stabilization medium, in particular a multiphase mixture, through the feed channel under a predeterminable pressure Stabilization gap can be fed.
  • the feed channel can be arranged and designed on the pump housing in such a way that a predeterminable amount of stabilization medium, in particular a multiphase mixture, can be fed through the feed channel to the stabilization gap in order to form the hydrodynamic stabilization layer in the stabilization gap.
  • a feed channel is arranged and designed on the rotor in such a way that a predeterminable amount of stabilization medium, in particular a multiphase mixture, can be fed through the feed channel to the stabilization gap in order to form the hydrodynamic stabilization layer in the stabilization gap.
  • the stabilizing medium in particular the multiphase mixture
  • the stabilizing medium can particularly preferably be supplied to the supply channel from a compression stage are supplied at which a higher pressure level prevails than at that compression stage to which it is supplied as a stabilizing medium.
  • a multiphase mixture compressed in the same compression stage can also be used to form the hydrodynamic stabilization layer.
  • the invention also relates to a method for the hydrodynamic mounting of a rotor of a helico-axial pump according to the present invention.
  • a hydrodynamic stabilization bushing with a stabilization surface is provided and designed in the pump housing in such a way that a stabilization gap is formed along the essentially axially extending stabilization surface, so that in the operating state a hydrodynamic stabilization layer is formed from a stabilization medium in the stabilization gap for hydrodynamic bearing of the rotor.
  • a first embodiment of a helico-axial pump according to the invention in a back-to-back arrangement is to be explained schematically.
  • the helico-axial pump 1 for pumping a multiphase mixture M comprises a rotor 2 rotatably mounted in a pump housing 6 about a longitudinal axis A, with a first partial rotor 21 and a second partial rotor 22.
  • the rotor 2 is driven by a drive 1000, which is an electric motor 1000, for example.
  • the first partial rotor 21 and the second partial rotor 22 for compressing the multiphase mixture M each comprise several compression stages K with a helico-axial impeller 3 and a stator 4.
  • a hydrodynamic stabilizing bushing 70 with a stabilizing surface 700 is located between the first partial rotor 21 and the second partial rotor 22 are provided that a stabilization gap 8 is formed in front of the stabilization surface 700, so that a hydrodynamic stabilization layer S can be formed from a stabilization medium in the stabilization gap 8 when the pump 1 is in the operating state.
  • the Fig. 3 shows a detailed representation of the back-to-back arrangement according to FIG Fig. 2 in the operating state of the helico-axial pump 1.
  • the first partial rotor 21 and the second partial rotor 22 are arranged in a back-to-back arrangement on a common pump shaft 5 in the pump housing 6.
  • the first partial rotor 21 and the second partial rotor 22 are separated from one another by the stabilizing bushing 70.
  • the multiphase mixture M is fed via a suction opening 101, a first annular space R1 and a second annular space R2 to a first input compression stage K1E of the first partial rotor 21 and discharged again via a first output compression stage K1A from the first partial rotor 21 into a first cross channel KR1 from the first partial rotor 21.
  • the multiphase mixture M is then fed via a third annular space R3 to a second input compression stage K2E of the second partial rotor 22 and via a second output compression stage K2A from the second partial rotor 22 via a second cross channel KR2, a fourth annular space R4 and a pressure opening 102 is discharged from the helico-axial pump for further use.
  • the first output compression stage K1A and the second output compression stage K2A are each arranged adjacent to the stabilization bushing 70.
  • the stabilizing bushing 70 is designed and arranged on the rotor 2 in such a way that the stabilizing gap 8 is formed between the stabilizing bushing 70 and the pump housing 6.
  • the stabilizing bushing 70 can alternatively or even simultaneously be designed and arranged on the rotor 2 in such a way that the Stabilization gap 8 is formed between the stabilization bushing 70 and the rotor 2.
  • FIG. 4 shows a section with two adjacent compression stages K of a rotor 2 according to the invention in a schematic representation
  • an embodiment with an additional hydrodynamic stabilization element in the form of a cover ring will be briefly discussed.
  • the rotor 2 of the helico-axial pump 1 is rotatably mounted in the pump housing 6 about a longitudinal axis A.
  • the rotor 2 comprises the compression stages K with a helico-axial impeller 3 and a stator 4 in order to compress the multiphase mixture M in a manner known per se.
  • Stabilization sleeve 70 has a hydrodynamic stabilization element 7, 71 with a stabilization surface 700 provided in the pump housing 6 and configured in such a way that a stabilization gap 8 is formed in front of the stabilization surface 700 so that in the operating state a hydrodynamic stabilization layer S from the multiphase mixture is also here M is formed in the stabilization gap 8.
  • the additional stabilization element 7 is a cover ring 71 which surrounds the helico-axial impeller 3 in the circumferential direction, so that the stabilization gap 8 can be formed between the cover ring 71 and the pump housing 6.
  • a helico-axial pump 1 comprises only a single compression stage K
  • a helico-axial pump 1 according to the invention ie the first partial rotor 21 and the second partial rotor 22, will in practice comprise a multiplicity of compression stages K , for example up to sixteen compression stages K or even significantly more compression stages K, which are preferably arranged one behind the other in series along the longitudinal axis A, so that a sufficient overall compression of the multiphase mixture M can be generated in a manner known per se, and the multiphase mixture M compressed in this way, for example can be promoted with a downstream pressure pump to a higher level and / or over long distances for further processing.
  • the multiphase mixture M is pressed into the stabilization gap 8, whereby the hydrodynamic stabilization layer S is automatically formed between the stabilization surface 700 of the cover ring 7 and the pump housing 6, whereby the oscillations of the rotor 2 or the partial rotors 21, 22 are damped and the running of the rotor 2 is stabilized.
  • the cover ring 71 can either be formed on all helico-axial impellers 3 of the rotor, or only on certain selected helico-axial impellers 3. Otherwise, depending on the application or depending on the special Requirements of the cover ring 71 completely cover a helico-axial impeller 3 or a certain predeterminable area of the circumference of the helico-axial impeller 3.
  • FIG. 4 Based on Figure 5a is a second embodiment according to Fig. 4 shown schematically, which differs from that of the Fig. 4 differs in that an injection of the stabilization medium M is provided on the cover ring 71 of the helico-axial impeller 3.
  • stabilization medium M is additionally introduced through the feed channel 400, 402 into the stabilization gap 8 to form the stabilization layer S.
  • a pressure difference .DELTA.P is set over the helico-axial impeller 3 in the operating state, whereby the stabilization layer S is already partially formed.
  • stabilization medium can also be injected into the stabilization gap S of the stabilization bushing 70.
  • the embodiment of Figure 5b differs from that of the Figure 5a only because the stabilization medium M is injected on the cover ring 71 of the helico-axial impeller 3 under a significantly higher pressure than in the example of FIG Figure 5a .
  • the stabilization medium M at Figure 5b According to the illustration, it is pressed out of the stabilization gap 8 both to the left, ie in the direction of a compression stage K with a lower pressure level, and to the right, ie also in the direction of a compression stage with a higher pressure level.
  • the example is Figure 5a the pressure with which the stabilization medium M is introduced through the supply channel 400, 402 into the stabilization gap 8 to form the stabilization layer S. becomes significantly smaller than in Fig. 3a .
  • the stabilization medium M at Fig. 3 According to the illustration, it can enter the stabilization gap 8 from the right, ie from a compression stage with a higher pressure level.
  • the stabilization medium M can be made available by an external pressure accumulator or an external pump; however, it is preferably made available by another compression stage K, which has a higher pressure level.
  • a feed channel 400, 401 in the form of a bore is provided on the stator 4, for example on a blade of the stator 4, or a separate feed channel 400, 401 can also be provided, which is as in Figure 6a shown, extends through the pump housing 6 to the stabilization gap 8, so that between the rotor 2 and the stabilization surface 700 of the stator 4 formed as a stabilization element 73, a stabilization layer S made of stabilization medium M, which in the specific example of Figure 6a Multiphase mixture M is from a different compression stage, can be formed.
  • Figure 6b is another embodiment according to Figure 6a shown, which differs from that of the Figure 6a differs only in that no cover ring 71 is provided on the helico-axial impeller 3.
  • Such a simplified construction can, for example, always be used successfully when the stabilization of the rotor 2 by the stabilization layer S on the stator 4 is already sufficient.
  • Figure 6c shows a further variant of the embodiment according to Figure 6b .
  • the stabilization medium M is not supplied via a supply channel 400, 401 through the pump housing 6, but rather by injection of the stabilization medium M takes place through a supply channel 400, 403 which is formed in the rotor 2.
  • the rotor 2 can, for example, have a hollow rotor shaft or suitable channels or lines can be formed in the rotor shaft through which the stabilization medium M, for example multiphase mixture M, can be fed from a compression stage K at a higher pressure level.
  • the Figure 7a shows a fourth, different embodiment according to FIG Fig. 4 , in which an additional stabilization sleeve 72 is provided between two adjacent compression stages K, the stabilization medium M being injected into the stabilization gap 8 through a feed channel 400, 402 guided through the pump housing 6.
  • an additional stabilization sleeve 72 is provided between two adjacent compression stages K, the stabilization medium M being injected into the stabilization gap 8 through a feed channel 400, 402 guided through the pump housing 6.
  • the injection into the stabilization gap 8 can in principle also be analogous to Figure 6c take place through the rotor shaft of the rotor 2.
  • the cover ring can be dispensed with on all or on various helico-axial impellers 3.
  • a stabilizing sleeve 72 can also be provided within a compression stage K between the helico-axial impeller 3 and the stator 4.
  • a stabilizing sleeve 72 does not have to be provided at each or between each pair of compression stages K.

Description

Die Erfindung betrifft eine helico-axiale Pumpe zur Förderung von Mehrphasengemischen sowie ein Verfahren zur Lagerung eines Rotors in einer helico-axialen Pumpe.The invention relates to a helico-axial pump for pumping multiphase mixtures and a method for mounting a rotor in a helico-axial pump.

Bei der Förderung von Mehrphasengemischen, wie beispielsweise Rohöl, das neben Erdöl auch Erdgas und häufig auch Wasser und Feststoffanteile wie z.B. Sand enthält, stellt sich das Problem, dass mit steigendem Gasanteil im Mehrphasengemisch der Wirkungsgrad der verwendeten Pumpvorrichtungen abnimmt. Beispielsweise ist bei niedrigen Gasdichten der Einsatz von Pumpvorrichtungen mit radialen Laufrädern bereits ab einem volumetrischen Gas/Flüssigkeitsverhältnis von grösser als 0.04 bis 0.06 nicht mehr möglich bzw. nicht mehr wirtschaftlich. In herkömmlichen Förderanlagen wird deshalb bei einem höheren Gasanteil die gasförmige Phase der Mehrphasengemische von der flüssigen zunächst abgetrennt und die beiden Phasen dann getrennt unter jeweils unterschiedlichen Förderbedingungen gefördert. Eine derartige Trennung der flüssigen und gasförmigen Phase der Mehrphasengemische ist abhängig von den speziellen Einsatzbedingungen am Ort der Förderung und nicht immer möglich oder wirtschaftlich. Es wurden deshalb spezielle Pump- oder Kompressionsvorrichtungen entwickelt, um das volumetrische Gas/Flüssigkeitsverhältnis der zu fördernden Mehrphasengemische soweit zu verringern, dass anschliessend eine herkömmliche Pumpvorrichtung für die weitere Förderung eingesetzt werden kann, beispielsweise eine Verdrängerpumpe, eine Rotationspumpe oder eine Strahlpumpe.When pumping multiphase mixtures, such as crude oil, which contains natural gas as well as oil and often also water and solids such as sand, the problem arises that the efficiency of the pump devices used decreases with increasing gas content in the multiphase mixture. For example, in the case of low gas densities, the use of pump devices with radial impellers is no longer possible or no longer economical from a volumetric gas / liquid ratio of greater than 0.04 to 0.06. In conventional conveying systems, when the gas content is higher, the gaseous phase of the multiphase mixture is first separated from the liquid and the two phases are then conveyed separately under different conveying conditions. Such a separation of the liquid and gaseous phase of the multiphase mixtures is dependent on the special conditions of use at the location of the promotion and not always possible or economical. Special pumping or compression devices have therefore been developed to reduce the volumetric gas / liquid ratio of the multiphase mixtures to be conveyed to such an extent that a conventional pumping device can then be used for further conveying, for example a displacement pump, a rotary pump or a jet pump.

