EP2384523B1 - Dual-band-antenne für satellitennavigationsanwendungen - Google Patents

Dual-band-antenne für satellitennavigationsanwendungen Download PDF

Info

Publication number
EP2384523B1
EP2384523B1 EP10701376.5A EP10701376A EP2384523B1 EP 2384523 B1 EP2384523 B1 EP 2384523B1 EP 10701376 A EP10701376 A EP 10701376A EP 2384523 B1 EP2384523 B1 EP 2384523B1
Authority
EP
European Patent Office
Prior art keywords
antenna
antenna element
frequency
dual band
conductive paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10701376.5A
Other languages
English (en)
French (fr)
Other versions
EP2384523A2 (de
Inventor
Marcos Vinicio Thomas Heckler
Enrique Nova Lavado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP2384523A2 publication Critical patent/EP2384523A2/de
Application granted granted Critical
Publication of EP2384523B1 publication Critical patent/EP2384523B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the invention relates to a dual-band antenna in microstrip technology, which should find particular use in satellite navigation.
  • Satellite receivers for navigation systems generally need to receive radiation at frequencies in two frequency bands, with the electromagnetic waves to be received being circularly polarized waves.
  • the European satellite system GALILEO operates on two frequency bands, namely the E5a - E5b frequency band (1164 to 1215 GHz) and the L1 frequency band (1559 to 1591 GHz), and requires a high degree of polarization purity. In this case, it is additionally required that the reception of waves which lie outside of these frequency bands is strongly suppressed.
  • the signal received by the antenna element of the microstrip antenna is coupled to a track by a recess in the ground plane. Since the antenna is to receive electromagnetic radiation in two frequency bands, the signals of the different frequency bands are then divided over electronic components such as so-called splitter. This extra hardware requires more space and adds weight, which is something both should avoid.
  • microstrip antenna designs for satellite systems are known in which stacked antenna elements are used to receive electromagnetic radiation in each different frequency bands, which are coupled via recesses in a ground layer (electrically conductive layer) with different interconnects.
  • ground layer electrically conductive layer
  • This multilayer structure includes an upper first antenna element for receiving electromagnetic waves having a frequency in a first frequency band and a lower second antenna element (lower patch) disposed below the first antenna element for receiving electromagnetic waves having a frequency different from the first frequency band second frequency band. Between the two antenna elements, a single (and thus common) electrically conductive ground layer is arranged. Furthermore, the known multi-layer structure has a conductor track (feed network) with at least one first conductor for the electromagnetic coupling to the first antenna element and at least one second conductor for the electromagnetic coupling with the second antenna element. In this case, the at least one first conductor track is connected to the upper first antenna element by means of an electrical conductor (feed probe) which extends through the lower second antenna element and electrically insulated from it. A plurality of dielectric layers are disposed between the superimposed antenna elements, the ground layer and the wiring layer.
  • the object of the invention is to provide a dual-band antenna, in particular for satellite navigation applications, which delivers signals in the two frequency bands due to their design and in particular without additional electrical or electronic components at separate outputs.
  • the invention proposes a dual-band antenna, in particular for satellite navigation applications, with a multi-layer structure having the features of claim 1.
  • the other claims relate to various embodiments of the invention.
  • the dual-band antenna according to the invention is provided with two antenna elements (English: patch), which are designed for receiving or for transmitting electromagnetic waves, each having a frequency in one of two frequency bands. These two antenna elements are superposed and insulated from each other by one or more dielectric layers. Basically, the geometric shape of the two antenna elements any. Preferably, each antenna element has a substantially circular, substantially rectangular or substantially square geometric shape.
  • the two antenna elements are expediently arranged one above the other in such a way that their geometric center of gravity lies on an axis which extends essentially at right angles to the antenna elements. It is also advantageous if the lower second antenna element projects beyond the peripheral edge of the upper first antenna element.
  • first and second electrically conductive ground layers between which a conductor track layer is arranged, which in turn is electrically insulated from both ground layers by dielectric layers.
  • the first upper ground layer which faces the lower second antenna element, is provided with two recesses, below each of which one of two (second) tracks of the conductor track layer is located.
  • line adaptation elements are suitable for reflecting those electromagnetic waves having a frequency in the second frequency band, which are parasitically coupled in via the lower second antenna element.
  • the coupling of the lower second antenna element with the second printed conductors is effected through the recess in the first ground layer and thus as in the conventional so-called aperture-coupled microstrip antenna designs.
  • the recess in the first ground layer but now also couples the upper first antenna element parasitic in the first interconnects. Therefore, in order to suppress these parasitically coupled signals, second line adjusting elements are coupled to the second printed conductors, which serves to match the impedance of the second printed conductors to the lower second antenna element, thereby suppressing couplings into the second printed conductors from the upper first antenna element.
  • any type of line matching element can be coupled to the first and second tracks.
