EP2378513A1 - Verfahren und System zur aktiven Lärmreduktion - Google Patents

Verfahren und System zur aktiven Lärmreduktion Download PDF

Info

Publication number
EP2378513A1
EP2378513A1 EP11161701A EP11161701A EP2378513A1 EP 2378513 A1 EP2378513 A1 EP 2378513A1 EP 11161701 A EP11161701 A EP 11161701A EP 11161701 A EP11161701 A EP 11161701A EP 2378513 A1 EP2378513 A1 EP 2378513A1
Authority
EP
European Patent Office
Prior art keywords
time
dependent
sound source
complex
amplitudes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11161701A
Other languages
English (en)
French (fr)
Other versions
EP2378513B1 (de
Inventor
Sten Böhme
Delf Sachau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamburg Innovation GmbH
Helmut Schmidt Universitaet
Original Assignee
Hamburg Innovation GmbH
Helmut Schmidt Universitaet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamburg Innovation GmbH, Helmut Schmidt Universitaet filed Critical Hamburg Innovation GmbH
Publication of EP2378513A1 publication Critical patent/EP2378513A1/de
Application granted granted Critical
Publication of EP2378513B1 publication Critical patent/EP2378513B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • G10K11/17833Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone

Definitions

  • the present invention relates to a method for active noise reduction of the sound field generated by a vibrating radiating surface of a primary sound source and to an active noise reduction system for carrying out such a method.
  • Active noise reduction systems and methods typically use one or more secondary sound sources in the form of loudspeakers, one or more sensors and a control device to reduce the primary sound radiated from a source of noise also referred to as a primary source connected to the speakers and the sensors.
  • the control device controls the loudspeakers on the basis of the signals supplied by the sensors in such a way that the entire sound field generated by the combination of the primary sound source and the loudspeakers is favorably influenced in the sense of the aim of sound reduction.
  • one or more sensors can be used to generate reference signals, on the basis of which control signals for the secondary sound sources are determined, and one or more further sensors can serve as error sensors, with the aid of which the quality of the control signals is checked and their determination is adjusted as needed.
  • the desired influence of the sound field can be based on various physical mechanisms.
  • sound is reflected at the locations of the secondary sound sources, that sound is absorbed by the secondary sound sources and the sound energy is dissipated via the respective actuators or that the primary sound source and the secondary sound sources influence each other such that that of the combination of primary and secondary sound sources radiated total sound power is minimized.
  • the interference affects a reduction in the ability of sound sources to emit sound.
  • the secondary sound sources reduce the effective resistance of the primary sound source by acting on the acoustic modes of the sound field or act on the air molecules located in front of the primary sound source, that they less resistance to the movement of the radiation surface of the primary sound source , There is always the difficulty that the contribution of the secondary sound sources to the sound field must not overcompensate the benefits achieved in a negative way.
  • one known type of active noise reduction employs one or more error microphones as sensors, each of which locally measures the sound pressure produced by all existing sound sources, including the primary sound source and one or more secondary sound sources.
  • the measurement results are processed by the control device, which then controls the secondary sound sources in such a way that the sound pressure at the microphones is minimized as far as possible by destructive interference and / or sound reflection at the locations of the secondary sound sources.
  • This can be a local noise reduction can be achieved at the microphone positions.
  • This principle which is an example of a sound pressure-based control, has the disadvantage that the local noise reduction at the microphone positions is generally accompanied by a noise amplification in other areas. Furthermore, only the local sound effect is influenced in the form of the sound pressure, without combating the cause in the form of the sound power output by the primary sound source.
  • the microphones must also be distributed globally and the secondary sound sources must be arranged so that they can excite the same modes as the primary sound source. It is also problematic to take into account changing environmental influences in the implementation of the control. Further, because the microphones measure the overall sound pressure, these methods may fail in the presence of additional noise sources because the controller can not account for the contribution of the various sound sources. Despite these drawbacks, controls based on sound pressure measurements are most commonly used because the necessary measurements are technically easy to implement.
  • the radiated total active power of a pair of sound source from a primary source and a secondary source is minimal if and only if the secondary source is driven in the same or in opposite phase, or the same with respect to the primary source - or antiphase oscillates, and the secondary source does not radiate active sound power.
  • the active sound power is the real part of the overall sound power usually represented by a complex size and corresponds to the actual net energy transport per second perpendicular to a surface, such as the emission surface of a sound source.
  • the dummy sound power represented by the imaginary part of the total sound power is due to the energy transport by medium mass, the only moved, but not compressed.
  • the secondary source is driven either with a control signal for the primary source in the same or opposite phase (in the case of the former document) or an opposite in relation to the drive signal for the primary source drive signal (in the case of the latter document), so that The design uniformity can not be waived, and the amplitude of the drive signal for the secondary source is set manually.
  • the sensors used are either a large number of microphones randomly distributed in space or a sound intensity sensor comprising two microphones spaced apart from each other. This means a relatively high amount of hardware.
  • the method according to the invention is designed for active noise reduction of the sound field generated by a vibrating emission surface of a primary sound source.
  • a physical quantity q is measured for the primary sound source with a reference sensor arranged, for example, at a given time, which characterizes the sound-generating movement of the emission surface of the primary sound source, at least in a predetermined frequency range provided for noise reduction.
  • This quantity may advantageously be, for example, an acceleration or a velocity of or at the sound-radiating surface of a sound source.
  • accelerometers are inexpensive, reliable and simple.
  • the time-dependent measurement yields a corresponding time-dependent reference parameter q PQ (t), which simply represents the temporally varying measured values, such as the time-dependent acceleration of the sound-emitting surface, and contains the phase information of the primary sound source.
  • a secondary sound source is provided and suitably arranged, which is preferably formed by a loudspeaker.
  • the influence of the secondary sound source on the sound emission through the primary sound source is increasing Remove distance between the two sound sources. It is therefore advantageous to arrange the sound sources in spatial proximity to each other, preferably in a mutual distance, which does not exceed half the wavelength - or at several wavelengths half the smallest wavelength - of the sound to be canceled.
  • the sound pressure p (t) is measured as a function of time, at least in a predetermined frequency range provided for noise reduction.
  • the distance between the sound pressure sensor and the emission surface does not exceed the value of one-tenth of the wavelength - or at several wavelengths one-tenth of the smallest wavelength - of the sound to be canceled out.
  • the sound pressure sensor is a microphone.
  • the time-dependent measured variables q PQ (t) and p (t) are transformed into the frequency domain by a suitable method, so that a number of complex frequency-dependent amplitudes q pQ, tm (each for a plurality of discrete and preferably immediately consecutive time intervals t m ).
  • underlined symbols denote complex-valued sizes, while not underlined symbols denote real sizes.
  • the frequencies f j will generally be discrete frequencies, each representing a frequency band. However, in principle it is also conceivable to use continuous or quasi-continuous frequency values.
  • the complex amplitudes q PQ , tm (f j ) and p tm (f j ) for a specific time interval t m are then in customary manner for the time course of q PQ (t) or p (t) in this time interval t m characteristic (at least in a predetermined, provided for noise reduction frequency range) and can be converted by reciprocal back transformation in the time domain back into the corresponding time signals ,
  • the totality of the frequencies f j determines the frequency range provided for noise reduction.
  • the secondary sound source is controlled with a time-dependent drive signal in such a way that the emission surface of the secondary sound source at least at the frequencies f j equal or out of phase oscillates to the emission surface of the primary sound source and their corresponding sound-generating movement in each of immediately consecutive discrete time periods T n , each one or several of the discrete time intervals t m , is characterized by a specific time profile q SQ (t) of the physical quantity q.
  • the drive signal does not have to have the curve q SQ (t) itself and generally does not have, but is designed and generated so that the emitting surface of the secondary sound source according to q SQ (t) oscillates.
  • the same- or opposite-phase oscillation of the secondary sound source is guaranteed, ie that the vibrations of the radiating surfaces of primary and secondary sound source at each frequency f j are 0 ° or 180 ° out of phase.
  • amplification factors k Tn (f j )> 0 correspond to an antiphase oscillation and k Tn (f j ) ⁇ 0 to an antiphase oscillation, and it is preferable to select the construction such that the latter condition applies, in particular as already described above addressed preferred relative spatial arrangement of primary and secondary sound source in a mutual distance, the half of the wavelength - or at several wavelengths half the smallest wavelength - does not exceed the sound to be canceled, is met. It should be pointed out that in principle it is also conceivable that the amplification factors of some frequencies f j are negative and other frequencies f j are positive.
  • the amplification factors k Tn (f j ) are recalculated and set for the different time intervals T n , wherein, if certain conditions exist, one or more of the frequencies f j may possibly be dispensed with for recalculation.
  • the recalculation takes place in each case for a time interval T n + 1 on the basis of the gain factors k Tn (f j ) in the immediately preceding time interval T n and the complex frequency-dependent amplitudes q pQ, tm (f j ) and p tm (f j ) a time interval t m in the period T n (it is also possible, but not preferred, to perform the recalculation for the period T n + 1 from a more recent period T nx , in which case the corresponding references would be to T n replaced by T nx ).
  • is a real convergence factor and, as in the further course of the application in [ x ], the imaginary part of a complex number x and x * designates the number complexed to a complex number x complex.
  • this update equation converges at the stationary primary sound source to the optimal global solution for the amplification factors k Tn (f j ) in order to achieve the desired equal or opposite phase control of the secondary sound source without active power radiation of the secondary sound source.
  • the convergence factor ⁇ can be varied, ie to achieve convergence in fewer steps but larger jumps or in more steps but smaller jumps.
  • a suitable value for the convergence factor ⁇ can be determined by stepwise changing it from the value 0, which corresponds to an infinitely slow convergence, until a convergence speed desired for the particular application is reached. Where p is generally negative.
  • the quantity q is an acceleration or a speed
  • the inverse of the imaginary part of the transmission number between secondary acceleration and secondary pressure or the inverse of the real part of the transmission impedance between secondary speed and secondary pressure can be assumed.
  • the update equation and the corresponding adaptive control have the advantage that, in addition to a reference signal, they only require the measurement of a single sound pressure. Therefore, the hardware cost can be kept low and in particular a single-channel system can be used which, in addition to a suitable control device or control device, for example, only a reference sensor, such as an accelerometer, a microphone and a speaker.
  • Both the secondary sound source and the sensors can advantageously be arranged in the vicinity of the sound transmission path of the primary sound source.
  • the secondary sound source can be constructed differently than the primary sound source, so that various different suitable speakers can be used flexibly. Further, the controller simple and insensitive to changing environmental conditions, ie no re-calibration system is necessary.
  • the method is universally applicable both indoors and outdoors, and it has been found that a significant global reduction of the sound pressure level can be achieved, in particular in the case of noise generated by concave-vibrating surfaces.
  • a loudspeaker with a membrane area of 0.01 m 2 as secondary sound source for tonal sound radiation in a room with a volume of 400 m 3 a 4.8 m 2 structure measured an average global noise reduction of 8 dB.
  • the method is particularly suitable for stationary noise, and it is preferred that the primary sound source is a sound source that generates stationary noise.
  • the time intervals t m which are used to recalculate the gain factors k Tn + 1 (f j ), are temporally spaced from each other. In this way disturbances in the method are avoided, which can result from the fact that the calculations and signal processing necessary for the recalculation and readjustment of the amplification factors can lead to a time delay and consequently the readjustment does not have an immediate effect.
  • the recalculation of the gain factors k Tn + 1 (f j ) is performed only for frequencies f j for which the condition q PQ . tm f j ⁇ ⁇ j with predetermined threshold values ⁇ j , and for the remaining frequencies f j the amplification factors k Tn + 1 (f j ) are set to zero.
  • the reference parameter must exceed a certain threshold in order to calculate a new gain factor for the corresponding frequency at all.
  • the control of the secondary sound source for little noise or without existing reference signal can be prevented. Only the noise source is actively suppressed in the radiation at which the system is installed, while sound from other sources has no influence on the process and its result.
  • the range from which active noise suppression makes economic sense can be set by selecting ⁇ j .
  • ⁇ j can be chosen differently for the different frequencies f j or as a constant over all frequencies.
  • k Tn + 1 (f j ) its amount is limited by checking whether it exceeds a predetermined maximum value k max (f j ) for the magnitude, and k Tn + 1 ( fj) when exceeded, depending on whether k Tn + 1 (f j ) is negative or positive, is set to -k max (f j ) or + k max (f j ).
  • the transformation of q PQ (t) and p (t) into the frequency domain for determination of the complex frequency-dependent amplitudes q PQ , tm (f j ) and p tm (f j ) by means of discrete Fourier transformation For this purpose, q PQ (t) and p (t) must be time-discretized appropriately. This transformation process is fast, reliable and cost-effective to implement.