Derartige Pump- oder Kompressionsvorrichtung für Mehrphasengemische mit erhöhtem Gasanteil sind beispielsweise bereits aus der US 2001/005483 A1 , der GB-A-1 561 454 , der EP 0 486 877 oder der US 5,961,282 bekannt.Such pumping or compression devices for multiphase mixtures with an increased gas content are, for example, already from the US 2001/005483 A1 , the GB-A-1 561 454 , the EP 0 486 877 or the U.S. 5,961,282 known.

Beispielsweise ist die Hybridpumpe gemäss US 5,961,282 ein System zur Kompression eines Multiphasengemischs, das neben einer flüssigen Phase insbesondere einen erheblichen Gasanteil umfassen kann. Die Pumpe umfasst dabei eine mehrstufige Axialflusspumpe zur Reduktion des relativen Gasanteils, d.h. die Axialflusspumpe dient zur Erhöhung der Dichte des Mehrphasengemischs, so dass es schliesslich durch eine weitere gewöhnliche Zentrifugalpumpe von einem niedrigeren Niveau auf ein höheres Niveau gepumpt werden kann, zum Beispiel vom Boden des Meeres auf eine Ölplattform, ein Schiff oder zu einer landgestützten Anlage.For example, the hybrid pump is according to U.S. 5,961,282 a system for compressing a multiphase mixture which, in addition to a liquid phase, can in particular comprise a considerable proportion of gas. The pump includes a multi-stage axial flow pump to reduce the relative gas proportion, i.e. the axial flow pump is used to increase the density of the multiphase mixture so that it can finally be pumped from a lower level to a higher level by another conventional centrifugal pump, for example from the bottom of the Marine to an oil rig, ship, or land-based facility.

Dokument US 2002/0187037 A1 zeigt ein hybrides Pumpensystem zur Förderung eines Mehrphasengemisches bestehend aus einer Produktionspumpe welche mit mehreren modular koppelbaren Kompressionspumpe ergänzt werden kann. Die Kompressionspumpe umfasst eine mehrstufige Axialflusspumpe zur Reduktion des relativen Gasanteils so dass es anschliessend von einer gewöhnlichen Zentrifugalpumpe mit grösserer Effizienz auf ein höheres Niveau gepumpt werden kann.document US 2002/0187037 A1 shows a hybrid pump system for conveying a multi-phase mixture consisting of a production pump which can be supplemented with several modularly connectable compression pumps. The compression pump includes a multi-stage axial flow pump to reduce the relative gas proportion so that it can then be pumped to a higher level with greater efficiency by a conventional centrifugal pump.

Wie bereits erwähnt, umfasst die als Verdichter wirkende helico-axiale Pumpe einen Rotor mit mehreren Kompressionsstufen, in der Praxis zum Beispiel mit bis zu sechzehn oder mehr Stufen, so dass das Mehrphasengemisch schrittweise von einer relativ niedrigen Dichte mit einem hohen relativen Volumenanteil an Gas bis zu einem hoch verdichteten Mehrphasengemisch mit einer so hohen Dichte komprimierbar ist, dass das hoch komprimierte Gemisch mit einer gewöhnlichen Förderpumpe weitergefördert werden kann.As already mentioned, the helico-axial pump acting as a compressor comprises a rotor with several compression stages, in practice for example with up to sixteen or more stages, so that the multiphase mixture gradually changes from a relatively low density to a high relative Volume fraction of gas can be compressed up to a highly compressed multiphase mixture with such a high density that the highly compressed mixture can be conveyed further with a conventional feed pump.

Eine an sich bekannte Kompressionsstufe K' eines Rotors 2' einer helico-axialen Pumpe 1' ist schematisch in Fig. 1a und Fig. 1b dargestellt, wobei zur Verdeutlichung in Fig. 1b ein Abschnitt I-I eines Schnitts gemäss Fig. 1a parallel zur Längsachse A' dargestellt ist.A known compression stage K 'of a rotor 2' of a helico-axial pump 1 'is shown schematically in FIG Figures 1a and 1b shown, where for clarity in Figure 1b a section II of a section according to Fig. 1a is shown parallel to the longitudinal axis A '.

Jede Kompressionsstufe K' umfasst dabei ein rotierendes Laufrad 3' mit Schraube 31', wobei das rotierende Laufrad 3' einer kurzen archimedischen Schraube ähnelt, und einen daran anschliessenden Stator 4', der aus einer Mehrzahl von statischen, also nicht rotierenden Schaufeln 41' besteht. Laufrad 3' und Stator 4' sind dabei derart in Bezug auf eine gemeinsame Pumpenwelle 5', montiert, dass das Laufrad 3' im Betriebszustand von der Pumpenwelle 5' in Rotation versetzt wird, während der Stator 4' von der Drehbewegung der Pumpenwelle 5' entkoppelt ist und daher in Bezug auf das Laufrad 3' nicht rotiert. Die Pumpenwelle 5' erstreckt sich dabei entlang einer Längsangsachse A'. Die Mehrzahl der Kompressionsstufen K' sind dabei in einem im wesentlichen rohrartigen Pumpengehäuse 6' in Serie hintereinander angeordnet.Each compression stage K 'comprises a rotating impeller 3' with screw 31 ', the rotating impeller 3' resembling a short Archimedean screw, and an adjoining stator 4 'consisting of a plurality of static, i.e. non-rotating blades 41' . Impeller 3 'and stator 4' are mounted in relation to a common pump shaft 5 'in such a way that the impeller 3' is set in rotation by the pump shaft 5 'in the operating state, while the stator 4' is caused by the rotary movement of the pump shaft 5 ' is decoupled and therefore does not rotate with respect to the impeller 3 '. The pump shaft 5 'extends along a longitudinal axis A'. The majority of the compression stages K 'are arranged in series one behind the other in an essentially tubular pump housing 6'.

Die rotierende Schraube 31' fördert das Mehrphasengemisch M' in Pfeilrichtung z.B. aus einer in Fig. 1a und Fig. 1b nicht gezeigten vorgängigen Kompressionsstufe K' in den Stator 4', wodurch im Stator 4' kinetische Energie in Druckenergie umgewandelt wird, was zur Kompression des Mehrphasengemischs M' führt.The rotating screw 31 'conveys the multiphase mixture M' in the direction of the arrow, for example from an in Figures 1a and 1b previous compression stage K ', not shown, in the stator 4', whereby kinetic energy is converted into pressure energy in the stator 4 ', which leads to the compression of the multiphase mixture M'.

Um eine ausreichend hohe Kompression des Mehrphasengemischs M' zu erhalten, müssen in der Praxis, wie bereits erwähnt, eine grössere Anzahl von zum Beispiel bis zu sechzehn oder noch mehr Kompressionsstufen K', jeweils bestehend aus einem Laufrad 3' und einem Stator 4' in Serie vorgesehen werden, was zwangläufig zu einer beträchtlichen Baulänge der helico-axialen Pumpe 1' führt.In order to obtain a sufficiently high compression of the multiphase mixture M ', in practice, as already mentioned, a larger number of for example up to sixteen or even more compression stages K', each consisting of an impeller 3 'and a stator 4' in Series are provided, which inevitably leads to a considerable length of the helico-axial pump 1 '.

Der entscheidende Nachteil solch langer Rotoren 2' gebildet aus einer Vielzahl von Kompressionsstufen K' ist daher, dass sie schwingungsmässig nur sehr schwer zu beherrschen sind. Diese langen Rotoren 2' bilden im Inneren des rohrförmigen Pumpengehäuses 6' nämlich ein schwingungsfähiges System, das insbesondere verschiedene transversale Schwingungsmoden ausbilden kann, die so intensiv sein können, dass die Pumpe bei einer vorgegebenen Umdrehungszahl bzw. in einem bestimmten Umdrehungsfeld nicht mehr betrieben werden kann. Darüber hinaus kann auch der Wirkungsgrad der Pumpen 1' reduziert sein und im schlimmsten Fall sogar Beschädigungen der Pumpe 1' zu befürchten sind, wenn der Rotor 2' zum Beispiel so stark und unkontrolliert zu schwingen beginnt, dass Teile des Rotors 2', wie etwa die Laufräder 3' durch die Schwingungsbewegung beispielsweise mit dem Pumpengehäuse in Kontakt kommen. Dabei hängt die Art und Intensität der Schwingungen des Rotors 2' nicht nur von der speziellen Geometrie sondern auch vom Betriebszustand der Pumpe 1', des zu pumpenden Mehrphasengemischs M', der Drehzahl der Pumpe 1' und weiteren bekannten und zum Teil nicht genau bekannten Parametern ab, so dass es kaum möglich ist, allein durch eine Anpassung der geometrischen Verhältnisse bekannter Pumpen 1' oder durch Verwendung neuer Materialien die Probleme mit den schädlichen Schwingungen des Rotors 2' in den Griff zu bekommen.The decisive disadvantage of such long rotors 2 'formed from a multiplicity of compression stages K' is therefore that they are very difficult to control in terms of vibration. In the interior of the tubular pump housing 6 ', these long rotors 2' form an oscillatable system which can in particular form various transverse oscillation modes which can be so intense that the Pump can no longer be operated at a specified number of revolutions or in a certain field of rotation. In addition, the efficiency of the pumps 1 'can also be reduced and in the worst case even damage to the pump 1' is to be feared if the rotor 2 'begins to vibrate so strongly and uncontrollably that parts of the rotor 2' such as the impellers 3 'come into contact, for example, with the pump housing as a result of the oscillating movement. The type and intensity of the vibrations of the rotor 2 'depends not only on the special geometry but also on the operating state of the pump 1', the multiphase mixture M 'to be pumped, the speed of the pump 1' and other known and sometimes not exactly known parameters so that it is hardly possible to get the problems with the damaging vibrations of the rotor 2 'under control simply by adapting the geometrical relationships of known pumps 1' or by using new materials.

Dabei besteht der deutliche Wunsch nach Pumpen mit einer immer höheren Anzahl von Kompressionsstufen, damit Mehrphasengemische mit immer höherem Gasanteil immer besser, das heisst zu immer höheren Drücken komprimiert werden können, so dass das so komprimierte Mehrphasengemisch zuverlässiger und über immer noch grössere Druck- bzw. Höhendifferenzen weiter gepumpt werden kann.There is a clear desire for pumps with an ever increasing number of compression stages so that multiphase mixtures with an ever higher proportion of gas can be compressed better and better, i.e. to ever higher pressures, so that the multiphase mixture compressed in this way is more reliable and over ever greater pressure or pressure levels. Height differences can be pumped further.

Aufgabe der Erfindung ist es daher, eine helico-axiale Pumpe zur Förderung von Mehrphasengemischen vorzuschlagen, bei welcher die schädlichen Schwingungen des Rotors weitgehend vermieden werden und die Schwingungen des Rotors auf ein vorgebbares Mass reduziert bzw. gedämpft sind, so dass einerseits ein verbesserter Lauf des Rotors im Betriebszustand erreicht werden kann und die Pumpe andererseits bei Drehzahlen bzw. in einem Um drehungsfeld betrieben werden kann, in dem die aus dem Stand der Technik bekannten Helico-axialen Pumpen aufgrund der oben beschriebenen schädlichen Schwingungen des Rotors nicht betrieben werden können. Daneben soll die neue Pumpe alternativ oder gleichzeitig mit mehr Kompressionsstufen ausgestattet werden können, als das bei den bisher im Stand der Technik bekannten Pumpen möglich ist, bei welchen die Länge der Pumpe und damit die maximale Zahl der Kompressionsstufen durch die Schwingungen des Rotors im Betriebszustand begrenzt ist.The object of the invention is therefore to propose a helico-axial pump for pumping multiphase mixtures, in which the damaging vibrations of the rotor are largely avoided and the vibrations of the rotor are reduced or damped to a predeterminable level, so that on the one hand an improved running of the Rotor can be achieved in the operating state and the pump can be operated on the other hand at speeds or in a field of rotation in which the from the state Helico-axial pumps known from the art cannot be operated due to the damaging vibrations of the rotor described above. In addition, the new pump should alternatively or simultaneously be equipped with more compression stages than is possible with the pumps previously known in the prior art, in which the length of the pump and thus the maximum number of compression stages are limited by the vibrations of the rotor in the operating state is.