  • the first line matching element which is coupled to the first interconnect, at which ideally only the signals should lie with a frequency in the first frequency band, the coupling of received via the lower second antenna element and coupled into the electrical conductors electromagnetic waves with a frequency suppressed in the second frequency band.
  • the second line adaptation elements which are connected to the second interconnects, at which ideally only the signal should have a frequency in the second frequency band, suppress the coupling of electromagnetic waves received via the upper first antenna element in the first frequency band into the second interconnects.
  • the dual-band antenna according to the invention can be used as a transmitting and / or as a receiving antenna for linearly or circularly polarized waves.
  • the satellite system GALILEO works with clockwise circularly polarized waves.
  • the components for circularly polarized waves have two input terminals, which are connected to the two first printed conductors and two second printed conductors, which are electrically directly connected or electromagnetically coupled to the two antenna elements.
  • Fig. 1 shows an embodiment of a dual-band antenna 10 for circularly polarized electromagnetic waves, as can be found, for example, use in the GALILEO satellite system.
  • the dual band antenna 10 has a multilayer structure of electrically conductive layers and dielectric layers disposed therebetween, as shown in FIGS Sectional views of the FIGS. 2 and 3 and in the exploded view according to Fig. 4 is shown in more detail.
  • the dual-band antenna 10 has a first or upper antenna element 12, which in this embodiment is substantially square and receives electromagnetic waves in a first frequency band.
  • the upper antenna element 12 is located on a dielectric layer 14, below which a second lower antenna element 16 is arranged.
  • the lower antenna element 16 has a substantially square shape. Both antenna elements are arranged center-centered one above the other.
  • a dielectric layer 18 which serves to electrically insulate the lower antenna element 16 to a first upper electrically conductive ground layer 20.
  • a dielectric layer 22 below which a conductor track layer 24 is arranged, which is electrically insulated via a further dielectric layer 26 with respect to a further lower ground layer 28.
  • This multi-layer structure basically corresponds to the known dual-band antenna design using microstrip technology.
  • the conductor layer 24 has two conductor pairs, wherein the one pair comprises two first conductor tracks 30, 32 and the other pair comprises two second conductor tracks 34, 36. These interconnects are arranged in a common plane, namely the interconnect layer 24.
  • the first interconnects 30 and 32 are coupled to the upper antenna element 12 while the second interconnects 34, 36 are coupled to the lower antenna element 16.
  • the dual-band antenna 10 as a receiving antenna to the first interconnects 30,32 is the signal received from the upper antenna element 12, while at the second interconnects 34 and 36, the signal received from the lower antenna element 16 is pending .
  • the two channels namely, the first interconnects 30,32 and the second interconnects 34,36
  • the electromagnetic coupling of the lower antenna element 16 with the second tracks 34 and 36 is carried out in a conventional manner by two recesses 40,42 in the upper ground layer 20, wherein the second traces 34,36 below each one of the two recesses 40,42 extend and traverse these, as shown in the figures. This results in an electromagnetic coupling between the lower antenna element 16 and the second interconnects 34 and 36 through the recesses 40 and 42 therethrough.
  • the upper antenna element 12 is now also electromagnetically coupled through the recesses 40 and 42 to the second interconnects 34 and 36.
  • line adjustment elements 44,45 so-called impedance matching stubs
  • the impedance of the second interconnects 34,36 is now adapted to the impedance of the lower antenna element 16 associated with these second interconnects, which ensures that substantially no signals received from the upper antenna element 12 in the second interconnects 34,36 are coupled.
  • the (electromagnetic) coupling of the first interconnects 30,32 with their associated upper antenna element 12 is carried out according to the invention line bound, with the help of two electrical conductors 46,48, starting from the wiring layer 24 in the direction of the succession of different layers of the multilayer structure extend this to the upper antenna element 12.
  • the two conductors 46, 48 are electrically insulated from the upper ground layer 20 and the lower antenna element 16, which both pass through.
  • the lower antenna element 16 is provided with two recesses 50, 52 and the upper mass layer 20 is likewise provided with two further recesses 54, 56. wherein the two recesses 50,54 associated with the conductor 46 and the two recesses 52,56 associated with the conductor 48 are each aligned with one another.
  • first interconnects 30 and 32 are in this embodiment provided with line matching elements 58, 60 in the form of ⁇ / 4 decoupling stubs (where ⁇ is the "guided wave length" of the second frequency band on which the lower antenna element 16 receives), so that from the signals coupled to the lower antenna element 16 are reflected and can not propagate via the first interconnects 30, 32.
  • the two first interconnects 30, 32 have further line adaptation elements 62, 64 for impedance matching (so-called impedance matching stubs).
  • the dual-band antenna design described above and shown in the drawing allows an extremely compact structure and in particular requires no additional electronics for the distribution of the received signals on the two frequency bands.
  • the separation of the channels is extremely good; Simulations have shown that the isolation between both channels is 30 dB.
  • Fig. 1 can now be connected to the two first interconnects 30 and 32 and to the two second interconnects 34 and 36 electrical or electronic components / components 66.68 (so-called 90 ° hybrid), as for the reception (or Send) of circularly polarized electromagnetic waves is required.
  • the signals received by the two antenna elements 12, 16 can then be tapped separately from one another and narrowband for further processing in a satellite receiver (or satellite transmitter).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

