EP2384392B1 - Cooled component for a gas turbine - Google Patents

Cooled component for a gas turbine Download PDF

Info

Publication number
EP2384392B1
EP2384392B1 EP10701375.7A EP10701375A EP2384392B1 EP 2384392 B1 EP2384392 B1 EP 2384392B1 EP 10701375 A EP10701375 A EP 10701375A EP 2384392 B1 EP2384392 B1 EP 2384392B1
Authority
EP
European Patent Office
Prior art keywords
pins
wall
impingement cooling
density
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10701375.7A
Other languages
German (de)
French (fr)
Other versions
EP2384392A1 (en
Inventor
Jörg KRÜCKELS
Milan Pathak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Ansaldo Energia IP UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40600054&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2384392(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ansaldo Energia IP UK Ltd filed Critical Ansaldo Energia IP UK Ltd
Publication of EP2384392A1 publication Critical patent/EP2384392A1/en
Application granted granted Critical
Publication of EP2384392B1 publication Critical patent/EP2384392B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the present invention relates to the field of gas turbines. It relates to a cooled component for a gas turbine according to the preamble of claim 1. It also relates to a method for operating such a device.
  • Gas turbines are designed to increase the efficiency for ever higher operating temperatures. Particularly exposed to thermal stresses are mainly the components or components in the combustion chamber and the running and vanes of the following turbine including the other, the hot gas channel limiting elements. In order to effectively counteract the thermal stresses occurring, on the one hand particularly resistant materials, such. As nickel-based alloys are used. On the other hand, additional measures for cooling the components must be taken, with different cooling methods, such as. the film cooling or the impingement cooling, find application.
  • the invention aims to remedy this situation. It is therefore an object of the invention to provide a cooled component of a gas turbine, in particular a platformed vane, the cooling of which is optimally adapted to the locally varying thermal load without causing unnecessary overconsumption of cooling air, i. it is achieved with the same cooling intensity minimizing the cooling air used.
  • the thermally stressed and cooled wall has a plurality of pins projecting from the wall on its rear side in a planar distribution, and that the distribution of the pins within the thermal critical zones of the component has a higher density than in the remaining areas.
  • the heat transfer between the wall and cooling air can locally be changed and adapted to the thermal load, without necessarily a larger amount of cooling air must be used.
  • An embodiment of the invention is characterized in that the means for generating the directed onto the back of the wall rays comprise a provided with distributed impingement cooling holes impingement cooling plate.
  • Cooling is particularly effective when, according to another embodiment of the invention, the impingement cooling plate is spaced substantially parallel to the back of the wall, and the distribution of the impingement cooling holes is matched to the distribution of the pins such that viewed in a direction perpendicular to the impingement cooling plate Impact cooling holes are each between the pins.
  • the variation of the cooling can be intensified by correlating the density of the impingement cooling holes with the density of the pins.
  • the density of the impingement cooling holes and the density of the pins may be locally equal.
  • the component is preferably a guide vane of a gas turbine which comprises a blade extending in a longitudinal direction and a platform extending transversely to the longitudinal direction, the bottom of which is the thermally loaded wall cooled by impingement cooling and a groove at the transition to the blade forms, with the distribution of the pins to the groove towards a higher density than in the other areas removed from the groove.
  • Fig. 1 is shown in longitudinal section of the upper part of a gas turbine guide vane with platform and locally varying impingement cooling according to an embodiment of the invention.
  • the vane 10 has a total of a similar configuration, as in the above-mentioned US B2-7,097,418 is described. It comprises an airfoil 11 extending in the blade longitudinal direction, at the upper end of which a platform 12 is formed, which extends substantially transversely to the longitudinal direction of the blade.
  • the platform 12 has a bottom wall 12a, the underside of which is acted upon by the hot gas flowing through the turbine, and which is cooled on the top by impingement cooling.
  • a cavity 13 is formed on the upper side of the platform 12, which cavity is covered by a baffle cooling plate 14 arranged parallel to the wall 12a.
  • impingement cooling holes 16 are provided in a predetermined distribution through which compressed cooling air in the form of individual cooling air jets (see the arrows in FIG Fig. 1 ) enters the cavity 13 and impinges on the opposite rear side of the wall 12a.
  • the cooling air absorbs heat from the wall 12a and is subsequently removed from the cavity 13 (in FIG Fig. 1 not shown paths) derived.
  • the area distribution of the impingement cooling holes 16 is in Fig. 2 to see.
  • the density of the impingement cooling holes 16 and the density of the pins 15 are locally different but correlated with each other, ie, in the areas where the density of the pins 15 is increased (compression area 18), the density of the impingement cooling holes 16 is also increased , and vice versa. In particular, locally the densities of the two are the same.
  • the impingement cooling holes 16 are preferably arranged "with gaps", that is, on intermediate spaces, with the pins 15: Between two parallel rows of pins 15, a row of impingement cooling holes 16 with the same periodicity is offset in each case.

Description

Technisches GebietTechnical area

Die vorliegende Erfindung bezieht sich auf das Gebiet der Gasturbinen. Sie betrifft ein gekühltes Bauelement für eine Gasturbine gemäss dem Oberbegriff des Anspruchs 1. Sie betrifft auch ein Verfahren zum Betrieb eines solchen Bauelements.The present invention relates to the field of gas turbines. It relates to a cooled component for a gas turbine according to the preamble of claim 1. It also relates to a method for operating such a device.