Die diese Aufgabe lösenden Gegenstände der Erfindung sind durch die Merkmale der unabhängigen Ansprüche der jeweiligen Kategorie gekennzeichnet.The subjects of the invention that achieve this object are characterized by the features of the independent claims of the respective category.

Die abhängigen Ansprüche beziehen sich auf besonders vorteilhafte Ausführungsformen der Erfindung.The dependent claims relate to particularly advantageous embodiments of the invention.

Die Erfindung betrifft somit eine helico-axiale Pumpe zur Förderung eines Mehrphasengemischs gemäß Anspruch 1, welche helico-axiale Pumpe einen in einem Pumpengehäuse um eine Längsachse drehbar gelagerten Rotor mit einem ersten Teilrotor und einen zweiten Teilrotor umfasst, wobei der erste Teilrotor und der zweite Teilrotor zur Kompression des Mehrphasengemischs eine Kompressionsstufe mit einem helico-axialen Laufrad und einem Stator umfasst. Erfindungsgemäss ist eine hydrodynamische Stabilisierungsbuchse mit einer Stabilisierungsfläche derart zwischen dem ersten Teilrotor und dem zweiten Teilrotor vorgesehen und ausgestaltet, dass vor der Stabilisierungsfläche ein Stabilisierungsspalt ausgebildet ist, so dass im Betriebszustand eine hydrodynamische Stabilisierungsschicht aus einem Stabilisierungsmedium im Stabilisierungsspalt bildbar ist.The invention thus relates to a helico-axial pump for pumping a multiphase mixture according to claim 1, which helico-axial pump comprises a rotor rotatably mounted in a pump housing about a longitudinal axis, with a first partial rotor and a second partial rotor, the first partial rotor and the second partial rotor comprises a compression stage with a helico-axial impeller and a stator for compressing the multiphase mixture. According to the invention, a hydrodynamic stabilization bushing with a stabilization surface is provided and configured between the first partial rotor and the second partial rotor in such a way that a stabilization gap is formed in front of the stabilization surface, so that in the operating state a hydrodynamic stabilization layer can be formed from a stabilization medium in the stabilization gap.

Wesentlich für die Erfindung ist es somit, dass ein hydrodynamische Stabilisierungsbuchse mit einer Stabilisierungsfläche im Pumpengehäuse vorgesehen ist, so dass vor der Stabilisierungsfläche ein Stabilisierungsspalt ausgebildet ist, in welchem Stabilisierungsspalt im Betriebszustand der Pumpe eine hydrodynamische Stabilisierungsschicht gebildet wird.It is therefore essential for the invention that a hydrodynamic stabilization bushing with a stabilization surface is provided in the pump housing, so that a stabilization gap is formed in front of the stabilization surface, in which stabilization gap a hydrodynamic stabilization layer is formed when the pump is in operation.

Durch die vorliegende Erfindung wird somit die Rotordynamik entscheidend verbessert, weil durch die Stabilisierungsschicht die Dämpfung und Steifigkeit des schwingungsfähigen Rotorsystems entscheidend erhöht wird.The rotor dynamics are therefore decisively improved by the present invention, because the damping and rigidity of the oscillatable rotor system are decisively increased by the stabilization layer.

Die schädlichen Schwingungen des Rotors werden durch die Ausbildung der Stabilisierungsschicht im Stabilisierungsspalt vor der Stabilisierungsfläche der Stabilisierungsbuchse weitgehend vermieden und werden zumindest auf ein vorgebbares tolerierbares Mass reduziert bzw. gedämpft, so dass die Pumpe auch bei einer Umdrehungszahl bzw. in einem bestimmten Umdrehungsfeld betrieben werden kann, wo das ohne Verwendung der erfindungsgemässen Stabilisierungsschicht bisher nicht mehr möglich ist. Darüber hinaus kann eventuell sogar ein höherer Wirkungsgrad der Pumpe und ein ruhigerer verbesserter Lauf des Rotors im Betriebszustand erreicht werden. Was letztlich natürlich dazu führt, dass nicht nur Energie für den Betrieb der Pumpe eingespart werden kann, sondern auch die Wartungsintervalle verlängert werden können, wodurch die damit verbundenen Kosten drastisch gesenkt werden können und gleichzeitig auch die Lebensdauer der Pumpe wesentlich erhöht wird.The damaging vibrations of the rotor are largely avoided by the formation of the stabilization layer in the stabilization gap in front of the stabilization surface of the stabilization bushing and are reduced or damped at least to a predeterminable tolerable amount, so that the pump can also be operated at one speed or in a specific field of rotation where this has hitherto no longer been possible without using the stabilizing layer according to the invention. In addition, a higher efficiency of the pump and a smoother, improved run of the rotor in the operating state can possibly even be achieved. Of course, this ultimately means that not only can energy be saved for operating the pump, but also the maintenance intervals can be extended, which means that the associated costs can be drastically reduced and, at the same time, the service life of the pump is significantly increased.

Ein weiterer besonderer Vorteil besteht darin, dass es durch die Erfindung erstmals möglich ist, Pumpen mit einer viel höheren Anzahl von Kompressionsstufen zu konstruieren, als das bisher möglich war. Bisher war die mögliche Anzahl der Kompressionsstufen allein schon durch die mit steigender Zahl der Kompressionsstufen massiv ansteigenden Schwingungen des Rotors eingeschränkt. Durch die Erfindung ist der Rotor praktisch auf einer beliebigen Länge sicher stabilisierbar.Another particular advantage is that the invention makes it possible for the first time to design pumps with a much higher number of compression stages than was previously possible. Up to now, the possible number of compression stages was limited by the massively increasing vibrations of the rotor with the increasing number of compression stages. With the invention, the rotor can be safely stabilized practically at any length.

Dabei bildet sich bei einer erfindungsgemässen helico-axialen Pumpe die Stabilisierungsschicht im Stabilisierungsspalt entlang der im Wesentlichen axial verlaufenden Stabilisierungsfläche der hydrodynamischen Stabilisierungsbuchse quasi automatisch aus, so dass in einem einfachen Ausführungsbeispiel, das jedoch in der Praxis von besonderer Bedeutung ist, ausser einer geeigneten Einstellung der Grösse oder Form des Stabilisierungsspaltes bzw. der Stabilisierungsbuchse und/ oder deren Stabilisierungsfläche keine weiteren baulichen Massnahmen vorgenommen werden müssen.In the case of a helico-axial pump according to the invention, the stabilization layer in the stabilization gap along the essentially axially extending stabilization surface of the hydrodynamic stabilization bushing forms quasi automatically, so that in a simple embodiment, which, however, is of particular importance in practice, apart from a suitable setting of the Size or the shape of the stabilization gap or the stabilization bushing and / or its stabilization surface, no further structural measures need to be undertaken.

Ist die Geometrie des Stabilisierungsspalt bei einer erfindungsgemässen helico-axialen Pumpe entsprechend den Anforderungen eingestellt, bildet sich im Betriebszustand über dem Stabilisierungsspalt eine Druckdifferenz zwischen dem Mehrphasengemisch, das sich im ersten Teilrotor befindet und demjenigen, das sich im zweiten Teilrotor befindet, derart aus, dass sich ein vorgebbarer Fluss von Mehrphasengemisch vom zweiten Teilrotor über den Stabilisierungsspalt zurück zum ersten Teilrotor automatisch einstellt, wodurch sich automatisch eine Stabilisierungsschicht zur Stabilisierung bzw. Dämpfung der schädlichen Schwingungen des Rotor ausbildet.If the geometry of the stabilization gap in a helico-axial pump according to the invention is set according to the requirements, a pressure difference between the multiphase mixture located in the first partial rotor and the one located in the second partial rotor forms in the operating state across the stabilization gap such that a specifiable flow of multiphase mixture from the second partial rotor via the stabilization gap back to the first partial rotor is automatically established, whereby a stabilization layer for stabilizing or damping the damaging vibrations of the rotor is automatically formed.

Dabei ist der Grad, also die Stärke der Dämpfung je nach technischen Anforderungen oder Spezifikationen bei einer erfindungsgemässen helico-axialen Pumpe auf einfache Weise anpassbar. Dies kann zum Beispiel durch geeignete Wahl der Geometrie, beispielsweise der geometrische Form oder Breite des Stabilisierungsspalts geschehen.The degree, that is to say the strength of the damping, can be adapted in a simple manner depending on the technical requirements or specifications in a helico-axial pump according to the invention. This can be done, for example, by a suitable choice of the geometry, for example the geometric shape or width of the stabilization gap.

Eine erfindungsgemässe helico-axiale Pumpe ist dabei in Form einer sogenannten Back-to-Back Anordnung ausgestaltet. Unter einer Back-to-Back Anordnung versteht der Fachmann eine Anordnung von zwei Pumpenrotoren in Serie, die so eine Pumpe mit zwei Druckstufen ausbildet. Das zu pumpende Medium wird dabei über eine Saugöffnung der Pumpe der ersten Druckstufe zugeführt, wobei das Medium die erste Druckstufe in einer ersten axialen Richtung durchläuft, wobei dabei der Druck des zu pumpenden Mediums auf einen ersten Zwischendruck erhöht wird. Aus der ersten Druckstufe wird das Medium dann über ein Kanalsystem der zweiten Druckstufe derart zugeführt, dass das Medium die zweite Druckstufe in einer zweiten axialen Richtung durchläuft, die der ersten axialen Richtung der ersten Druckstufe entgegen gesetzt ist. In der zweiten Druckstufe wird das Medium dann auf den gewünschten Enddruck gebracht und über eine Drucköffnung zur weiteren Verwendung aus der Pumpe abgeführt.A helico-axial pump according to the invention is designed in the form of a so-called back-to-back arrangement. The person skilled in the art understands a back-to-back arrangement to be an arrangement of two pump rotors in series, which thus forms a pump with two pressure stages. The medium to be pumped is fed to the first pressure stage via a suction opening of the pump, the medium passing through the first pressure stage in a first axial direction, the pressure of the medium to be pumped being increased to a first intermediate pressure. From the first pressure stage, the medium is then fed to the second pressure stage via a channel system in such a way that the medium passes through the second pressure stage in a second axial direction, which is opposite to the first axial direction of the first pressure stage. In the second pressure stage that becomes The medium is then brought to the desired final pressure and discharged from the pump via a pressure opening for further use.

Wesentlich für die Back-to-Back Anordnung der aus dem Stand der Technik bekannten Pumpen ist dabei, dass die Flussrichtung des Medium in der ersten Druckstufe entgegengesetzt zur Flussrichtung in der zweiten Druckstufe ist. Bei den bekannten Pumpen dient die Back-to-Back Anordnung nämlich ausschliesslich dazu, die enormen Schubkräfte, die in axialer Richtung auf die Lager der Pumpenwelle wirken, zumindest teilweise zu kompensieren und damit die Lager zu entlasten. Die enormen axialen Schubkräfte sind dabei darauf zurückzuführen, dass in diesen aus dem Stand der Technik bekannten Pumpen sehr hohe Drücke mit sehr grossen Komponenten in axialer Richtung erzeugt werden.It is essential for the back-to-back arrangement of the pumps known from the prior art that the direction of flow of the medium in the first pressure stage is opposite to the direction of flow in the second pressure stage. In the known pumps, the back-to-back arrangement serves exclusively to at least partially compensate for the enormous thrust forces which act in the axial direction on the bearings of the pump shaft and thus to relieve the bearings. The enormous axial thrust forces are due to the fact that in these pumps known from the prior art, very high pressures with very large components are generated in the axial direction.

Schwingungen des Pumpenrotors spielen hier eine sehr untergeordnete Rolle, weil die Rotoren selbst in der Regel keine grosse axiale Ausdehnung haben und / oder nur aus je einer Kompressionsstufe bestehen und / oder zwischen der ersten Druckstufe und der zweiten Druckstufe ein zusätzliches mechanisches Lager, zum Beispiel ein Kugellager vorgesehen ist, das den Pumpenrotor in der Mitte zusätzlich mechanisch lagert.Vibrations of the pump rotor play a very subordinate role here because the rotors themselves usually do not have a large axial extension and / or only consist of one compression stage and / or an additional mechanical bearing, for example a mechanical bearing, between the first pressure stage and the second pressure stage Ball bearing is provided that additionally mechanically supports the pump rotor in the middle.

