EP2386458B1 - Signal lumineux pour systèmes ferroviares - Google Patents

Signal lumineux pour systèmes ferroviares Download PDF

Info

Publication number
EP2386458B1
EP2386458B1 EP20100425140 EP10425140A EP2386458B1 EP 2386458 B1 EP2386458 B1 EP 2386458B1 EP 20100425140 EP20100425140 EP 20100425140 EP 10425140 A EP10425140 A EP 10425140A EP 2386458 B1 EP2386458 B1 EP 2386458B1
Authority
EP
European Patent Office
Prior art keywords
control
light
power
emitting unit
signal generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20100425140
Other languages
German (de)
English (en)
Other versions
EP2386458A1 (fr
Inventor
Silvano Cavalli
Eddi Spisni
Sara Motta
Vittorio Bachetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transport SA
Original Assignee
Alstom Transport SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport SA filed Critical Alstom Transport SA
Priority to EP20100425140 priority Critical patent/EP2386458B1/fr
Publication of EP2386458A1 publication Critical patent/EP2386458A1/fr
Application granted granted Critical
Publication of EP2386458B1 publication Critical patent/EP2386458B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/12Visible signals
    • B61L5/18Light signals; Mechanisms associated therewith, e.g. blinders
    • B61L5/1809Daylight signals
    • B61L5/1881Wiring diagrams for power supply, control or testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2207/00Features of light signals
    • B61L2207/02Features of light signals using light-emitting diodes [LEDs]