  • the generation of the time-dependent drive signal for the secondary sound source comprises the steps for each of the time intervals t m from the complex frequency-dependent amplitudes q PQ, tm (f j ) and the corresponding gain factors k Tn (f j ) for the time period T n for the frequencies f j complex frequency-dependent amplitudes q SQ, tm (f j ) according to q SQ .
  • tm f j k Tn f j q PQ .
  • the inverse transformation in this embodiment is based on the complex frequency-dependent amplitudes q SQ, tm (f j ) in the time domain for determining the time-dependent control parameter q SQ (t) by means of inverse discrete Fourier transformation performed.
  • G -1 (f j ) is a predetermined complex time delay correction parameter that can be used to account for phase shifts that may be caused by signal processing steps and electroacoustic transformations. Such time delays and the possibly associated additional phase shifts can otherwise lead to the radiating surfaces of the primary and secondary sound source not swinging in the above-mentioned procedure, as desired, in the same or opposite phase.
  • the time delay correction parameter may be determined during an initial system calibration and is otherwise independent of changing environmental conditions.
  • the sensor phase correction parameter ( ⁇ (f j ) takes into account that a different design of the reference sensor and the sound pressure sensor may result in different phase responses and consequently a phase shift between q PQ (t) and p (t) or the corresponding frequency-dependent complex amplitudes, which as is apparent from the update equation immediately -. directly affects the calculation of the optimal gain factors adversely the sensor phase correction parameter ( ⁇ (f j) can be determined in the course of an initial system calibration by determining the actual phase position of the measured by the sensors physical quantities and is otherwise regardless of changing environmental conditions.
  • the described method and its advantageous embodiments can preferably be carried out with the aid of an active noise reduction system, which is described below. To avoid repetition, details of the method relating to the operation of the system will not be discussed in detail.
  • the system has a reference sensor, preferably an acceleration sensor or a fast sensor for the sound-radiating surface of a sound source, for the time-dependent measurement of a physical quantity q, which characterizes the sound-generating movement of the emission surface of the primary sound source, at least in a predetermined frequency range provided for noise reduction.
  • the reference sensor is adapted to provide in operation a corresponding time-dependent reference parameter q PQ (t), which includes the phase information of the primary sound source, in the form of a corresponding reference signal.
  • the reference sensor may for example be arranged at the primary sound source or be provided for such an arrangement.
  • the system has a secondary sound source, eg in the form of a loudspeaker, with a radiation surface suitable for sound radiation and a sound pressure sensor, which is preferably a microphone, for time-dependent measurement of the sound pressure p (t) - at least in a predetermined frequency range provided for noise reduction which is arranged in the immediate vicinity of the emission surface of the secondary sound source or adapted for such an arrangement.
  • the sound pressure sensor is adapted to provide a corresponding sound pressure signal during operation.
  • the distance between the sound pressure sensor and the radiating surface in operation is one tenth of the wavelength - or at several Wavelengths one tenth of the smallest wavelength - of the sound to be canceled. It has also been stated above that it is advantageous if the sound sources are arranged in spatial proximity to one another during operation, preferably at a mutual distance which is half the wavelength - or at half wavelengths half the smallest wavelength - of the sound to be canceled does not exceed
  • control device preferably has in each case one or more devices set up for the said steps.
  • the system is particularly suitable for stationary noise, and it is preferred that the primary sound source be a sound source that generates stationary noise.
  • control device is set up such that the time intervals t m , which are used to recalculate the gain factors k Tn + 1 (f j ), are temporally spaced from each other.
  • control means is arranged to recalculate the gain factors k Tn + 1 (f j ) only for frequencies f j for which q PQ . tm f j ⁇ ⁇ j with predetermined threshold values ⁇ j , and for the remaining frequencies f j, the gain factors k Tn + 1 (f j ) are set to zero.
  • the controller is adapted to limit its magnitude after each recalculation of a gain k k Tn + 1 (f j ) by checking whether that magnitude exceeds a predetermined maximum k max (f j ) for the magnitude, and k Tn + 1 (f j ) when exceeded depending on whether k Tn + 1 (f j ) is negative or positive, set to - k max (f j ) or + k max (f j ).
  • k max k max
  • the controller is adapted to generate the time-dependent drive signal for the secondary sound source for each of the time intervals t m from the complex frequency-dependent amplitudes q PQ, tm (f j ) and the corresponding gain factors k Tn (f j ) for the period T n for the frequencies f j complex frequency-dependent amplitudes q SQ, tm (f j ) according to q SQ .
  • tm f j k Tn f j q PQ .
  • control device is further adapted, for the transformation of q PQ (t) and p (t) into the frequency domain for the determination of the complex frequency-dependent amplitudes q PQ, tm (f j ) and p t m ( f j ) with the aid of discrete Fourier transformation.
  • control device is adapted to carry out the inverse transformation on the basis of the complex frequency-dependent amplitudes q SQ, tm (f j ) into the time domain for determining the time-dependent control parameter q SQ (t) by means of inverse discrete Fourier transformation ,
  • tm f j G - 1 f j q SQ .
  • tm f j adjust and the adapted complex frequency-dependent amplitudes q 'SQ to use tm (f j) for the inverse transformation into the time domain for determining the time-dependent control parameter QSQ (t), where G -1 (f j) predetermined complex time delay correction parameters to account for by signal processing and electroacoustic transformations caused phase shifts.
  • the control device can be, for example, a hardware-permanently implemented device with various elements for carrying out the various mentioned steps, a device adapted and set up for this purpose programmatically having a programmable processor and possibly a memory device, or a hybrid having a programmable processor but in which individual steps are performed by hardware-implemented elements.
  • Reference numeral 1 denotes a primary sound source in the form of a vibrating surface, which forms the emitting surface of the sound source.
  • a reference sensor acceleration sensor 2 On the surface of the primary sound source 1 is serving as a reference sensor acceleration sensor 2, with which the acceleration q of the radiating surface is measured as a time-dependent reference parameter q PQ (t) and fed in the form of a corresponding reference signal via a reference signal line 3 to a reference signal input 4 of a digital control or regulating device 5.
  • a loudspeaker 6 is provided, in front of the radiating surface, ie its loudspeaker diaphragm, a sound pressure sensor in the form of a microphone 7 is arranged in the immediate vicinity of the radiator central axis, with which the time-dependent sound pressure p (t) measured on the speaker 6 and in the form of a corresponding Sound pressure signal via a sound pressure signal line 8 a sound pressure signal input 9 of the digital control device 5 is fed.
  • the control device 5 generates based on the reference signal and the sound pressure signal, a time-dependent control signal, which is output at a Anêtsignalausgang 10 and is controlled by the loudspeaker 6 via a Anêtsignal effet 11. In this case, the control device 5 generates the drive signal in such a way that the total active power radiated by the source pair formed by the primary sound source 1 and the loudspeaker 6 is minimized in the manner described above. It is clear that the system, with the exception of the design of the control device 5 in its basic structural design is similar to a simple system with sound pressure-based control using a single microphone and is therefore advantageously designed and installed in an easy way.
  • FIG. 4 is a flow chart of a procedure to be advantageously implemented in the controller 5 for recalculating a gain k kn + 1 (f j ) for a frequency f j using the update equation.
  • step 20 various parameters are initialized once before the first recalculation step, the meaning of which has been indicated above or will be explained in more detail below.
  • step 21 the two of the control means 5 by means of discrete Fourier transformation (see. Figures 3 and 5 ) of q PQ (t) and p (t) for the frequency f j specific complex amplitudes q PQ, tm, ⁇ tz (f j ) and p tm, ⁇ tz (f j ) in the process flow entered.
  • q PQ, tm, ⁇ tz (f j ) and p tm, ⁇ tz (f j ) denote complex amplitudes, which consist of the signals q PQ (t) and p (t) in a designated by the parameter z subinterval .DELTA.t z of the time interval t m designated by the parameter m, wherein each time interval t m is formed by z max immediately following subintervals ⁇ t z .
  • step 22 q PQ, tm, ⁇ tz (f j) and p tm, ⁇ tz be (f j) then q to the complex amplitudes add tm (f j) and p tm (f j), which in step 20 were initially set to zero. It is then checked whether z is equal to the maximum value z max (step 23) and, if this is not the case, z is increased by 1 (step 24) and jumped back to step 21.
  • step 22 the discrete Fourier transform for the next, designated by the new value of z sub-interval .DELTA.t z certain complex amplitudes q PQ, tm, .DELTA.tz (f j ) and p tm, .DELTA.tz (f j ) are entered into the process flow and then in step 22 to the complex amplitudes q PQ, tm (f j ) and p tm (f j ) added. Since this loop is not left until the check in step 23 shows that the value z is equal to z max , it can be seen that in step 22 the total of the corresponding sums for all z max subintervals ⁇ t z are formed.
  • step 27 it is checked whether the magnitude of the complex amplitude q PQ, tm (f j ) is at least equal to a threshold value ⁇ j , and only if so, in step 30 is the gain parameter k Tn + 1 (f j ) for the subsequent period T n + 1 compared to the value k Tn ( fj ) for the period T n recalculated. Otherwise, the gain parameter k Tn + 1 (f j ) is set to the value zero for the subsequent period T n + 1 (step 29).
  • step 31 it is checked whether the magnitude of gain k Tn + 1 (f j ) for the subsequent period T n + 1 exceeds a predetermined positive maximum value k max (f j ) and, if necessary, k Tn + 1 (f j ) is limited in magnitude to the sign (step 32).
  • step 33 the amplification factor k Tn + 1 (f j ) for the subsequent period T n + 1 is finally output for use by the controller 5 in generating the drive signal for the speaker 6.
  • Step 34 ensures that no further update is performed for a certain period of time t pause to ensure that the new value of the gain factor has had an effect on the sound emission by the loudspeaker 6 before the next update calculation.
  • step 35 the parameters n, z, q PQ, reinitializes tm (f j) and p tm (f j) for the next pass.
  • FIG. 3 1 schematically shows a preferred arrangement for determining a time delay correction parameter G -1 (f j ) for one or more of the frequencies f j and preferably for each frequency f j and at the same time also shows the essential elements of the control device 5 for generating the drive signal for the loudspeaker 6 the reference signal.
  • These elements comprise an input element 40, a multiplication element 41 for applying the gain k k Tn (f j ) and an output element 42.
  • the input element 40 has the reference signal input 4, and the output element 42 has the drive signal output 10.
  • the input element 40 has an output 43 for outputting the complex amplitude q PQ, tm (f j ), which is output via the multiplication element 41 in which it generates the complex amplitude q SQ, tm (f j ) with the gain factor k Tn (f j ) is fed to an input 44 of the output element 42.
  • the drive signal in principle (neglecting later discussed phase correction measures) generated by the reference signal first in the input element 40 successively a preamplifier 45, a high-pass filter 46, an analog-to-digital converter 47 and an element 48 for discrete Fourier transform (DFT ), whereby the complex amplitude q PQ, tm (f j ) is obtained at the output 43.
  • DFT discrete Fourier transform
  • the complex amplitude q SQ, tm (f j ) fed to the input 44 then successively passes through an element 49 for inverse discrete Fourier transformation (IDFT), a digital-to-analog converter 50, a low-pass filter 51 and an amplifier 52 in the output element 42, whereby Output 10, the drive signal is obtained.
  • IDFT inverse discrete Fourier transformation
  • the drive signal does not have to have the curve q SQ (t) itself and generally does not have, but by suitable configuration of the digital-to-analog converter 50, the low-pass filter 51, the amplifier 52 and, if necessary, further elements configured and generated so that the emitting surface of the speaker 6 according to q SQ (t) oscillates.
  • a loudspeaker 1 ' is used as the primary sound source, which is identical to the secondary loudspeaker 6 and with the aid of a signal generator 53 sinusoidally excited at the frequency f j .
  • An acceleration pickup 54 corresponding to the sensor 2 is arranged on the emission surface of the secondary loudspeaker 6, the signal of which via a further input 55 of the input element 40 in the same manner as the reference signal successively its preamplifier 45, high-pass filter 46, analog-to-digital converter 47 and the element 48th to the discrete Fourier transform (DFT), whereby at a further output 56 a complex comparison amplitude q SQ, tm, cf. (f j ) is obtained.
  • DFT discrete Fourier transform
  • the time-dependent accelerations q PQ (t) and q SQ (t) measured by the acceleration transducers 2 and 54 should be identical.
  • the complex amplitude q PQ, tm (f j ) and the complex comparison amplitude q SQ, tm, cf. (f j ) should be identical at the outputs 43 and 56, respectively.
  • this will not be the case due to the signal propagation times and the transmission behavior of the loudspeaker 6.
  • FIG. 4 shows a preferred arrangement for determining a sensor phase correction parameter ⁇ (f j ) for the frequency f j , with the phase error due to the design-related different phase response of the accelerometer 2 and the microphone 7 are taken into account.
  • the arrangement corresponds largely to in FIG. 3 shown arrangement.
  • it contains a further multiplication element 59 connected downstream of the multiplication element 41 for multiplication by the time delay correction parameter G -1 (f j ), ie for carrying out the time delay correction, which can also be referred to as predistortion for the reference signal.
  • the multiplication element 41 is temporarily set to a multiplication by -1, due to this correction, the emitting surfaces of the speakers 1 'and 6 oscillate in anti-phase and they both radiate no effective sound power. Is their mutual distance low, the acceleration at the primary speaker 1 'and the sound pressure at the location of the microphone 7 are approximately in phase.
  • phase shift between the values q PQ (t) and p (t) actually measured by the accelerometer 2 and the microphone 7 can be determined as a sensor phase correction parameter ⁇ (f j ) a memory location 62 are stored for further use.
  • FIG. 5 shown, in contrast to FIG. 4 in addition to the multiplication elements 41 and 59 a further multiplication member 63 p for multiplying the voltage applied to a pressure amplitude output 64 of the input member 40 complex pressure amplitude 'tm (f j) -i ⁇ e (fj) p tm for obtaining the complex pressure amplitude (fj) is provided.
  • the updating element 65 is shown, by which the steps according to FIG. 2 are performed and the multiplier 41 is optionally set via line 66 to the current value for the gain factor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