Da bei helico-axialen Pumpen die axialen Druckkomponenten im Vergleich zu anderen konventionellen Pumpen eher klein sind, spielen hier die Schubkräfte, die in axialer Richtung auf die Lager der helico-axialen Pumpe wirken, keine entscheidende Rolle. Daher wurde eine Back-to-Back Anordnung für helico-axiale Pumpen bisher kaum in Betracht gezogen, weil bei helico-axialen Pumpen der bekannte Vorteil der Back-to-Back Anordnung eigentlich nicht ausgenutzt werden kann.Since the axial pressure components of helico-axial pumps are rather small compared to other conventional pumps, the thrust forces that act in the axial direction on the bearings of the helico-axial pump do not play a decisive role. For this reason, a back-to-back arrangement for helico-axial pumps has so far hardly been considered, because the known advantage of the back-to-back arrangement cannot actually be used with helico-axial pumps.

Die wesentliche Erkenntnis der Erfindung ist es daher, dass die Back-to-Back Anordnung im Falle von helico-axialen Pumpen dann erfolgreich eingesetzt werden kann, wenn zwischen dem ersten Teilrotor und dem zweiten Teilrotor eine erfindungsgemässe Stabilisierungsbuchse vorgesehen wird, so dass sich aufgrund des Druckgefälles zwischen dem ersten Teilrotor und dem zweiten Teilrotor im Stabilisierungsspalt eine Stabilisierungsschicht aus dem Stabilisierungsmedium ausbilden kann, das besonders bevorzugt das zu pumpende Mehrphasengemisch selbst ist, so dass durch die Stabilisierungsschicht die Schwingungen des Rotors auf ein vorgebbares, unschädliches Mass gedämpft werden.The essential finding of the invention is therefore that the back-to-back arrangement can be used successfully in the case of helico-axial pumps if a stabilizing bushing according to the invention is provided between the first partial rotor and the second partial rotor so that Due to the pressure gradient between the first partial rotor and the second partial rotor in the stabilization gap, a stabilization layer can form from the stabilization medium, which is particularly preferably the multiphase mixture to be pumped itself, so that the vibrations of the rotor are dampened to a predetermined, harmless level by the stabilization layer.

Erfindungsgemäß ist somit der erste Teilrotor und der zweite Teilrotor derart in einer Back-to-Back Anordnung im Pumpengehäuse vorgesehen, dass das Mehrphasengemisch über eine Saugöffnung, einen ersten Ringraum und einen zweiten Ringraum einer ersten Eingangskompressionsstufe des ersten Teilrotors zuführbar ist und über eine erste Ausgangskompressionsstufe aus dem ersten Teilrotor in einen ersten Kreuzkanal wieder abführbar ist. Aus dem ersten Kreuzkanal ist das Mehrphasengemisch dann über einen dritten Ringraum einer zweiten Eingangskompressionsstufe des zweiten Teilrotors zuführbar und über eine zweite Ausgangskompressionsstufe aus dem zweiten Teilrotor über einen zweiten Kreuzkanal, einen vierten Ringraum und eine Drucköffnung aus der helico-axialen Pumpe wieder abführbar. Dabei sind die erste Ausgangskompressionsstufe und die zweite Ausgangskompressionsstufe jeweils benachbart zur Stabilisierungsbuchse angeordnet.According to the invention, the first partial rotor and the second partial rotor are thus provided in a back-to-back arrangement in the pump housing such that the multiphase mixture can be fed to a first input compression stage of the first partial rotor via a suction opening, a first annular space and a second annular space, and via a first output compression stage can be removed again from the first partial rotor into a first cross channel. From the first cross channel, the multiphase mixture can then be fed via a third annular space to a second input compression stage of the second partial rotor and can be discharged again from the second partial rotor via a second output compression stage via a second cross channel, a fourth annular space and a pressure opening from the helico-axial pump. The first output compression stage and the second output compression stage are each arranged adjacent to the stabilization bushing.

Wie in den Zeichnungen später noch genauer erläutert werden wird, ist die Stabilisierungsbuchse dabei derart ausgestaltet und am Rotor angeordnet, dass der Stabilisierungsspalt zwischen der Stabilisierungsbuchse und dem Pumpengehäuse ausgebildet ist. Gleichzeitig oder alternativ kann die Stabilisierungsbuchse jedoch derart ausgestaltet und am Rotor angeordnet sein, dass der Stabilisierungsspalt zwischen der Stabilisierungsbuchse und dem Rotor ausgebildet ist.As will be explained in more detail later in the drawings, the stabilizing bushing is designed and arranged on the rotor in such a way that the stabilizing gap is formed between the stabilizing bushing and the pump housing. Simultaneously or alternatively, however, the stabilizing bushing can be designed and arranged on the rotor in such a way that the stabilizing gap is formed between the stabilizing bushing and the rotor.

Bei einem für die Praxis ebenfalls wichtigen Ausführungsbeispiel ist zusätzlich ein hydrodynamisches Stabilisierungselement mit einer Stabilisierungsfläche derart vorgesehen und ausgestaltet, dass vor der Stabilisierungsfläche der Stabilisierungsspalt ausgebildet ist, so dass im Betriebszustand eine hydrodynamische Stabilisierungsschicht aus dem Stabilisierungsmedium im Stabilisierungsspalt bildbar ist, wobei das zusätzliche Stabilisierungselement bevorzugt ein Deckring ist, der das helico-axiale Laufrad in Umfangsrichtung umschliesst, so dass der Stabilisierungsspalt zwischen dem Deckring und dem Pumpengehäuse ausgebildet ist. Dabei kann ein solcher Deckring an allen helico-axialen Laufrädern eines Rotors vorgesehen sein, oder nur an ausgewählten einzelnen Laufrädern, wodurch die Herstellung des Rotors natürlich deutlich weniger aufwändig und kostengünstiger wird.In an exemplary embodiment that is also important in practice, a hydrodynamic stabilizing element with a stabilizing surface is also provided and configured in such a way that the Stabilization gap is formed so that in the operating state a hydrodynamic stabilization layer can be formed from the stabilization medium in the stabilization gap, the additional stabilization element preferably being a cover ring which surrounds the helico-axial impeller in the circumferential direction so that the stabilization gap is formed between the cover ring and the pump housing . Such a cover ring can be provided on all helico-axial impellers of a rotor, or only on selected individual impellers, which of course makes the manufacture of the rotor significantly less complex and cheaper.

Bei einem anderen wichtigen Ausführungsbeispiel der vorliegenden Erfindung ist das zusätzliche Stabilisierungselement in Form einer Stabilisierungshülse zwischen zwei benachbarten Kompressionsstufen am Rotor vorgesehen. Wobei eine Stabilisierungshülse zwischen allen benachbarten Kompressionsstufen eines Rotors vorgesehen sein kann, wodurch vor allem bei sehr hohen Belastungen eine besonders gute Dämpfung der Schwingungen des Rotors erreichbar ist, oder aber auch nur zwischen einzelnen ausgewählten Paaren von Kompressionsstufen, wodurch die Herstellung des Rotors natürlich deutlich weniger aufwändig und kostengünstiger wird.In another important embodiment of the present invention, the additional stabilizing element is provided in the form of a stabilizing sleeve between two adjacent compression stages on the rotor. A stabilization sleeve can be provided between all adjacent compression stages of a rotor, whereby particularly good damping of the vibrations of the rotor can be achieved, especially with very high loads, or only between individual selected pairs of compression stages, which of course means that the manufacture of the rotor is significantly less becomes complex and cost-effective.

Die Stabilisierungshülse kann dabei derart ausgestaltet und am Rotor angeordnet sein, dass der Stabilisierungsspalt zwischen der Stabilisierungshülse und dem Pumpengehäuse ausgebildet ist, und / oder die Stabilisierungshülse kann auch derart ausgestaltet und am Rotor angeordnet sein, dass der Stabilisierungsspalt zwischen der Stabilisierungshülse und dem Rotor ausgebildet ist. Im Speziellen können an ein und demselben Rotor beide Varianten verwirklicht sein, wodurch sich in bestimmten Fällen eine besondere hohe Laufruhe und besonders gute Dämpfung der Rotorschwingungen erreichen lässt.The stabilization sleeve can be designed and arranged on the rotor in such a way that the stabilization gap is formed between the stabilization sleeve and the pump housing, and / or the stabilization sleeve can also be designed and arranged on the rotor in such a way that the stabilization gap is formed between the stabilization sleeve and the rotor . In particular, both variants can be implemented on one and the same rotor, as a result of which particularly smooth running and particularly good damping of the rotor vibrations can be achieved in certain cases.

Ist die Geometrie des Stabilisierungsspalts des zusätzlichen hydrodynamischen Stabilisierungselements bei einer erfindungsgemässen helico-axialen Pumpe entsprechend den Anforderungen eingestellt, bildet sich im Betriebszustand über dem Stabilisierungsspalt eine Druckdifferenz zwischen dem Mehrphasengemisch, das sich auf einem höheren Druckniveau befindet und demjenigen, das sich auf einem niedrigeren Druckniveau befindet, derart aus, dass sich ein vorgebbarer Fluss von Mehrphasengemisch über den Stabilisierungsspalt vom höheren Druckniveau zurück zum niedrigeren Druckniveau automatisch einstellt, wodurch sich automatisch eine Stabilisierungsschicht zur zusätzlichen Stabilisierung bzw. Dämpfung der schädlichen Schwingungen des Rotor ausbildet.If the geometry of the stabilization gap of the additional hydrodynamic stabilization element in a helico-axial pump according to the invention is set according to the requirements, a pressure difference between the multiphase mixture, which is at a higher pressure level and that which is at a lower pressure level, forms in the operating state above the stabilization gap is located in such a way that a predeterminable flow of multiphase mixture is automatically set via the stabilization gap from the higher pressure level back to the lower pressure level, which automatically creates a stabilization layer for additional stabilization or damping of the damaging vibrations of the rotor.

Zur Ausbildung der hydrodynamischen Stabilisierungsschicht können jedoch auch zusätzliche Massnahmen ergriffen werden, insbesondere wenn die auftretenden Schwingungen sehr stark sind bzw. wenn die Dämpfung in Abhängigkeit von bestimmten Betriebsparametern, wie zum Beispiel der Last, unter der die Pumpe betrieben wird, oder in Abhängigkeit von der Umdrehungszahl eingestellt werden soll.To form the hydrodynamic stabilization layer, however, additional measures can also be taken, especially if the vibrations that occur are very strong or if the damping is dependent on certain operating parameters, such as the load under which the pump is operated, or depending on the Speed should be set.

So kann besonders bevorzugt ein bereits höher komprimiertes Mehrphasengemisch benutzt werden, das einer Kompressionsstufe entnommen wird, in der das Mehrphasengemisch bereits stärker komprimiert ist, als es in der Stufe komprimiert wird, in der es für die Bildung der Stabilisierungsschicht benutzt wird. Alternativ oder gleichzeitig kann jedoch zur Ausbildung der hydrodynamischen Stabilisierungsschicht ein in derselben Kompressionsstufe komprimiertes Mehrphasengemisch verwendet werden, was zum Beispiel noch anhand der Fig. 4 im Detail erläutert werden wird. Hierzu können zum Beispiel im oder am Pumpengehäuse spezielle Kanäle oder Leitungen vorgesehen sein, die eine Zufuhröffnung zur Zuführung des Mehrphasengemischs in den Stabilisierungsspalt mit dem Druckausgang einer vorgebbaren Kompressionsstufe verbinden.Thus, it is particularly preferred to use an already more highly compressed multiphase mixture, which is taken from a compression stage in which the multiphase mixture is already more compressed than it is compressed in the stage in which it is used to form the stabilization layer. As an alternative or at the same time, however, a multiphase mixture compressed in the same compression stage can be used to form the hydrodynamic stabilization layer, as can be seen, for example, on the basis of FIG Fig. 4 will be explained in detail. For this purpose, special channels or lines can be provided in or on the pump housing, for example, which connect a feed opening for feeding the multiphase mixture into the stabilization gap with the pressure outlet of a prescribable compression stage.