Definitions

  • the present invention relates to a light signaling device for railway systems or the like, comprising:
  • Light signaling devices for railway systems or the like of the above mentioned type are known and are generally used when new generation lamps of the so-called LED (Light Emitting Diode) type are used instead of traditional incandescent light radiation sources.
  • LED Light Emitting Diode
  • the means for checking the absorbed current are generally placed in a remote central control unit known in the field as cab.
  • the central control unit also comprises the means for generating a control signal and the trigger signal for actuating the light signal generating/emitting unit, which is generally placed at a predetermined distance from the remote central unit along the railway line.
  • lamp operation is checked by equipping the remote control cabins with means for measuring the current absorbed by the lamp power circuit.
  • these are amperometric relays which switch between contact closing and opening states, according to the current intensity in the power circuit of the light signal generating/emitting unit, which contact opening and closing states are equivalent to respectively enabling or disabling of additional units for setting the railway network in safety mode, whenever the light signaling devices fails to operate.
  • any current intensity drop in the power circuit directly causes failed operation of the lamp in terms of light radiation emission, i.e. causes the lamp to fail to turn on or be poorly turned on.
  • LED lamps have been increasingly used instead of incandescent lamps. This type of light radiation sources have several advantages as compared with incandescent lamps, but what has been described above for incandescent lamps does not apply to this type of lamps. Due to the particular construction features of LED lamps, a LED lamp may absorb current, which means that the current circulating therein may be sufficient to simulate proper operation, even when no light radiation is actually emitted.
  • the typical amperometric check as described above i.e. measurement of the intensity of current circulating in the power circuit of the light source is not sufficient to safely define an operating condition of the LED lamp in terms of light radiation emission.
  • control and power electronics are provided for controlling and powering the LED lamp, which electronics are combined with means for measuring the light radiation emitted by the LED lamp and for generating a corresponding electric signal, the latter being processed by a checking section and actually compared with a reference signal corresponding to a predetermined light intensity threshold, which is the minimum limit value for the intensity of the emitted radiation.
  • the power circuit or the control and power electronics are equipped with means for changing the current absorbed by the light signal generating/emitting unit, which means are controlled by said control and power electronics, to simulate current absorption by an incandescent lamp as a function of operation assessments on the light signal generating/emitting unit, which are obtained by measuring the intensity of the light radiation emitted by the LED lamp.
  • the control electronics control the means for changing the intensity of current absorbed by the light signal generating/emitting unit so that the current intensity absorbed in the power circuit and detected by the amperometric means in said remote central control unit is lower than a predetermined threshold value.
  • threshold value corresponds to the minimum current value acceptable for the light signal generating/emitting unit to be deemed as properly operating, in terms of emitted light radiation.
  • control means generally located in the remote cabin, which generate the signal for controlling the light signaling device to be powered and turned on, generate a check signal to indicate failed or wrong operation of the light signaling device, which is transmitted to the interlocking unit, to start safety operations that set the railway line in response to the established danger state.
  • the type of action to be made to set the railway line to safety mode depends on the particular situation and is accurately coded in the operating rules for the railway system and the railway network, to minimize or eliminate the danger of accidents.
  • any functional check substantially based on detection of actual emission of a light radiation by the lamp causes the generation of a check signal whose current intensity corresponds to the detected light radiation emission state and simulates the current intensities typically absorbed during operation of incandescent lamps.
  • the current intensity that simulates the current that a properly operating incandescent lamp would have absorbed which is used to power the amperometric check means located in the remote control and power cabin of the light signaling device, is set by inserting a ballast resistor in the power circuit, in parallel connection with the load consisting of the LED lamp and the power circuit thereof, which resistor causes absorption of the current required to simulate the proper operation state of the incandescent lamp in the power circuit.
  • ballast resistor is disconnected when light emission is insufficient, i.e. below the threshold that is considered as the lower limit for proper operation of the LED lamp.
  • ballast resistor connected in parallel with the load of the LED lamp in the power circuit is no sufficient guarantee of safe detection of the LED lamp's functional status. Any failure in the electronic control and power circuit of the LED that generates conditions electrically comparable to those of the insertion of a ballast resistor in parallel with the LED lamp load may simulate the insertion of the ballast resistor even when the operating conditions of the lamp would not allow that. Such condition often occurs due to the failure of only one of the components of the control and power circuit of the LED lamp, whereby this prior art solution does not meet the SIL 4 safety requirements.
  • the object of the invention is to provide a light signaling device as described hereinbefore, that allows the use of LED-type lamps or light radiation emitting sources in combination with the use of both traditional existing remote light signal feeding units and amperometric-type checking units for checking the operating conditions of said light signal, and also provides the high operational safety levels required in this type of light signaling systems for railway traffic control.
  • the invention has further object that will appear more clearly hereinafter.
  • the invention achieves the above objects by providing a device as described hereinbefore, in which:
  • the provision of the limiting resistor in series between the control and power signal feeding line and the input of the light signal generating/emitting unit obviates the drawback that, in case of malfunctioning of any component of said light signal generating/emitting unit, an absorption current for said unit is generated, which exceeds the current threshold value whereby, although the light signal generating/emitting unit operates improperly, proper operation is simulated, and the feedback to the control unit is a check signal indicating a proper operation status.
  • the full power of the power control signal will be available to the light signal generating/emitting unit, and the checking step by absorption current simulation will be started under the control of the control and power unit, essentially based on the measurement of the light radiation actually emitted by the light radiation emitting source, i.e. the LED lamp.
  • the power accumulation and temporary power supply means of the control and power unit consist of capacitive means having such a size as to accumulate and release a signal whose voltage and power are sufficient to power for a predetermined time the control electronics and the switch means for switching the state of alternate series-connection of the by-pass line and said limiting resistor to the input of the light signal generating/emitting unit, which means, as start-up is completed, are controlled by the control electronics according to the correctness of the signal of detection of the light emission generated by the corresponding source.
  • Said predetermined time for power supply to the control electronics and the switch means for switching the state of alternate series-connection of the by-pass line and said limiting resistor to the input of the light signal generating/emitting unit is equal to or longer than the time required for steady-state actuation of the control and checking electronics and for the switch means to assume the switch state in which the input of the light signal generating/emitting unit is directly connected by the by-pass to the power line.
  • second power accumulation and temporary power supply units are provided in the control and power unit, which have such a size that temporary power supply occurs during a second predetermined time, substantially corresponding to the time during which the light source is off during the flashing cycle.
  • second means for changing the absorption current of the light signal generating/emitting unit consist of a ballast resistor adapted to be inserted and disconnected in the power circuit in parallel with the load of the light signal generating/emitting unit, by switch means controlled by the control and power electronics.
  • ballast resistor in parallel with the load of the light radiation emitting source occurs upon control for bypassing the limiting resistor in series with the input of the signal generating/emitting unit.
  • said unit has means for irreversibly preventing power supply to said light signal generating/emitting unit and particularly the control electronics, which means can be actuated by the control electronics itself.
  • Said means consist of a fuse in the power line of the control and power electronics and a switch for connecting said fuse upon short circuit of the control and power signal to generate a current of such level as to burn said fuse out.
  • Said switch means are designed to be controlled by the control and power electronics according to the input signal to said control and power electronics, which is provided at least by the optoelectronic sensor that measures the light radiation actually emitted by the light radiation emitting source, i.e. the LED lamp.
  • the control and power electronics switches off all the power circuits and then, before controlling the means for inserting the limiting resistor at the input, it controls the means that short circuit the control signal, to cause fuse interruption and permanent lack of power supply to the control electronics.
  • control and power electronics no longer supplies the control signal to the switches which maintain the limiting resistor disconnected in series with the input of the signal generating/emitting unit, whereby the current absorbed by said unit drops below the current intensity threshold value above which the light signal generating/emitting unit is deemed to be properly operating.
  • the power signal to the light radiation emitting source is also strongly attenuated in a safe manner, whereby the possibility will be safely avoided that a current signal having such an intensity as to wrongly simulate proper operation might be detected in the remote control unit by the amperometric means thereof.
  • the switches for inserting/disconnecting the limiting resistor consist of the switch contacts of at least one force guided relay.
  • two controllable switches may be provided to control series-insertion and disconnection of the limiting resistor at the input of the light signal generating/emitting unit.