Zur aktiven Lärmreduktion des Schallfeldes einer Primärschallquelle (1) wird mit einem Referenzsensor (2) ein die schallerzeugende Bewegung ihrer Abstrahlfläche kennzeichnende physikalische Größe gemessen, um einen zeitabhängigen, die Phaseninformation der Primärschallquelle (1) enthaltenden Referenzparameter qPQ(t) zu erhalten, und für eine Sekundärschallquelle (6) wird mit einem in unmittelbarer Nähe angeordneten Schalldrucksensor (7) zeitabhängig der Schalldruck p(t) gemessen. Durch Transformation von qPQ(t) und p(t) in den Frequenzbereich werden komplexe frequenzabhängige Amplituden q PQ,tm(fj) bzw. p tm(fj) für Frequenzen fj und Zeitintervalle tm erhalten, und die Sekundärschallquelle (6) wird so angesteuert, dass die Sekundärschallquelle (6) gleich- oder gegenphasig zur Primärschallquelle (1) schwingt und ihre schallerzeugende Bewegung in Zeitabschnitten Tn durch einen Verlauf qSQ(t) von q gekennzeichnet ist, bei dem zwischen den entsprechenden komplexen Amplituden q SQ,tm(fj) und den komplexen Amplituden q PQ,tm(fj) die Beziehung q SQ,tm(fj) = kTn(fj) q PQ,tm(fj) mit in Tn jeweils zeitlich konstanten reellen Verstärkungsfaktoren kTn(fj) besteht.

