EP2384463A1 - Modélisation d'un atelier de fabrication avec des modèles à l'échelle d'équipements de fabrication, ainsi que procédé de saisie d'une modélisation spatiale d'équipements de fabrication dans un programme d'étude assistée par ordinateur - Google Patents

Modélisation d'un atelier de fabrication avec des modèles à l'échelle d'équipements de fabrication, ainsi que procédé de saisie d'une modélisation spatiale d'équipements de fabrication dans un programme d'étude assistée par ordinateur

Info

Publication number
EP2384463A1
EP2384463A1 EP10703241A EP10703241A EP2384463A1 EP 2384463 A1 EP2384463 A1 EP 2384463A1 EP 10703241 A EP10703241 A EP 10703241A EP 10703241 A EP10703241 A EP 10703241A EP 2384463 A1 EP2384463 A1 EP 2384463A1
Authority
EP
European Patent Office
Prior art keywords
models
planning
production
model
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10703241A
Other languages
German (de)
English (en)
Inventor
Christian Grosch
Christian ROSSMÜLLER
Sanja Uzelac
Christoph Von Essen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2384463A1 publication Critical patent/EP2384463A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0325Detection arrangements using opto-electronic means using a plurality of light emitters or reflectors or a plurality of detectors forming a reference frame from which to derive the orientation of the object, e.g. by triangulation or on the basis of reference deformation in the picked up image
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32085Layout of factory, facility, cell, production system planning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a model structure of a production facility, wherein this model structure consists of a flat Unterlage on which a plurality of real, two-dimensional or three-dimensional, at least in terms of their space requirements on the base scale models of manufacturing facilities consists.
  • a manufacturing facility should be understood in a broader sense, a structure, which consists of at least two production facilities. By this may be meant, for example, a manufacturing cell containing multiple machines.
  • a manufacturing facility for example, an entire factory floor or even an entire factory may be modeled.
  • manufacturing facilities are to be understood as all spatial units required for production. In the narrow sense, this includes machines for processing products, but also means for transporting the products between the different machines as well as other spatial equipment required in the production facility.
  • Other physical facilities may include, for example, offices for production managers, routes for employees, etc.
  • optimization processes can be carried out both by means of real model constructions and computer-aided simulations of production facilities, which allow an optimization of the production processes as well as of the space requirement and other aspects prior to setting up the production facility.
  • real model structures have the advantage that there is an intuitive interface for the factory planner.
  • computer-aided planning programs have the advantage that it is easier to simulate the production process and, in addition to spatial data, additional data can be processed in the modeling process.
  • the invention relates to a method for entering a spatial structure of manufacturing facilities, which together form a manufacturing facility, in a computer-aided planning program.
  • the framework conditions for the particular application case to be planned must be known. This includes the spatial conditions of the production site, which may already exist (optimization task) or still needs to be built (planning task), and the characteristics of the Application of upcoming manufacturing facilities.
  • the data can already be available in databases, so that a link with the planning program can be carried out comparatively easily.
  • data that is not yet available must be entered into the planning program, which results in an expense for the factory planner.
  • the models of the production facilities can be provided, for example, with two-dimensional markers which are suitable for the recognition of the individual models.
  • the identity of the individual production devices can be recognized, for example, by means of an optical recognition system.
  • the model itself can also be used as a marker, whereby this must be recognized by suitable optical recognition methods.
  • the object of the invention is to provide a real model structure of a production facility with models of production facilities on the one hand and a method for inputting the interaction of production facilities of a production site in a computer-aided planning program on the other hand, the model structure and the method for entering relatively rational in the application should be .
  • the models are provided with machine-readable carriers of identification tags.
  • a carrier of information in a broader sense, all physical devices are to be understood which machine provide readable information.
  • the carrier can store the information in a magnetic way, and to read this information, a magnetic sensor has to be brought as a reading device in its vicinity.
  • RFID tags which are activated by a suitable reading device and deliver the information stored in the carrier, for example via a radio or infrared interface.
  • acoustic information The wearer must emit an acoustic signal for this purpose, which can be picked up by an acoustic sensor.
  • the carrier in addition to the identifiers has location identifiers containing the coordinates of the respective position of the carrier concerned on the relevant model. Namely, with the identification identifier, only the model can be identified via the carrier, so that by reading in data about the model are made available, which can be fed into a planning program. However, if the position of the model on the plan is to be determined by the image, then it is advantageous to determine only the position of the information carrier. This is possible with relatively little computational effort, since this has only limited dimensions. If the position of the information carrier on the associated model is known, it is also possible to infer the position of the model on the base via the determined position of the information carrier.
  • the carriers are optically readable and are optically accessible from a viewing direction from above on the pad.
  • Optical accessibility is required as the models are placed on the Unerlage to create the model.
  • the base thus forms a model of the floor of the production site, whereby the read-out of the supports can be done optically, as it were, from a bird's eye view, without the models being concealed on each other.
  • a vertical viewing direction is particularly advantageous.
  • deviating viewing directions can also be selected, as long as it is ensured that the models do not obscure each other.
  • a comparatively large angle for the viewing direction of, for example, 20 ° to 90 ° can be selected. If three-dimensional models are used, an angle for the viewing direction of 60 ° to 90 ° is advantageous.
  • the vertical angle corresponds to an angle of 90 °.
  • a camera is used as device for reading out the carriers, which contains an image sensor and an objective, it is also to be considered that a vertical viewing direction is ensured only in the center of the recorded image. At the edges of the image inevitably arise viewing directions from above on the substrate, which differ from the vertical to the base.
  • the identifiers consist of one-dimensional or two-dimensional bar codes.
  • common standards for the bar codes can be used, so that recognition can advantageously be made quickly and reliably with available software.
  • a one-dimensional bar code the code 39, the code 93 or the code 128 may be mentioned.
  • Representatives of two-dimensional barcodes include, for example, the UR code, the DATAMATRIX code or the AZTEC code.
  • the object is also achieved by the above-mentioned method in that the following process steps are performed.
  • the production facilities produce real, two-dimensional or three-dimensional models which are at scale, at least with regard to their area requirements.
  • the models are provided with machine readable carriers of identification tags.
  • the models are used to build a model of the production plant on a flat surface. From this model construction, at least one digital image is created with an image sensor from a viewing direction from above onto the substrate.
  • the identifiers of the models are recorded by machine.
  • the positions of the models belonging to the carriers are determined in the digital image.
  • the positions of the models are linked via the identifiers with datasets of the production facilities in the planning program.
  • location identifiers are provided on the carriers, which are the coordinates of the respective position of the carrier included on the models. It is then possible to calculate the position of the models represented by the carriers on the support by determining the position of the carriers taking into account the position identifications.