Stand der TechnikState of the art

Gasturbinen werden zur Steigerung des Wirkungsgrades für immer höhere Betriebstemperaturen ausgelegt. Besonderen thermischen Belastungen ausgesetzt sind dabei vor allem die Bauteile bzw. Bauelemente im Bereich der Brennkammer sowie die Lauf- und Leitschaufeln der nachfolgenden Turbine einschliesslich der übrigen, den Heissgaskanal begrenzenden Elemente. Um die auftretenden thermischen Belastungen wirkungsvoll zu begegnen, können einerseits besonders widerstandfähige Werkstoffe, wie z. B. Nickelbasislegierungen, eingesetzt werden. Andererseits müssen zusätzliche Massnahmen zur Kühlung der Bauelemente ergriffen werden, wobei unterschiedliche Kühlungsmethoden, wie z.B. die Filmkühlung oder die Prallkühlung, Anwendung finden.Gas turbines are designed to increase the efficiency for ever higher operating temperatures. Particularly exposed to thermal stresses are mainly the components or components in the combustion chamber and the running and vanes of the following turbine including the other, the hot gas channel limiting elements. In order to effectively counteract the thermal stresses occurring, on the one hand particularly resistant materials, such. As nickel-based alloys are used. On the other hand, additional measures for cooling the components must be taken, with different cooling methods, such as. the film cooling or the impingement cooling, find application.

Es ist bereits aus der US-B2-6,779,597 bekannt geworden, bei Bauelementen von Gasturbinen mehrstufige Prallkühlungsstrukturen vorzusehen, bei denen eine Wand, deren Vorderseite dem Heissgaskanal zugewandt ist, auf der Rückseite durch senkrecht auftreffenden Kühlluftstrahlen, die durch entsprechende Prallkühlungslöcher erzeugt werden, entsprechend prallgekühlt wird. Die Kühlwirkung wird dabei durch auf der Rückseite verteilt angeordnete, abstehende Pfosten oder Pins verstärkt, welche die Wärme abgebende Oberfläche vergrössern und Turbulenzen
in der Kühlluftströmung verstärken. Die Verteilungen der Prallkühlungslöcher und Pins in der Fläche sind dabei konstant. Die Durchmesser der Prallkühlungslöcher entsprechen dabei dem Durchmesser der Pins an der Basis. Die Dichte der Löcher ist wesentlich geringer als die Dichte der Pins. Es ist auch aus der EP0889201 bekannt geworden, bei Bauelementen von Gasturbinen Prallkühlungsstrukturen vorzusehen. Es ist weiterhin aus der US-A-4,719,748 bekannt geworden, beim Übergangsrohr zwischen den einzelnen Brennern und dem Eingang der nachfolgenden Turbine eine Prallkühlung vorzusehen, bei welcher mittels Prallkühlungslöchern erzeugte Kühlluftstrahlen auf die Rückseite der Rohrwände gerichtet werden. Durch Variation der Lochgrösse und/oder der Abstände zwischen den Löchern und/oder der Abstände von den Löchern zur Rohrwand wird die Kühlungsintensität variiert und der jeweiligen thermischen Belastung angepasst. Pins zur Verbesserung des Wärmeübergangs sind nicht vorgesehen.
It is already out of the US B2-6,779,597 It has become known to provide multi-stage impingement cooling structures in components of gas turbines in which a wall whose front side faces the hot gas channel is correspondingly impact-cooled on the rear side by vertically impinging cooling air jets produced by corresponding impingement cooling holes. The Cooling effect is enhanced by distributed on the back, projecting posts or pins that increase the heat-emitting surface and turbulence
in the cooling air flow. The distributions of the impingement cooling holes and pins in the surface are constant. The diameters of the impingement cooling holes correspond to the diameter of the pins on the base. The density of the holes is much lower than the density of the pins. It is also from the EP0889201 have become known to provide impact cooling structures in components of gas turbines. It is still out of the US-A-4,719,748 have become known to provide an impingement cooling at the transition pipe between the individual burners and the entrance of the following turbine, in which by means of impingement cooling holes generated cooling air jets are directed to the back of the pipe walls. By varying the hole size and / or the distances between the holes and / or the distances from the holes to the pipe wall, the cooling intensity is varied and adapted to the respective thermal load. Pins to improve the heat transfer are not provided.

Besondere Bedeutung kommt der Kühlung den Leitschaufeln in den ersten Stufen der Turbine zu, weil in diesem Bereich die höchsten Temperaturen in der Gasturbine auftreten. In der US-B2-7,097,418 ist bereits beschrieben worden, wie die äussere Plattform einer Leitschaufel auf besonders einfache Weise mittels einer zweistufigen Prallkühlung gekühlt werden kann, wobei in einer ersten Stufe der Bereich an der Hinterkante der Schaufel gekühlt wird, und dann die von dort abströmende Kühlluft in einer zweiten Stufe die Plattform an der Vorderkante kühlt. In beiden Stufen werden unterschiedlich positionierte und beabstandete Prallkühlungslöcher (30, 38 in Fig. 3) eingesetzt. Pins auf der Rückseite des Plattformbodens kommen nicht zum Einsatz.Of particular importance is the cooling of the guide vanes in the first stages of the turbine, because in this area the highest temperatures occur in the gas turbine. In the US B2-7,097,418 It has already been described how the outer platform of a vane can be cooled in a particularly simple manner by means of a two-stage impingement cooling, wherein in a first stage, the region at the trailing edge of the blade is cooled, and then the cooling air flowing from there in a second stage Platform on the front edge cools. In both stages, differently positioned and spaced impingement cooling holes (30, 38 in FIG Fig. 3 ) used. Pins on the back of the platform floor are not used.