Es versteht sich dabei, dass das Stabilisierungsmedium zur Bildung der Stabilisierungsschicht in speziellen Fällen auch von anderen externen Quellen zur Verfügung gestellt werden kann, zum Beispiel von einem Druckspeicher oder von einer Pumpe, die das Medium zur Bildung der Stabilisierungsschicht unter einem vorgebbaren, im Speziellen unter einem steuer- und / oder regelbaren Druck zur Einleitung in den Stabilisierungsspalt zur Verfügung stellt. Auch muss das Stabilisierungsmedium zur Bildung der Stabilisierungsschicht nicht zwingend das zu pumpende Mehrphasengemisch sein, sondern kann auch ein anderes Stabilisierungsmedium, z.B. ein Öl, Wasser oder ein anderes flüssiges oder gasförmiges Stabilisierungsmedium bzw. Fluid sein.It goes without saying that the stabilization medium for the formation of the stabilization layer can in special cases also be made available from other external sources, for example from a pressure accumulator or from a pump, which the medium for the formation of the stabilization layer under a predeterminable, in particular under provides a controllable and / or adjustable pressure for introduction into the stabilization gap. Also, the stabilization medium for forming the stabilization layer does not necessarily have to be the multiphase mixture to be pumped, but can also be a different stabilization medium, e.g. an oil, water or another liquid or gaseous stabilization medium or fluid.

Weiter ist es zum Beispiel möglich, dass mittels eines an sich bekannten Ventils der Druck des in den Stabilisierungsspalt eingeleiteten Mehrphasengemischs gesteuert und / oder geregelt wird. Auch ist es beispielsweise möglich, das Mehrphasengemisch gleichzeitig oder alternativ aus verschiedenen Kompressionsstufen dem Stabilisierungsspalt zuzuführen, wodurch ebenfalls der Druck im Stabilisierungsspalt und damit der Grad der Dämpfung bzw. der Steifigkeit des schwingungsfähigen Rotors auf sehr einfach Weise eingestellt werden kann und sehr flexibel auf unterschiedliche Anforderungen und wechselnde Betriebsbedingungen anpassbar ist.It is also possible, for example, for the pressure of the multiphase mixture introduced into the stabilization gap to be controlled and / or regulated by means of a valve known per se. It is also possible, for example, to feed the multiphase mixture simultaneously or alternatively from different compression stages to the stabilization gap, whereby the pressure in the stabilization gap and thus the degree of damping or the stiffness of the oscillating rotor can be adjusted very easily and very flexibly to different requirements and can be adapted to changing operating conditions.

Wie später noch anhand der Zeichnungen exemplarisch an besonders bevorzugten Ausführungsbeispielen erläutert werden wird, kann der Stabilisierungsspalt am zusätzlichen Stabilisierungselement und selbstverständlich auch an der Stabilisierungsbuchse, zum Beispiel zwischen der Stabilisierungsfläche und dem Pumpengehäuse ausgebildet sind und/ oder auch zwischen der Stabilisierungsfläche und dem Rotor vorgesehen werden.As will be explained later using the drawings using particularly preferred exemplary embodiments, the stabilization gap can be formed on the additional stabilization element and of course also on the stabilization bushing, for example between the stabilization surface and the pump housing and / or can also be provided between the stabilization surface and the rotor .

Dabei kann in einer besonders bevorzugten Ausführungsvariante der vorliegenden Erfindung ein Zuführkanal vorgesehen sein, der so ausgebildet und angeordnet ist, dass zur Ausbildung der hydrodynamischen Stabilisierungsschicht im Stabilisierungsspalt ein unter einem vorgebbaren Druck stehendes Mehrphasengemisch und daraus resultierend eine vorgebbare Menge an Mehrphasengemisch durch den Zuführkanal dem Stabilisierungsspalt zuführbar ist, wobei der Zuführkanal bevorzugt in einem Spaltring vorgesehen ist.In a particularly preferred embodiment of the present invention, a feed channel can be provided which is designed and arranged in such a way that, in order to form the hydrodynamic stabilization layer in the stabilization gap, a multiphase mixture under a predeterminable pressure and, as a result, a predeterminable amount of multiphase mixture through the feed channel to the stabilization gap can be fed in, the feed channel preferably being provided in a split ring.

So kann das Stabilisierungselement zum Beispiel als Stator mit einem Zuführkanal ausgestaltet sein, wobei der Zuführkanal so am Stator ausgebildet und angeordnet ist, dass zur Ausbildung der hydrodynamischen Stabilisierungsschicht im Stabilisierungsspalt unter einem vorgebbaren Druck eine vorgebbare Menge eines Stabilisierungsmediums, insbesondere an Mehrphasengemisch durch den Zuführkanal dem Stabilisierungsspalt zuführbar ist.For example, the stabilization element can be designed as a stator with a feed channel, the feed channel being designed and arranged on the stator in such a way that, for the formation of the hydrodynamic stabilization layer in the stabilization gap, a predeterminable amount of a stabilization medium, in particular a multiphase mixture, through the feed channel under a predeterminable pressure Stabilization gap can be fed.

In einer weiteren Ausführungsvariante kann der Zuführkanal derart am Pumpengehäuse angeordnet und ausgebildet sein, dass zur Ausbildung der hydrodynamischen Stabilisierungsschicht im Stabilisierungsspalt eine vorgebbare Menge an Stabilisierungsmedium, insbesondere Mehrphasengemisch durch den Zuführkanal dem Stabilisierungsspalt zuführbar ist.In a further embodiment, the feed channel can be arranged and designed on the pump housing in such a way that a predeterminable amount of stabilization medium, in particular a multiphase mixture, can be fed through the feed channel to the stabilization gap in order to form the hydrodynamic stabilization layer in the stabilization gap.

Oder aber ein Zuführkanal ist derart am Rotor angeordnet und ausgebildet, dass zur Ausbildung der hydrodynamischen Stabilisierungsschicht im Stabilisierungsspalt eine vorgebbare Menge an Stabilisierungsmedium, insbesondere Mehrphasengemisch durch den Zuführkanal dem Stabilisierungsspalt zuführbar ist.Or a feed channel is arranged and designed on the rotor in such a way that a predeterminable amount of stabilization medium, in particular a multiphase mixture, can be fed through the feed channel to the stabilization gap in order to form the hydrodynamic stabilization layer in the stabilization gap.

Wie bereits erwähnt, kann bei einer erfindungsgemässen helico-axialen Pumpe das Stabilisierungsmedium, insbesondere das Mehrphasengemisch dem Zuführkanal besonders bevorzugt von einer Kompressionsstufe zugeführt werden, an der ein höheres Druckniveau herrscht, als an derjenigen Kompressionsstufen, der es als Stabilisierungsmedium zugeführt wird. Alternativ oder gleichzeitig kann jedoch zur Ausbildung der hydrodynamischen Stabilisierungsschicht auch ein in derselben Kompressionsstufe komprimiertes Mehrphasengemisch verwendet werden.As already mentioned, in a helico-axial pump according to the invention, the stabilizing medium, in particular the multiphase mixture, can particularly preferably be supplied to the supply channel from a compression stage are supplied at which a higher pressure level prevails than at that compression stage to which it is supplied as a stabilizing medium. Alternatively or simultaneously, however, a multiphase mixture compressed in the same compression stage can also be used to form the hydrodynamic stabilization layer.

Schliesslich betrifft die Erfindung auch ein Verfahren zur hydrodynamischen Lagerung eines Rotors einer helico-axialen Pumpe gemäss der vorliegenden Erfindung. Erfindungsgemäss wird eine hydrodynamische Stabilisierungsbuchse mit einer Stabilisierungsfläche derart im Pumpengehäuse vorgesehen und ausgestaltet, dass entlang der im Wesentlichen axial verlaufenden Stabilisierungsfläche ein Stabilisierungsspalt ausgebildet wird, so dass im Betriebszustand eine hydrodynamische Stabilisierungsschicht aus einem Stabilisierungsmedium im Stabilisierungsspalt zur hydrodynamischen Lagerung des Rotors gebildet wird.Finally, the invention also relates to a method for the hydrodynamic mounting of a rotor of a helico-axial pump according to the present invention. According to the invention, a hydrodynamic stabilization bushing with a stabilization surface is provided and designed in the pump housing in such a way that a stabilization gap is formed along the essentially axially extending stabilization surface, so that in the operating state a hydrodynamic stabilization layer is formed from a stabilization medium in the stabilization gap for hydrodynamic bearing of the rotor.

Im Folgenden wird die Erfindung an Hand der Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:

Fig. 1a
eine Kompressionsstufe einer aus dem Stand der Technik bekannten helico-axialen Pumpe;
Fig. 1b
eine Pumpe gemäss Fig. 1a teilweise im Schnitt;
Fig. 2
ein Ausführungsbeispiel einer erfindungsgemässen helico-axialen Pumpe in Back-to-Back Anordnung;
Fig. 3
eine Detaildarstellung der Back-to-Back Anordnung gemäss Fig. 2 im Betriebszustand;
Fig. 4
ein Ausführungsbeispiel mit einem zusätzlichen hydrodynamischen Stabilisierungselement in Form eines Deckrings;
Fig. 5a
ein Ausführungsbeispiel der Fig. 4 mit zusätzlicher Einspritzung am Deckring;
Fig. 5b
das Ausführungsbeispiel der Fig. 5a mit Einspritzung unter höherem Druck;
Fig. 6a
ein drittes Ausführungsbeispiel gemäss Fig. 4 mit Einspritzung am Stator;
Fig. 6b
ein anderes Ausführungsbeispiel gemäss Fig. 6a ohne Deckring am helico-axialen Laufrad;
Fig. 6c
ein weiteres Ausführungsbeispiel gemäss Fig. 6b mit Einspritzung aus dem Rotor;
Fig. 7a
ein viertes Ausführungsbeispiel gemäss Fig. 4 mit Stabilisierungshülse und Einspritzung;
Fig. 7b
ein anderes Ausführungsbeispiel gemäss Fig. 7a ohne Deckring am helico-axialen Laufrad.
The invention is explained in more detail below with reference to the drawing. It shows in a schematic representation:
Fig. 1a
a compression stage of a helico-axial pump known from the prior art;
Figure 1b
a pump according to Fig. 1a partly in section;
Fig. 2
an embodiment of a helico-axial pump according to the invention in a back-to-back arrangement;
Fig. 3
a detailed representation of the back-to-back arrangement according to Fig. 2 in operating condition;
Fig. 4
an embodiment with an additional hydrodynamic stabilization element in the form of a cover ring;
Figure 5a
an embodiment of the Fig. 4 with additional injection on the cover ring;
Figure 5b
the embodiment of Figure 5a with injection under higher pressure;
Figure 6a
a third embodiment according to Fig. 4 with injection on the stator;
Figure 6b
another embodiment according to Figure 6a without cover ring on the helico-axial impeller;
Figure 6c
another embodiment according to Figure 6b with injection from the rotor;
Figure 7a
a fourth embodiment according to Fig. 4 with stabilizing sleeve and injection;
Figure 7b
another embodiment according to Figure 7a without cover ring on the helico-axial impeller.

Der anhand der Fig. 1a und Fig. 1b beschriebene Stand der Technik wurde eingangs bereits eingehend beschrieben, so dass sich hier eine weitere Diskussion der Fig. 1a und Fig. 1b erübrigt.Based on the Figures 1a and 1b The prior art described has already been described in detail at the beginning, so that a further discussion of the Figures 1a and 1b superfluous.

An dieser Stelle sei im Übrigen darauf hingewiesen, dass zur besseren Unterscheidung der Erfindung vom Stand der Technik in den Zeichnungen diejenigen Bezugszeichen, die sich auf Merkmale bzw. Ausführungsformen aus dem Stand der Technik beziehen, mit einem Hochkomma versehen sind, während Bezugszeichen zu Merkmalen erfindungsgemässer Ausführungsbeispiele kein Hochkomma tragen.At this point, it should also be pointed out that, in order to better differentiate the invention from the prior art, those reference symbols in the drawings which relate to features or embodiments from the prior art are provided with an apostrophe, while reference symbols to features according to the invention Embodiments do not have an apostrophe.

Anhand der Fig. 2 soll ein erstes Ausführungsbeispiel einer erfindungsgemässen helico-axialen Pumpe in Back-to-Back Anordnung schematisch erläutert werden.Based on Fig. 2 a first embodiment of a helico-axial pump according to the invention in a back-to-back arrangement is to be explained schematically.