  • These two controllable switches may consist of the switch contacts of two different relays, each of such relays being connected to a control output of the control and power electronics.
  • two jumpers for bypassing the limiting resistor are provided, which are connected in parallel with each other and with said resistor and are closed or opened each by at least one switch contact of a different relay.
  • two by-pass jumpers for the limiting resistor are provided, each being connected in parallel with the other and both in parallel with the limiting resistor, whereas four different relays are provided, the switch contacts of two relays being series-connected in one by-pass jumper, and the contacts of the other two relays being series-connected in the second by-pass jumper.
  • Each of said relays being controlled by an output of the control and power electronics.
  • the control and power electronics further has a control section with a 2oo2 architecture, which has two control microprocessors with control software loaded in each of them, for parallel performance of control processes, each microprocessor having power accumulation and temporary power supply means connected thereto, and the signal corresponding to the light radiation detected by the optoelectronic sensors, and said microprocessors having each at least one control output for switching at least one relay.
  • each microprocessor has at least two control outputs for energizing one relay, each being connected with one of the four relays.
  • the relays are of the force guided type and are so designed that the switch contacts in the by-pass lines of the four relays are normally open when the relays are not energized.
  • ballast resistor it is inserted in parallel with the load of the light radiation emitting source by means of further switch contacts of at least two of the four relays that control the bypass lines of the limiting resistor to close or open, said contacts of said two relays being connected in parallel with each other and having a reversed closed-open configurations as compared with the switch contacts in the bypass jumpers of the limiting resistor.
  • the light signal generating/emitting unit has means for actuating the transmission of the functional status thereof (concerning light signal emission) to trains, which means consist of switches adapted to be controlled by the control and power electronics and particularly by the control section thereof, and which switches consist of further switch contacts of the four relays, which are designed to open and close the bypasses of the limiting resistor.
  • the switch contacts for controlling actuation of transmission of the operating status of the light signal generating/emitting unit to trains are of the type whose operation matches that of the switch contacts in the bypasses of the limiting resistors.
  • the light signal generating/emitting unit has means for calibrating the supply current required for the intensity of the light radiation emitted by the emitting source to be as desired, and for detecting the parameters of the corresponding electric signal generated by the optoelectronic sensor, which calibrating means include means for changing the supply current and external means for measuring the light flux being generated, and further includes, in the control and power electronics, means for storage of the supply current for the light radiation emitting source that corresponds to the desired brightness and parameters of the signal for measurement of the brightness of the light radiation signal emitted by the emitting source.
  • a supply current adaptation section which includes at least one programmable resistor, an auxiliary variable duty-cycle fixed period square wave generator, said square wave generator being connected with the light radiation emitting source during a half-period of the duty-cycle of the square wave generator, the supply current supplied to the light radiation emitting source being changed due to the variation of the duty-cycle of the square wave generator, whereas the parameters of the emitted light radiation measuring signal generated by the optoelectronic sensor are compared with the theoretical parameters stored in the control and power electronics and are automatically changed by operating on said sensor when they are different from the reference parameters stored in the control and power electronics.
  • the light signaling device has a light signal generating/emitting unit divided into two subunits, one of which is placed in a separate case mounted to the mechanical signal-supporting structure and comprising the control and power electronics with the limiting resistor, the bypasses and the switch means for insertion/disconnection thereof, the accumulation and temporary power supply means, the fuse and the means for short-circuit connection thereof, the ballast resistor and the switches for insertion/disconnection said ballast resistor in the circuit, the power signal generating section for powering the light radiation emitting source and possibly the switches for actuating the transmission of the operating status of the signaling device to trains, whereas the other subunit comprises the light radiation emitting source, the optoelectronic sensors, possibly the temperature sensors and the section for adaptation of the supply current for the light radiation emitting source, said second subunit being designed to be mounted in the lamp holder, i.e.
  • hood said two subunits being connected together by a multipolar cable comprising the lines for transmission of the power signal from the first subunit to the second subunit and the lines for transmission of the signal for measuring the emitted light radiation and the temperature from the second subunit to the first subunit.
  • the invention also relates to further improvements, which form the subject of the dependent claims.
  • These devices include remote cabins, containing control and power units, and at least one light signal, such as a semaphore or the like, which is installed next to the track of a railway line.
  • the power signal for a light signal generating/emitting unit (said semaphore or the like), designated by numeral 300 is generated in a remote cabin.
  • the feeding line 200 is connected via a transformer 201 and a protection fuse 1 to the input of the light signal generating/emitting unit 300.
  • the latter includes control and power electronics 301 and a light radiation emitting source 302, namely a semiconductor lamp also known as LED lamp.
  • the light signal generating/emitting unit 300 also has a section for transmitting information about the operating state thereof to the trains, which is designated by numeral 303 and is known in the railway field as INDUSI.
  • the remote cabin 100 contains a current transformer 101 which supplies power to a relay 102.
  • the relay 102 is controlled to set a switch status of its contacts according to the current that circulates in the power line 200, which matches the current absorbed by the light signal generating/emitting unit 300.
  • the switch status of the contacts of the relay 102 corresponds to an indication of proper operation or improper operation of the light signal generating/emitting unit 300, which is transmitted to a central control unit, not shown in detail, that manages the railway traffic and also the remote cabin.
  • multiple remote cabins are provided in a railway network, each controlling multiple light signal generating/emitting units, i.e. multiple semaphores disposed along the railway line, for which the remote cabin has dedicated control and power means, as well as dedicated means for detection of the supply current absorbed by the corresponding light signal generating/emitting unit, which means are also known as amperometric means for detection of proper operation of the light signal generating/emitting unit.
  • the light signal generating/emitting unit namely the light radiation emitting source 302, which is a LED lamp in the present example
  • the light radiation emitting source 302 which is a LED lamp in the present example
  • This condition is imposed because incandescent lamps were traditionally used, whereby failed emission of the light signal (failed start-up) was unequivocally caused by a drop, i.e. dramatic reduction of the supply current. Any filament break causes the lamp to operate as a fuse, with no supply current being absorbed, as the power circuit is open.
  • the block diagram of Figure 2 shows a general construction of a light signal generating/emitting unit of the present invention.
  • the circuit has a limiting resistor 304 at its input, which is series-connected to the power line and to the input of the light signal generating/emitting unit.
  • One signal acts both as an start-up control signal and as a power signal for powering said light signal generating/emitting unit.
  • This signal is transmitted to a temporary power supply unit of the control electronics, which is designated by numeral 305. It is connected to the control electronics 301 via a fuse 2.
  • a power signal generating section 307 here of the PWM type, is controlled by the control electronics 301, in that the latter controls both said section 307 and a switch 308 that connects said section 307 to the input power signal.
  • the LED lamp 302 is connected to said section 307.
  • a ballast resistor 309 is designed to be inserted in parallel with the power signal generating section 307 for powering the lamp 302, by a control from the control electronics 301.
  • the fuse 2 for interrupting power to the control electronics is designed to be controlled thereby in its actuation.
  • At least one bypass jumper 310 is provided in parallel with the limiting resistor 304, which is normally open and is closed by a control from the control electronics 301.
  • the control electronics 301 also has the INDUSI section 303 connected thereto.
  • the intensity of the current absorbed by said unit is changed by series-connection of the limiting resistor 304 at the input of the light signal generating/emitting unit.
  • the limiting resistor 304 prevents the light signal generating/emitting unit from immediately having the required signal power available, whereby power accumulation and provisional, i.e. temporary power supply means 305 are required, which provide the power required for operation at least of the control electronics 301 and a few relevant members, namely the means for closing/opening the bypass jumper 310, for at least a given predetermined time.
  • Said power accumulation and temporary power supply means 305 provide energy for actuation and initiation of the control electronics 301 and for the bypass jumper closing control. Under these conditions, the resistor 304 is bypassed and the control and power signal is available in its full power at the input of the light signal generating/emitting unit.
  • control electronics 301 controls the signaling means 303 that send information to the train, the static switch 308 for connection of the power signal generating section 307, the means 302 for insertion of the ballast resistor 309 in parallel with the LED lamp load 302. Therefore, the LED lamp 302 is powered, whereas the sensors 311 for LED lamp functional checking and particularly the optoelectronic brightness sensor, and possibly the temperature sensor provide their signals to the control electronics 301.
  • the current absorbed by the light signal generating/emitting unit is reduced below the threshold value that discriminates between the proper and wrong operating conditions, and is detected by the amperometric sensors in the remote control unit (transformer 101 and relay 102).
  • Figure 3 shows a variant embodiment of the light signal generating/emitting unit of Figure 2 .
  • the limiting resistor and the bypass means, as well as the control means are indicated by the blocks designated as protection, with numeral 304.