Die Variation der Prallkühlungslöcher zur Anpassung an sich verändernde thermische Belastungen hat zur Folge, dass sich in der Regel auch die benötigte Kühlluftmenge verändert. Werden - bei gleich bleibenden Lochdurchmesser - mehr Löcher pro Flächeneinheit eingesetzt, erhöht sich auch die verbrauchte Kühlluftmenge, was zu einer Minderung des Wirkungsgrades der Maschine führt.The variation of the impingement cooling holes to adapt to changing thermal loads has the consequence that also changes the amount of cooling air required in the rule. Be - with the same hole diameter - If more holes are used per unit area, the amount of cooling air consumed also increases, which leads to a reduction in the efficiency of the machine.

Darstellung der ErfindungPresentation of the invention

Hier will die Erfindung Abhilfe schaffen. Es ist daher eine Aufgabe der Erfindung, ein gekühltes Bauelement einer Gasturbine, insbesondere bei einer mit einer Plattform versehenen Leitschaufel, zu schaffen, deren Kühlung an die lokal variierende thermische Belastung optimal angepasst ist, ohne einen unnötigen Mehrverbrauch an Kühlluft zu verursachen, d.h. es wird bei gleicher Kühlungsintensität eine Minimierung der eingesetzten Kühlluft erzielt.The invention aims to remedy this situation. It is therefore an object of the invention to provide a cooled component of a gas turbine, in particular a platformed vane, the cooling of which is optimally adapted to the locally varying thermal load without causing unnecessary overconsumption of cooling air, i. it is achieved with the same cooling intensity minimizing the cooling air used.

Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Es ist eine wesentliche Komponente der Erfindung, dass die thermisch belastete und zu kühlende Wand auf ihrer Rückseite in flächiger Verteilung eine Vielzahl von aus der Wand hervorstehenden Pins aufweist, und dass die Verteilung der Pins innerhalb der thermischen kritischen Zonen des Bauelements eine höhere Dichte aufweist als in den übrigen Bereichen. Hierdurch kann lokal der Wärmeübergang zwischen Wand und Kühlluft verändert und der thermischen Belastung angepasst werden, ohne dass zwingend eine grössere Kühlluftmenge eingesetzt werden muss.The object is solved by the entirety of the features of claim 1. It is an essential component of the invention that the thermally stressed and cooled wall has a plurality of pins projecting from the wall on its rear side in a planar distribution, and that the distribution of the pins within the thermal critical zones of the component has a higher density than in the remaining areas. As a result, the heat transfer between the wall and cooling air can locally be changed and adapted to the thermal load, without necessarily a larger amount of cooling air must be used.

Eine Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Mittel zur Erzeugung der auf die Rückseite der Wand gerichteten Strahlen ein mit verteilt angeordneten Prallkühlungslöchern versehenes Prallkühlungsblech umfassen.An embodiment of the invention is characterized in that the means for generating the directed onto the back of the wall rays comprise a provided with distributed impingement cooling holes impingement cooling plate.

Besonders effektiv ist die Kühlung, wenn gemäss einer anderen Ausgestaltung der Erfindung das Prallkühlungsblech mit Abstand im wesentlichen parallel zur Rückseite der Wand angeordnet ist, und die Verteilung der Prallkühlungslöcher auf die Verteilung der Pins derart abgestimmt ist, dass in einer Richtung senkrecht zum Prallkühlungsblech gesehen die Prallkühlungslöcher jeweils zwischen den Pins liegen.Cooling is particularly effective when, according to another embodiment of the invention, the impingement cooling plate is spaced substantially parallel to the back of the wall, and the distribution of the impingement cooling holes is matched to the distribution of the pins such that viewed in a direction perpendicular to the impingement cooling plate Impact cooling holes are each between the pins.

Die Variation der Kühlung kann dadurch intensiviert werden, dass die Dichte der Prallkühlungslöcher mit der Dichte der Pins korreliert ist. Insbesondere kann die Dichte der Prallkühlungslöcher und die Dichte der Pins örtlich gleich sein.The variation of the cooling can be intensified by correlating the density of the impingement cooling holes with the density of the pins. In particular, the density of the impingement cooling holes and the density of the pins may be locally equal.