  • the procedure is as follows. The position of the carrier in the image is determined. In this case, several images may possibly be evaluated in the manner described in order to determine the position of the carrier beyond doubt. Subsequently, the position of the carrier with the position identifiers is superimposed so that, depending on the position of the carrier, it is possible to deduce the position of the entire model on the base. This conclusion is therefore made by a calculation of the planning program, to which the necessary information in the form of identification codes and position identifications is made available.
  • the datasets of the production facilities in the planning program already contain the coordinates of the respective position of the carriers on the models.
  • no position identifiers on the carriers are necessary because these data have already been stored in the planning program.
  • These can be retrieved by evaluating the identifiers of the respective model and, after identifying the model, retrieving the coordinates of the position of the carrier from the dataset of the production device. If available, the position of the models represented by the carriers can be calculated on the support by determining the position of the supports taking into account the position of the supports on the models.
  • the idea according to the invention lies in the fact that it is advantageously possible, by means of real models on a base by the factory planner, to intuitively and in a simple manner implement planning variants. from the planned production site.
  • advantageously a review of the planning variants by means of planning programs must not be dispensed with.
  • the input of the data into the planning program is advantageously carried out automatically, so that advantageously saves the labor involved in the handling of planning programs factory planner work.
  • the application of the planning program is accelerated and thus more economical.
  • solutions for the planning concept of factory planning are overall found to be advantageous in a shorter time and, in the process, the optimization potential of the employees in production is also advantageously raised.
  • the carriers provision is made for the carriers to be optically readable and to be attached to the models in such a way that they are optically accessible from above from above onto the underlay, after which the models have been placed on the base.
  • Planning with real models is done as follows.
  • the models are placed on the base, creating a model of the manufacturing facility.
  • This is recorded by means of an optical sensor from above, ie preferably from a viewing direction perpendicular to the base, but possibly also from a different direction of this vertical line of sight.
  • This results in digital images that can be subjected to further image processing. Since the carriers are advantageously optically accessible from above. are accessible, these are also displayed on the digital image, so that the optical information can be evaluated by the image processing.
  • each carrier is imaged on at least two images.
  • Errors in the determination of the position of the respective model due to the perspective distortion in the images can then be corrected by comparing at least two relevant images. relevant
  • Images are those images that depict the carrier in question. This must be at least two pictures. Under the perspective distortion in the context of this invention, the fact is to be understood that an image only in the optical axis of the objective exactly from the given
  • Viewing direction for example, the vertical line of sight can be recorded.
  • the objects in the peripheral areas of the recorded image inevitably have a different direction of view from this particular line of sight, which must be taken into account in determining the position of the carrier in question on the substrate.
  • this position error can be determined. stood the image axes of the two images from each other takes into account.
  • a particularly advantageous embodiment of the method is obtained when a temporal sequence of digital images is created by the model structure with the image sensor.
  • This chronological sequence gives a kind of film, which represents the intuitive planning process by adjusting the models.
  • the intervals between the creation of the individual images can be chosen freely, whereby the individual images should enable a comparison of the different planning states.
  • changes in the positions of the carrier can be determined by comparing the images.
  • the updated positions of the carriers can then be linked via the identifiers with datasets of the production facilities in the planning program and the virtual model of the production facility used in the planning program can be adapted to the real model.
  • an output device can be controlled, on which the changes in the position of the associated with the carriers manufacturing facilities are displayed.
  • Figure 2 is a perspective view of a section of a
  • FIG. 1 shows a room 11 in which the planning method according to the invention is to be carried out.
  • a table 12 In the middle of the room is a table 12, on which a model structure 13 is shown schematically.
  • This consists of a base 14, on the example of a model 15 of a machine is set up as a manufacturing facility.
  • the document represents in a manner not shown the outline of a production facility in the form of a workshop.
  • a first essential method step in the planning method according to the invention is that a factory planner 16 manually places the model 15 in its correct place. Further models (not shown) and other persons (also not shown) can participate in this planning phase.
  • a digital camera 17 records at regular intervals by means of an image sensor 18. took pictures of the model assembly 13. This is done from above, in the embodiment exactly in the vertical direction, ie following the gravity. This results in an image axis 19, which is perpendicular to the substrate 14.
  • a view direction ⁇ which lies at approximately 75 ° to the base 14, looks for the models at the edge of the recorded image.
  • At least one further image is taken from the dot-dashed position with the digital camera 17. To move the camera this is mounted on a tripod 21.
  • the camera can also be held by the factory planner 16 and manually aligned, a tripod is not necessary in this case.
  • the image data of the digital camera 17 are processed in a manner not shown in a second planning step by a planning program and output in the space 11 by means of an on-wall output device 22 in the form of a screen.
  • FIG. 2 shows a representative section of the model structure 13 according to FIG. On the pad 14, the floor plan 23 of the factory hall to be planned can be seen.
  • the models 24, 25 are placed on certain locations of the pad and therefore represent a particular planning state in the process of factory planning.
  • the models 24, 25 are provided with carriers 26 of information.
  • the exemplary embodiment according to FIG. 2 is a carrier of optical information in the form of a two-dimensional bar code.
  • the information includes an identification code for the respective model, which in this way can be clearly assigned to a production facility to be planned, which is stored in the planning program.
  • the carriers contain information about their location on the respective model.
  • this position information is expressed, for example, in a Cartesian coordinate system x-y-z as shown in FIG. Since the models can also be rotated on the base, there is also a coordinate ⁇ expressing the rotation angle of the relative coordinate systems (not shown) connected to the models relative to a stationary coordinate system 28 of the base about the vertical z-axis.
  • the model 24 is a two-dimensional model, so that in this case only one xi and one yi coordinate are stored.
  • the model 25 is described as a three-dimensional model by the coordinates X2, y2, Z2. ben.
  • the coordinates indicate the position of the center of the respective carrier 26 with respect to the rest of the model.
  • the angular coordinate ⁇ can not be stored on the carrier. It must rather be determined taking into account the angular position of the model 24, 25 on the substrate.
  • the carrier may have an orientation information whose angular position is obtained by image processing of the recorded image.
  • a mark 27 with the coordinates X 3 , y 3 to the stationary coordinate system 28 is provided on the base. This serves to align the digital camera 17, so that the position of the image axis 19 with respect to the stationary coordinate system 28 is known. This facilitates the spatial classification of the models in the planning program.
  • another support 29 is provided on the base, which identifies the position of the stationary coordinate system 28.
  • the representation of the location identifiers has been made only as an example and can also be done in other ways.
  • the indicated coordinates can also be entered directly into the planning program, so that a backup on the carriers is not necessary.
  • the location information is linked with the models via the identification code in the planning program.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