Die helico-axiale Pumpe 1 zur Förderung eines Mehrphasengemischs M gemäss Fig. 2 umfasst einen in einem Pumpengehäuse 6 um eine Längsachse A drehbar gelagerten Rotor 2 mit einem ersten Teilrotor 21 und einen zweiten Teilrotor 22. Der Rotor 2 wird von einem Antrieb 1000, der zu Beispiel ein elektrischer Motor 1000 ist angetrieben. Der erste Teilrotor 21 und der zweite Teilrotor 22 zur Kompression des Mehrphasengemischs M umfassen jeweils mehrere eine Kompressionsstufen K mit einem helico-axialen Laufrad 3 und einem Stator 4. Gemäss der vorliegenden Erfindung ist eine hydrodynamische Stabilisierungsbuchse 70 mit einer Stabilisierungsfläche 700 derart zwischen dem ersten Teilrotor 21 und dem zweiten Teilrotor 22 vorgesehen, dass vor der Stabilisierungsfläche 700 ein Stabilisierungsspalt 8 ausgebildet ist, so dass eine hydrodynamische Stabilisierungsschicht S aus einem Stabilisierungsmedium im Stabilisierungsspalt 8 im Betriebszustand der Pumpe 1 gebildet werden kann.The helico-axial pump 1 for pumping a multiphase mixture M according to Fig. 2 comprises a rotor 2 rotatably mounted in a pump housing 6 about a longitudinal axis A, with a first partial rotor 21 and a second partial rotor 22. The rotor 2 is driven by a drive 1000, which is an electric motor 1000, for example. The first partial rotor 21 and the second partial rotor 22 for compressing the multiphase mixture M each comprise several compression stages K with a helico-axial impeller 3 and a stator 4. According to the present invention, a hydrodynamic stabilizing bushing 70 with a stabilizing surface 700 is located between the first partial rotor 21 and the second partial rotor 22 are provided that a stabilization gap 8 is formed in front of the stabilization surface 700, so that a hydrodynamic stabilization layer S can be formed from a stabilization medium in the stabilization gap 8 when the pump 1 is in the operating state.

Die Fig. 3 zeigt eine Detaildarstellung der Back-to-Back Anordnung gemäss Fig. 2 im Betriebszustand der helico-axialen Pumpe 1. Wie deutlich zu erkennen ist, sind der erste Teilrotor 21 und der zweite Teilrotor 22 in einer Back-to-Back Anordnung auf einer gemeinsamen Pumpenwelle 5 im Pumpengehäuse 6 angeordnet. Der erste Teilrotor 21 und der zweite Teilrotor 22 sind dabei durch die Stabilisierungsbuchse 70 voneinander getrennt. Das Mehrphasengemisch M wird über eine Saugöffnung 101 einen ersten Ringraum R1 und einen zweiten Ringraum R2 einer ersten Eingangskompressionsstufe K1E des ersten Teilrotors 21 zugeführt und über eine erste Ausgangskompressionsstufe K1A aus dem ersten Teilrotor 21 in einen ersten Kreuzkanal KR1 aus dem ersten Teilrotor 21 wieder abgeführt. Aus dem ersten Kreuzkanal KR1 kommend wird das Mehrphasengemisch M dann über einen dritten Ringraum R3 einer zweiten Eingangskompressionsstufe K2E des zweiten Teilrotors 22 zugeführt und über eine zweite Ausgangskompressionsstufe K2A aus dem zweiten Teilrotor 22 über einen zweiten Kreuzkanal KR2, einen vierten Ringraum R4 und eine Drucköffnung 102 aus der helico-axialen Pumpe zur weiteren Verwendung wieder abgeführt wird. Um eine maximale Druckdifferenz ΔP über der Stabilisierungsbuchse 70 zu erhalten und damit die Ausbildung einer optimalen Stabilisierungsschicht S im Stabilisierungsspalt 8 zu gewährleisten, sind die erste Ausgangskompressionsstufe K1A und die zweite Ausgangskompressionsstufe K2A jeweils benachbart zur Stabilisierungsbuchse 70 angeordnet.The Fig. 3 shows a detailed representation of the back-to-back arrangement according to FIG Fig. 2 in the operating state of the helico-axial pump 1. As can be clearly seen, the first partial rotor 21 and the second partial rotor 22 are arranged in a back-to-back arrangement on a common pump shaft 5 in the pump housing 6. The first partial rotor 21 and the second partial rotor 22 are separated from one another by the stabilizing bushing 70. The multiphase mixture M is fed via a suction opening 101, a first annular space R1 and a second annular space R2 to a first input compression stage K1E of the first partial rotor 21 and discharged again via a first output compression stage K1A from the first partial rotor 21 into a first cross channel KR1 from the first partial rotor 21. Coming from the first cross channel KR1, the multiphase mixture M is then fed via a third annular space R3 to a second input compression stage K2E of the second partial rotor 22 and via a second output compression stage K2A from the second partial rotor 22 via a second cross channel KR2, a fourth annular space R4 and a pressure opening 102 is discharged from the helico-axial pump for further use. In order to obtain a maximum pressure difference ΔP across the stabilization bushing 70 and thus ensure the formation of an optimal stabilization layer S in the stabilization gap 8, the first output compression stage K1A and the second output compression stage K2A are each arranged adjacent to the stabilization bushing 70.

Beim Beispiel der Fig. 3 ist die Stabilisierungsbuchse 70 derart ausgestaltet und am Rotor 2 angeordnet, dass der Stabilisierungsspalt 8 zwischen der Stabilisierungsbuchse 70 und dem Pumpengehäuse 6 ausgebildet ist. Wie später noch völlig analog anhand der Fig. 6a bis 7b näher erläutert werden wird, kann die Stabilisierungsbuchse 70 alternativ oder sogar gleichzeitig auch derart ausgestaltet und am Rotor 2 angeordnet sein, dass der Stabilisierungsspalt 8 zwischen der Stabilisierungsbuchse 70 und dem Rotor 2 ausgebildet ist.In the example of Fig. 3 the stabilizing bushing 70 is designed and arranged on the rotor 2 in such a way that the stabilizing gap 8 is formed between the stabilizing bushing 70 and the pump housing 6. As later, completely analogous to the Figures 6a to 7b will be explained in more detail, the stabilizing bushing 70 can alternatively or even simultaneously be designed and arranged on the rotor 2 in such a way that the Stabilization gap 8 is formed between the stabilization bushing 70 and the rotor 2.

Anhand der Fig. 4, das einen Ausschnitt mit zwei benachbarten Kompressionsstufen K eines erfindungsgemässen Rotors 2 in schematischer Darstellung zeigt, soll ein Ausführungsbeispiel mit einem zusätzlichen hydrodynamischen Stabilisierungselement in Form eines Deckrings kurz diskutiert werden.Based on Fig. 4 , which shows a section with two adjacent compression stages K of a rotor 2 according to the invention in a schematic representation, an embodiment with an additional hydrodynamic stabilization element in the form of a cover ring will be briefly discussed.

Der Rotor 2 der helico-axiale Pumpe 1 ist im Pumpengehäuse 6 um eine Längsachse A drehbar gelagert. Der Rotor 2 umfasst dabei zur Kompression des Mehrphasengemischs M in an sich bekannter Weise die Kompressionsstufen K mit einem helico-axialen Laufrad 3 und einem Stator 4.The rotor 2 of the helico-axial pump 1 is rotatably mounted in the pump housing 6 about a longitudinal axis A. The rotor 2 comprises the compression stages K with a helico-axial impeller 3 and a stator 4 in order to compress the multiphase mixture M in a manner known per se.

Zusätzlich zu der in Fig. 4 nicht explizit gezeigten, erfindungsgemäßen Stabilisierungsbuchs 70 ein hydrodynamisches Stabilisierungselement 7, 71 mit einer Stabilisierungsfläche 700 derart im Pumpengehäuse 6 vorgesehen und derart ausgestaltet, dass vor der Stabilisierungsfläche 700 ein Stabilisierungsspalt 8 ausgebildet wird, so dass im Betriebszustand auch hier eine hydrodynamische Stabilisierungsschicht S aus dem Mehrphasengemisch M im Stabilisierungsspalt 8 ausgebildet wird. Im vorliegenden Beispiel der Fig. 4 ist das zusätzliche Stabilisierungselement 7 ein Deckring 71, der das helico-axiale Laufrad 3 in Umfangsrichtung umschliesst, so dass der Stabilisierungsspalt 8 zwischen dem Deckring 71 und dem Pumpengehäuse 6 ausgebildet werden kann.In addition to the in Fig. 4 Stabilization sleeve 70 according to the invention, not explicitly shown, has a hydrodynamic stabilization element 7, 71 with a stabilization surface 700 provided in the pump housing 6 and configured in such a way that a stabilization gap 8 is formed in front of the stabilization surface 700 so that in the operating state a hydrodynamic stabilization layer S from the multiphase mixture is also here M is formed in the stabilization gap 8. In the present example the Fig. 4 the additional stabilization element 7 is a cover ring 71 which surrounds the helico-axial impeller 3 in the circumferential direction, so that the stabilization gap 8 can be formed between the cover ring 71 and the pump housing 6.

Aus Gründen der Übersichtlichkeit sind dabei in allen folgenden Figuren jeweils nur eine oder zwei Kompressionsstufen K dargestellt. Auch wenn es im Prinzip möglich ist, dass eine helico-axiale Pumpe 1 nur eine einzige Kompressionsstufe K umfasst, wird eine erfindungsgemässe helico-axiale Pumpe 1, d.h. der erste Teilrotor 21 und der zweite Teilrotor 22 in der Praxis eine Vielzahl von Kompressionsstufen K umfassen, zum Beispiel bis zu sechzehn Kompressionsstufen K oder sogar noch deutlich mehr Kompressionsstufen K, die bevorzugt hintereinander in Serie entlang der Längsachse A angeordnet sind, so dass in an sich bekannter Weise eine ausreichende Gesamtkompression des Mehrphasengemischs M erzeugt werden kann und das so komprimierte Mehrphasengemisch M dann zum Beispiel mit einer nach geschalteten Druckpumpe auf ein höheres Niveau und / oder über weite Strecken zur Weiterverarbeitung gefördert werden kann. Beim Ausführungsbeispiel gemäss Fig. 4 wir die Stabilisierungsschicht S aus dem Stabilisierungsmedium M im Stabilisierungsspalt 8 dadurch gebildet, dass das Mehrphasengemisch M, wie durch den Doppelpfeil M symbolisch gezeigt, darstellungsgemäss von links der darstellungsgemäss linken Kompressionsstufe K zugeführt und von dieser in an sich bekannter Weise komprimiert wird, was selbstverständlich mit einer entsprechenden Druckerhöhung einhergeht, die sich auch als Druckdifferenz ΔP über das helico-axiale Laufrad 3 Kompressionsstufe K etabliert.For the sake of clarity, only one or two compression stages K are shown in each of the following figures. Even if it is possible in principle that a helico-axial pump 1 comprises only a single compression stage K, a helico-axial pump 1 according to the invention, ie the first partial rotor 21 and the second partial rotor 22, will in practice comprise a multiplicity of compression stages K , for example up to sixteen compression stages K or even significantly more compression stages K, which are preferably arranged one behind the other in series along the longitudinal axis A, so that a sufficient overall compression of the multiphase mixture M can be generated in a manner known per se, and the multiphase mixture M compressed in this way, for example can be promoted with a downstream pressure pump to a higher level and / or over long distances for further processing. In the embodiment according to Fig. 4 We formed the stabilization layer S from the stabilization medium M in the stabilization gap 8 in that the multiphase mixture M, as shown symbolically by the double arrow M, is fed from the left to the left compression stage K as shown and is compressed by this in a known manner, which of course also is accompanied by a corresponding increase in pressure, which is also established as the pressure difference ΔP across the helico-axial impeller 3 compression stage K.

Aufgrund der Druckdifferenz ΔP wird, wie durch die kleinen gebogenen Pfeile M angedeutet, vom darstellungsgemäss rechts gelegen höheren Druckniveau Mehrphasengemisch M in den Stabilisierungsspalt 8 gepresst, wodurch sich automatisch die hydrodynamische Stabilisierungsschicht S zwischen der Stabilisierungsfläche 700 des Deckrings 7 und dem Pumpengehäuse 6 ausbildet, wodurch die Schwingen des Rotors 2 bzw. der Teilrotoren 21, 22 gedämpft werden und der Lauf des Rotors 2 stabilisiert wird.Due to the pressure difference ΔP, as indicated by the small curved arrows M, from the higher pressure level on the right in the illustration, the multiphase mixture M is pressed into the stabilization gap 8, whereby the hydrodynamic stabilization layer S is automatically formed between the stabilization surface 700 of the cover ring 7 and the pump housing 6, whereby the oscillations of the rotor 2 or the partial rotors 21, 22 are damped and the running of the rotor 2 is stabilized.