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zur aktiven Lärmreduktion des von einer schwingenden Abstrahlfläche einer Primärschallquelle erzeugten Schallfeldes und auf ein aktives Lärmreduktionssystem zur Durchführung eines derartigen Verfahrens.
  • Aktive Lärmreduktionssysteme und -verfahren, die auch als Gegenschallsysteme bzw. -verfahren bezeichnet werden, setzen zur Reduktion des von einer auch als Primärschallquelle bezeichneten Lärmquelle abgestrahlten Primärschalls typischerweise einen oder mehrere Sekundärschallquellen in Form von Lautsprechern, einen oder mehrere Sensoren und eine Steuereinrichtung ein, die mit den Lautsprechern und den Sensoren verbunden ist. Die Steuereinrichtung steuert die Lautsprecher auf Basis der von den Sensoren gelieferten Signale so an, dass das gesamte durch die Kombination der Primärschallquelle und der Lautsprecher erzeugte Schallfeld im Sinne des Ziels der Schallreduktion günstig beeinflusst wird. Dabei können ein oder mehrere Sensoren zur Erzeugung von Referenzsignalen dienen, auf deren Basis Ansteuersignale für die Sekundärschallquellen bestimmt werden, und ein oder mehrere weitere Sensoren können als Fehlersensoren dienen, mit deren Hilfe die Güte der Ansteuersignale überprüft und deren Bestimmung bei Bedarf angepasst wird.
  • Die erwünschte Beeinflussung des Schallfeldes kann auf verschiedenen physikalischen Mechanismen beruhen. Neben dem bekanntesten Fall von destruktiven Interferenzen ist es auch möglich, dass Schall an den Orten der Sekundärschallquellen reflektiert wird, dass Schall von den Sekundärschallquellen absorbiert und die Schallenergie über die entsprechenden Aktuatoren dissipiert wird oder dass sich die Primärschallquelle und die Sekundärschallquellen derart gegenseitig beeinflussen, dass die von der Kombination aus Primär- und Sekundärschallquellen abgestrahlte gesamte Schallleistung minimiert wird. Für den letzteren Fall bewirkt die gegenseitige Beeinflussung eine Verringerung der Fähigkeit der Schallquellen zur Abstrahlung von Schall. Dies kann beispielsweise darauf beruhen, dass die Sekundärschallquellen den Wirkwiderstand der Primärschallquelle verringern, indem sie über die akustischen Moden des Schallfeldes auf diese einwirken oder in der Weise auf die vor der Primärschallquelle befindlichen Luftmoleküle einwirken, dass sie der Bewegung der Abstrahlfläche der Primärschallquelle weniger Widerstand entgegenbringen. Dabei besteht stets die Schwierigkeit, dass der Beitrag der Sekundärschallquellen zum Schallfeld die erzielten Vorteile nicht in negativer Weise überkompensieren darf.
  • Eine bekannte Art und Weise der aktiven Lärmreduktion setzt zum Beispiel als Sensoren ein oder mehrere Fehlermikrofone ein, die jeweils lokal den Schalldruck messen, der durch sämtliche vorhandenen Schallquellen, einschließlich der Primärschallquelle und einer oder mehrerer Sekundärschallquellen, erzeugt wird. Die Messergebnisse werden durch die Steuereinrichtung verarbeitet, die die Sekundärschallquellen dann so ansteuert, dass der Schalldruck an den Mikrofonen durch destruktive Interferenz und/oder Schallreflexion an den Orten der Sekundärschallquellen möglichst weit minimiert wird. Dadurch kann eine lokale Lärmreduktion an den Mikrofonpositionen erzielt werden. Dieses Prinzip, das ein Beispiel für eine schalldruckbasierte Steuerung ist, hat den Nachteil, dass die lokale Lärmreduktion an den Mikrofonpositionen im Allgemeinen mit einer Lärmverstärkung in anderen Bereichen einhergeht. Ferner wird lediglich die lokale Schallwirkung in Form des Schalldrucks beeinflusst, ohne die Ursache in Form der Schallleistungsabstrahlung durch die Primärschallquelle zu bekämpfen.
  • Weitere beispielhafte schalldruckbasierte Steuerungen, die unter anderem aus Elliot, S.J. et al., In Flight Experiments on the Active Control of Propeller-induced Cabin Noise, Journal of Sound and vibration (1990), Nr. 140(2), Seiten 219 bis 238 bekannt sind und das Ziel einer globalen Lärmreduktion haben, basieren auf dem Mechanismus der Einwirkung auf die Primärschallquelle über akustische Moden und haben den Nachteil, dass die Anzahl und Verteilung der Mikrofone so gewählt werden muss, dass eine Erfassung der angeregten Moden möglich ist. Ferner ist der Anwendungsbereich dadurch eingeschränkt, dass für jeden Anwendungsfall separat Kenntnisse über die physikalischen Wechselbeziehungen der verwendeten Lautsprecher und Sensoren und über das Primärschallfeld vorhanden sein müssen.
  • Insgesamt müssen für eine globale Schalldruckminimierung in Fällen höherer modaler Dichte in nachteiliger Weise die Mikrofone ebenfalls global verteilt und die Sekundärschallquellen so angeordnet sein, dass sie dieselben Moden wie die Primärschallquelle anregen können. Dabei ist es zudem problematisch, sich ändernden Umwelteinflüssen bei der Implementierung der Steuerung Rechnung zu tragen. Weil die Mikrofone den Gesamtschalldruck messen, können diese Verfahren ferner bei Anwesenheit zusätzlicher Lärmquellen versagen, da die Steuerung den Beitrag der verschiedenen Schallquellen nicht berücksichtigen kann. Trotz dieser Nachteile werden auf Schalldruckmessungen basierende Steuerungen am häufigsten angewendet, da die notwendigen Messungen technisch einfach zu realisieren sind.
  • Im Unterschied dazu sind Messung von Energiegrößen des Schallfeldes vom Prinzip her besser geeignet, um im Rahmen von Steuerungen zum Einsatz zu kommen, die eine globale Reduktion von Lärm durch die Minimierung der abgestrahlten Wirkleistung aller im Raum befindlichen Schallquellen erreichen sollen. Dabei besteht der Vorteil, dass die entsprechenden Fehlersensoren in der Nähe der Sekundärschallquellen angeordnet sein können, wodurch der Installations- und Optimierungsaufwand verringert werden kann. Die entsprechenden Vorschläge im Stand der Technik weisen jedoch erhebliche Probleme auf, die dazu geführt haben, dass sie das akademische Versuchsstadium nicht verlassen haben. Die Probleme entstehen teilweise dadurch, dass Energiegrößensensoren, wie beispielsweise Schallintensitätssensoren, hardwaremäßig aufwändiger als einfache Schalldrucksensoren sind und die Komplexität der Steuerungen aufgrund einer größeren Anzahl von Eingangsgrößen (die Schallintensität wird beispielsweise durch den Schalldruck und die Schallschnelle bestimmt) und damit verbundenen mehrkanaligen Ausgestaltungen erhöht ist.
  • Ein Ansatz für eine energiebasierte Steuerung ist beispielsweise aus den Dokumenten Elliott, S.J. et al., Power output minimization and power absorption in the active control of sound, Journal of the Acoustical Society of America (1991), Nr. 90(5), Seiten 2501 bis 2512 und Bullmore, A.J. et al, The active minimization of harmonic enclosed sound fields, Part I-III, Journal of Sound and Vibration (1987), Nr. 117, Seiten 1 bis 58 bekannt. Dort wird auf Grundlage von theoretischen Herleitungen für das Beispiel von zwei Punktschallquellen beschrieben, dass die abgestrahlte Gesamtwirkleistung eines Schallquellenpaares aus einer Primärquelle und einer Sekundärquelle genau dann minimal ist, wenn die Sekundärquelle gleich-oder gegenphasig angesteuert wird, bzw. in Bezug auf die Primärquelle gleich- oder gegenphasig schwingt, und die Sekundärquelle keine Wirkschallleistung abstrahlt. Die Wirkschallleistung ist dabei der Realteil der üblicherweise durch eine komplexe Größe dargestellten Gesamtschallleistung und entspricht dem tatsächlichen Nettoenergietransport pro Sekunde senkrecht zu einer Fläche, wie etwa der Abstrahlfläche einer Schallquelle. Demgegenüber ist die durch den Imaginärteil der Gesamtschallleistung dargestellte Blindschallleistung auf den Energietransport durch Mediumsmasse zurückzuführen, die lediglich mitbewegt, aber nicht komprimiert wird. In diesen Dokumenten werden jedoch keine realisierbaren Vorschläge für die Auswahl, Ausgestaltung und Anordnung von Sensoren und für die Ausgestaltung der Steuerung gemacht.
  • Experimentelle Untersuchungen zu diesem Ansatz sind in den beiden Dokumenten Tohyama, M., Suzuki, A, Sugiyama, K., Active Power Minimization of a Sound Source in a Reverberant Closed Space, IEEE Transactions on Signal Processing (1991), Nr. 39(1), Seiten 246 bis 248 und Kang, S.W., Kim, Y.H., Active global noise control by sound power, ACTIVE 95: Proceedings of the 1995 International Symposium on Active Control of Sound and Vibration, Newport Beach (U.S.A.), New York, Noise Control Foundation, 1995 beschrieben.
  • In beiden Fällen werden baugleiche Lautsprecher als Primär-und Sekundärquelle verwendet. Dabei wird die Sekundärquelle mit einem in Bezug auf das Ansteuersignal für die Primärquelle entweder gleich- oder gegenphasigen Ansteuersignal (im Falle des ersteren Dokuments) oder einem in Bezug auf das Ansteuersignal für die Primärquelle gegenphasigen Ansteuersignal (im Falle des letzteren Dokuments) angesteuert, so dass auf die Baugleichheit nicht verzichtet werden kann, und die Amplitude des Ansteuersignals für die Sekundärquelle wird manuell eingestellt. Ferner kommen als Sensoren entweder eine große Anzahl zufällig im Raum verteilter Mikrofone bzw. ein Schallintensitätssensor aus zwei voneinander beabstandeten Mikrofonen zum Einsatz. Dies bedeutet einen relativ hohen Hardwareaufwand. Schließlich werden insgesamt keine realisierbaren Ansätze für eine geeignete Steuerung angegeben.
  • Es ist Aufgabe der Erfindung, ein Verfahren und ein System zur aktiven Lärmreduktion des von einer schwingenden Abstrahlfläche einer Primärschallquelle erzeugten Schallfeldes anzugeben, die eine energiebasierte Steuerung zur Minimierung der durch eine Primärschallquelle und eine Sekundärschallquelle abgestrahlten Wirkschallleistung verwirklichen und die Möglichkeiten zum Einsatz dieses Ansatzes gegenüber dem Stand der Technik erweitern.
  • Diese Aufgabe wird durch ein Verfahren zur aktiven Lärmreduktion gemäß Anspruch 1 und ein aktives Lärmreduktionssystem gemäß Anspruch 9 gelöst. Vorteilhafte Ausgestaltungen des Verfahrens und des Systems sind Gegenstand der jeweils zugehörigen Unteransprüche.
  • Das erfindungsgemäße Verfahren ist zur aktiven Lärmreduktion des von einer schwingenden Abstrahlfläche einer Primärschallquelle erzeugten Schallfeldes ausgestaltet. Dazu wird für die Primärschallquelle mit einem - beispielsweise an dieser angeordneten - Referenzsensor zeitabhängig eine physikalische Größe q gemessen, die - zumindest in einem vorbestimmten, zur Lärmreduktion vorgesehenen Frequenzbereich - die schallerzeugende Bewegung der Abstrahlfläche der Primärschallquelle kennzeichnet. Diese Größe kann in vorteilhafter Weise beispielsweise eine Beschleunigung oder eine Schnelle der oder an der schallabstrahlenden Fläche einer Schallquelle sein. Insbesondere Beschleunigungsaufnehmer sind kostengünstig, zuverlässig und einfach aufgebaut. Die zeitabhängige Messung ergibt einen entsprechenden zeitabhängigen Referenzparameter qPQ(t), der einfach die zeitlich variierenden Messwerte darstellt, wie zum Beispiel die zeitabhängige Beschleunigung der schallabstrahlenden Fläche, und die Phaseninformation der Primärschallquelle beinhaltet.
  • Zur Minimierung der abgestrahlten Wirkschallleistung ist eine Sekundärschallquelle vorgesehen und geeignet angeordnet, die bevorzugt durch einen Lautsprecher gebildet wird. Im Allgemeinen wird der Einfluss der Sekundärschallquelle auf die Schallabstrahlung durch die Primärschallquelle mit zunehmender Entfernung zwischen den beiden Schallquellen abnehmen. Es ist daher von Vorteil, die Schallquellen in räumlicher Nähe zueinander anzuordnen, bevorzugt in einem gegenseitigen Abstand, der die Hälfte der Wellenlänge - bzw. bei mehreren Wellenlängen die Hälfte der kleinsten Wellenlänge - des auszulöschenden Schalls nicht überschreitet. Mit einem in unmittelbarer Nähe einer Abstrahlfläche der Sekundärschallquelle und bevorzugt auf oder ungefähr auf der Strahlermittelachse der Abstrahlfläche angeordneten Schalldrucksensor wird - zumindest in einem vorbestimmten, zur Lärmreduktion vorgesehenen Frequenzbereich - zeitabhängig der Schalldruck p(t) gemessen. Es ist bevorzugt, dass der Abstand zwischen dem Schalldrucksensor und der Abstrahlfläche den Wert von einem Zehntel der Wellenlänge - bzw. bei mehreren Wellenlängen einem Zehntel der kleinsten Wellenlänge - des auszulöschenden Schalls nicht überschreitet. In einer bevorzugten Ausführungsform ist der Schalldrucksensor ein Mikrofon.
  • Die zeitabhängigen Messgrößen qPQ(t) und p(t) werden durch ein geeignetes Verfahren in den Frequenzbereich transformiert, so dass für jedes einer Vielzahl von diskreten und bevorzugt unmittelbar aufeinanderfolgenden Zeitintervallen tm jeweils eine Anzahl von komplexen frequenzabhängigen Amplituden qpQ,tm(fj) bzw. ptm(fj) für eine Anzahl und - obwohl es prinzipiell auch denkbar ist, nur eine einzige Frequenz zu berücksichtigen, d.h. nur Schall einer einzigen Frequenz zu reduzieren - bevorzugt eine Vielzahl von Frequenzen fj erhalten werden. Dabei bezeichnen hier genau wie im weiteren Verlauf der Anmeldung unterstrichene Symbole komplexwertige Größen, während nicht unterstrichene Symbole reelle Größen bezeichnen. Die Frequenzen fj werden im Allgemeinen diskrete Frequenzen sein, die jeweils ein Frequenzband repräsentieren. Es ist jedoch prinzipiell auch denkbar kontinuierliche oder quasikontinuierliche Frequenzwerte zu verwenden. Die komplexen Amplituden qPQ,tm(fj) bzw. ptm(fj) für ein bestimmtes Zeitintervall tm sind dann in üblicher Weise für den zeitlichen Verlauf von qPQ (t) bzw. p(t) in diesem Zeitintervall tm charakteristisch (zumindest in einem vorbestimmten, zur Lärmreduktion vorgesehenen Frequenzbereich) und können durch reziproke Rücktransformation in den Zeitbereich wieder in die entsprechenden Zeitsignale überführt werden. Die Gesamtheit der Frequenzen fj bestimmt dabei de zur Lärmreduktion vorgesehenen Frequenzbereich.
  • Die Sekundärschallquelle wird mit einem zeitabhängigen Ansteuersignal in der Weise angesteuert, dass die Abstrahlfläche der Sekundärschallquelle zumindest bei den Frequenzen fj gleich-oder gegenphasig zur Abstrahlfläche der Primärschallquelle schwingt und ihre entsprechende schallerzeugende Bewegung in jedem von unmittelbar aufeinanderfolgenden diskreten Zeitabschnitten Tn, die jeweils eines oder mehrere der diskreten Zeitintervalle tm umfassen, durch einen bestimmten zeitlichen Verlauf qSQ(t) der physikalischen Größe q gekennzeichnet ist. Es ist zu beachten, dass das Ansteuersignal nicht etwa selbst den Verlauf qSQ(t) haben muss und im allgemeinen nicht hat, sondern so ausgestaltet und erzeugt wird, dass die Abstrahlfläche der Sekundärschallquelle gemäß qSQ(t) schwingt. Dabei besteht zwischen den komplexen frequenzabhängigen Amplituden q SQ,tm(fj), die durch eine Transformation von qSQ(t) in den Frequenzbereich mit Hilfe des obigen Transformationsverfahrens erhalten würden, und den komplexen Amplituden q PQ,tm(fj) für die Frequenzen fj in den diskreten Zeitabschnitten Tn jeweils die Beziehung q ̲ SQ , tm f j = k Tn f j q ̲ PQ , Tm f j ,
    Figure imgb0001