L'invention concerne un procédé d'étude d'usine et une modélisation (13) qui est utilisée pour la mise en oeuvre du procédé. Selon l'invention, il est prévu que les modèles (24, 25) intervenant dans la modélisation soient dotés de supports d'informations (26) comme, par exemple, des codes à barres bidimensionnels, si bien qu'après implantation sur un support (14), leur position peut être déterminée par un traitement d'images numériques. De cette manière, les modèles réels peuvent servir à une étude d'usine transparente utilisant un modèle réel tridimensionnel. Grâce aux supports d'information, il est possible de transférer les données ainsi produites dans un programme d'étude. Avantageusement, il est ainsi possible de combiner le procédé d'étude intuitive à l'aide de modèles réels et le procédé d'étude au moyen de programmes d'étude. Les supports d'information constituent une interface efficace entre les deux étapes d'étude, ce qui permet en particulier un travail interactif avec les deux procédés d'étude.
EP10703241A 2009-01-30 2010-01-20 Modélisation d'un atelier de fabrication avec des modèles à l'échelle d'équipements de fabrication, ainsi que procédé de saisie d'une modélisation spatiale d'équipements de fabrication dans un programme d'étude assistée par ordinateur Withdrawn EP2384463A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009007477A DE102009007477A1 (de) 2009-01-30 2009-01-30 Modellaufbau einer Fertigungsstätte mit maßstabsgerechten Modellen von Fertigungseinrichtungen sowie Verfahren zur Eingabe eines räumlichen Aufbaus von Fertigungseinrichtungen in ein rechnergestütztes Planungsprogramm
PCT/EP2010/050604 WO2010086261A1 (fr) 2009-01-30 2010-01-20 Modélisation d'un atelier de fabrication avec des modèles à l'échelle d'équipements de fabrication, ainsi que procédé de saisie d'une modélisation spatiale d'équipements de fabrication dans un programme d'étude assistée par ordinateur