Vorzugsweise ist das Bauelement eine Leitschaufel einer Gasturbine, welche ein sich in einer Längsrichtung erstreckendes Schaufelblatt und eine an das Schaufelblatt anschliessende, sich quer zur Längsrichtung erstreckende Plattform umfasst, deren Boden die thermisch belastete, durch Prallkühlung gekühlte Wand ist und am Übergang zum Schaufelblatt eine Hohlkehle ausbildet, wobei die Verteilung der Pins zur Hohlkehle hin eine höhere Dichte aufweist als in den von der Hohlkehle entfernten übrigen Bereichen.The component is preferably a guide vane of a gas turbine which comprises a blade extending in a longitudinal direction and a platform extending transversely to the longitudinal direction, the bottom of which is the thermally loaded wall cooled by impingement cooling and a groove at the transition to the blade forms, with the distribution of the pins to the groove towards a higher density than in the other areas removed from the groove.

Kurze Erläuterung der FigurenBrief explanation of the figures

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind weggelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Es zeigt:

Fig. 1
einen Längsschnitt durch den oberen Teil einer Gasturbinen-Leitschaufel mit Plattform, mit örtlich variierender Prallkühlung, gemäss einem Ausführungsbeispiel der Erfindung;
Fig. 2
das bei der Leitschaufel aus Fig. 1 eingesetzte Prallkühlungsblech in der Draufsicht von oben;
Fig. 3
die bei der Leitschaufel aus Fig. 1 eingesetzte Verteilung von Pins in der Draufsicht von oben (die Pins sind perspektivisch gezeichnet) und
Fig. 4
von oben gesehen, die korrelierten Verteilungen von Prallkühlungslöchern und Pins gemäss Fig. 1-3.
The invention will be explained in more detail with reference to embodiments in conjunction with the drawings. All elements not required for the immediate understanding of the invention have been omitted. The same elements are provided in the various figures with the same reference numerals. It shows:
Fig. 1
a longitudinal section through the upper part of a gas turbine vane with platform, with locally varying impingement cooling, according to an embodiment of the invention;
Fig. 2
that off at the vane Fig. 1 inserted impingement cooling plate in plan view from above;
Fig. 3
the at the vane Fig. 1 used distribution of pins in plan view from above (the pins are shown in perspective) and
Fig. 4
seen from above, the correlated distributions of impingement cooling holes and pins according to Fig. 1-3 ,

Wege zur Ausführung der ErfindungWays to carry out the invention

In Fig. 1 ist im Längsschnitt der obere Teil einer Gasturbinen- Leitschaufel mit Plattform und örtlich variierender Prallkühlung gemäss einem Ausführungsbeispiel der Erfindung wiedergegeben. Die Leitschaufel 10 hat insgesamt eine ähnliche Konfiguration, wie sie in der eingangs erwähnten US-B2-7,097,418 beschrieben wird. Sie umfasst ein sich in der Schaufellängsrichtung erstreckendes Schaufelblatt 11, an dessen oberem Ende eine Plattform 12 angeformt ist, die sich im wesentlichen quer zur Längsrichtung der Schaufel erstreckt. Die Plattform 12 hat einen Boden bzw. eine Wand 12a, deren Unterseite vom durch die Turbine strömenden Heissgas beaufschlagt ist, und die auf der Oberseite durch eine Prallkühlung gekühlt wird.In Fig. 1 is shown in longitudinal section of the upper part of a gas turbine guide vane with platform and locally varying impingement cooling according to an embodiment of the invention. The vane 10 has a total of a similar configuration, as in the above-mentioned US B2-7,097,418 is described. It comprises an airfoil 11 extending in the blade longitudinal direction, at the upper end of which a platform 12 is formed, which extends substantially transversely to the longitudinal direction of the blade. The platform 12 has a bottom wall 12a, the underside of which is acted upon by the hot gas flowing through the turbine, and which is cooled on the top by impingement cooling.

Dazu ist auf der Oberseite der Plattform 12 ein Hohlraum 13 ausgebildet, der von einem zur Wand 12a parallel angeordneten Prallkühlungsblech 14 abgedeckt wird. Im Prallkühlungsblech 14 sind in einer vorgegebenen Verteilung Prallkühlungslöcher 16 vorgesehen, durch die komprimierte Kühlluft in Form von einzelnen Kühlluftstrahlen (siehe die Pfeile in Fig. 1) in den Hohlraum 13 eintritt und auf die gegenüberliegende Rückseite der Wand 12a aufprallt. Beim Aufprall und dem danach folgenden turbulenten Kontakt mit der Rückseite der Wand 12a nimmt die Kühlluft Wärme von der Wand 12a auf und wird anschliessend aus dem Hohlraum 13 (auf in Fig. 1 nicht dargestelltem Wege) abgeleitet. Die flächige Verteilung der Prallkühlungslöcher 16 ist in Fig. 2 zu sehen.For this purpose, a cavity 13 is formed on the upper side of the platform 12, which cavity is covered by a baffle cooling plate 14 arranged parallel to the wall 12a. In the impingement cooling plate 14, impingement cooling holes 16 are provided in a predetermined distribution through which compressed cooling air in the form of individual cooling air jets (see the arrows in FIG Fig. 1 ) enters the cavity 13 and impinges on the opposite rear side of the wall 12a. Upon impact and the subsequent turbulent contact with the back of the wall 12a, the cooling air absorbs heat from the wall 12a and is subsequently removed from the cavity 13 (in FIG Fig. 1 not shown paths) derived. The area distribution of the impingement cooling holes 16 is in Fig. 2 to see.