    wobei kTn (fj) reelle Verstärkungsfaktoren sind, die in jedem Zeitabschnitt Tn zeitlich konstant sind. Sie können für jede Frequenz fj identisch sein, sind aber bevorzugt für die Frequenzen fj unterschiedlich, um die erzielbaren Ergebnisse zu verbessern. Durch die Bedingung, dass die kTn (fj) reell sind, wird die gleich- oder gegenphasige Schwingung der Sekundärschallquelle gewährleistet, d.h. dass die Schwingungen der Abstrahlflächen von Primär- und Sekundärschallquelle bei jeder Frequenz fj um 0° bzw. um 180° phasenverschoben sind. Dabei entsprechen Verstärkungsfaktoren kTn (fj) > 0 einer gegenphasigen Schwingung und kTn(fj) < 0 einer gegenphasigen Schwingung, und es ist bevorzugt, den Aufbau so zu wählen, dass die letztere Bedingung zutrifft, die insbesondere durch die oben bereits angesprochene bevorzugte relative räumliche Anordnung von Primär- und Sekundärschallquelle in einem gegenseitigen Abstand, der die Hälfte der Wellenlänge - bzw. bei mehreren Wellenlängen die Hälfte der kleinsten Wellenlänge - des auszulöschenden Schalls nicht überschreitet, erfüllt wird. Es ist darauf hinzuweisen, dass es grundsätzlich auch denkbar ist, dass die Verstärkungsfaktoren einiger Frequenzen fj negativ und anderer Frequenzen fj positiv sind.
  • Ferner werden die Verstärkungsfaktoren kTn(fj) für die verschiedenen Zeitabschnitte Tn neu berechnet und eingestellt, wobei bei Vorliegen bestimmter Bedingungen ggf. für eine oder mehrere der Frequenzen fj auf die Neuberechnung verzichtet werden kann. Die Neuberechnung erfolgt jeweils für einen Zeitabschnitt Tn+1 ausgehend von den Verstärkungsfaktoren kTn(fj) in dem unmittelbar vorhergehenden Zeitabschnitt Tn und den komplexen frequenzabhängigen Amplituden q pQ,tm(fj) bzw. p tm(fj) für ein Zeitintervall tm in dem Zeitabschnitt Tn (es ist auch möglich, aber nicht bevorzugt, die Neuberechnung für den Zeitabschnitt Tn+1 ausgehend von einem weiter zurückliegenden Zeitabschnitt Tn-x durchzuführen; in diesem Fall wären im folgenden die entsprechenden Bezugnahmen auf Tn durch Tn-x zu ersetzen). Zur Neuberechnung wird die Aktualisierungsgleichung k Tn + 1 f j = - μ Im q ̲ PQ , tm f j p ̲ tm f j * + k Tn f j
    Figure imgb0002

    verwendet, wobei µ ein reeller Konvergenzfaktor ist und wie im weiteren Verlauf der Anmeldung Im[x] den Imaginärteil einer komplexen Zahl x und x* die zu einer komplexen Zahl x komplex konjugierte Zahl bezeichnet.
  • Es kann gezeigt werden, dass diese Aktualisierungsgleichung bei stationärer Primärschallquelle zu der optimalen globalen Lösung für die Verstärkungsfaktoren kTn(fj) konvergiert, um die gewünschte gleich- oder gegenphasige Ansteuerung der Sekundärschallquelle ohne Wirkleistungsabstrahlung der Sekundärschallquelle zu erreichen. Dabei kann durch Variation des Konvergenzfaktors µ das Konvergenzverhalten angepasst werden, d.h. die Konvergenz in weniger Schritten aber größeren Sprüngen oder in mehr Schritten aber kleineren Sprüngen zu erreichen. Ein geeigneter Wert für den Konvergenzfaktor µ kann beispielsweise bestimmt werden, indem er ausgehend von dem Wert 0, der einer unendlich langsamen Konvergenz entspricht, schrittweise geändert wird, bis eine für den jeweiligen Anwendungsfall erwünschte Konvergenzgeschwindigkeit erreicht wird. Dabei ist p im Allgemeinen negativ. Als Grenze kann in Fällen, in denen die Größe q eine Beschleunigung oder eine Schnelle ist, beispielsweise das Inverse des Imaginärteils der Übertragungszahl zwischen Sekundärbeschleunigung und Sekundärdruck bzw. das Inverse des Realteils der Übertragungsimpedanz zwischen Sekundärschnelle und Sekundärdruck angenommen werden.
  • Die Aktualisierungsgleichung und die entsprechende adaptive Steuerung haben den Vorteil, dass sie neben einem Referenzsignal lediglich die Messung eines einzelnen Schalldrucks erfordern. Daher kann der Hardwareaufwand gering gehalten und insbesondere ein einkanaliges System verwendet werden, das neben einer geeigneten Steuereinrichtung bzw. Steuer- und Regeleinrichtung z.B. lediglich einen Referenzsensor, wie etwa einen Beschleunigungsaufnehmer, ein Mikrofon und einen Lautsprecher aufweist. Sowohl die Sekundärschallquelle als auch die Sensoren können in vorteilhafter Weise in der Nähe des Schalltransmissionspfads der Primärschallquelle angeordnet werden. Die Sekundärschallquelle kann anders aufgebaut sein als die Primärschallquelle, so dass flexibel verschiedene geeignete Lautsprecher verwendet werden können. Ferner ist die Steuerung einfach und gegenüber sich ändernden Umweltbedingungen unempfindlich, d.h. es ist keine erneute Systemkalibrierung notwendig. Das Verfahren ist sowohl in Innenräumen als auch im Freien universell anwendbar, und es hat sich gezeigt, dass insbesondere bei Lärm, der durch konphas schwingende Oberflächen erzeugt wird, eine erhebliche globale Absenkung des Schalldruckpegels erreicht werden kann. So wurde beispielsweise bei Verwendung eines Lautsprechers mit einer Membranfläche von 0,01 m2 als Sekundärschallquelle für eine tonale Schallabstrahlung in einem Raum mit einem Volumen von 400 m3 durch eine 4,8 m2 große Struktur eine durchschnittliche globale Lärmpegelreduktion von 8 dB gemessen. Das Verfahren ist insbesondere für stationären Lärm geeignet, und es ist bevorzugt, dass die Primärschallquelle eine Schallquelle ist, die stationären Lärm erzeugt.
  • In diesem Zusammenhang ist auch darauf hinzuweisen, dass es selbstverständlich möglich ist, mehr als eine Sekundärschallquelle vorzusehen, um verschiedene Bereiche einer die Primärschallquelle darstellenden Struktur oder Konstruktion in der beschriebenen Weise zu berücksichtigen.
  • In einer bevorzugten Ausgestaltung des Verfahrens sind die Zeitintervalle tm, die zur Neuberechnung der Verstärkungsfaktoren kTn+1(fj) herangezogen werden, zeitlich voneinander beabstandet. Auf diese Weise werden Störungen in dem Verfahren vermieden, die dadurch entstehen können, dass die für die Neuberechnung und Neueinstellung der Verstärkungsfaktoren notwendigen Berechnungen und Signalverarbeitungen zu einer zeitlichen Verzögerung führen können und die Neueinstellung sich demzufolge nicht sofort auswirkt.
  • Es ist bevorzugt, dass die Neuberechnung der Verstärkungsfaktoren kTn+1 (fj) nur für Frequenzen fj durchgeführt wird, für die die Bedingung q ̲ PQ , tm f j ε j
    Figure imgb0003

    mit vorbestimmten Schwellenwerten εj gilt, und für die übrigen Frequenzen fj die Verstärkungsfaktoren kTn+1 (fj) auf Null gesetzt werden. Mit anderen Worten muss der Referenzparameter einen bestimmten Schwellenwert überschreiten, damit für die entsprechende Frequenz überhaupt ein neuer Verstärkungsfaktor berechnet wird. Dadurch kann die Ansteuerung der Sekundärschallquelle für wenig Lärm oder ohne vorhandenes Referenzsignal verhindert werden. Es wird nur die Lärmquelle aktiv in der Abstrahlung unterdrückt, bei der das System installiert ist, während Schall anderer Quellen keinen Einfluss auf das Verfahren und sein Ergebnis hat. Außerdem kann durch Wahl von εj der Bereich eingestellt werden, ab dem eine aktive Lärmunterdrückung ökonomisch sinnvoll ist. εj kann für die unterschiedlichen Frequenzen fj unterschiedlich gewählt werden oder als Konstante über alle Frequenzen vorgegeben werden.
  • Es ist ferner bevorzugt, dass nach jeder Neuberechnung eines Verstärkungsfaktors kTn+1 (fj) dessen Betrag begrenzt wird, indem geprüft wird, ob er einen vorbestimmten Maximalwert kmax(fj) für den Betrag überschreitet, und kTn+1(fj) bei Überschreitung in Abhängigkeit davon, ob kTn+1(fj) negativ oder positiv ist, auf -kmax(fj) bzw. +kmax(fj) gesetzt wird. Dieser Grenzwert kann beispielsweise durch k max f j = A max , fj / q ̲ PQ , tm f j
    Figure imgb0004

    vorgegeben werden, wobei Amax,fj die maximal zulässige Amplitude der Sekundäransteuerung bei der Frequenz fj ist. kmax(fj) wird in diesem Fall automatisch an die Amplitude des zur Verfügung stehenden Referenzsignals angepasst. Durch Vorgabe von Schwellenwerten kann eine Überlastung der Sekundärschallquelle verhindert werden.
  • In einer bevorzugten Verfahrensausgestaltung wird die Transformation von qPQ(t) und p(t) in den Frequenzbereich zur Bestimmung der komplexen frequenzabhängigen Amplituden qPQ,tm(fj) und ptm(fj) mittels diskreter Fouriertransformation durchgeführt. Zu diesem Zweck müssen qPQ (t) und p(t) in geeigneter Weise zeitdiskretisiert werden. Dieses Transformationsverfahren ist schnell, zuverlässig und kostengünstig zu verwirklichen.
  • In einer vorteilhaften Ausführungsform weist die Erzeugung des zeitabhängigen Ansteuersignals für die Sekundärschallquelle die Schritte auf, für jedes der Zeitintervalle tm aus den komplexen frequenzabhängigen Amplituden qPQ,tm(fj) und den entsprechenden Verstärkungsfaktoren kTn (fj) für den Zeitabschnitt Tn für die Frequenzen fj komplexe frequenzabhängige Amplituden qSQ,tm (fj) gemäß q ̲ SQ , tm f j = k Tn f j q ̲ PQ , tm f j
    Figure imgb0005