  • Die Erfindung betrifft eine Dual-Band-Antenne in Mikrostrip-Technologie, die insbesondere Verwendung in der Satellitennavigation finden soll.
  • Zukünftige Navigationssysteme erfordern präzisere und zuverlässiger Satellitenempfänger, die kleinformatig sein müssen. Ferner müssen Satellitenempfänger für Navigationssysteme zumeist Strahlung mit Frequenzen in zwei Frequenzbändern empfangen, wobei es sich bei den zu empfangenden elektromagnetischen Wellen um zirkular polarisierte Wellen handelt. So arbeitet beispielsweise das europäische Satellitensystem GALILEO auf zwei Frequenzbändern, nämlich dem E5a - E5b-Frequenzband (1.164 bis 1.215 GHz) und dem L1-Frequenzband (1.559 bis 1.591 GHz), und erfordert eine hohe Polarisationsreinheit. Hierbei wird zusätzlich gefordert, dass der Empfang von Wellen, die außerhalb dieser Frequenzbänder liegen, stark unterdrückt ist.
  • Es ist bekannt, für zirkular polarisierte elektromagnetische Strahlung Dual-Band-Antennen in Mikrostrip-Technologie zu verwenden. Beispiele für derartige Antennen finden sich in "DUAL APERTURE-COUPLED MICROSTRIP ANTENNA FOR DUAL OR CIRCULAR POLARISATION", A. Adrian, D.H. Schaubert, ELECTRONIC LETTERS, 5. November 1987, Vol. 23, No. 23, und "Analysis of an Aperture Coupled Microstrip Antenna", Peter L. Sullivan, Daniel H. Schaubert, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Vol. AP-34, No. 8, August 1986.
  • Bei diesen bekannten Antennen-Designs wird das von dem Antennenelement der Mikrostrip-Antenne empfangene Signal durch eine Aussparung in der Masseschicht auf eine Leiterbahn gekoppelt. Da die Antenne elektromagnetische Strahlung in zwei Frequenzbändern empfangen soll, müssen die Signale der unterschiedlichen Frequenzbänder anschließend über elektronische Komponenten wie sogenannte Splitter aufgeteilt werden. Diese zusätzliche Hardware erfordert einen erhöhten Platzbedarf und verursacht zusätzliches Gewicht, was es beides zu vermeiden gilt.
  • Aus "A Dual-Band Circularly Polarized Aperture-Coupled Stacked Microstrip Antenna for Global Positioning Satellite", David M. Pozar, Sean M. Duffy, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Vol. 45, No. 11, November 1997, und "Dual Circularly-polarized Stacked Patch Antenna for GPS/ SDMB", Jun-Hwa Oh, Young-Pyo Hong, and Jong-Gwan Yook, proceedings of the 2008 IEEE International Symposium on Antennas and Propagation, July 2008, sind Mikrostrip-Antennen-Designs für Satellitensysteme bekannt, bei denen übereinander angeordnete Antennenelemente zum Empfang elektromagnetischer Strahlung in jeweils verschiedenen Frequenzbändern verwendet werden, die über Aussparungen in einer Masseschicht (elektrisch leitende Schicht) mit verschiedenen Leiterbahnen gekoppelt sind. Bei diesen bekannten Antennen-Designs hat sich herausgestellt, dass die Trennung der beiden Kanäle der Antenne für bestimmte Satellitennavigationsanwendungen nicht ausreichend hoch ist.
  • Aus BING BAI ET AL: "Stacked Dual-Band Circularly Polarized Microstrip patch Antenna", MICROWAVE ANTENNA, PROPAGATION AND EMC TECHNOLOGIES FOR WIRELESS COMMUNICATIONS, 2007 INTERNATIONAL SYMPOSIUM ON, IEEE, PI, 1. August 2007 (2007-08-01), Seiten 706-709, XP031167810 (ISBN: 978-1-4244-1044-6) ist eine Dual-Band-Antenne für Satellitennavigationsanwendungen (GPS) mit einem Mehrschichtenaufbau bekannt. Dieser Mehrschichtenaufbau umfasst ein oberes erstes Antennenelement (upper patch) zum Empfang elektromagnetischer Wellen mit einer Frequenz in einem ersten Frequenzband und ein unterhalb des ersten Antennenelements angeordnetes unteres zweites Antennenelement (lower patch) zum Empfang elektromagnetischer Wellen mit einer Frequenz in einem gegenüber dem ersten Frequenzband verschiedenen zweiten Frequenzband. Zwischen beiden Antennenelementen ist eine einzige (und damit gemeinsame) elektrisch leitende Masseschicht angeordnet. Ferner weist der bekannte Mehrschichtenaufbau eine Leiterbahnschicht (feed network) mit mindestens einer ersten Leiterbahn zur elektromagnetischen Kopplung mit dem ersten Antennenelement und mit mindestens einer zweiten Leiterbahn zur elektromagnetischen Kopplung mit dem zweiten Antennenelement auf. Die mindestens eine erste Leiterbahn ist dabei mittels eines elektrischen Leiters (feed probe), der sich durch das untere zweite Antennenelement hindurch und gegenüber diesem elektrisch isoliert erstreckt, mit dem oberen ersten Antennenelement verbunden. Mehrere dielektrische Schichten sind zwischen den übereinanderliegenden Antennenelementen, der Masseschicht und der Leiterbahnschicht angeordnet.
  • Aufgabe der Erfindung ist es, eine Dual-Band-Antenne, insbesondere für Satellitennavigationsanwendungen zu schaffen, die auf Grund ihres Designs und insbesondere ohne elektrische bzw. elektronische Zusatzkomponenten an getrennten Ausgängen Signale in den beiden Frequenzbändern liefert.
  • Zur Lösung dieser Aufgabe wird mit der Erfindung eine Dual-Band-Antenne, insbesondere für Satellitennavigationsanwendungen, mit einem Mehrschichtenaufbau mit den Merkmalen des Anspruchs 1 vorgeschlagen. Die anderen Ansprüche betreffen verschiedene Ausgestaltungen der Erfindung.
  • Die erfindungsgemäße Dual-Band-Antenne ist mit zwei Antennenelementen (englisch: patch) versehen, die für den Empfang bzw. für das Senden elektromagnetischer Wellen mit jeweils einer Frequenz in einem von zwei Frequenzbändern ausgelegt sind. Diese beiden Antennenelemente liegen übereinander und sind durch ein oder mehrere dielektrische Schichten gegeneinander isoliert. Grundsätzlich ist die geometrische Form der beiden Antennenelemente beliebig. Vorzugsweise weist jedes Antennenelement eine im wesentlichen kreisförmige, im wesentlichen rechteckförmige bzw. im wesentlichen quadratische geometrische Form auf. Die beiden Antennenelemente sind zweckmäßigerweise derart übereinander angeordnet, dass ihre geometrischen Schwerpunkte auf einer Achse liegen, die im wesentlichen rechtwinklig zu den Antennenelementen verläuft. Dabei ist es ferner von Vorteil, wenn das untere zweite Antennenelement über den Umfangsrand des oberen ersten Antennenelements übersteht.