  • the power accumulation and temporary power supply means 305 are designated as input, whereas the switch 308 is indicated by the functional block designated as control consent and the control of the power signal generating section 307 is indicated by the functional block 312 designated as power consent.
  • the section 307 is known as "optical unit power supply", whereas the functional checking sensors 311 are shown to be divided into temperature check and optical check.
  • the control electronics 301 comprises a functional part, designated as protection, the power supply and power consent part and the logical control part, said parts being designated by 301a, 301b, 301c, 301d respectively.
  • Figure 4 shows the construction of the light signal generating/emitting unit of Figure 3 in greater detail.
  • the capacitor C1 may charge through Rlim to about the peak value of the input signal, rectified by the Graetz bridge, in case of AC voltage.
  • a circuit, not shown, maintains the DC/DC converters 7 and 10 disabled, to prevent absorption by the electronics in this step.
  • the static switch 1 stops the charge of the capacitor of the low-pass filter contained in the block 3 and all the other devices connected to the input circuit are disabled. Therefore, since the forced guide relays K1, K2, K3 and K4 are low, the only current that circulates at the start is the charge current C1.
  • the converters 7 and 10 are enabled and the two ⁇ Cs (6 and 11) receive the power voltages, i.e. 5V and 3.3V respectively.
  • the ⁇ C1 controls the amplifier 18 with a square wave having a frequency of, for instance, 20kHz, to energize the relay K1 only, and the same is done by ⁇ C2 with the amplifier 16 and the relay K2.
  • the relays K1 and K2 establish the high contacts, and the limiting resistor at the input, which prevents current from rising above the safety limit value imposed by the cabin control circuit, is short circuited.
  • the capacitor C1 which partially discharged into the electronics and into the relays K1 and K2, starts to charge again.
  • C2 starts charging, which allows the power voltages of the electronics and the relays to be also maintained during the OFF half-periods of the flashing state if the light signal generating/emitting unit is actuated in flashing mode.
  • the time after which the shutdown of the converters 7 and 10 is removed depends on the value of C1, which cannot be lower than a given value, so that during the discharge transient, mainly caused by the sum of the bootload time and the delay at relay energization, voltage ad C1 is prevented from falling below the voltage that allows the converters 7 and 10 to generate proper power supply voltages.
  • shutdown removal should occur with as little a delay as possible, especially when a first OFF half-period of the flashing state may start after a 0.5 interval from the start of the control.
  • the electronics In order to minimize such delay, the electronics must initially absorb as little power as possible, and the relays must consume as little as possible.
  • ⁇ C2 6 controls the static switch 1 and allows the capacitor in the low-pass filter 3 to charge.
  • both ⁇ C 6, 11 use the squaring circuits contained in block 5 to read the frequency of the input signal, in case of an AC control, and if such frequency falls within the admitted range (considering that voltage may or may not be present at the input ports actuated by an external jumper to be inserted in case of a frequency other than 50 Hz, e.g. 75 Hz), the ⁇ C1 11 transmits two 180° phase shifted PWM signals to the amplifier 4.
  • the variable duty-cycle which allows current stabilization in the LED lamp 27, is fixed to a value that is a function of the rectified input voltage and temperature.
  • the lamp turns on and the output current of the amplifier 4, which is proportional to the current that circulates in the LED, is reread by both ⁇ C 6, 11.
  • the light flux is checked by a circuit section composed of the blocks 25, 28, 31 and 32. If such flux and the delivered current fall within the admitted ranges, the relays K1 and K2 are kept in an energized state and the ⁇ Cs 6, 11 actuate the relay K3 through the blocks 20 and 21, and the relay K4 through the blocks 14 and 15.
  • the relays K3 and K4 allow the external repetition system known as Indusi to be enabled onboard, i.e. on the train, and cause the actuation of the linear current generator 2, which powers the ballast load Rz and is controlled by a PWM generator or by a D/A converter, placed inside the ⁇ C1 11.
  • the load Rz conveniently increases the absorbed current, thereby allowing the amperometric control circuit, located in the station or at the cabin, i.e. the remote control unit 100, to energize the corresponding relay 102.
  • Figure 5 is a chart that shows the succession of the above described steps for initiation of the light signal generating/emitting unit.
  • the relays K3 and K4 are energized as a last step of the start-up process. Then, the operation logic is reversed, which means that, while the relays K1 and K2 are initially energized by the ⁇ Cs 6, 11, when no brightness check signal is generated by the sensor 28 and the electronics associated therewith, after start-up these relays remain in the energized state as long as the light flux and the current emitted by the amplifier 4 fall within the predetermined range, which can change as a function of input voltage.
  • the input voltage may fall within two ranges, which define the "Day” operation (higher range, centered at 15 VAC or 12 Vm, providing a constant value of about 700 mA in the lamp) or the "Night" operation (lower range, centered at 12VAC or 9.5 Vm, with the lamp current being about 350 mA).
  • the light signal generating/emitting unit has an open loop operation, with the lack of a brightness check causing permanent removal of the control.
  • the ⁇ Cs 6, 11, disable the power circuits and simultaneously transmit a 1 sec. pulse to the block 8, which acts as a MOSFET switch, and is designed to considerably decrease the impedance of the circuit downstream from the fuse 2, to cause its actuation. This will permanently interrupt power supply to the electronics, and will not allow restoration thereof from the outside.
  • the fuse 2 is not inserted in the power circuit, unlike the fuse 1 that only has a protective function and no safety task. For instance, if the trigger current for the fuse 2 does not exceed 700 mA, the check at the cabin should be acquired with at least 1 A input current at the light signal generating/emitting unit, at which the fuse trigger time drops definitely below the amperometric relay energizing time.
  • the ballast load 309 would increase such current, e.g. to 1.2 A, and hence, assuming for instance an AC control in "Day" operation and an effective input voltage of about 15 eff V, a nominal power absorption of about 18 W would be obtained, which is still acceptable, considering the constrictions and precautions required to improve the safety of the apparatus.
  • ballast load 309 which also decreases the distortion rate of the absorbed current, such power might be considerably lower and not exceed 10 W.
  • the ballast load allows no check acquisition at the cabin, in case of lamp failure.
  • a parallel loss e.g. at C1, C2 or in the block 3
  • a transient would occur, whose duration depends on the overall response time of the power/brightness check connection, during which said current stresses the control relay. If the energizing time thereof is shorter than the transient, a short initial undue control pulse would occur.
  • the ballast load 309 shall be deemed to have an auxiliary, not decisive function, unlike prior art devices, in which no input limiting resistor 304 is provided. Furthermore, these prior art devices require a differential detector in the cabin, i.e. the remote control unit 100, for measuring the delivered current, which detector only actuates its output if said current falls within a range from a maximum value to a minimum value. This will prevent any parallel loss in the electronics from going undetected, with the lamp controlled, and thus from masking the disconnection of the ballast load in case of lamp failure. A grey zone still remains from the safety point of view, if the lamp has a failure (e.g. if its absorbs power without emitting light) and the parallel loss is already present.
  • a failure e.g. if its absorbs power without emitting light
  • the block 3 is a LC-type low-pass filter, which has the task of filtering out the audiofrequency harmonics generated by the amplifier 4 and decreasing the distortion rate of the input current (under AC control), which distortion is actually only caused by the electronics of the ⁇ Cs 6, 11, whose maximum absorption is slightly higher than 2 W.
  • An amperometric transformer is provided downstream from the amplifier 4, the latter generating a pulsed signal +/- that can be transmitted through the transformer 22, a galvanic insulation being required in this location.
  • the current cannot be read upstream from the filter 3 by a pull-down resistor, because no accurate detection of the level of transient pulses, whose duration is shorter than the half-period of the supply voltage, would be possible.
  • the broken line L1 on the right side of the block diagram indicates that the light signal generating/emitting unit is generally composed of two subunits, the first whereof is located in a pole-mounted box, designated by U1 in Figure 6 , and the second, designated by U2 and containing the blocks located on the right of the line L1, is located in the hood 50 of the signal 51 which is itself mounted to the pole 52.
  • This division may be imposed both by space requirements in the hood and by heat problems, in that the ballast load 309 contributes in increasing the temperature of the assembly, whereby it should be maintained apart from the LED lamp 302, to extend its life.
  • the two subunits U1, U2 of the light signal generating/emitting unit are connected together by a four-wire cable 53.
  • Two of such wires are for "forth” transmission and carry the PWM power signal adapted for controlling the lamp and for supplying power to the electronics of the hood, and the other two are for "back” transmission, and carry a low power analog signal, which contains (vital) brightness information and (non vital) temperature information.
  • the block 22 is an audiofrequency transformer which adapts the output voltage to the loads
  • the block 23 is a dual half-wave rectifier directly connected to the block 24 and connected to the blocks 25, 28, 30 and 31 with the interposition of a stabilizer.
  • the block 24 is a low-pass filter, which determines the mean value of the variable duty-cycle pulsed signal at its input and also allows reduction of the power signal harmonics, as the two wires of the cable may be considered as an antenna having a maximum length of the order of about ten meters.
  • the outputs of the temperature sensors 26 and the brightness sensors 28 are continuous signals, the former being directly transmitted to the cable 53 via the low-pass filter 29, which prevents back transmission of the signal from the block 32, whereas the later is the modulating signal of an amplitude modulator 31, whose carried may be generated by dividing (block 25) the frequency of the power signal by two, which is stable against any change of temperature and HW components.
  • the modulated signal is transmitted to the cable 53 via the high-pass filter 32, which filters out the CC component that comes from the block 29.
  • the temperature dependent CC voltage is received by the high-pass filter 12 and transmitted to the A/D converters inside the ⁇ Cs 6, 11, whereas the brightness dependent AC voltage is received through the pass band filter 13 and transmitted to the same converters, which are tested through reading of a known voltage generated by the block 9.