    zu berechnen und auf Basis der komplexen frequenzabhängigen Amplituden q SQ,tm(fj) mit Hilfe einer entsprechenden komplementären Rücktransformation in den Zeitbereich den zeitabhängigen Ansteuerparameter qSQ(t) zu erhalten, der die zu erzielende schallerzeugende Bewegung der Abstrahlfläche der Sekundärschallquelle kennzeichnet. Wird zur Transformation in den Frequenzbereich in bevorzugter Weise eine diskrete Fouriertransformation verwendet, wird die Rücktransformation in dieser Ausführungsform auf Basis der komplexen frequenzabhängigen Amplituden q SQ,tm(fj) in den Zeitbereich zur Bestimmung des zeitabhängigen Ansteuerparameters qSQ(t) mittels inverser diskreter Fouriertransformation durchgeführt.
  • In dieser Ausführungsform werden ferner bevorzugt nach jeder Berechnung der komplexen frequenzabhängigen Amplituden q SQ,tm(fj)gemäß q SQ,tm(fj) = kTn(fj) q PQ,tm(fj) für ein Zeitintervall tm die komplexen frequenzabhängigen Amplituden q SQ,tm(fj) gemäß ̲ SQ , tm f j = G - 1 ̲ f j q ̲ SQ , tm f j
    Figure imgb0006

    angepasst und die angepassten komplexen frequenzabhängigen Amplituden q'SQ,tm (fj) für die Rücktransformation in den Zeitbereich zur Bestimmung des zeitabhängigen Ansteuerparameters qSQ(t) verwendet. Dabei ist G -1(fj) ein vorbestimmter komplexer Zeitverzögerungskorrekturparameter, mit dessen Hilfe Phasenverschiebungen berücksichtigt werden können, die durch Signalverarbeitungsschritte und elektroakustische Umwandlungen verursacht werden können. Derartige Zeitverzögerungen und die damit unter Umständen verbundenen zusätzlichen Phasenverschiebungen können ansonsten dazu führen, dass die Abstrahlflächen von Primär- und Sekundärschallquelle bei der genannten Vorgehensweise nicht wie gewünscht gleich- oder gegenphasig schwingen. Der Zeitverzögerungskorrekturparameter kann im Verlaufe einer anfänglichen Systemkalibrierung bestimmt werden und ist ansonsten unabhängig von sich ändernden Umgebungsbedingungen.
  • Es ist vorteilhaft, wenn die Bestimmung der komplexen frequenzabhängigen Amplituden p tm(fj) für jedes Zeitintervall tm jeweils den Schritt aufweist, aus der Transformation in den Frequenzbereich erhaltene komplexe frequenzabhängige Amplituden p'tm(fj) gemäß p ̲ tm f j = e - i φ fj ̲ tm f j
    Figure imgb0007

    anzupassen. Der Sensorphasenkorrekturparameter (ϕ(fj) berücksichtigt, dass sich durch eine unterschiedliche Bauart des Referenzsensors und das Schalldrucksensors unterschiedliche Phasengänge und demzufolge eine Phasenverschiebung zwischen qPQ(t) und p(t) bzw. den entsprechenden frequenzabhängigen komplexen Amplituden ergeben kann, die - wie sich aus der Aktualisierungsgleichung unmittelbar ergibt - in nachteiliger Weise die Berechnung der optimalen Verstärkungsfaktoren unmittelbar beeinflusst. Der Sensorphasenkorrekturparameter (ϕ(fj) kann im Verlaufe einer anfänglichen Systemkalibrierung durch Bestimmung der tatsächlichen Phasenlage der durch die Sensoren gemessenen physikalischen Größen bestimmt werden und ist ansonsten unabhängig von sich ändernden Umgebungsbedingungen.
  • Das beschriebene Verfahren und seine vorteilhaften Ausgestaltungen können bevorzugt mit Hilfe eines aktiven Lärmreduktionssystems durchgeführt werden, das im folgenden beschrieben wird. Zur Vermeidung von Wiederholungen wird auf Einzelheiten des Verfahrens, die sich auf den Betrieb des Systems beziehen, nicht mehr detailliert eingegangen.
  • Das System weist einen Referenzsensor, bevorzugt einen Beschleunigungssensor oder einen Schnellesensor für die schallabstrahlende Fläche einer Schallquelle, zur zeitabhängigen Messung einer physikalischen Größe q auf, die - zumindest in einem vorbestimmten, zur Lärmreduktion vorgesehenen Frequenzbereich - die schallerzeugende Bewegung der Abstrahlfläche der Primärschallquelle kennzeichnet. Dabei ist der Referenzsensor angepasst, um im Betrieb einen entsprechenden zeitabhängigen Referenzparameter qPQ(t), der die Phaseninformation der Primärschallquelle beinhaltet, in Form eines entsprechenden Referenzsignals bereitzustellen. Der Referenzsensor kann beispielsweise an der Primärschallquelle angeordnet oder zu einer solchen Anordnung vorgesehen sein.
  • Ferner weist das System eine Sekundärschallquelle, z.B. in Form eines Lautsprechers, mit einer zur Schallabstrahlung geeigneten Abstrahlfläche und einen Schalldrucksensor, der bevorzugt ein Mikrofon ist, zur zeitabhängigen Messung des Schalldrucks p(t) - zumindest in einem vorbestimmten, zur Lärmreduktion vorgesehenen Frequenzbereich - auf, der in unmittelbarer Nähe der Abstrahlfläche der Sekundärschallquelle angeordnet ist oder für eine solche Anordnung angepasst ist. Dabei ist der Schalldrucksensor angepasst, um im Betrieb ein entsprechendes Schalldrucksignal bereitzustellen. Wie oben bereits erläutert wurde, ist es bevorzugt, dass der Abstand zwischen dem Schalldrucksensor und der Abstrahlfläche im Betrieb den Wert von einem Zehntel der Wellenlänge - bzw. bei mehreren Wellenlängen einem Zehntel der kleinsten Wellenlänge - des auszulöschenden Schalls nicht überschreitet. Oben wurde auch bereits angegeben, dass es von Vorteil ist, wenn die Schallquellen im Betrieb in räumlicher Nähe zueinander angeordnet sind, bevorzugt in einem gegenseitigen Abstand, der die Hälfte der Wellenlänge - bzw. bei mehreren Wellenlängen die Hälfte der kleinsten Wellenlänge - des auszulöschenden Schalls nicht überschreitet
  • Schließlich weist das System eine Steuereinrichtung bzw. Steuer- und Regeleinrichtung und bevorzugt eine digitale Steuereinrichtung bzw. Steuer- und Regeleinrichtung, die z.B. einen geeignet programmierten Prozessor aufweist, mit Eingängen zum Empfang des Referenzsignals und des Schalldrucksignals und einem Ausgang zur Ausgabe eines zeitabhängigen Ansteuersignals für die Sekundärschallquelle auf. Die Steuereinrichtung ist angepasst, um im Betrieb in der bereits erläuterten Weise
    • qPQ(t) und p(t) in den Frequenzbereich zu transformieren, so dass für jedes von diskreten Zeitintervallen tm jeweils eine Anzahl von komplexen frequenzabhängigen Amplituden q PQ,tm(fj) bzw. p tm(fj) für eine Anzahl und bevorzugt eine Vielzahl von Frequenzen fj erhalten werden,
    • das zeitabhängige Ansteuersignal in der Weise zu erzeugen, dass die Abstrahlfläche der mit dem Ansteuersignal angesteuerten Sekundärschallquelle zumindest bei den Frequenzen fj gleich- oder gegenphasig zur Abstrahlfläche der Primärschallquelle schwingt und ihre entsprechende schallerzeugende Bewegung in jedem von aufeinanderfolgenden diskreten Zeitabschnitten Tn, die jeweils eines oder mehrere der diskreten Zeitintervalle tm umfassen, durch einen zeitlichen Verlauf qSQ(t) der physikalischen Größe q gekennzeichnet ist, bei dem zwischen den einer Transformation von qSQ(t) in den Frequenzbereich entsprechenden komplexen frequenzabhängigen Amplituden q SQ,tm(fj) und den komplexen Amplituden qpQ,tm(fj) für die Frequenzen fj in den diskreten Zeitabschnitten Tn jeweils die Beziehung q ̲ SQ , tm f j = k Tn f j q ̲ PQ , tm f j
      Figure imgb0008

      mit den in jedem Zeitabschnitt Tn zeitlich konstanten reellen Verstärkungsfaktoren kTn(fj) besteht, auf die oben bereits ausführlich eingegangen worden ist, und
    • jeweils ausgehend von den Verstärkungsfaktoren kTn(fj) in einem Zeitabschnitt Tn und den komplexen frequenzabhängigen Amplituden q PQ,t(fj) bzw. p tm(fj) für ein Zeitintervall tm in dem Zeitabschnitt Tn die Verstärkungsfaktoren kTn+1(fj) für den nächsten Zeitabschnitt Tn+1 für zumindest eine der Frequenzen fj durch die Aktualisierungsgleichung k Tn + 1 f j = - μ Im q ̲ PQ , tm f j p ̲ tm f j * + k Tn f j
      Figure imgb0009

      neu zu berechnen und einzustellen, wobei µ ein reeller Konvergenzfaktor ist und Im[x] den Imaginärteil einer komplexen Zahl x und x* die zu einer komplexen Zahl x komplex konjugierte Zahl bezeichnet.
  • Zu diesem Zweck weist die Steuereinrichtung bevorzugt jeweils eine oder mehrere für die genannten Schritte eingerichtete Einrichtungen auf.
  • In diesem Zusammenhang ist wieder darauf hinzuweisen, dass es selbstverständlich möglich ist, mehr als eine Sekundärschallquelle vorzusehen, um verschiedene Bereiche einer die Primärschallquelle darstellenden Struktur oder Konstruktion in der beschriebenen Weise berücksichtigen zu können.
  • Das System ist insbesondere für stationären Lärm geeignet, und es ist bevorzugt, dass die Primärschallquelle eine Schallquelle ist, die stationären Lärm erzeugt.
  • In einer bevorzugten Ausführungsform ist die Steuereinrichtung so eingerichtet, dass die Zeitintervalle tm, die zur Neuberechnung der Verstärkungsfaktoren kTn+1 (fj) herangezogen werden, zeitlich voneinander beabstandet sind.
  • In einer bevorzugten Ausführungsform ist die Steuereinrichtung so eingerichtet, dass die Neuberechnung der Verstärkungsfaktoren kTn+1(fj) nur für Frequenzen fj durchgeführt wird, für die q ̲ PQ , tm f j ε j
    Figure imgb0010