  • Unterhalb der beiden Antennenelemente befinden sich zwei übereinander angeordnete erste und zweite elektrisch leitende Masseschichten, zwischen denen eine Leiterbahnschicht angeordnet ist, die ihrerseits gegenüber beiden Masseschichten durch dielektrischeSchichten elektrisch isoliert ist. Die erste obere Masseschicht, die dem unteren zweiten Antennenelement zugewandt ist, ist mit zwei Aussparungen versehen, unterhalb derer sich jeweils eine von zwei (zweiten) Leiterbahnen der Leiterbahnschicht befindet. Über die Aussparung wird also das von dem unteren zweiten Antennenelement empfangene Signal auf die beiden zweiten Leiterbahnen gekoppelt.
  • Zur Kopplung des oberen ersten Antennenelements mit zwei ersten Leiterbahnen der Leiterbahnschicht dienen physikalische elektrische Verbindunger in Form von Leitern, die sich in Richtung der Aufeinanderfolge der Schichten des Mehrschichtenaufbaus durch diesen zwischen der Leiterbahnschicht und dem ersten Antennenelement erstreckt. Zu diesem Zweck weist das untere zweite Antennenelement und die dieser zugewandte erste Masseschicht jeweils zwei Aussparungen auf, wobei durch jede Aussparung unter Beibehaltung eines allseitigen Abstandes zu den Rändern dieser Aussparung ein elektrischer Leiter verläuft, der das obere erste Antennenelement mit einer ersten Leiterbahn verbindet. Damit kann nun das von dem oberen ersten Antennenelement empfangene Signal leitungsgebunden zuden ersten Leiterbahnen übertragen werden. Eine Kopplung des zweiten Antennenelements, durch dessen Aussparung sich die elektrischen Leiter hindurch erstrecken, wird durch entsprechende Leitungsanpasselemente, die mit den ersten Leiterbahnen gekoppelt sind, im wesentlichen unterdrückt. Hierbei bieten sich Leitungsanpasselemente zur Reflektion derjenigen elektromagnetischen Wellen mit einer Frequenz im zweiten Frequenzband an, die über das untere zweite Antennenelement parasitär eingekoppelt werden.
  • Wie bereits oben ausgeführt, erfolgt die Kopplung des unteren zweiten Antennenelements mit den zweiten Leiterbahnen durch die Aussparung in der ersten Masseschicht und somit so wie bei den üblichen sogenannten Aperture-Coupled Microstrip-Antennendesigns. Über diese Aussparung in der ersten Masseschicht koppelt nun aber auch das obere erste Antennenelement parasitär in die ersten Leiterbahnen ein. Daher wird zur Unterdrückung dieser parasitär eingekoppelten Signale mit den zweiten Leiterbahnen zweite Leitungsanpasselemente gekoppelt, die der Impedanzanpassung der zweiten Leiterbahnen an das untere zweite Antennenelement dient, wodurch Einkopplungen in die zweiten Leiterbahnen von dem oberen ersten Antennenelement unterdrückt werden. Grundsätzlich ist zu sagen, dass jede Art von Leitungsanpasselementen mit den ersten und zweiten Leiterbahnen gekoppelt werden können. Entscheidend ist, dass das erste Leitungsanpasselement, das mit der ersten Leiterbahn gekoppeltist, an welcher idealerweise ausschließlich die Signale mit einer Frequenz im ersten Frequenzband anliegen sollten, die Einkopplung von über das untere zweite Antennenelement empfangenen und in die elektrischen Leiter eingekoppelten elektromagnetischen Wellen mit einer Frequenz im zweiten Frequenzband unterdrückt. Genauso sollen die zweiten Leitungsanpasselemente, die mit den zweiten Leiterbahnen, verbaunden sind, an welchen idealerweise ausschließlich das Signal mit einer Frequenz im zweiten Frequenzband anstehen soll, die Einkopplung von über das obere erste Antennenelement empfangenen elektromagnetischen Wellen im ersten Frequenzband in die zweiten Leiterbahnen unterdrücken.
  • Mit dem erfindungsgemäßen Antennen-Design ist es möglich, direkt an den ersten und weiten Leiterbahnen die gewünschten Signale abzugreifen, die somit bereits bezüglich ihrer Frequenz voneinander getrennt sind. Ein Frequenzsplitter o.dgl., wie er bei Mikrostrip-Antennen mit lediglich einem Abgriff erforderlich ist, wird also nicht mehr benötigt. An die Leiterbahnen lassen sich nunmehr direkt die erforderlichen elektrischen/elektronischen Komponenten bzw. Bauteile für die auf den Leiterbahnen anstehenden Signale der im Regelfall polarisierten empfangenen Wellen anschließen.
  • Die erfindungsgemäße Dual-Band-Antenne kann als Sende- und/oder als Empfangsantenne für linear oder zirkular polarisierte Wellen eingesetzt werden. Das Satellitensystem GALILEO arbeitet mit rechtsdrehenden zirkular polarisierten Wellen. Die Komponenten für zirkular polarisierte Wellen weisen zwei Eingangsanschlüsse auf, die mit den zwei ersten Leiterbahnen und zwei zweiten Leiterbahnen verbunden sind, welche mit den beiden Antennenelementen elektrisch direkt verbunden bzw. elektromagnetisch gekoppelt sind.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels und unter Bezugnahme auf die Zeichnung näher erläutert. Im einzelnen zeigen dabei:
  • Fig. 1
    eine schematische Draufsicht auf eine Dual-Band-Antenne gemäß dem Ausführungsbeispiel,
    Fig. 2
    einen Schnitt entlang der Linie II-II der Fig. 1,
    Fig. 3
    eine Schnittansicht entlang der Linie III-III der Fig. 1 und
    Fig. 4
    eine perspektivische Darstellung des Schichtenaufbaus der Dual-Band-Antenne in Explosionsansicht.
  • Fig. 1 zeigt ein Ausführungsbeispiel einer Dual-Band-Antenne 10 für zirkular polarisierte elektromagnetische Wellen, wie sie beispielsweise Verwendung in dem GALILEO-Satellitensystem finden kann. Die Dual-Band-Antenne 10 weist einen Mehrschichtenaufbau aus elektrisch leitenden Schichten und aus zwischen diesen angeordneten dielektrischen Schichten auf, wie es in den Schnittansichten der Fign. 2 und 3 und in der Explosionsdarstellung gemäß Fig. 4 näher gezeigt ist.