  • the ⁇ Cs set the controls of the power section, the relays and the block 8 and control the three basic parameters: input voltage (amplitude and frequency), lamp brightness and current delivered to the load, and further carry out the following steps:
  • each ⁇ C waits for a re-reading contact to establish with low relays, and for a 1 to occur at the input of the corresponding port, which immediately actuates a re-energizing control.
  • a similar arrangement i.e. a series of two parallels, has to be provided at the interface with the Indusi system. By testing the four relays at different times, no discontinuity will be caused in current absorption and in the connection with the Indusi 303.
  • the presence of the relay K4 is required by the need of preventing periodic circuit interruptions in the Indusi 303.
  • An application that requires no interface with the Indusi would require three relays only, as well as a change in the configuration of the contacts in parallel with Rlim 304 and an arrangement required by functional safety reasons, in which both ⁇ Cs 6, 11 would enable the relay K3 to be energized.
  • the relay shall also be re-energized, even when the test has failed, of when a failure has occurred in the meantime that caused a loss of amperometric control. High relays are required to trigger the fuse 2 and permanently shut down the control electronics.
  • each relay must be de-energized once every 20 min. Therefore, a switching event would be controlled every 5 minutes. Since the test cycle extends for a relatively long time, alternate control of the amplifiers 14, 16, 18 and 20 is preferred, so that any short circuit at the static switches cannot keep the relay in the energized state. Furthermore, the use of small transformers in the blocks 15, 17 and 19 allows to raise the voltage at the relay to the required level. This voltage, that requires stabilization, is generally higher than the voltage supplied to the, ⁇ Cs 6, 11, depending on the selected types of relays, which must have special features (long thermal range, low consumption, high vibration resistance, etc.).
  • the ⁇ Cs 6, 11 also periodically perform, through the block 8, a test on the breaking current of the fuse 2 and the circuit designed to cause it to trigger, as required.
  • the current test is carried out by raising the current that circulates through the fuse 2 for a very short time (e.g. 0.5 ms) and by checking, by means of an optoisolator circuit, that it never falls, for instance, below twice the nominal current of the fuse (of fast type).
  • Static switches which close the circuit for power supply to the electronics at low impedance, are duplicated for safety, and the re-reading circuit consists of a H bridge having two outputs, each alternately having a 0/1 pulse, slightly delayed with respect to control pulses, if the current check was successful.
  • Hardware integrity at block 8 is constantly checked during the control step, nevertheless the effectiveness of the fuse 2 depends on the impedance of the source, on the relays and on the correctness of the software process.
  • lamp failure while failed removal of the shunt of the Rlim 304 is quite unlikely, as it would involve the occurrence of two simultaneous failures (relays K1 and K2, or K3 and K4 unduly high), failed triggering of the fuse cannot be deemed to be improbable.
  • a hardware failure undetectable to a certain extent increase of the series resistance of the source upstream from C1 or the fuse itself
  • a software error might prevent fuse triggering.
  • the two microprocessors 6, 10 manage the four basic states of the light signal generating/emitting unit, i.e. fixed light and daytime brightness level, fixed light and nighttime brightness level, flashing light and daytime brightness level, flashing light and nighttime brightness level.
  • the light intensity is established according to the voltage read downstream from the bridge P1 because, with an AC control, the station delivers 220VAC during the daytime and 180 VAC during the nighttime whereas, with a DC control there are 12 Vm (or 12 VDC)at the input during the daytime and 9.6 Vm (or 9.6 VDC) during the nighttime.
  • 12 Vm or 12 VDC
  • 9.6 Vm or 9.6 VDC
  • the light signal generating/emitting unit will be always started with the "Daytime” operation parameters and then, as the input voltage reaches the steady state, these parameters will be either confirmed or changed to "nighttime” operation.
  • the ⁇ Cs 6, 11 and the relays K1, K2, K3, K4 must be powered for at least 750 ms from the moment in which voltage failure occurs downstream from P1 (as well as all enabling features of the power section), so that the ⁇ Cs 6, 11 may discriminate between the removal of a fixed light control and the start of flashing operation, during which the OFF half-period may last from 500 ms to 700 ms.
  • the ⁇ Cs 6, 11 shall be continuously powered and shall check the correctness of the parameters of the modulating square wave (frequency and duty-cycle), as well as the synchronism of the ON and OFF states of the voltage that reaches the wayside cable 200 and the similar states of the brightness check signal from the lamp.
  • a protection against undue flashing having a frequency below 0.5 Hz may be easily non vitally implemented, which would cause intermittent power supply to the electronics and the lamp.
  • the two ⁇ Cs 6, 11 should simply read the DC voltage downstream from the block 3 and check that it is lower than a given value, e.g. 1VDC.
  • a given value e.g. 1VDC.
  • the controls of the amplifier 5 are removed, whereby the output capacitor of the low-pass filter cannot release power to the load.
  • Such power may be discharged very slowly on a resistor, so that a delay time may be provided with respect to the control removal time, which is, for instance of the order of 4-5 seconds.
  • the microprocessors 6, 11 provide a dynamic check of the lamp brightness. Such check requires the duty-cycle of the controls of the block 4 to be adjusted, so that a DC current of known and controlled value is caused to circulate in the lamp, which depends on the control mode (D/N) and on the temperature that is measured in the hood. Such current will cause a light flow falling within the range of admitted preset values.
  • the lamp current shall be periodically reduced by a given percentage, which mainly depends on the amplitude of the admitted brightness range, so that it can also decrease, within a time interval not exceeding 3-4 ms, just below the value that brings the light flux to a level slightly lower than the minimum admitted level.
  • each of the two ⁇ Cs 6, 11 must measure the new current and brightness values and check them against the admitted tolerances, and shall also check switching of the output of the corresponding software comparator, which is vital for maintenance of lamp control and amperimetric control in the cabin.
  • This test particularly checks the dynamic properties of the outputs of the blocks 28 and 31.
  • a second test is required, which periodically eliminates, for a time of not more than a few ms, the current in the lamp, to measure the contribution given by outside noise sources, particularly sunlight, which contribution may be subtracted from the overall brightness value as measured by the sensor/s 28.
  • the microprocessors 6, 11 will finally perform calibration before start-up and inspection of the apparatus, with the help of an external PC, whose connection link is not indicated in the diagram.
  • Calibration is designed to remove dispersion of the parameters mainly concerning the LED lamp and the light sensors.
  • the ⁇ C1 might gradually increase the current in the lamp until the latter reaches the nominal brightness value, that is typical of D or N operation, as appropriate.
  • the light flow shall be detected with the help of an external sample meter, preferably equipped with a logic input (connected to an input of ⁇ C1, outlined by a broken line in the diagram), which is switched as the desired brightness is reached, which desired brightness can be manually set.
  • increase of current to the lamp is stopped, so that both ⁇ Cs and/or the external PC may store the value of such current and the brightness value that is measured by the sensor/s of the light signal generating/emitting unit.
  • a second mode differs from the first mode in that it requires the addition of the hardware block 30.
  • a serial line bus I2C serial line bus
  • the generator 30 allows the DC current to flow from the output of the block 24 at a known constant value, to the LED lamp, during t1, or to a resistor during t2.
  • This resistor has a value that corresponds to the sum of the Rlim of the lamp and the Req of the LED/s.
  • adjustment of the duty-cycle of the generated pulse wave and use of the outputs Q and Qn of the oscillator 30 allows the nominal brightness to be reached through a preset value of delivered current, which applies to all the subunits U2 that compose the optical component of the light signal generating/emitting unit.
  • the nominal brightness shall match a well defined value that comes from the block 12 and the light flux measuring chain. If the acquired value is different from the theoretical value, the programmable element of the block 28 shall be addressed through the I2C bus to correct the error. Therefore, there will be no need to associate a set of parameters with each subunit U2 because, at least in the Daytime operating state at nominal input, the delivered current, the brightness and the flux measure are uniquely defined.
  • this control may generally be not as accurate as the mode described before, because the lower limits are affected by an error caused by the dispersion of the characteristics of the response curve of the measurement, transmission and filtering chain.
  • the lamp brightness cannot increase if current is set to the nominal value
  • any change of the duty-cycle of the generator, due to a failure may increase the light flux by a percentage depending on the dispersion of the emission value, which is at the best of the order of 30% max (+/- 15%).
  • the second method provides an increase of the power absorption by the load to a maximum value up to the 30%.
  • the generating/emitting unit may be mechanically divided into two parts: one of them, namely containing the ⁇ Cs, the relays and the power adjusting PWM amplifier, is designed to be housed in a box connected to the load bearing structure of said signal.
  • Such structure may be a pole or other support means, such as masts, bridge girders or masonry works against which the signal is fixed in its operating position.
  • the other part comprises the LED optical unit, the lamp switch and the brightness sensor, and has such a size and shape as to be received in the hood.
  • the two parts are obviously connected to each other by an electrical communication line, for transmitting and receiving the signals required for operation of the device in at least one of the above modes.
  • the device of the present invention is particularly suitable to replace the traditional light sources with LED type optical units.
  • the integral or two-part form, and in the latter case, the second part that comprises, amongst other things, the LED optical unit, is formed of such a shape and size and with such fastening and electrical connection means as to allow it to be mounted in the hood instead of an existing lamp of different type, such as an incandescent lamp.
  • said second part of the light signal generating/emitting unit or the whole unit may have connection sockets that match those of the incandescent lamp and of any other electric circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Claims (24)