Zur Verbesserung des Wärmeübergangs zwischen Wand 12a und der Kühlluft sind auf der Rückseite der Wand 12a senkrecht abstehende, kegel- oder pyramidenförmige Pins 15 angeordnet (siehe auch Fig. 3, in der die Pins 15 perspektivisch eingezeichnet sind), welche die Kontaktfläche zwischen Wand und Kühlluftstrom vergrössern und die Turbulenzen intensivieren. Wie aus Fig. 4 zu erkennen ist, ist die Dichte der Prallkühlungslöcher 16 und die Dichte der Pins 15 örtlich unterschiedlich, aber gleichzeitig miteinander korreliert, d.h. in den Bereichen, wo die Dichte der Pins 15 erhöht ist (Verdichtungsbereich 18), ist auch die Dichte der Prallkühlungslöcher 16 erhöht, und umgekehrt. Insbesondere sind lokal die Dichten der beiden gleich. Die Prallkühlungslöcher 16 sind vorzugsweise "auf Lücke", also auf Zwischenräume, mit den Pins 15 angeordnet: Zwischen zwei parallelen Reihen von Pins 15 ist jeweils versetzt eine Reihe von Prallkühlungslöchern 16 mit derselben Periodizität platziert.To improve the heat transfer between the wall 12a and the cooling air, vertically projecting, conical or pyramidal pins 15 are arranged on the rear side of the wall 12a (see also FIG Fig. 3 in which the pins 15 are shown in perspective) showing the contact surface between wall and Increase the cooling air flow and intensify the turbulence. How out Fig. 4 1, the density of the impingement cooling holes 16 and the density of the pins 15 are locally different but correlated with each other, ie, in the areas where the density of the pins 15 is increased (compression area 18), the density of the impingement cooling holes 16 is also increased , and vice versa. In particular, locally the densities of the two are the same. The impingement cooling holes 16 are preferably arranged "with gaps", that is, on intermediate spaces, with the pins 15: Between two parallel rows of pins 15, a row of impingement cooling holes 16 with the same periodicity is offset in each case.

Erfahrungsgemäss gibt es bei einer Leitschaufel der in Fig. 1 wiedergegebenen Art an der Plattform 12 kritische Zonen Ac, in denen Vorkehrungen gegen die thermische Belastung besonders wichtig sind. Eine solche kritische Zone ist die Hohlkehle zwischen der Wand 12a der Plattform 12 und dem Schaufelblatt. Um an dieser Stelle der Plattform 12, d.h. am Übergang zum Schaufelblatt die Kühlwirkung lokal zu erhöhen, ist in einem an die Hohlkehle unmittelbar angrenzenden Verdichtungsbereich 18 (in Fig. 4 grau unterlegt) die Dichte der Pins 15 gegenüber dem übrigen Bereich deutlich erhöht. Zusätzlich ist auch die Dichte der Prallkühlungslöcher 16 in diesem Bereich 18 erhöht, und zwar analog zur Dichte der Pins 15. Der Übergang zwischen den Bereichen unterschiedlicher Loch- und Pindichte kann dabei stetig ausgebildet sein.Experience shows that there is a vane in the Fig. 1 reproduced type on the platform 12 critical zones A c , in which precautions against thermal stress are particularly important. One such critical zone is the groove between the wall 12a of the platform 12 and the airfoil. In order to locally increase the cooling effect at this point of the platform 12, ie at the transition to the blade, is in a directly adjacent to the groove compression area 18 (in Fig. 4 highlighted in gray) the density of the pins 15 compared to the remaining area significantly increased. In addition, the density of the impingement cooling holes 16 in this region 18 is also increased, to be precise analogously to the density of the pins 15. The transition between the regions of different hole and pin densities can be formed continuously.

Hierdurch wird die Wärmeabfuhr im Bereich der Hohlkehle deutlich verbessert, wodurch die Auswirkungen der thermischen Belastung begrenzt werden können.As a result, the heat dissipation in the region of the groove is significantly improved, whereby the effects of thermal stress can be limited.

Es versteht sich von selbst, dass im Rahmen der Erfindung und durch die erfindungsgemässen Vorkehrungen nicht nur kritische Bereiche der Leitschaufeln, sondern auch anderer thermisch belasteter Bauelemente der Gasturbine kühlungstechnisch "entschärft" werden können.It goes without saying that not only critical areas of the guide vanes, but also other thermally loaded components of the gas turbine can be "defused" in the context of the invention and by the provisions of the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Leitschaufel (Gasturbine)Guide vane (gas turbine)
1111
Schaufelblattairfoil
1212
Plattformplatform
12a12a
Wand (Plattform)Wall (platform)
1313
Hohlraumcavity
1414
PrallkühlungsblechImpingement cooling plate
1515
PinPin code
1616
PrallkühlungslochImpingement cooling hole
1717
PrallkühlungsmusterImpingement cooling pattern
1818
Verdichtungsbereichcompression region
Ac A c
kritische Zone (Hohlkehle)critical zone (fillet)

Claims (5)