  • Die Dual-Band-Antenne 10 weist ein erstes bzw. oberes Antennenelement 12 auf, das in diesem Ausführungsbeispiel im wesentlichen quadratisch ist und elektromagnetische Wellen in einem ersten Frequenzband empfängt. Das obere Antennenelement 12 befindet sich auf einer dielektrischen Schicht 14, unterhalb derer ein zweites unteres Antennenelement 16 angeordnet ist. Auch das untere Antennenelement 16 weist eine im wesentlichen quadratische Form auf. Beide Antennenelemente sind mittenzentriert übereinander angeordnet.
  • Unterhalb des unteren Antennenelements 16 befindet sich wiederum eine dielektrische Schicht 18, die der elektrischen Isolation des unteren Antennenelements 16 zu einer ersten oberen elektrisch leitenden Masse- bzw. Erdungsschicht 20 dient. Unterhalb dieser oberen Masseschicht 20 befindet sich eine dielektrische Schicht 22, unterhalb derer eine Leiterbahnschicht 24 angeordnet ist, die über eine weitere dielektrische Schicht 26 elektrisch isoliert gegenüber einer weiteren unteren Masseschicht 28 ist. Dieser Mehrschichtenaufbau entspricht grundsätzlich dem bekannten Dual-Band-Antennen-Design unter Verwendung der Mikrostrip-Technologie.
  • Die Leiterbahnschicht 24 weist zwei Leiterbahnpaare auf, wobei das eine Paar zwei erste Leiterbahnen 30,32 und das andere Paar zwei zweite Leiterbahnen 34,36 umfasst. Diese Leiterbahnen sind in einer gemeinsamen Ebene, nämlich der Leiterbahnschicht 24 angeordnet.
  • Die ersten Leiterbahnen 30 und 32 sind mit dem oberen Antennenelement 12 gekoppelt, während die zweiten Leiterbahnen 34,36 mit dem unteren Antennenelement 16 gekoppelt sind. Damit steht also im Falle der Verwendung der Dual-Band-Antenne 10 als Empfangsantenne an den ersten Leiterbahnen 30,32 das von dem oberen Antennenelement 12 empfangene Signal an, während an den zweiten Leiterbahnen 34 und 36 das von dem unteren Antennenelement 16 empfangene Signal ansteht. Hauptaspekt des Dual-Band-Antennen-Designs ist es nun, dass die beiden Kanäle (nämlich die ersten Leiterbahnen 30,32 und die zweiten Leiterbahnen 34,36) ausreichend stark gegeneinander getrennt sind und auf den beiden Kanälen idealerweise ausschließlich die diesen Kanälen zugeordneten Signale mit ihren Frequenzen anliegen.
  • Die elektromagnetische Kopplung des unteren Antennenelements 16 mit den zweiten Leiterbahnen 34 und 36 erfolgt in an sich bekannter Weise durch zwei Aussparungen 40,42 in der oberen Masseschicht 20, wobei die zweiten Leiterbahnen 34,36 unterhalb jeweils einer der beiden Aussparungen 40,42 verlaufen und diese durchqueren, wie es in den Figuren dargestellt ist. Damit entsteht eine elektromagnetische Kopplung zwischen dem unteren Antennenelement 16 und den zweiten Leiterbahnen 34 und 36 durch die Aussparungen 40 und 42 hindurch.
  • Unbeabsichtigerweise ist aber nun auch das obere Antennenelement 12 durch die Aussparungen 40 und 42 mit den zweiten Leiterbahnen 34 und 36 elektromagnetisch gekoppelt. Durch Leitungsanpasselemente 44,45 (sogenannte Impedance Matching Stubs) wird nun die Impedanz der zweiten Leiterbahnen 34,36 an die Impedanz des diesen zweiten Leiterbahnen zugeordneten unteren Antennenelements 16 angepasst, was gewährleistet, dass im wesentlichen keine von dem oberen Antennenelement 12 empfangenen Signale in die zweiten Leiterbahnen 34,36 eingekoppelt werden.
  • Die (elektromagnetische) Kopplung der ersten Leiterbahnen 30,32 mit dem ihnen zugeordneten oberen Antennenelement 12 erfolgt erfindungsgemäß leitungsgebunden, und zwar mit Hilfe zweier elektrischer Leiter 46,48, die sich ausgehend von der Leiterbahnschicht 24 in Richtung der Aufeinanderfolge der verschiedenen Schichten des Mehrschichtenaufbaus durch diesen bis zum oberen Antennenelement 12 erstrecken. Dabei sind die beiden Leiter 46,48 gegenüber der oberen Masseschicht 20 und dem unteren Antennenelement 16, die sie beide durchqueren, elektrisch isoliert. Zu diesem Zweck ist das untere Antennenelement 16 mit zwei Aussparungen 50,52 und die obere Masseschicht 20 ebenfalls mit zwei weiteren Aussparungen 54,56 versehen, wobei die beiden dem Leiter 46 zugeordneten Aussparungen 50,54 und die beiden dem Leiter 48 zugeordneten Aussparungen 52,56 jeweils miteinander fluchten.
  • In die beiden elektrischen Leiter 46 und 48 wird nun parasitär das von dem unteren Antennenelement 16 empfangene Signal eingekoppelt und damit zu den ersten Leiterbahnen 30 und 32 weitergeleitet. Diese ersten Leiterbahnen 30 und 32 sind in diesem Ausführungsbeispiel mit Leitungsanpasselementen 58,60 in Form von λ/4 decoupling stub (wobei λ die "guided wave length" des zweiten Frequenzbandes ist, auf dem das untere Antennenelement 16 empfängt) versehen, so dass von dem unteren Antennenelement 16 eingekoppelte Signale reflektiert werden und sich nicht über die ersten Leiterbahnen 30,32 ausbreiten können. Zusätzlich weisen die beiden ersten Leiterbahnen 30,32 weitere Leitungsanpasselement 62,64 zur Impedanzanpassung (sogenannte impedance matching stubs) auf.
  • Das zuvor beschriebene und in der Zeichnung dargestellte Dual-Band-Antennen-Design ermöglicht einen extrem kompakten Aufbau und erfordert insbesondere keine zusätzliche Elektronik für die Aufteilung der empfangenen Signale auf die beiden Frequenzbänder. Die Trennung der Kanäle ist extrem gut; durch Simulationen konnte gezeigt werden, dass die Isolation zwischen beiden Kanälen bei 30 dB liegt.
  • Wie in Fig. 1 angedeutet ist, können nun an die beiden ersten Leiterbahnen 30 und 32 bzw. an die beiden zweiten Leiterbahnen 34 und 36 elektrische bzw. elektronische Komponenten/Bauteile 66,68 (sogenannte 90° Hybrids) angeschlossen werden, wie es für den Empfang (oder das Senden) von zirkular polarisierter elektromagnetischer Wellen erforderlich ist. An den Ausgängen 70,72 dieser Komponenten 66,68 lassen sich also dann die von den beiden Antennenelementen 12,16 empfangenen Signale getrennt voneinander und schmalbandig zur Weiterverarbeitung in einem Satellitenempfänger (bzw. Satellitensender) abgreifen.