    mit vorbestimmten Schwellenwerten εj gilt, und für die übrigen Frequenzen fj die Verstärkungsfaktoren kTn+1 (fj) auf Null gesetzt werden.
  • In einer bevorzugten Ausführungsform ist die Steuereinrichtung angepasst, um nach jeder Neuberechnung eines Verstärkungsfaktors kTn+1 (fj) dessen Betrag zu begrenzen, indem sie prüft, ob dieser Betrag einen vorbestimmten Maximalwert kmax(fj) für den Betrag überschreitet, und kTn+1 (fj) bei Überschreitung in Abhängigkeit davon, ob kTn+1 (fj) negativ oder positiv ist, auf - kmax (fj) bzw. + kmax (fj) setzt. Eine Möglichkeit zur Festsetzung dieser Grenzwerte ist oben erläutert worden.
  • In einer bevorzugten Ausführungsform ist die Steuereinrichtung angepasst, um zur Erzeugung des zeitabhängigen Ansteuersignals für die Sekundärschallquelle für jedes der Zeitintervalle tm aus den komplexen frequenzabhängigen Amplituden q PQ,tm(fj) und den entsprechenden Verstärkungsfaktoren kTn (fj) für den Zeitabschnitt Tn für die Frequenzen fj komplexe frequenzabhängige Amplituden q SQ,tm(fj) gemäß q ̲ SQ , tm f j = k Tn f j q ̲ PQ , tm f j
    Figure imgb0011

    zu berechnen und auf Basis der komplexen frequenzabhängigen Amplituden q SQ,tm(fj) mit Hilfe einer Rücktransformation in den Zeitbereich den zeitabhängigen Ansteuerparameter qSQ(t) zu erhalten, der die zu erzielende schallerzeugende Bewegung der Abstrahlfläche der Sekundärschallquelle kennzeichnet. In diesem Fall ist es bevorzugt, wenn die Steuereinrichtung ferner angepasst ist, um die Transformation von qPQ(t) und p(t) in den Frequenzbereich zur Bestimmung der komplexen frequenzabhängigen Amplituden q PQ,tm (fj) und p tm(fj) mit Hilfe diskreter Fouriertransformation durchzuführen. Insbesondere ist es dann auch zusätzlich bevorzugt, wenn die Steuereinrichtung angepasst ist, um die Rücktransformation auf Basis der komplexen frequenzabhängigen Amplituden q SQ,tm(fj) in den Zeitbereich zur Bestimmung des zeitabhängigen Ansteuerparameters qSQ(t) mit Hilfe inverser diskreter Fouriertransformation durchzuführen.
  • In dieser Ausführungsform ist es auch von Vorteil, wenn die Steuereinrichtung angepasst ist, um nach jeder Berechnung der komplexen frequenzabhängigen Amplituden qSQ,tm (fj) gemäß q SQ,tm (fj) = kTn(fj) q PQ,tm(fj) für ein Zeitintervall tm die komplexen frequenzabhängigen Amplituden qSQ,tm(fj) gemäß ̲ SQ , tm f j = G - 1 ̲ f j q ̲ SQ , tm f j
    Figure imgb0012

    anzupassen und die angepassten komplexen frequenzabhängigen Amplituden q'SQ,tm(fj) für die Rücktransformation in den Zeitbereich zur Bestimmung des zeitabhängigen Ansteuerparameters qSQ(t) zu verwenden, wobei G -1 (fj) vorbestimmte komplexe Zeitverzögerungskorrekturparameter zur Berücksichtigung von durch Signalverarbeitung und elektroakustische Umwandlungen verursachte Phasenverschiebungen sind.
  • In einer bevorzugten Ausführungsform ist die Steuereinrichtung angepasst, um zur Bestimmung der komplexen frequenzabhängigen Amplituden p tm(fj) für jedes Zeitintervall tm jeweils aus der Transformation in den Frequenzbereich erhaltene komplexe frequenzabhängige Amplituden p'tm(fj) gemäß p ̲ tm f j = e - i φ fj ̲ tm f j
    Figure imgb0013