  1. Dispositif de signalisation lumineuse destiné à des systèmes ferroviaires ou analogues, comprenant :
    une unité de génération / émission d'un signal lumineux, laquelle est délivrée conjointement avec :
    des moyens pour générer / alimenter un signal de déclenchement destiné à actionner ledit dispositif de signalisation ;
    des moyens pour vérifier l'état fonctionnel de ladite unité de génération / émission dudit signal lumineux, lesquels moyens mesurent l'intensité du courant absorbé par la génération / émission de signal lumineux lorsque ladite unité est sous tension ;
    lesdits moyens de vérification fonctionnelle de l'unité de génération / émission de signal lumineux comparent la valeur de courant absorbé détectée à une valeur seuil prédéterminée, et commandent des moyens de signalisation d'état fonctionnel et/ou des moyens de commande de fonction de sécurité en fonction du résultat de cette comparaison ;
    ladite unité de génération / émission de signal lumineux étant équipée d'une source de rayonnement lumineux du type connu sous le nom de diode électroluminescente, LED, et d'un équipement électronique d'alimentation et de commande ;
    ledit équipement électronique d'alimentation et de commande étant fourni conjointement avec des moyens optoélectroniques destinés à détecter le signal lumineux émis par la source d'émission de rayonnement lumineux (302), et à générer un signal électrique correspondant audit rayonnement lumineux détecté, lequel signal est fourni audit équipement électronique de commande (301) ;
    ledit équipement électronique d'alimentation et de commande présentant des moyens pour modifier le courant absorbé par l'unité de génération / émission de signal lumineux, lesquels moyens de modification du courant sont commandés par ledit équipement électronique de commande (301) selon le signal électrique correspondant à l'intensité lumineuse émise par la source d'émission de rayonnement lumineux (302) et générée par lesdits moyens optoélectroniques ;
    caractérisé en ce que :
    ledit signal d'alimentation et de commande agit à la fois comme un signal de commande d'actionnement et comme un signal d'alimentation électrique pour ladite unité de génération / émission de signal lumineux ;
    les moyens pour modifier le courant absorbé par l'unité de génération / émission de signal lumineux se composent d'une résistance de limitation (304) qui peut être connectée en série en alternance avec une ligne de dérivation au niveau de l'entrée de ladite unité de génération / émission de signal lumineux, à la ligne d'alimentation de signal d'alimentation et de commande et à l'unité de génération / émission de signal lumineux ;
    ladite résistance étant d'une taille de nature à limiter l'intensité du courant absorbé par ladite unité de génération / émission à une valeur inférieure à la valeur seuil minimale correspondant à celle à laquelle l'unité de génération / émission de signal lumineux est censée fonctionner correctement ;
    des moyens de commutation étant en outre délivrés en vue de commuter l'état de la connexion en série alternative de la ligne de dérivation et de ladite résistance de limitation (304) à l'entrée de l'unité de génération /émission de signal lumineux, lesquels moyens sont commandés par l'équipement électronique d'alimentation et de commande selon le signal de détection de l'émission lumineuse générée par la source d'émission de rayonnement lumineux (302) ; et
    des moyens d'accumulation de puissance et d'alimentation électrique temporaire (305) sont fournis, qui sont actionnés pendant une durée prédéterminée en vue d'une alimentation électrique temporaire de l'équipement électronique d'alimentation et de commande tandis que la résistance de limitation (304) est insérée en série avec l'entrée de l'unité de génération / émission de signal lumineux (300).
  2. Dispositif selon la revendication 1, caractérisé en ce que les moyens d'accumulation de puissance et d'alimentation électrique temporaire (305) de l'unité d'alimentation et de commande se composent de moyens capacitifs ayant une taille de nature à accumuler et à libérer un signal d'alimentation dont la tension et la puissance sont suffisantes pour alimenter, pendant une durée prédéterminée, l'équipement électronique de commande (301) et de moyens de commutation pour commuter l'état de connexion en série alternative de la ligne de dérivation et de ladite résistance de limitation (304) à l'entrée de l'unité de génération / émission de signal lumineux (300), lesquels moyens, lorsque le démarrage est achevé, sont commandés par l'équipement électronique de commande (301) selon le signal de détection de l'émission lumineuse générée par la source d'émission de rayonnement lumineux (302).
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que ladite durée prédéterminée de l'alimentation électrique vers l'équipement électronique de commande (301) et les moyens de commutation pour commuter l'état de connexion alternative de la ligne de dérivation et de ladite résistance de limitation (304), en série avec l'entrée de l'unité de génération / émission de signal lumineux (300), est égale ou légèrement supérieure à la durée nécessaire à un actionnement état d'équilibre de l'équipement électronique d'alimentation et de commande et afin que les moyens de commutation endossent l'état de commutation dans lequel l'entrée de l'unité de génération /émission de signal lumineux (300) est directement connectée par la dérivation à la ligne d'alimentation (200).
  4. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que, afin de permettre un fonctionnement correct au cours d'un clignotement de signal et par conséquent d'éviter la défaillance de l'alimentation en énergie vers l'équipement électronique d'alimentation et de commande tandis que la source d'émission de rayonnement lumineux (302) est hors tension, des secondes unités d'alimentation électrique temporaire et d'accumulation de puissance (305) sont fournies dans l'unité d'alimentation et de commande, lesquelles présentent une taille telle que l'alimentation électrique temporaire se produit pendant une seconde durée prédéterminée qui correspond sensiblement à la durée pendant laquelle la source lumineuse est hors tension au cours du cycle de clignotement.
  5. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que, conjointement avec la résistance de limitation (304) apte à être insérée et déconnectée en série avec l'entrée d'alimentation de l'unité de génération / émission de signal lumineux (300), des seconds moyens pour modifier le courant d'absorption de l'unité de génération / émission de signal lumineux (300) sont délivrés, lesquels se composent d'une résistance de stabilisation (309) apte à être insérée au sein du, et déconnectée du circuit d'alimentation en parallèle avec la charge de l'unité de génération /émission de signal lumineux (300), et en particulier en parallèle avec la source d'émission de signal lumineux, par des moyens de commutation commandés par l'équipement électronique d'alimentation et de commande.
  6. Dispositif selon la revendication 5, caractérisé en ce que la commande d'insertion de ladite résistance de stabilisation (309) en parallèle avec la charge de la source d'émission de rayonnement lumineux (302) se produit lors d'une commande de déconnexion de la résistance de limitation (304) en série avec l'entrée de l'unité de génération / émission de signal, et en particulier en série avec la charge de la source d'émission de rayonnement lumineux (302).
  7. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que l'unité de génération / émission de signal lumineux (300) présente des moyens pour empêcher de manière irréversible l'alimentation électrique vers ladite unité de génération /émission de signal lumineux (300) et en particulier vers l'équipement électronique de commande (301), lesquels moyens peuvent être actionnés par l'équipement électronique de commande (301) lui-même.
  8. Dispositif selon la revendication 7, caractérisé en ce que lesdits moyens se composent d'un fusible (2) dans la ligne d'alimentation (200) de l'équipement électronique d'alimentation et de commande (301) et d'un commutateur (308) pour connecter ledit fusible (2) suite à un court circuit du signal d'alimentation et de commande en vue de générer un courant dont le niveau est de nature à griller ledit fusible (2).
  9. Dispositif selon la revendication 8, caractérisé en ce que lesdits moyens de commutation sont conçus de manière à être commandés par l'équipement électronique d'alimentation et de commande selon le signal d'entrée au niveau dudit équipement électronique d'alimentation et de commande, lequel est fourni par le capteur optoélectronique (26, 28) qui mesure le rayonnement lumineux réellement émis par la source d'émission de rayonnement lumineux, à savoir la lampe à LED (302), en cas de clignotement injustifié, ou selon le signal fourni par le dispositif de test de relais (102) et de test de fusible (2), si de tels tests échouent, ou enfin selon la cohérence des mesures de quelques paramètres vitaux, mises en oeuvre par les deux microcontrôleurs en cas de non-concordance des résultats de celles-ci.