Claims (13)

  1. Dual-Band-Antenne, für Satellitennavigationsanwendungen, mit einem Mehrschichtenaufbau, der versehen ist mit
    - einem oberen ersten Antennenelement (12) zum Empfang elektromagnetischer Wellen mit einer Frequenz in einem ersten Frequenzband,
    - einem unterhalb des ersten Antennenelements (12) angeordneten unteren zweiten Antennenelement (16) zum Empfang elektromagnetischer Wellen mit einer Frequenz in einem zweiten Frequenzband,
    - zwei übereinander angeordneten ersten und zweiten elektrisch leitenden Masseschichten (20,28), die ihrerseits unterhalb des unteren zweiten Antennenelements (16) angeordnet sind, und
    - einer zwischen den Masseschichten (20,28) angeordneten Leiterbahnschicht (24) mit zwei ersten Leiterbahnen (30,32) zur elektromagnetischen Kopplung mit dem ersten Antennenelement (12) und mit zwei zweiten Leiterbahnen (34,36) zur elektromagnetischen Kopplung mit dem zweiten Antennenelement (16),
    - wobei die dem unteren zweiten Antennenelement (16) zugewandte erste Masseschicht (20) zwei Aussparungen (40,42) aufweist und unterhalb jeder Aussparung (40,42) eine zweite Leiterbahn (34,36) verläuft,
    - wobei die zwei ersten Leiterbahnen (30,32) mittels jeweils eines elektrischen Leiters (46,48), der sich durch die erste Masseschicht (20) und das untere zweite Antennenelement (16) hindurch und gegenüber diesen elektrisch isoliert erstreckt, mit dem oberen ersten Antennenelement (12) verbunden ist,
    - zwei mit den beiden ersten Leiterbahnen (30,32) gekoppelte erste Leitungsanpasselemente (58,60,62,64) zur Unterdrückung der Einkopplung von über das untere zweite Antennenelement (16) empfangenen und in den elektrischen Leiter (46,48) eingekoppelten elektromagnetischen Wellen mit einer Frequenz im zweiten Frequenzband in die beiden ersten Leiterbahnen (30,32),
    - zwei mit den beiden zweiten Leiterbahnen (34,36) gekoppelte zweite Leitungsanpasselemente (44,45) zur Unterdrückung der Einkopplung von über das obere erste Antennenelement (12) empfangenen elektromagnetischen Wellen im ersten Frequenzband in die beiden zweiten Leiterbahnen (34,36) und
    - mehreren dielektrische Schichten (14,18,22,26), die zwischen den übereinanderliegenden Antennenelementen (12,16), Masseschichten (20,28) und Leiterbahnschicht (24) angeordnet sind.
  2. Dual-Band-Antenne nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Antennenelemente (12,16) rechteckig sind.
  3. Dual-Band-Antenne nach Anspruch 2, dadurch gekennzeichnet, dass die beiden Antennenelemente (12,16) quadratisch sind.
  4. Dual-Band-Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die geometrischen Schwerpunkte der beiden Antennenelemente (12,16) übereinander angeordnet sind, wobei das untere zweite Antennenelement (16) über den Rand des oberen ersten Antennenelements (12) überseht.
  5. Dual-Band-Antenne nach Anspruch 4, dadurch gekennzeichnet, dass das untere Antennenelement (16) allseitig über den Rand des oberen ersten Antennenelements (12) überseht.
  6. Dual-Band-Antenne nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass an die beiden ersten Leiterbahnen (30,32) eine erste Komponente für zirkular polarisierte Wellen mit einer Frequenz im ersten Frequenzband und an die beiden zweiten Leiterbahnen (34,36) eine zweite Komponente für zirkular polarisierte Wellen mit einer Frequenz im zweiten Frequenzbereich anschließbar ist.
  7. Dual-Band-Antenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass jedes erste Leitungsanpasselement in Form von λ/4 decoupling stub zur Reflektion von über das untere zweite Antennenelement (16) in den elektrischen Leiter (46,48) eingekoppelten elektromagnetischen Wellen mit einer Frequenz im zweiten Frequenzband ausgebildet ist, wobeï λ die "guided wave lenght" des zweiten Frequenzbandes ist.
  8. Dual-Band-Antenne nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass jedes zweite Leitungsanpasselement zur Anpassung der Impedanz der zweiten Leiterbahn (34,36) an das untere zweite Antennenelement (16) zwecks Einkopplung von i nur elektromagnetischer Wellen mit einer Frequenz im zweiten Frequenzband in die zweite Leiterbahn (34,36) ausgebildet ist.
  9. Verwendung einer Dual-Band-Antenne nach einem der vorhergehenden Ansprüche als Sende- oder Empfangsantenne.
  10. Verwendung nach Anspruch 9 als Sende- oder Empfangsantenne für die Satellitennavigation.
  11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, dass für die Satellitennavigation das GALILEO-Satellitensystem verwendet wird.
  12. Verwendung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Dual-Band-Antenne zum Senden von zirkular polarisierten Wellen eingesetzt wird.
  13. Verwendung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Dual-Band-Antenne zum Empfangen von zirkular polarisierten Wellen eingesetzt wird.
EP10701376.5A 2009-01-31 2010-01-28 Dual-band-antenne für satellitennavigationsanwendungen Not-in-force EP2384523B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910006988 DE102009006988A1 (de) 2009-01-31 2009-01-31 Dual-Band-Antenne, insbesondere für Satellitennavigationsanwendungen
PCT/EP2010/051021 WO2010086383A2 (de) 2009-01-31 2010-01-28 Dual-band-antenne, insbesondere für satellitennavigationsanwendungen