Publications (1)

Publication Number Publication Date
EP2384463A1 true EP2384463A1 (fr) 2011-11-09

Family

ID=42110173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10703241A Withdrawn EP2384463A1 (fr) 2009-01-30 2010-01-20 Modélisation d'un atelier de fabrication avec des modèles à l'échelle d'équipements de fabrication, ainsi que procédé de saisie d'une modélisation spatiale d'équipements de fabrication dans un programme d'étude assistée par ordinateur

Country Status (5)

Country Link
US (1) US20110313734A1 (fr)
EP (1) EP2384463A1 (fr)
CN (1) CN102301310A (fr)
DE (1) DE102009007477A1 (fr)
WO (1) WO2010086261A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010036206A1 (de) * 2010-08-31 2012-03-01 Siemens Aktiengesellschaft Verfahren zur Visualisierung von umweltrelevanten Eigenschaften eines Produktionsprozesses, maschinenlesbarer Programmcode zur Durchführung eines solchen Verfahrens sowie Speichermedium mit einem solchen Programmcode
DE102010041251A1 (de) * 2010-09-23 2012-03-29 Siemens Aktiengesellschaft Verfahren zur Planung eines Fertigungsnetzwerkes mit einer realen geographischen Ausdehnung und Werkzeug zur Verwendung in diesem Verfahren
DE102011078023A1 (de) * 2011-06-10 2012-12-13 Siemens Aktiengesellschaft Planungswerkzeug für einen Prozess, Erkennungsprogramm für die grafische Darstellung eines Prozessablaufes und Verfahren zur Prozessplanung
DE102012201202A1 (de) 2012-01-27 2013-08-01 Siemens Aktiengesellschaft Modellaufbau einer Fertigungsstätte, Werkzeug zur Kennzeichnung von Flächenabschnitten, Verfahren zur Kennzeichnung und Verfahren zum Erfassen von Flächenabschnitten
DE102014102773A1 (de) * 2014-03-03 2015-09-03 De-Sta-Co Europe Gmbh Verfahren zur Wiedergabe eines Fertigungsprozesses in einer virtuellen Umgebung
CN104376339B (zh) * 2014-08-06 2017-07-28 智眼天下通(北京)科技发展有限公司 一种具有验证功能的图形码扫描方法及其图形码结构
EP3324362B1 (fr) 2016-11-21 2019-07-03 Siemens Aktiengesellschaft Procédé et dispositif de mise en service d'un système multiaxes
DE102017207894A1 (de) * 2017-05-10 2018-11-15 Krones Aktiengesellschaft Verfahren und Computersystem zur Planung einer Anlage im Bereich der Getränkeverarbeitungsindustrie
EP3904985A1 (fr) * 2020-04-30 2021-11-03 Siemens Aktiengesellschaft Suivi de modifications des données de projection d'un système de commande d'une installation technique
DE102024001340A1 (de) 2024-04-25 2024-06-06 Mercedes-Benz Group AG Verfahren zum Auslegen eines Fertigungssystems zum Herstellen von Batteriemodulen und Steuerungseinheit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19781024D2 (de) * 1996-09-12 1999-08-05 Eidgenoess Tech Hochschule Interaktionsraum zur Darstellung von Daten
US7139685B2 (en) * 2000-11-03 2006-11-21 Siemens Aktiengesellschaft Video-supported planning of equipment installation and/or room design
JP2004199496A (ja) * 2002-12-19 2004-07-15 Sony Corp 情報処理装置および方法、並びにプログラム
US20060129462A1 (en) * 2004-12-10 2006-06-15 Gerold Pankl Automated planning and manufacturing systems
DE102010018634B4 (de) * 2010-04-23 2014-07-31 Siemens Aktiengesellschaft Verfahren zur Eingabe eines räumlichen Aufbaus von Fertigungseinrichtungen in ein rechnergestütztes Planungsprogramm und dessen Optimierung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010086261A1 *