  10. Dispositif selon les revendications 8 et 9, caractérisé en ce qu'il comprend des moyens de test de fusible (2) qui sont conçus de manière à être actionnés périodiquement en vue de vérifier l'intégrité et la fonctionnalité des moyens de court-circuitage de source, ainsi que la valeur d'impédance de la source, dans le but de fournir un courant suffisant pour griller le fusible (2), le cas échéant, tandis que si le test donne un résultat négatif, en particulier si le courant de court-circuit n'est pas suffisant pour déclencher le fusible (2), des moyens sont fournis pour interdire la commande de relais (102) par les microprocesseurs, lesquels occasionnent l'insertion de la résistance de limitation (304), et permettent par conséquent la détection des défaillances concernant la section matérielle de commande du fusible (2).
  11. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que deux cavaliers de dérivation pour la résistance de limitation (304) sont délivrés, chacun étant connecté en parallèle avec l'autre, et tous les deux en parallèle avec la résistance de limitation (304), tandis que quatre relais différents (K1, K2, K3, K4) sont délivrés, les contacts de commutation de deux relais étant connectés en série dans un cavalier de dérivation, et les contacts des deux autres relais étant connectés en série dans le second cavalier de dérivation, chacun desdits relais étant commandé par une sortie de l'équipement électronique d'alimentation et de commande.
  12. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que l'équipement électronique d'alimentation et de commande présente une section de commande présentant une architecture « 2oo2 », laquelle présente deux microprocesseurs de commande (6, 11) avec un logiciel de commande chargé dans chacun d'eux, en vue de l'exécution en parallèle de processus de commande, chaque microprocesseur (6, 11) ayant des moyens d'accumulation de puissance et d'alimentation électrique temporaire (305) qui lui sont connectés, le signal correspondant au rayonnement lumineux détecté par les capteurs optoélectroniques, et lesdits microprocesseurs (6, 11) ayant chacun au moins une sortie de commande en vue de commuter au moins un relais (102).
  13. Dispositif selon les revendications 11 et 12, caractérisé en ce que chaque microprocesseur (6, 11) présente au moins deux sorties de commande pour exciter un relais (102), chacune étant connectée à l'un des quatre relais (K1, K2, K3, K4).
  14. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que les relais sont du type à guidage forcé et sont conçus de manière à ce que les contacts de commutation dans les lignes de dérivation des quatre relais (K1, K2, K3, K4) sont normalement ouverts lorsque les relais ne sont pas excités.
  15. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que la résistance de stabilisation (309) est insérée en parallèle avec la charge de la source d'émission de rayonnement lumineux (302) au moyen de contacts de commutation supplémentaires d'au moins deux des quatre relais (K1, K2, K3, K4) qui commandent l'ouverture ou la fermeture des lignes de dérivation de la résistance de limitation (304), lesdits contacts desdits deux relais étant connectés en parallèle les uns avec les autres et ayant des configurations ouvertes / fermées inversées par rapport aux contacts de commutation dans les cavaliers de dérivation (310) de la résistance de limitation (304).
  16. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que l'unité de génération / émission de signal lumineux (300) comporte des moyens pour actionner la transmission de l'état fonctionnel de celle-ci, en ce qui concerne l'émission de signal lumineux, à des trains, lesquels moyens sont constitués de commutateurs aptes à être commandés par l'équipement électronique d'alimentation et de commande, et en particulier par la section de commande de celui-ci, et lesquels commutateurs sont constitués de contacts de commutation supplémentaires des quatre relais (K1, K2, K3, K4), lesquels sont conçus pour ouvrir et fermer les dérivations de la résistance de limitation (304).
  17. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que chaque microprocesseur présente des moyens pour commander les procédures de test des quatre relais (K1, K2, K3, K4), et commande lesdits relais en vue d'ouvrir les contacts de commutation, lesdits quatre relais (K1, K2, K3, K4) étant soumis à une commutation périodique permettant de vérifier que les contacts ne sont pas bloqués et qu'ils sont en mesure d'endosser un état désexcité ;
    ladite commutation étant actionnée dans des paires alternées synchronisées, de sorte qu'au moins un cavalier de dérivation (310) de la résistance de limitation (304) est toujours maintenu fermé, et de sorte que la résistance de stabilisation (309) et la commande d'actionnement de la section de dispositif pour la transmission de l'état d'exploitation à des trains sont toujours maintenues insérées.
  18. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que chaque microprocesseur (6, 11) met en oeuvre des tests sur la chaîne de commande de luminosité, en vue de vérifier à la fois l'intégrité du capteur optoélectronique (26, 28) et de la chaîne d'amplification / transmission du signal électrique qui mesure le flux lumineux des DEL, et le bruit sur la chaîne de commande qui provient de sources lumineuses extérieures à l'unité de signalisation ferroviaire.
  19. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que, pour la gestion de commande de clignotement, le microprocesseur met en oeuvre, en permanence, à la fois une vérification de la cohérence entre la commande transmise et l'état de la lampe (302), et une vérification de l'exactitude du signal de commande, en mesurant la période et le cycle de service de l'onde carrée de modulation, ayant une fréquence de 1 à 1,5 Hz, tandis que si ces vérifications produisent un résultat négatif, l'unité logique commande l'arrêt de l'alimentation.
  20. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que les microprocesseurs mettent en oeuvre une vérification de clignotement injustifié, et mettent la lampe (302) hors tension chaque fois que des interruptions périodiques et anormales du flux lumineux sont rencontrées, en cas de commande de lumière fixe.
  21. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que l'unité de génération / émission de signal lumineux (300) comporte des moyens pour étalonner, sur la valeur désirée, le courant d'alimentation électrique requis pour l'intensité du rayonnement lumineux émis par la source émettrice, et pour détecter les paramètres du signal électrique correspondant généré par le capteur optoélectronique, lesquels moyens d'étalonnage comprennent des moyens pour modifier le courant d'alimentation électrique et des moyens externes pour mesurer le flux lumineux généré, et comprennent en outre, dans l'équipement électronique d'alimentation et de commande, des moyens de stockage du courant d'alimentation électrique pour la source d'émission de rayonnement lumineux (302) qui correspond à la luminosité souhaitée, et de stockage des paramètres du signal pour la mesure de la luminosité du signal de rayonnement lumineux émis par la source émettrice.
  22. Dispositif selon la revendication 21, caractérisé en ce que l'unité de génération / émission de signal lumineux (300) présente une section d'adaptation de courant d'alimentation électrique, laquelle comprend au moins une résistance programmable, un générateur d'ondes carrées à périodes fixes de cycle de service variable auxiliaire (30), ledit générateur d'ondes carrées (30) étant connecté à la source d'émission de rayonnement lumineux (302) pendant une demi-période du cycle de service du générateur d'ondes carrées (30), le courant d'alimentation électrique fourni à la source d'émission de rayonnement lumineux (302) étant modifié en raison de la variation du cycle de service du générateur d'ondes carrées (30), tandis que les paramètres du signal de mesure de rayonnement lumineux émis (311) généré par le capteur optoélectronique (26, 28) sont étalonnés en fonction de paramètres théoriques, ledit capteur (26, 28) étant sollicité lorsque les paramètres sont différents des paramètres de référence stockés dans les moyens de mesure de signal externes.
  23. Dispositif selon l'une quelconque ou plusieurs des revendications précédentes, caractérisé en ce que l'unité de génération / émission est mécaniquement divisée en deux parties : l'une d'elles contenant les microprocesseurs, les relais et l'amplificateur PWM de réglage de la puissance, et étant destinée à être logée dans un boîtier connecté à la structure de support de charge d'un signal, et l'autre contenant en particulier l'unité optique à LED, le commutateur de lampe (308) et le capteur de luminosité, et étant destinée à être reçue dans la visière (50) du signal (51), c'est-à-dire dans le boîtier d'une lampe traditionnelle (302), lesdites deux parties étant connectées électriquement l'une à l'autre par une ligne de communication.
  24. Dispositif selon la revendication 23, caractérisé en ce que la partie contenant en particulier l'unité optique à LED, le commutateur de lampe et le capteur de luminosité, destinée à être reçue dans la visière (50) du signal, présente une forme et taille, ainsi que des moyens de fixation, lui permettant d'être montée dans la visière du signal (50) à la place d'une lampe existante (302) de type différent, par exemple une lampe à incandescence (302).
EP20100425140 2010-04-27 2010-04-27 Signal lumineux pour systèmes ferroviares Not-in-force EP2386458B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20100425140 EP2386458B1 (fr) 2010-04-27 2010-04-27 Signal lumineux pour systèmes ferroviares