Publications (2)

Publication Number Publication Date
EP2384523A2 EP2384523A2 (de) 2011-11-09
EP2384523B1 true EP2384523B1 (de) 2017-03-01

Family

ID=42308915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10701376.5A Not-in-force EP2384523B1 (de) 2009-01-31 2010-01-28 Dual-band-antenne für satellitennavigationsanwendungen

Country Status (4)

Country Link
US (1) US8810470B2 (de)
EP (1) EP2384523B1 (de)
DE (1) DE102009006988A1 (de)
WO (1) WO2010086383A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120194377A1 (en) * 2011-01-31 2012-08-02 Denso Corporation Antenna apparatus, radar apparatus and on-vehicle radar system
US8957822B2 (en) 2012-09-13 2015-02-17 ImagineCommunications Corp. Operation of an antenna on a second, higher frequency
US9912059B2 (en) 2014-10-21 2018-03-06 Google Llc Proximity coupled multi-band antenna
US11239569B2 (en) * 2019-03-04 2022-02-01 Massachusetts Institute Of Technology Octave band stacked microstrip patch phased array antenna
CN113422199A (zh) * 2021-06-25 2021-09-21 深圳瑞森特电子科技有限公司 天线模组的制造方法、天线模组及通信设备
US11843184B1 (en) * 2022-06-15 2023-12-12 General Dynamics Mission Systems, Inc. Dual band, singular form factor, transmit and receive GNSS antenna with passively shaped antenna pattern