Also Published As

Publication number Publication date
US20110313734A1 (en) 2011-12-22
WO2010086261A1 (fr) 2010-08-05
DE102009007477A1 (de) 2010-08-05
CN102301310A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
EP2384463A1 (fr) Modélisation d'un atelier de fabrication avec des modèles à l'échelle d'équipements de fabrication, ainsi que procédé de saisie d'une modélisation spatiale d'équipements de fabrication dans un programme d'étude assistée par ordinateur
EP2561417B1 (fr) Procédé pour introduire une configuration spatiale de dispositifs de fabrication dans un programme de planification assisté par ordinateur et son optimisation
DE102018118330B4 (de) Simulationseinrichtung und Simulationsverfahren für Robotersystem
EP2266066B1 (fr) Procédé et système de détection de propriétés de groupement
DE102017128543A1 (de) Störbereich-einstellvorrichtung für einen mobilen roboter
DE112016003284T5 (de) Aktivitäts-aufzeichner, aktivitäts-aufzeichnungsprogramm und aktivitäts-aufzeichnungsverfahren
DE112018001594T5 (de) Betriebsinformationsübertragungseinrichtung, bauausführungsverwaltungssystem, betriebsinformationsübertragungsverfahren und programm
DE102017213601A1 (de) Verfahren zum Erstellen einer Objektkarte für eine Fabrikumgebung
DE102017125103A1 (de) Einstellvorrichtung und einstellsystem zum konfigurieren von einstellungen für eine mehrzahl von maschinen
EP3435202A1 (fr) Attribution d'un outil à un geste de préhension
DE102019117877A1 (de) Roboterprogrammgenerierungsvorrichtung
DE102013015164B4 (de) Verfahren zur Gestaltung eines Reinraums und Verfahren für die Herstellung von pharmazeutischen Produkten mit einem Navigationssystem
EP4137981A1 (fr) Génération d'un modèle d'informations de bâtiment
EP3974936B1 (fr) Configuration d'un dispositif de visualisation pour une zone de machine
WO2020126240A1 (fr) Procédé pour faire fonctionner un appareil de terrain de la technique d'automatisation dans un environnement de réalité augmentée/de réalité mixte
DE102015012344A1 (de) Verfahren zum Kalibrieren einer Kamera
DE102019006748B4 (de) Roboterlehrvorrichtung, roboterlehrverfahren und verfahren zum speichern einer betriebsanweisung
DE102008057139A1 (de) Verfahren und Vorrichtung zur rechnergestützten Auswahl von Landmarken aus einer räumlichen Umgebung zur Lokalisation eines mobilen Objekts und entsprechendes Computerprogrammprodukt
EP3616140A1 (fr) Système d'aide au travail en équipe au moyen de réalité augmentée
EP2304621A1 (fr) Navigation parallèle dans plusieurs modèles cao
WO2014139768A1 (fr) Système de réseau et procédé d'appel et de représentation d'informations de réseau ou de documentation concernant des composants de réseau dans un environnement de processus industriel
DE102021131060B3 (de) System und Verfahren mit einem System
DE10147043B4 (de) Verfahren zur Erfassung und logistischen Verarbeitung von Möbelstücken zugeordneten Daten für die Lokalisation und Inventarisierung der Möbelstücke in einem Gebäude
DE102019108807A1 (de) Digitaler Bautenstandsbericht
WO2013057192A1 (fr) Procédé de mesure et de visualisation des conditions régnant dans l'espace interne d'un poste de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROSSMUELLER, CHRISTIAN

Inventor name: UZELAC, SANJA

Inventor name: VON ESSEN, CHRISTOPH

Inventor name: GROSCH, CHRISTIAN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120418

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130717