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20100425140 EP2386458B1 (fr) 2010-04-27 2010-04-27 Signal lumineux pour systèmes ferroviares

Publications (2)

Publication Number Publication Date
EP2386458A1 EP2386458A1 (fr) 2011-11-16
EP2386458B1 true EP2386458B1 (fr) 2012-12-05

Family

ID=42831589

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100425140 Not-in-force EP2386458B1 (fr) 2010-04-27 2010-04-27 Signal lumineux pour systèmes ferroviares

Country Status (1)

Country Link
EP (1) EP2386458B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221991A1 (de) * 2012-11-30 2014-06-05 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Fehleroffenbarung bei einem Lichtsignal
CN106251729B (zh) * 2016-08-23 2022-10-25 山东交通学院 一种列车进站信号机点灯电路模拟系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597179B2 (en) * 1999-11-19 2003-07-22 Gelcore, Llc Method and device for remote monitoring of LED lamps
US6392553B1 (en) * 2000-08-22 2002-05-21 Harmon Industries, Inc. Signal interface module
US6667623B2 (en) * 2001-11-07 2003-12-23 Gelcore Llc Light degradation sensing led signal with visible fault mode
GB2408834B (en) * 2001-12-11 2005-07-20 Westinghouse Brake & Signal Signal lamps and apparatus
WO2007036509A1 (fr) * 2005-09-27 2007-04-05 Siemens Aktiengesellschaft Procede et dispositif pour surveiller le signal lumineux d'un element lumineux electro-optique, notamment d'une del haute intensite utilisee dans le trafic ferroviaire pour un signal ferroviaire sur
EP2030862A1 (fr) * 2007-08-30 2009-03-04 Bombardier Transportation GmbH Dispositif lumineux de signalisation pour trafic lié au réseau ferroviaire ou autre véhicules sur rails

Also Published As

Publication number Publication date
EP2386458A1 (fr) 2011-11-16

Similar Documents

Publication Publication Date Title
CN102171739B (zh) 具有内部电路备用系统的交通led灯
ES2733862T3 (es) Disparador electrónico provisto de medios de supervisión y procedimiento de supervisión correspondiente
US8066230B2 (en) Gate monitoring system
DK2117283T3 (en) APPARATUS AND PROCEDURE FOR REDUCING TRAFFIC SIGNAL ERRORS
KR100669225B1 (ko) 에이에프 궤도회로장치
KR101642436B1 (ko) 화재 경보 기능을 갖춘 비상전원 자동공급 및 제어장치
US9131584B2 (en) Airfield lighting sustem
US8717194B2 (en) LED traffic signal compensation and protection methods
US20070228223A1 (en) Device for activation and monitoring of a light-signal system for railway traffic
EP2386458B1 (fr) Signal lumineux pour systèmes ferroviares
US20110204189A1 (en) Electronic track relay, and railroad signaling system using the same
KR102133021B1 (ko) 디지털 고전압 임펄스 궤도회로 장치 및 그 제어 방법
CA2987474C (fr) Systeme de surveillance, dispositif de signalisation a del en bordure de voie, et procede de surveillance d'un dispositif de signalisation a del en bordure de voie
BG109785A (bg) Led сигнални лампи и метод за надеждно управлениена led сигнални лампи
ES2712377T3 (es) Dispositivo y procedimiento para la supervisión de un transmisor de señal de una instalación de señal luminosa que comprende un diodo emisor de luz
US11420660B2 (en) Luminous device for rail ways signals and the like, and management method thereof
JP2018054398A (ja) 地絡電流検出器
CN208015684U (zh) 一种接线盒及光伏组件系统
RU93354U1 (ru) Светофор светодиодный железнодорожный
RU2660842C2 (ru) Светодиодная лампа для железнодорожного светофора с реактивно-импульсным балластом
JP7355676B2 (ja) 非常報知灯用回線確認装置
EP2237644B1 (fr) Unité de surveillance pour DEL haute puissance et dispositif de signalisation
RU2735457C1 (ru) Модуль управления сигналами светофоров железнодорожной автоматики и способ управления сигналами светофоров железнодорожной автоматики
RU2488506C1 (ru) Устройство контроля состояния рельсовой линии
KR20160117903A (ko) 조명등용 비상 절체 릴레이 장치

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120516

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 5/18 20060101AFI20120628BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 587097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010003967

Country of ref document: DE

Effective date: 20130124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 587097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010003967

Country of ref document: DE

26N No opposition filed

Effective date: 20130906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010003967

Country of ref document: DE

Effective date: 20130906

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010003967

Country of ref document: DE

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100427

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130427

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205