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856907A1 (de) * 1997-02-04 1998-08-05 Lucent Technologies Inc. Planare invertierte F-Antenne mit Aperturkopplung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153600A (en) * 1991-07-01 1992-10-06 Ball Corporation Multiple-frequency stacked microstrip antenna
US6054953A (en) * 1998-12-10 2000-04-25 Allgon Ab Dual band antenna
US6556169B1 (en) * 1999-10-22 2003-04-29 Kyocera Corporation High frequency circuit integrated-type antenna component
DE10064128A1 (de) * 2000-12-21 2002-07-25 Kathrein Werke Kg Patch-Antenne für den Betrieb in mindestens zwei Frequenzbereichen
US7084815B2 (en) * 2004-03-22 2006-08-01 Motorola, Inc. Differential-fed stacked patch antenna
US7253770B2 (en) * 2004-11-10 2007-08-07 Delphi Technologies, Inc. Integrated GPS and SDARS antenna
EP1744399A1 (de) * 2005-07-12 2007-01-17 Galileo Joint Undertaking Mehrbandantenne für Satellitenpositionierungssystem
US8059049B2 (en) * 2006-10-11 2011-11-15 Raytheon Company Dual band active array antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856907A1 (de) * 1997-02-04 1998-08-05 Lucent Technologies Inc. Planare invertierte F-Antenne mit Aperturkopplung

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BING BAI ET AL: "Stacked Dual-Band Circularly Polarized Microstrip Patch Antenna", MICROWAVE, ANTENNA, PROPAGATION AND EMC TECHNOLOGIES FOR WIRELESS COMM UNICATIONS, 2007 INTERNATIONAL SYMPOSIUM ON, IEEE, PI, 1 August 2007 (2007-08-01), pages 706 - 709, XP031167810, ISBN: 978-1-4244-1044-6 *
DAVID M POZAR ET AL: "A Dual-Band Circularly Polarized Aperture-Coupled Stacked Microstrip Antenna for Global Positioning Satellite", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 45, no. 11, 1 November 1997 (1997-11-01), XP011003104, ISSN: 0018-926X *
FERRERO F ET AL: "Dual-Band Circularly Polarized Microstrip Antenna for Satellite Applications", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, IEEE, PISCATAWAY, NJ, US, vol. 4, no. 1, 1 December 2005 (2005-12-01), pages 13 - 3, XP011126933, ISSN: 1536-1225, DOI: 10.1109/LAWP.2004.841622 *
HECKLER M V T ET AL: "Dual-band circularly polarized microstrip antenna with two isolated outputs suitable for navigation systems", ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2009. APSURSI '09. IEEE, IEEE, PISCATAWAY, NJ, USA, 1 June 2009 (2009-06-01), pages 1 - 4, XP031536025, ISBN: 978-1-4244-3647-7 *

Also Published As

Publication number Publication date
US20110291909A1 (en) 2011-12-01
WO2010086383A2 (de) 2010-08-05
WO2010086383A3 (de) 2011-03-03
EP2384523A2 (de) 2011-11-09
US8810470B2 (en) 2014-08-19
DE102009006988A1 (de) 2010-08-05

Similar Documents

Publication Publication Date Title
DE102017103161B4 (de) Antennenvorrichtung und Antennenarray
EP2425490B1 (de) Breitband-antennensystem zur satellitenkommunikation
DE69936903T2 (de) Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne
DE112012001397B4 (de) Hochfrequenzmodul
EP2384523B1 (de) Dual-band-antenne für satellitennavigationsanwendungen
EP3440738B1 (de) Antennenvorrichtung
DE102008039776A1 (de) Gestapelte Patchantenne mit Doppelband
EP2991159B1 (de) Speisenetzwerk für antennensysteme
EP3244483B1 (de) Schirmgehäuse für hf-anwendungen
DE112020003999T5 (de) Antennenmodul, Kommunikationsvorrichtung, die mit demselben befestigt ist, und Schaltungsplatine
DE10353686A1 (de) Symmetrische Antenne in Schichtbauweise
WO2023131375A1 (de) Mehrschichtige patchantennenvorrichtung und fahrzeug
DE202020106896U1 (de) Hochfrequenzmodul und Kommunikationsgerät
DE202021101429U1 (de) Hochfrequenzmodul und Kommunikationsgerät
WO2002063334A2 (de) Integrierte schaltung für ein radargerät in hermetisch abgeschlossenem gehäuse mit einer aus einem blech-biegeteil geformten patch-antenne
EP2489095B1 (de) Antennenkoppler
EP1370886B1 (de) Antenne mit koplanarem speisenetzwerk zum senden und/oder empfangen von radarstrahlen
EP3449528B1 (de) Leiterplattenanordnung zur signalversorgung von strahlern
EP3753073A1 (de) Antenne zur kommunikation mit einem transponder
DE112021006420T5 (de) Dual-polarisiertes magnetoelektrisches Antennenarray
WO2001017061A1 (de) Multiband-antenne
DE102018130570B4 (de) Mobilfunkantenne zum Anschluss an zumindest eine Mobilfunkbasisstation
DE102010014864B4 (de) Hohlleiterverbindung für ein Antennensystem und Antennensystem
DE102004050598A1 (de) Dualband-Antenne für zirkulare Polarisation
DE102020202906B4 (de) GNSS Patch-Antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110713

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NOVA LAVADO, ENRIQUE

Inventor name: HECKLER, MARCOS VINICIO THOMAS

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 1/24 20060101ALI20160629BHEP

Ipc: H01Q 1/38 20060101ALI20160629BHEP

Ipc: H01Q 9/04 20060101AFI20160629BHEP

Ipc: H01Q 1/52 20060101ALI20160629BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160914

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 872318

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013234

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170301

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170602

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170703

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013234

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171220

Year of fee payment: 9

26N No opposition filed

Effective date: 20171204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180118

Year of fee payment: 9

Ref country code: IT

Payment date: 20180112

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 872318

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190128

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191218

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010013234

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803