  1. Cooled component (10) for a gas turbine which, in order to cool a wall (12a) thermally loaded on the front side, comprises a plurality of pins (15) protruding from the wall and distributed (17) superficially on the back of the wall (12a), and means (14, 16) for creating jets of a cooling medium which are directed onto the back of the wall (12a) in the region of the pins (15) and serve for impingement cooling, wherein the means for generating the jets onto the back of the wall comprises an impingement cooling plate (14) with impingement cooling holes (16) arranged in distributed fashion, and the density of the impingement cooling holes (16) correlates with the density of the pins (15), wherein the distribution of the pins (15) within critical zones (Ac) of the component (10) has a higher density than in the other regions of the component, characterised in that in the regions in which the density of the pins is higher, the density of the impingement cooling holes (16) is also higher and vice versa.
  2. Cooled component according to claim 1, characterised in that the impingement cooling plate (14) is arranged spaced from and substantially parallel to the back of the wall (12a), and that the distribution of the impingement cooling holes (16) is matched to the distribution of the pins (15) such that, viewed in a direction perpendicular to the impingement cooling plate (14), the impingement cooling holes (16) each lie between the pins (15).
  3. Cooled component according to claim 1, characterised in that the density of the impingement cooling holes (16) and the density of the pins (15) are locally the same.
  4. Cooled component according to any of claims 1 to 3, characterised in that the component is a guide vane (10) of the gas turbine which comprises a blade (11) extending in a longitudinal direction and a platform (12) adjoining the blade (11) and extending transversely to the longitudinal direction, the base of which is the thermally loaded wall (12a) cooled by the impingement cooling, and a hollow groove (Ac) is formed at the transition to the blade (11), and that the distribution of the pins (15) has a higher density towards the hollow groove (Ac) than in the other regions remote from the hollow groove (Ac).
  5. Method for operating a cooled component of a gas turbine according to any of claims 1 to 4, characterised in that to improve the heat transfer between the wall (12a) and the cooling air, which is used in the form of individual cooling air jets flowing through impingement cooling air holes (16), these cooling air jets flow onto the back of this wall which is fitted with perpendicularly protruding conical or pyramidal pins (15), that the cooling air jets impact between the spaces formed by the pins such that on this impact, a turbulent flow is generated which acts on the wall and causes an additional cooling.
EP10701375.7A 2009-01-30 2010-01-28 Cooled component for a gas turbine Active EP2384392B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00140/09A CH700319A1 (en) 2009-01-30 2009-01-30 Chilled component for a gas turbine.
PCT/EP2010/051018 WO2010086381A1 (en) 2009-01-30 2010-01-28 Cooled component for a gas turbine

Publications (2)

Publication Number Publication Date
EP2384392A1 EP2384392A1 (en) 2011-11-09
EP2384392B1 true EP2384392B1 (en) 2017-05-31

Family

ID=40600054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10701375.7A Active EP2384392B1 (en) 2009-01-30 2010-01-28 Cooled component for a gas turbine

Country Status (5)

Country Link
US (1) US8444376B2 (en)
EP (1) EP2384392B1 (en)
CH (1) CH700319A1 (en)
RU (1) RU2539950C2 (en)
WO (1) WO2010086381A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739935B1 (en) 2022-03-23 2023-08-29 General Electric Company Dome structure providing a dome-deflector cavity with counter-swirled airflow

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039350B2 (en) * 2012-01-09 2015-05-26 General Electric Company Impingement cooling system for use with contoured surfaces
US9500099B2 (en) 2012-07-02 2016-11-22 United Techologies Corporation Cover plate for a component of a gas turbine engine
US9371735B2 (en) 2012-11-29 2016-06-21 Solar Turbines Incorporated Gas turbine engine turbine nozzle impingement cover
EP2927430B1 (en) * 2014-04-04 2019-08-07 United Technologies Corporation Stator vane with a cooled platform for a gas turbine engine
EP2949871B1 (en) * 2014-05-07 2017-03-01 United Technologies Corporation Variable vane segment
US10746403B2 (en) * 2014-12-12 2020-08-18 Raytheon Technologies Corporation Cooled wall assembly for a combustor and method of design
US9849510B2 (en) 2015-04-16 2017-12-26 General Electric Company Article and method of forming an article
US9976441B2 (en) 2015-05-29 2018-05-22 General Electric Company Article, component, and method of forming an article
US10253986B2 (en) 2015-09-08 2019-04-09 General Electric Company Article and method of forming an article
US10739087B2 (en) 2015-09-08 2020-08-11 General Electric Company Article, component, and method of forming an article
US10087776B2 (en) 2015-09-08 2018-10-02 General Electric Company Article and method of forming an article
US20170145834A1 (en) * 2015-11-23 2017-05-25 United Technologies Corporation Airfoil platform cooling core circuits with one-wall heat transfer pedestals for a gas turbine engine component and systems for cooling an airfoil platform
US10184343B2 (en) 2016-02-05 2019-01-22 General Electric Company System and method for turbine nozzle cooling
RU2641782C2 (en) * 2016-05-30 2018-01-22 Общество с ограниченной ответственностью "Газпром трансгаз Казань" Steam turbines high-temperature stud pins refrigeration method and device for its actualization
RU2641787C2 (en) * 2016-05-30 2018-01-22 Общество с ограниченной ответственностью "Газпром трансгаз Казань" Gas-driven turbines high-temperature stud pins refrigeration method and device for its actualization
US10487660B2 (en) 2016-12-19 2019-11-26 General Electric Company Additively manufactured blade extension with internal features
US10641174B2 (en) 2017-01-18 2020-05-05 General Electric Company Rotor shaft cooling
US20180216474A1 (en) * 2017-02-01 2018-08-02 General Electric Company Turbomachine Blade Cooling Cavity
US10989068B2 (en) 2018-07-19 2021-04-27 General Electric Company Turbine shroud including plurality of cooling passages
CN108894832B (en) * 2018-08-17 2024-01-23 西安热工研究院有限公司 External cooling device and method for side face of supercritical working medium rotary machine body
US10822962B2 (en) * 2018-09-27 2020-11-03 Raytheon Technologies Corporation Vane platform leading edge recessed pocket with cover
JP6508499B1 (en) * 2018-10-18 2019-05-08 三菱日立パワーシステムズ株式会社 Gas turbine stator vane, gas turbine provided with the same, and method of manufacturing gas turbine stator vane
US10837315B2 (en) * 2018-10-25 2020-11-17 General Electric Company Turbine shroud including cooling passages in communication with collection plenums
KR102126852B1 (en) 2018-10-29 2020-06-25 두산중공업 주식회사 Turbine vane and ring segment and gas turbine comprising the same
US11125434B2 (en) * 2018-12-10 2021-09-21 Raytheon Technologies Corporation Preferential flow distribution for gas turbine engine component
CN109737788A (en) * 2018-12-21 2019-05-10 西北工业大学 A kind of raised target plate structure reducing flow losses, intensifying impact heat exchange
CN113692477B (en) * 2019-04-16 2023-12-26 三菱重工业株式会社 Turbine stator blade and gas turbine
US11073036B2 (en) * 2019-06-03 2021-07-27 Raytheon Technologies Corporation Boas flow directing arrangement
KR102502652B1 (en) * 2020-10-23 2023-02-21 두산에너빌리티 주식회사 Array impingement jet cooling structure with wavy channel