Es versteht sich dabei, dass bei einem Rotor 2 der Deckring 71 entweder an allen helico-axialen Laufrädern 3 des Rotors ausgebildet sein kann, oder nur an bestimmten ausgewählten Helico-axialen Laufrädern 3. Im übrigen kann je nach Anwendung bzw. je nach den speziellen Erfordernissen der Deckring 71 ein helico-axiales Laufrad 3 vollständig abdecken oder einen eine bestimmten vorgebbaren Bereich des Umfangs des helico-axialen Laufrads 3.It goes without saying that in a rotor 2 the cover ring 71 can either be formed on all helico-axial impellers 3 of the rotor, or only on certain selected helico-axial impellers 3. Otherwise, depending on the application or depending on the special Requirements of the cover ring 71 completely cover a helico-axial impeller 3 or a certain predeterminable area of the circumference of the helico-axial impeller 3.

Anhand der Fig. 5a ist ein zweites Ausführungsbeispiel gemäss Fig. 4 schematisch dargestellt, das sich von dem der Fig. 4 dadurch unterscheidet, dass eine Einspritzung des Stabilisierungsmediums M am Deckring 71 des helico-axialen Laufrads 3 vorgesehen ist. Hier wird zusätzlich Stabilisierungsmedium M durch den Zuführkanal 400, 402 in den Stabilisierungsspalt 8 zur Bildung der Stabilisierungsschicht S eingebracht. Es versteht sich, dass auch sich hier wie bereits bei der Diskussion der Fig. 4 beschrieben, eine Druckdifferenz ΔP über dem helico-axialen Laufrad 3 im Betriebszustand einstellen wird, wodurch die Stabilisierungsschicht S bereits teilweise gebildet wird. Durch Verwendung der Einspritzung von Stabilisierungsmedium M unter erhöhtem Druck durch den Zuführkanal 400, 402, kann jedoch eine noch bessere Stabilisierungsschicht S im Stabilisierungsspalt 8 aufgebaut werden, so dass auch sehr lange Rotoren 2 bzw. sehr stark belastete Rotor 2 noch ausreichend gedämpft und sicher gelagert werden können.Based on Figure 5a is a second embodiment according to Fig. 4 shown schematically, which differs from that of the Fig. 4 differs in that an injection of the stabilization medium M is provided on the cover ring 71 of the helico-axial impeller 3. Here, stabilization medium M is additionally introduced through the feed channel 400, 402 into the stabilization gap 8 to form the stabilization layer S. It goes without saying that here too, as in the discussion of the Fig. 4 described, a pressure difference .DELTA.P is set over the helico-axial impeller 3 in the operating state, whereby the stabilization layer S is already partially formed. By using the injection of stabilization medium M under increased pressure through the supply channel 400, 402, however, an even better stabilization layer S can be built up in the stabilization gap 8, so that even very long rotors 2 or very heavily loaded rotors 2 are still sufficiently damped and safely stored can be.

Im Prinzip kann eine zusätzliche Einspritzung von Stabilisierungsmedium auch in den Stabilisierungsspalt S der Stabilisierungsbuchse 70 erfolgen.In principle, stabilization medium can also be injected into the stabilization gap S of the stabilization bushing 70.

Das Ausführungsbeispiel der Fig. 5b unterscheidet sich dabei von demjenigen der Fig. 5a nur dadurch, dass die Einspritzung des Stabilisierungsmediums M am Deckring 71 des helico-axialen Laufrads 3 unter einem deutlich höheren Druck erfolgt, als beim Beispiel der Fig. 5a. Das ist deutlich daran zu erkennen, dass das Stabilisierungsmedium M bei Fig. 5b darstellungsgemäss sowohl nach links, also in Richtung zu einer Kompressionsstufe K mit einem niedrigeren Druckniveau als auch nach rechts, also auch in Richtung einer Kompressionsstufe mit einem höheren Druckniveau aus dem Stabilisierungsspalt 8 herausgepresst wird.The embodiment of Figure 5b differs from that of the Figure 5a only because the stabilization medium M is injected on the cover ring 71 of the helico-axial impeller 3 under a significantly higher pressure than in the example of FIG Figure 5a . This can be clearly seen from the fact that the stabilization medium M at Figure 5b According to the illustration, it is pressed out of the stabilization gap 8 both to the left, ie in the direction of a compression stage K with a lower pressure level, and to the right, ie also in the direction of a compression stage with a higher pressure level.

Dagegen ist beim Beispiel der Fig. 5a der Druck mit dem das Stabilisierungsmedium M durch den Zuführkanal 400, 402 in den Stabilisierungsspalt 8 zur Bildung der Stabilisierungsschicht S eingebracht wird deutlich kleiner als in Fig. 3a. Das ist klar daran zu erkennen, dass das Stabilisierungsmedium M bei Fig. 3 darstellungsgemäss von rechts, also von einer Kompressionsstufe mit einem höheren Druckniveau in den Stabilisierungsspalt 8 eintreten kann.In contrast, the example is Figure 5a the pressure with which the stabilization medium M is introduced through the supply channel 400, 402 into the stabilization gap 8 to form the stabilization layer S. becomes significantly smaller than in Fig. 3a . This can be clearly seen from the fact that the stabilization medium M at Fig. 3 According to the illustration, it can enter the stabilization gap 8 from the right, ie from a compression stage with a higher pressure level.

Das Stabilisierungsmedium M kann dabei wie bereits beschrieben von einem externen Druckspeicher oder einer externen Pumpe zur Verfügung gestellt werden; wird jedoch bevorzugt von einer anderen Kompressionsstufe K, die ein höheres Druckniveau hat, zur Verfügung gestellt.As already described, the stabilization medium M can be made available by an external pressure accumulator or an external pump; however, it is preferably made available by another compression stage K, which has a higher pressure level.

Anhand der schematischen Fig. 6a wird ein drittes Ausführungsbeispiel gemäss Fig. 4 mit einer Einspritzung des Stabilisierungsmediums am Stator 4 dargestellt. Hier ist am Stator 4, zum Beispiel an einer Schaufel des Stators 4 ein Zuführkanal 400, 401 in Form einer Bohrung vorgesehen oder aber es kann auch ein separater Zuführkanal 400, 401 vorgesehen werden, der sich wie in Fig. 6a dargestellt, durch das Pumpengehäuse 6 bis zum Stabilisierungsspalt 8 erstreckt, so dass zwischen dem Rotor 2 und der Stabilisierungsfläche 700 des als Stabilisierungselement 73 ausgebildeten Stators 4 eine Stabilisierungsschicht S aus Stabilisierungsmedium M, das im speziellen Beispiel der Fig. 6a Mehrphasengemisch M von einer anderen Kompressionsstufe ist, ausgebildet werden kann.Using the schematic Figure 6a is a third embodiment according to Fig. 4 shown with an injection of the stabilization medium on the stator 4. Here, a feed channel 400, 401 in the form of a bore is provided on the stator 4, for example on a blade of the stator 4, or a separate feed channel 400, 401 can also be provided, which is as in Figure 6a shown, extends through the pump housing 6 to the stabilization gap 8, so that between the rotor 2 and the stabilization surface 700 of the stator 4 formed as a stabilization element 73, a stabilization layer S made of stabilization medium M, which in the specific example of Figure 6a Multiphase mixture M is from a different compression stage, can be formed.

In Fig. 6b ist ein anderes Ausführungsbeispiel gemäss Fig. 6a dargestellt, das sich von dem der Fig. 6a nur dadurch unterscheidet, dass am helico-axialen Laufrad 3 kein Deckring 71 vorgesehen ist. Eine solche vereinfachte Konstruktion kann zum Beispiel immer dann erfolgreich eingesetzt werden, wenn die Stabilisierung des Rotors 2 durch die Stabilisierungsschicht S am Stator 4 bereits ausreicht.In Figure 6b is another embodiment according to Figure 6a shown, which differs from that of the Figure 6a differs only in that no cover ring 71 is provided on the helico-axial impeller 3. Such a simplified construction can, for example, always be used successfully when the stabilization of the rotor 2 by the stabilization layer S on the stator 4 is already sufficient.

Fig. 6c zeigt eine weitere Variante des Ausführungsbeispiels gemäss Fig. 6b. Hier erfolgt die Zuführung des Stabilisierungsmediums M nicht über einen Zuführkanal 400, 401 durch das Pumpengehäuse 6, sondern die Einspritzung des Stabilisierungsmediums M erfolgt durch einen Zufuhrkanal 400, 403, der im Rotor 2 ausgebildet ist. Dazu kann der Rotor 2 zum Beispiel eine hohle Rotorwelle haben oder es können in der Rotorwelle geeignete Kanäle oder Leitungen ausgebildet sein, durch die das Stabilisierungsmedium M, zum Beispiel Mehrphasengemisch M aus einer Kompressionsstufe K mit einem höheren Druckniveau zuführbar ist. Figure 6c shows a further variant of the embodiment according to Figure 6b . Here, the stabilization medium M is not supplied via a supply channel 400, 401 through the pump housing 6, but rather by injection of the stabilization medium M takes place through a supply channel 400, 403 which is formed in the rotor 2. For this purpose, the rotor 2 can, for example, have a hollow rotor shaft or suitable channels or lines can be formed in the rotor shaft through which the stabilization medium M, for example multiphase mixture M, can be fed from a compression stage K at a higher pressure level.

Die Fig. 7a zeigt dagegen ein viertes, anderes Ausführungsbeispiel gemäss Fig. 4, bei welchem zwischen zwei benachbarten Kompressionsstufen K eine zusätzliche Stabilisierungshülse 72 vorgesehen ist, wobei Einspritzung des Stabilisierungsmediums M in den Stabilisierungsspalt 8 durch einen durch das Pumpengehäuse 6 geführten Zuführkanal 400, 402 erfolgt. Eine solche Anordnung ist besonders geeignet, wenn eine sehr hohe Stabilität bzw. Dämpfung des Rotors 2 erreicht werden muss. Dabei kann die Einspritzung in den Stabilisierungsspalt 8 im Prinzip auch analog zu Fig. 6c durch die Rotorwelle des Rotors 2 erfolgen. Ausserdem ist es wie schematisch in Fig. 7b gezeigt natürlich auch möglich, dass an allen oder verschiedenen helico-axialen Laufrädern 3 auf den Deckring verzichtet werden kann.The Figure 7a shows a fourth, different embodiment according to FIG Fig. 4 , in which an additional stabilization sleeve 72 is provided between two adjacent compression stages K, the stabilization medium M being injected into the stabilization gap 8 through a feed channel 400, 402 guided through the pump housing 6. Such an arrangement is particularly suitable when a very high stability or damping of the rotor 2 has to be achieved. In this case, the injection into the stabilization gap 8 can in principle also be analogous to Figure 6c take place through the rotor shaft of the rotor 2. It is also as shown in Figure 7b Of course, it is also possible, as shown, that the cover ring can be dispensed with on all or on various helico-axial impellers 3.

Dabei ist es in speziellen Fällen selbstverständlich auch möglich, dass alternativ oder zusätzlich zu der Stabilisierungshülse 72 zwischen jeweils zwei benachbarten Kompressionsstufen K, eine Stabilisierungshülse 72 auch innerhalb einer Kompressionsstufe K zwischen dem helico-axialen Laufrad 3 und dem Stator 4 vorgesehen sein kann. Dabei versteht der Fachmann sofort, dass nicht an jeder bzw. nicht zwischen jedem Paar von Kompressionsstufen K eine Stabilisierungshülse 72 vorgesehen sein muss.In special cases, it is of course also possible that, as an alternative or in addition to the stabilizing sleeve 72 between two adjacent compression stages K, a stabilizing sleeve 72 can also be provided within a compression stage K between the helico-axial impeller 3 and the stator 4. The person skilled in the art immediately understands that a stabilizing sleeve 72 does not have to be provided at each or between each pair of compression stages K.

Es versteht sich, dass alle oben beschriebenen Ausführungsbeispiele der Erfindung nur beispielhaft bzw. exemplarisch zu verstehen sind und die Erfindung ausschließlich durch die nachfolgenden Ansprüche bestimmt ist.It goes without saying that all of the above-described exemplary embodiments of the invention are only to be understood as exemplary or exemplary and the invention is determined exclusively by the following claims.

Claims (10)

  1. A helico-axial pump for conveying a multiphase mixture (M), which helico-axial pump includes a rotor (2) rotatably journalled about a longitudinal axis (A) in a pump housing (6) and having a first part rotor (21) and a second part rotor (22), wherein the first part rotor (21) and the second part rotor (22) includes a compression stage (K, K1E, K1A, K2E, K2A) having a helico-axial impeller (3) and a stator (4) for the compression of the multiphase mixture (M), wherein a hydrodynamic stabilization bush (70) having a stabilization surface (700) is provided and arranged between the first part rotor (21) and the second part rotor (22) such that a stabilization gap (8) is formed along the substantially axially extending stabilization surface (700) so that in the operating state a hydrodynamic stabilization layer (S) can be formed from a stabilization medium in the stabilization gap (8), wherein a first output compression stage (K1A) of the first part rotor (21) and a second output compression stage (K2A) of the second part rotor (22) are each arranged adjacent to the stabilization bush (70), wherein the first part rotor (21) and the second part rotor (22) are provided in a back-to-back arrangement in the pump housing (6), characterized in that the multiphase mixture (M) can be supplied via an intake opening (101) to a first annular space (R1) and a second annular space (R2) of a first input compression stage (K1E) of the first part rotor (21) and can be discharged again via a first output compression stage (K1A) from the first part rotor (21) into a first cross-passage (KR1), and the multiphase mixture (M) can be supplied from the first cross-passage (KR1) via a third annular space (R3) to a second input compression stage (K2E) of the second part rotor (22) and can be discharged again via a second output compression stage (K2A) from the second part rotor (22) via a second cross-passage (KR2), a fourth annular space (R4), and a pressure opening (102) from the helico-axial pump.
  2. A helico-axial pump in accordance with one of the claims 1, wherein the stabilization bush (70) is provided and arranged at the rotor (2) such that the stabilization gap (8) is formed between the stabilization bush (70) and the pump housing (6); and/or wherein the stabilization bush (70) is provided and arranged at the rotor (2) such that the stabilization gap (8) is formed between the stabilization bush (70) and the rotor (2).
  3. A helico-axial pump in accordance with any one of the preceding claims, wherein a hydrodynamic stabilization element (7, 71, 72, 73) having a stabilization surface (700) is provided and is arranged such that the stabilization gap (8) is formed along the substantially axially extending stabilization surface (700) so that in the operating state a hydrodynamic stabilization layer (S) can be formed from the stabilization medium in the stabilization gap (8).
  4. A helico-axial pump in accordance with claim 3, wherein the hydrodynamic stabilization element (7, 71, 72, 73) is a cover ring (71) which surrounds the helico-axial impeller (3) in the peripheral direction so that the stabilization gap (8) is formed between the cover ring (71) and the pump housing (6); and/or wherein the hydrodynamic stabilization element (7, 71, 72, 73) is a stabilization sleeve (72) so that the stabilization gap (8) is formed between the stabilization sleeve (72) and the pump housing (6).
  5. A helico-axial pump in accordance with any one of the preceding claims, wherein a supply passage (400, 401, 402, 403) is provided which is provided and arranged so that a pre-definable quantity of stabilization medium (M), in particular multiphase mixture (M), is supplyable through the supply passage (400, 401, 402, 403) to the stabilization gap (8) for the formation of the hydrodynamic stabilization layer (S) in the stabilization gap (8), wherein the supply passage (400, 401, 402, 403) is preferably provided in a gap ring (9).
  6. A helico-axial pump in accordance with any one of the claims 3 to 5, wherein the stabilization element (7, 71, 72, 73) is the stator (4) having a supply passage (401) which is provided and arranged at the stator (4) such that a pre-definable quantity of stabilization medium (M) can be supplied through the supply passage (401) to the stabilization gap (8) for the formation of the hydrodynamic stabilization layer (S) in the stabilization gap (8).
  7. A helico-axial pump in accordance with any one of the preceding claims, wherein a supply passage (402) is provided and arranged at the pump housing such that a pre-definable quantity of stabilization medium (M) can be supplied through the supply passage (402) to the stabilization gap (8) for the formation of the hydrodynamic stabilization layer (S) in the stabilization gap (8).
  8. A helico-axial pump in accordance with any one of the preceding claims, wherein a supply passage (403) is provided and arranged at the rotor (2) such that a pre-definable quantity of stabilization medium (M) can be supplied through the supply passage (403) to the stabilization gap (8) for the formation of the hydrodynamic stabilization layer (S) in the stabilization gap (8).
  9. A helico-axial pump in accordance with any one of the claims 5 to 8, wherein the stabilization medium (M) is supplied to the supply passage (400, 401, 402, 403) from a compression stage (K) at which a higher-pressure level is present.
  10. A method for the hydrodynamic journalling of a rotor (2) a helico-axial pump (1) in accordance with any one of the claims 1 to 9, characterized in that the hydrodynamic stabilization bush (70) having the stabilization surface (700) is provided and arranged in the pump housing (6) such that a stabilization gap (8) is formed along the substantially axially extending stabilization surface (700) so that the hydrodynamic stabilization layer (S) is formed from the stabilization medium in the stabilization gap (8) for the hydrodynamic journalling of the rotor (2).
EP11161758.5A 2010-05-11 2011-04-08 Helico-axial pump and method for bearing a rotor in a helico-axial pump Active EP2386767B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11161758.5A EP2386767B1 (en) 2010-05-11 2011-04-08 Helico-axial pump and method for bearing a rotor in a helico-axial pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10162520 2010-05-11
EP11161758.5A EP2386767B1 (en) 2010-05-11 2011-04-08 Helico-axial pump and method for bearing a rotor in a helico-axial pump

Publications (3)

Publication Number Publication Date
EP2386767A2 EP2386767A2 (en) 2011-11-16
EP2386767A3 EP2386767A3 (en) 2017-11-01
EP2386767B1 true EP2386767B1 (en) 2021-01-06

Family

ID=42830261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11161758.5A Active EP2386767B1 (en) 2010-05-11 2011-04-08 Helico-axial pump and method for bearing a rotor in a helico-axial pump

Country Status (3)

Country Link
US (1) US9234529B2 (en)
EP (1) EP2386767B1 (en)
BR (1) BRPI1102495B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167652A1 (en) * 2013-12-18 2015-06-18 General Electric Company Submersible pumping system and method
RU2674479C2 (en) * 2014-02-24 2018-12-11 ДжиИ ОЙЛ ЭНД ГЭС ЭСП, ИНК. Downhole wet gas compressor processor
US20190277302A1 (en) * 2018-03-07 2019-09-12 Onesubsea Ip Uk Limited System and methodology to facilitate pumping of fluid
US20200158135A1 (en) 2018-11-21 2020-05-21 Sulzer Management Ag Multiphase pump
US11326607B2 (en) 2019-02-05 2022-05-10 Saudi Arabian Oil Company Balancing axial thrust in submersible well pumps
US10844701B2 (en) 2019-02-05 2020-11-24 Saudi Arabian Oil Company Balancing axial thrust in submersible well pumps
EP3812595A1 (en) * 2019-10-25 2021-04-28 Sulzer Management AG Multiphase pump with bearing squeeze film damper
EP3913226A1 (en) 2020-05-18 2021-11-24 Sulzer Management AG Multiphase pump
US11371326B2 (en) 2020-06-01 2022-06-28 Saudi Arabian Oil Company Downhole pump with switched reluctance motor
US11499563B2 (en) 2020-08-24 2022-11-15 Saudi Arabian Oil Company Self-balancing thrust disk
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11591899B2 (en) 2021-04-05 2023-02-28 Saudi Arabian Oil Company Wellbore density meter using a rotor and diffuser
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005483A1 (en) * 1997-11-19 2001-06-28 Yves Charron Device and process intended for two-phase compression of a gas soluble in a solvent

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1561454A (en) 1976-12-20 1980-02-20 Inst Francais Du Petrole Devices for pumping a fluid comprising at least a liquid
US4606700A (en) * 1979-10-15 1986-08-19 Vsesojuzny Naucho-Issledovatelsky Institut Burovoi Tekhniki Turbodrill multistage turbine
DE4036915A1 (en) 1990-11-20 1992-05-21 Chiron Werke Gmbh MACHINE TOOL AND METHOD FOR OPENING AND CLOSING A GRIPPER
FR2670539B1 (en) * 1990-12-14 1994-09-02 Technicatome MULTI-STAGE PUMP PARTICULARLY FOR PUMPING A MULTIPHASIC FLUID.
US5445494A (en) * 1993-11-08 1995-08-29 Bw/Ip International, Inc. Multi-stage centrifugal pump with canned magnetic bearing
FR2748533B1 (en) 1996-05-07 1999-07-23 Inst Francais Du Petrole POLYPHASIC AND CENTRIFUGAL PUMPING SYSTEM
GB2312929B (en) * 1996-05-07 2000-08-23 Inst Francais Du Petrole Axial-flow and centrifugal pump system
US5961301A (en) * 1997-07-31 1999-10-05 Ansimag Incorporated Magnetic-drive assembly for a multistage centrifugal pump
GB9724899D0 (en) * 1997-11-26 1998-01-28 Triangle Engineering Consultan Downhole pump/motor assembly
CA2299606C (en) * 2000-02-25 2007-08-21 Cn & Lt Consulting Ltd. Bearing assembly for wellbore drilling
US6547514B2 (en) * 2001-06-08 2003-04-15 Schlumberger Technology Corporation Technique for producing a high gas-to-liquid ratio fluid
EP1452688A1 (en) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Steam turbine rotor, method and use of actively cooling such a rotor
US20040258518A1 (en) * 2003-06-18 2004-12-23 Steven Buchanan Self-lubricating ceramic downhole bearings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005483A1 (en) * 1997-11-19 2001-06-28 Yves Charron Device and process intended for two-phase compression of a gas soluble in a solvent

Also Published As

Publication number Publication date
EP2386767A3 (en) 2017-11-01
BRPI1102495B1 (en) 2021-07-20
US20110280741A1 (en) 2011-11-17
BRPI1102495A2 (en) 2012-11-06
EP2386767A2 (en) 2011-11-16
US9234529B2 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
EP2386767B1 (en) Helico-axial pump and method for bearing a rotor in a helico-axial pump
EP2386766B1 (en) Helico-axial pump, rotor for same, method for hydrodynamic bearing of a rotor of a helicon-axial pump and a hybrid pump with a rotor for a helico-axial pump
DE102013102030B3 (en) Screw Pump
EP3187736B1 (en) Multi-stage horizontal centrifugal pump for pumping a fluid and method for repairing the same
DE2514723B2 (en) Hydrodynamic bearing
EP2006544B1 (en) Piston pump with variable eccentricity
WO2014122016A1 (en) Turbomachine, and flow conducting element for a turbomachine
EP2626563B1 (en) Pump, recirculating device for a pump and rotor shaft for a pump
DE2653630A1 (en) DEVICE FOR PUMPING FLUIDS
DE102010052892A1 (en) Bearing arrangement for a shaft of a turbine wheel
DE102012112618B3 (en) Multiple pump
EP2933497A2 (en) Vacuum pump
EP2667034B1 (en) Multistage pump
DE102010001538A1 (en) Gas laser with radial and axial gas bearings
EP2148094A2 (en) Vacuum pump
DE10208574A1 (en) Radial piston pump
EP2927500B1 (en) System and method for supplying a bearing assembly
WO2003048564A1 (en) Radial piston pump having force-feed lubrication
WO2016116334A1 (en) Process pump having a crank drive
DE3734926C2 (en)
WO2014044416A1 (en) Multi-stage hydraulic engine
DE212021000498U1 (en) vane pump
DE2901638C3 (en)
DE102021208481A1 (en) Feed pump and motor vehicle with such a feed pump
CH349492A (en) pump

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER MANAGEMENT AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 31/00 20060101ALI20170925BHEP

Ipc: F04D 29/66 20060101AFI20170925BHEP

Ipc: F04D 29/047 20060101ALI20170925BHEP

Ipc: F04D 29/057 20060101ALI20170925BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180502

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190624

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201015

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1352673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011017031

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210106

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210406

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011017031

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

26N No opposition filed

Effective date: 20211007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210408

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1352673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230421

Year of fee payment: 13

Ref country code: FR

Payment date: 20230420

Year of fee payment: 13

Ref country code: DE

Payment date: 20230420

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 13