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2343673A1 (en) 1972-09-05 1974-03-14 Gen Electric PIN-RIB COOLING SYSTEM
US4712979A (en) 1985-11-13 1987-12-15 The United States Of America As Represented By The Secretary Of The Air Force Self-retained platform cooling plate for turbine vane
RU2009331C1 (en) 1990-09-27 1994-03-15 Научно-производственное предприятие "Завод им.В.Я.Климова" Turbine part convective cooling device
WO1994012770A1 (en) 1992-11-24 1994-06-09 United Technologies Corporation Rotor blade with integral platform and a fillet cooling passage
US5321951A (en) 1992-03-30 1994-06-21 General Electric Company Integral combustor splash plate and sleeve
EP0889201A1 (en) 1997-07-03 1999-01-07 Abb Research Ltd. Impingment cooling of a part of a turbine blade wall
US20020062945A1 (en) 1997-09-30 2002-05-30 Rainer Hocker Wall part acted upon by an impingement flow
US6402464B1 (en) 2000-08-29 2002-06-11 General Electric Company Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer
US20030039537A1 (en) 2001-08-27 2003-02-27 Itzel Gary Michael Method for controlling coolant flow in airfoil, flow control structure and airfoil incorporating the same
US6779597B2 (en) 2002-01-16 2004-08-24 General Electric Company Multiple impingement cooled structure
US20050175444A1 (en) 2004-02-09 2005-08-11 Siemens Westinghouse Power Corporation Cooling system for an airfoil vane
WO2006045758A1 (en) 2004-10-25 2006-05-04 Siemens Aktiengesellschaft Method of optimum controlled outlet, impingement cooling and sealing of a heat shield and a heat shield element
EP1813868A2 (en) 2006-01-25 2007-08-01 Rolls-Royce plc Wall elements for gas turbine engine combustors
US20080166240A1 (en) 2007-01-04 2008-07-10 Siemens Power Generation, Inc. Advanced cooling method for combustion turbine airfoil fillets
US20080170946A1 (en) 2007-01-12 2008-07-17 General Electric Company Impingement cooled bucket shroud, turbine rotor incorporating the same, and cooling method
EP1983265A2 (en) 2007-04-17 2008-10-22 Rolls-Royce Deutschland Ltd & Co KG Gas turbine reaction chamber wall
US7621718B1 (en) 2007-03-28 2009-11-24 Florida Turbine Technologies, Inc. Turbine vane with leading edge fillet region impingement cooling

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1238465A2 (en) * 1983-08-05 1996-02-27 Уфимский авиационный институт им.Серго Орджоникидзе Cooled turbine blade
US4719748A (en) 1985-05-14 1988-01-19 General Electric Company Impingement cooled transition duct
EP1028229B1 (en) * 1999-02-10 2005-09-21 ALSTOM Technology Ltd Turbomachine blade
US7097418B2 (en) 2004-06-18 2006-08-29 Pratt & Whitney Canada Corp. Double impingement vane platform cooling
US7862291B2 (en) * 2007-02-08 2011-01-04 United Technologies Corporation Gas turbine engine component cooling scheme

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2343673A1 (en) 1972-09-05 1974-03-14 Gen Electric PIN-RIB COOLING SYSTEM
US4712979A (en) 1985-11-13 1987-12-15 The United States Of America As Represented By The Secretary Of The Air Force Self-retained platform cooling plate for turbine vane
RU2009331C1 (en) 1990-09-27 1994-03-15 Научно-производственное предприятие "Завод им.В.Я.Климова" Turbine part convective cooling device
US5321951A (en) 1992-03-30 1994-06-21 General Electric Company Integral combustor splash plate and sleeve
WO1994012770A1 (en) 1992-11-24 1994-06-09 United Technologies Corporation Rotor blade with integral platform and a fillet cooling passage
EP0889201A1 (en) 1997-07-03 1999-01-07 Abb Research Ltd. Impingment cooling of a part of a turbine blade wall
US20020062945A1 (en) 1997-09-30 2002-05-30 Rainer Hocker Wall part acted upon by an impingement flow
US6402464B1 (en) 2000-08-29 2002-06-11 General Electric Company Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer
US20030039537A1 (en) 2001-08-27 2003-02-27 Itzel Gary Michael Method for controlling coolant flow in airfoil, flow control structure and airfoil incorporating the same
US6779597B2 (en) 2002-01-16 2004-08-24 General Electric Company Multiple impingement cooled structure
US20050175444A1 (en) 2004-02-09 2005-08-11 Siemens Westinghouse Power Corporation Cooling system for an airfoil vane
WO2006045758A1 (en) 2004-10-25 2006-05-04 Siemens Aktiengesellschaft Method of optimum controlled outlet, impingement cooling and sealing of a heat shield and a heat shield element
EP1813868A2 (en) 2006-01-25 2007-08-01 Rolls-Royce plc Wall elements for gas turbine engine combustors
US20080166240A1 (en) 2007-01-04 2008-07-10 Siemens Power Generation, Inc. Advanced cooling method for combustion turbine airfoil fillets
US20080170946A1 (en) 2007-01-12 2008-07-17 General Electric Company Impingement cooled bucket shroud, turbine rotor incorporating the same, and cooling method
US7621718B1 (en) 2007-03-28 2009-11-24 Florida Turbine Technologies, Inc. Turbine vane with leading edge fillet region impingement cooling
EP1983265A2 (en) 2007-04-17 2008-10-22 Rolls-Royce Deutschland Ltd & Co KG Gas turbine reaction chamber wall

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G.E. ANDREWS ET AL.: "Proceedings of ASME Turbo Expo 2004 GT2004-54184", ENHANCED IMPINGEMENT HEAT TRANSFER: THE INFLUENCE OF IMPINGEMENT X/D FOR INTERRUPTED RIB OBSTACLES (RECTANGULAR PIN FINS), 14 June 2004 (2004-06-14), Vienna , Austria, pages 1 - 13, XP055476624

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739935B1 (en) 2022-03-23 2023-08-29 General Electric Company Dome structure providing a dome-deflector cavity with counter-swirled airflow

Also Published As

Publication number Publication date
EP2384392A1 (en) 2011-11-09
WO2010086381A1 (en) 2010-08-05
US20120020768A1 (en) 2012-01-26
RU2539950C2 (en) 2015-01-27
CH700319A1 (en) 2010-07-30
RU2011135942A (en) 2013-03-10
US8444376B2 (en) 2013-05-21

Similar Documents

Publication Publication Date Title
EP2384392B1 (en) Cooled component for a gas turbine
EP0899425B1 (en) Gas turbine blade
DE10001109B4 (en) Cooled shovel for a gas turbine
DE69822100T2 (en) turbine blade
DE602005006362T2 (en) Diverse film cooling holes
DE10059997B4 (en) Coolable blade for a gas turbine component
DE69816578T2 (en) Turbine blade with cooling of the trailing edge root
DE69723663T2 (en) Vortex element construction for cooling ducts of a gas turbine blade
DE602005000449T2 (en) Cooling with microchannels for a turbine blade
DE10248548A1 (en) Coolable component
DE102006004437A1 (en) Blade of a gas turbine blade, method of making a blade, gasket plate and gas turbine
EP2384393B1 (en) Cooled vane for a gas turbine
EP1766192B1 (en) Vane wheel of a turbine comprising a vane and at least one cooling channel
EP2199725B1 (en) Multi-impingement-surface for cooling a wall
CH628397A5 (en) AIR COOLED TURBINE BLADE.
DE102005019652A1 (en) Turbulator on the underside of a turbine blade tip deflection bend and associated method
WO2010003725A1 (en) Turbine vane for a gas turbine and casting core for the production of such
DE102013003444A1 (en) Impact-cooled shingle of a gas turbine combustor with extended effusion holes
DE4238659A1 (en)
WO2011029420A1 (en) Deflecting device for a leakage flow in a gas turbine, and gas turbine
DE1157432B (en) Blade for flow machines, especially for axial gas turbines
DE10064264B4 (en) Arrangement for cooling a component
WO2003062607A1 (en) Cooled component for a gas turbine
EP1207268A1 (en) Gas turbine blade and a process for manufacturing a gas turbine blade
EP3207217A1 (en) Film-cooled gas turbine component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160513

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20161223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA IP UK LIMITED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 897669

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013674

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170531

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170901

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010013674

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180119

Year of fee payment: 9

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 897669

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 14

Ref country code: DE

Payment date: 20230525

Year of fee payment: 14

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20180228

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O