    mit einem Sensorphasenkorrekturparameter ϕ(fj) anzupassen.
  • Die Steuereinrichtung kann beispielsweise eine hardwaremäßig fest implementierte Vorrichtung mit verschiedenen Elementen zur Durchführung der verschiedenen genannten Schritte, eine programmtechnisch zu diesem Zweck angepasste und eingerichtete Vorrichtung, die einen programmierbaren Prozessor und ggf. eine Speichereinrichtung aufweist, oder eine Mischform sei, die einen programmierbaren Prozessor aufweist, aber bei der einzelne Schritte durch hardwaremäßig fest implementierte Elemente durchgeführt werden.
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen auf Grundlage der Zeichnungen weiter erläutert.
  • Figur 1
    zeigt schematisch den prinzipiellen Aufbau eines erfindungsgemäßen aktiven Lärmreduktionssystems.
    Figur 2
    zeigt ein Flussdiagramm einer bevorzugten Vorgehensweise zur Neuberechnung eines Verstärkungsfaktors kTn+1(fj) für eine Frequenz fj mit Hilfe der Aktualisierungsgleichung durch die Steuereinrichtung.
    Figur 3
    zeigt schematisch eine bevorzugte Anordnung zur Bestimmung eines Zeitverzögerungskorrekturparameters G -1(fj).
    Figur 4
    zeigt schematisch eine bevorzugte Anordnung zur Bestimmung eines Sensorphasenkorrekturparameters ϕ(fj).
    Figur 5
    zeigt schematisch ein Blockschaltbild eines bevorzugten Gesamtsystems.
  • In Figur 1 bezeichnet das Bezugszeichen 1 eine Primärschallquelle in Form einer schwingenden Fläche, die die Abstrahlfläche der Schallquelle bildet. An der Oberfläche der Primärschallquelle 1 ist ein als Referenzsensor dienender Beschleunigungsaufnehmer 2 befestigt, mit dem die Beschleunigung q der Abstrahlfläche zeitabhängig als Referenzparameter qPQ(t) gemessen und in Form eines entsprechenden Referenzsignals über eine Referenzsignalleitung 3 einem Referenzsignaleingang 4 einer digitalen Steuer- bzw. Regeleinrichtung 5 zugeleitet wird. Ferner ist ein Lautsprecher 6 vorgesehen, vor dessen Abstrahlfläche, d.h. seiner Lautsprechermembran, in unmittelbarer Nähe auf der Strahlermittelachse ein Schalldrucksensor in Form eines Mikrofons 7 angeordnet ist, mit dem der zeitabhängige Schalldruck p(t) an dem Lautsprecher 6 gemessen und in Form eines entsprechenden Schalldrucksignals über eine Schalldrucksignalleitung 8 einem Schalldrucksignaleingang 9 der digitalen Steuer- bzw. Regeleinrichtung 5 zugeleitet wird.
  • Die Steuereinrichtung 5 erzeugt auf Basis des Referenzsignals und des Schalldrucksignals ein zeitabhängiges Ansteuersignal, das an einem Ansteuersignalausgang 10 ausgegeben und mit dem der Lautsprecher 6 über eine Ansteuersignalleitung 11 angesteuert wird. Dabei erzeugt die Steuereinrichtung 5 das Ansteuersignal derart, dass die von dem durch die Primärschallquelle 1 und dem Lautsprecher 6 gebildeten Quellenpaar abgestrahlte Gesamtwirkleistung in der oben beschriebenen Weise minimiert wird. Es wird deutlich, dass das System mit Ausnahme der Ausgestaltung der Steuereinrichtung 5 in seinem grundsätzlichen konstruktiven Aufbau einem einfachen System mit schalldruckbasierter Steuerung unter Verwendung eines einzelnen Mikrofons ähnelt und dementsprechend in vorteilhafter Weise einfach ausgebildet und zu installieren ist.
  • In Figur 2 ist ein Flussdiagramm einer in vorteilhaften Weise in der Steuereinrichtung 5 zu implementierenden Vorgehensweise zur Neuberechnung eines Verstärkungsfaktors kTn+1 (fj) für eine Frequenz fj mit Hilfe der Aktualisierungsgleichung dargestellt. In Schritt 20 werden einmalig vor dem ersten Neuberechnungsschritt verschiedene Parameter initialisiert, deren Bedeutung oben angegeben worden ist oder im Folgenden noch genauer erläutert wird.
  • In Schritt 21 werden die beiden von der Steuereinrichtung 5 mit Hilfe diskreter Fouriertransformation (vgl. Figuren 3 und 5) aus qPQ (t) und p(t) für die Frequenz fj bestimmten komplexen Amplituden q PQ,tm,Δtz(fj) bzw. p tm,Δtz(fj) in den Verfahrensablauf eingegeben. q PQ,tm,Δtz (fj) bzw. p tm,Δtz (fj) bezeichnen dabei komplexe Amplituden, die aus den Signalen qPQ(t) bzw. p(t) in einem durch den Parameter z bezeichneten Teilintervall Δtz des durch den Parameter m bezeichneten Zeitintervalls tm bestimmt worden sind, wobei jedes Zeitintervall tm durch zmax unmittelbar aufeinanderfolgende Teilintervalle Δtz gebildet wird. In Schritt 22 werden q PQ,tm,Δtz (fj) bzw. p tm,Δtz (fj) dann zu den komplexen Amplituden q PQ,tm(fj) bzw. p tm(fj) addiert, die in Schritt 20 zunächst auf Null gesetzt wurden. Anschließend wird geprüft, ob z gleich dem Maximalwert zmax ist (Schritt 23) und, wenn dies nicht der Fall ist, z um 1 erhöht (Schritt 24) und zu Schritt 21 zurückgesprungen. Dort werden die mit Hilfe diskreter Fouriertransformation für das nächste, durch den neuen Wert von z bezeichnete Teilintervall Δtz bestimmten komplexen Amplituden q PQ,tm,Δtz (fj) bzw. ptm,Δtz (fj) in den Verfahrensablauf eingegeben und anschließend in Schritt 22 zu den komplexen Amplituden q PQ,tm(fj) bzw. p tm(fj) addiert. Da diese Schleife erst verlassen wird, wenn die Überprüfung in Schritt 23 ergibt, dass der Wert z gleich zmax ist, ist ersichtlich, dass in Schritt 22 insgesamt die entsprechenden Summen für alle zmax Teilintervalle Δtz gebildet werden.
  • Danach werden diese Summen q PQ,tm(fj) bzw. p tm(fj) in Schritt 26 durch zmax dividiert, so dass q PQ,tm (fj) und p tm(fj) anschließend über das Zeitintervall tm gemittelte Werte für die komplexen Amplituden enthalten. Durch diese Mittelwertbildung wird vermieden, dass die für die Neuberechnung der Verstärkungsfaktoren verwendeten komplexen Amplituden q PQ,tm (fj) und p tm(fj) durch Messfehler oder Artefakte der diskreten Fouriertransformation verfälscht werden.
  • In Schritt 27 wird geprüft, ob der Betrag der komplexen Amplitude q PQ,tm(fj) mindestens gleich einem Schwellenwert εj ist, und nur bejahendenfalls wird in Schritt 30 der Verstärkungsparameter kTn+1 (fj) für den nachfolgenden Zeitabschnitt Tn+1 gegenüber dem Wert kTn (fj) für den Zeitabschnitt Tn neu berechnet. Anderenfalls wird der Verstärkungsparameter kTn+1 (fj) für den nachfolgenden Zeitabschnitt Tn+1 auf den Wert Null gesetzt (Schritt 29). Soll eine Neuberechnung durchgeführt werden, wird dies in Schritt 30 unter Verwendung der oben diskutierten Aktualisierungsgleichung kTn+1 (fj) = -µ Im[q PQ,tm(fj) p tm(fj)*] + kTn (fj) getan.
  • Als nächstes wird in Schritt 31 geprüft, ob der Betrag des Verstärkungsfaktors kTn+1 (fj) für den nachfolgenden Zeitabschnitt Tn+1 einen vorbestimmten positiven Maximalwert kmax(fj) überschreitet und ggf. kTn+1(fj) unter Erhalt des Vorzeichens betragsmäßig auf diesen begrenzt (Schritt 32).
  • In Schritt 33 wird der Verstärkungsfaktor kTn+1 (fj) für den nachfolgenden Zeitabschnitt Tn+1 schließlich zur Verwendung durch die Steuereinrichtung 5 bei der Erzeugung des Ansteuersignals für den Lautsprecher 6 ausgegeben.
  • Schritt 34 sorgt dafür, dass für einen gewissen Zeitraum tPause keine weitere Aktualisierung durchgeführt wird, um - wie oben beschrieben - sicherzustellen, dass sich der neue Wert des Verstärkungsfaktors vor der nächsten Aktualisierungsberechnung auf die Schallabstrahlung durch den Lautsprecher 6 ausgewirkt hat. Schließlich werden in Schritt 35 die Parameter n, z, q PQ,tm (fj) und p tm(fj) für den nächsten Durchlauf reinitialisiert.
  • Figur 3 zeigt schematisch eine bevorzugte Anordnung zur Bestimmung eines Zeitverzögerungskorrekturparameters G -1 (fj) für eine oder mehrere der Frequenzen fj und bevorzugt für jede Frequenz fj und zeigt gleichzeitig auch die wesentlichen Elemente der Steuereinrichtung 5 zur Erzeugung des Ansteuersignals für den Lautsprecher 6 aus dem Referenzsignal. Diese Elemente umfassen ein Eingangselement 40, ein Multiplikationselement 41 zur Anwendung des Verstärkungsfaktors kTn(fj) und ein Ausgangselement 42. Das Eingangselement 40 weist den Referenzsignaleingang 4 auf, und das Ausgangselement 42 weist den Ansteuersignalausgang 10 auf. Ferner weist das Eingangselement 40 einen Ausgang 43 zur Ausgabe der komplexen Amplitude q PQ,tm(fj) auf, die über das Multiplikationselement 41, in dem sie zur Erzeugung der komplexen Amplitude q SQ,tm(fj) mit dem Verstärkungsfaktor kTn(fj) multipliziert wird, einem Eingang 44 des Ausgangselements 42 zugeleitet wird.
  • Durch diese Anordnung wird das Ansteuersignal im Prinzip (unter Vernachlässigung später diskutierter Phasenkorrekturmaßnahmen) erzeugt, indem das Referenzsignal zunächst in dem Eingangselement 40 nacheinander einen Vorverstärker 45, einen Hochpassfilter 46, einen Analog-Digital-Wandler 47 und ein Element 48 zur diskreten Fouriertransformation (DFT) durchläuft, wodurch am Ausgang 43 die komplexe Amplitude q PQ,tm(fj) erhalten wird. Die dem Eingang 44 zugeleitete komplexe Amplitude q SQ,tm(fj) durchläuft dann im Ausgangselement 42 nacheinander ein Element 49 zur inversen diskreten Fouriertransformation (IDFT), einen Digital-Analog-Wandler 50, einen Tiefpassfilter 51 und einen Verstärker 52, wodurch am Ausgang 10 das Ansteuersignal erhalten wird. Es ist noch einmal darauf hinzuweisen, dass das Ansteuersignal nicht etwa selbst den Verlauf qSQ(t) haben muss und im allgemeinen nicht hat, sondern durch geeignete Ausgestaltung des Digital-Analog-Wandlers 50, des Tiefpassfilters 51, des Verstärkers 52 und bei Bedarf ggf. weiterer Elemente so ausgestaltet und erzeugt wird, dass die Abstrahlfläche des Lautsprechers 6 gemäß qSQ(t) schwingt.
  • Um nun den Zeitverzögerungskorrekturparameter G-1 (fj) für die Frequenz fj zu bestimmen, der die Signallaufzeiten innerhalb der gezeigten Elemente berücksichtigt, wird als Primärschallquelle ein Lautsprecher 1' eingesetzt, der baugleich mit dem Sekundärlautsprecher 6 ist und mit Hilfe eines Signalgenerators 53 sinusförmig mit der Frequenz fj angeregt wird. An der Abstrahlfläche des Sekundärlautsprechers 6 ist ein dem Sensor 2 entsprechender Beschleunigungsaufnehmer 54 angeordnet, dessen Signal über einen weiteren Eingang 55 des Eingangselements 40 in gleicher Weise wie das Referenzsignal nacheinander dessen Vorverstärker 45, Hochpassfilter 46, Analog-Digital-Wandler 47 und das Element 48 zur diskreten Fouriertransformation (DFT) durchläuft, wodurch an einem weiteren Ausgang 56 eine komplexe Vergleichsamplitude q SQ,tm,vgl. (fj) erhalten wird.
  • Es ist ersichtlich, dass dann, wenn das Multiplikationselement 41 vorübergehend auf eine Multiplikation mit 1 eingestellt wird, die durch die Beschleunigungsaufnehmer 2 und 54 gemessenen zeitabhängigen Beschleunigungen qPQ(t) bzw. qSQ(t) identisch sein sollten. Das bedeutet auch, dass die komplexe Amplitude q PQ,tm(fj) und die komplexe Vergleichsamplitude q SQ,tm,vgl. (fj) an den Ausgängen 43 bzw. 56 identisch sein sollten. Durch die Signallaufzeiten und das Transmissionsverhalten des Lautsprechers 6 wird dies jedoch nicht der Fall sein. Daher wird mit Hilfe eines Divisionselements 57 der Zeitverzögerungskorrekturparameter G -1(fj) für eine, mehrere oder jede der Frequenzen fj gemäß q PQ,tm(fj) - G -1 (f j ) qSQ,tm,Vgl. (fj) bestimmt und zur weiteren Verwendung in einer Speicherstelle 58 gespeichert.
  • Figur 4 zeigt eine bevorzugte Anordnung zur Bestimmung eines Sensorphasenkorrekturparameters ϕ(fj) für die Frequenz fj, mit dem Phasenfehler aufgrund des bauartbedingten unterschiedlichen Phasengangs des Beschleunigungsaufnehmers 2 und des Mikrofons 7 berücksichtigt werden. Die Anordnung entspricht weitgehend der in Figur 3 gezeigten Anordnung. Zusätzlich enthält sie ein dem Multiplikationselement 41 nachgeschaltetes weiteres Multiplikationselement 59 zur Multiplikation mit dem Zeitverzögerungskorrekturparameter G -1(fj), d.h. zur Durchführung der Zeitverzögerungskorrektur, die auch als Vorentzerrung für das Referenzsignal bezeichnet werden kann. Da in diesem Fall das Multiplikationselement 41 vorübergehend auf eine Multiplikation mit -1 eingestellt ist, schwingen infolge dieser Korrektur die Abstrahlflächen der Lautsprecher 1' und 6 gegenphasig und sie strahlen beide keine Wirkschallleistung ab. Ist ihr gegenseitiger Abstand gering, sind die Beschleunigung am Primärlautsprecher 1' und der Schalldruck am Ort des Mikrofons 7 annähernd gleichphasig.
  • Daher kann mit Hilfe eines durch ein Divisionselement 60 und ein Phasenwinkelelement 61 durchgeführten Vergleichs der Phasenverschiebung zwischen den tatsächlich durch den Beschleunigungsaufnehmer 2 und das Mikrofon 7 gemessenen Werten qPQ(t) und p(t) ein Sensorphasenkorrekturparameter ϕ(fj) bestimmt und in einer Speicherstelle 62 zur weiteren Verwendung gespeichert werden.
  • Nach den in den Figuren 3 und 4 dargestellten Systemkalibrierungsmaßnahmen ist das System zum regulären Betrieb bereit. Es ist noch einmal vollständig in der Figur 5 dargestellt, in der im Unterschied zur Figur 4 zusätzlich zu den Multiplikationselementen 41 und 59 ein weiteres Multiplikationselement 63 zur Multiplikation der an einem Druckamplitudenausgang 64 des Eingangselements 40 anliegenden komplexen Druckamplitude p'tm(fj) mit e-i ϕ (fj) zum Erhalten der komplexen Druckamplitude ptm(fj) vorgesehen ist. Ferner ist das Aktualisierungselement 65 gezeigt, durch das die Schritte gemäß Figur 2 durchgeführt werden und das Multiplikationselement 41 ggf. über die Leitung 66 auf den aktuellen Wert für den Verstärkungsfaktor eingestellt wird.

Claims (15)

  1. Verfahren zur aktiven Lärmreduktion des von einer schwingenden Abstrahlfläche einer Primärschallquelle (1) erzeugten Schallfeldes, bei dem
    für die Primärschallquelle (1) mit einem Referenzsensor (2) zeitabhängig eine physikalische Größe q gemessen wird, die die schallerzeugende Bewegung der Abstrahlfläche der Primärschallquelle (1) kennzeichnet, um einen entsprechenden zeitabhängigen Referenzparameter qPQ(t) zu erhalten, der die Phaseninformation der Primärschallquelle (1) beinhaltet,
    für eine Sekundärschallquelle (6) mit einem in unmittelbarer Nähe einer Abstrahlfläche der Sekundärschallquelle (6) angeordneten Schalldrucksensor (7) zeitabhängig der Schalldruck p(t) gemessen wird,
    qPQ(t) und p(t) in den Frequenzbereich transformiert werden, so dass für jedes von diskreten Zeitintervallen tm jeweils eine Anzahl von komplexen frequenzabhängigen Amplituden q PQ,tm(fj) bzw. p tm(fj) für eine Anzahl von Frequenzen fj erhalten werden,
    die Sekundärschallquelle (6) mit einem zeitabhängigen Ansteuersignal in der Weise angesteuert wird, dass die Abstrahlfläche der Sekundärschallquelle (6) gleich- oder gegenphasig zur Abstrahlfläche der Primärschallquelle (1) schwingt und ihre schallerzeugende Bewegung in jedem von aufeinanderfolgenden diskreten Zeitabschnitten Tn, die jeweils eines oder mehrere der diskreten Zeitintervalle tm umfassen, durch einen zeitlichen Verlauf qSQ(t) der physikalischen Größe q gekennzeichnet ist, bei dem zwischen den einer Transformation von qSQ(t) in den Frequenzbereich entsprechenden komplexen frequenzabhängigen Amplituden q SQ,tm(fj) und den komplexen Amplituden q PQ,tm(fj) für die Frequenzen fj in den diskreten Zeitabschnitten Tn jeweils die Beziehung q ̲ SQ , tm f j = k Tn f j q ̲ PQ , tm f j
    Figure imgb0014

    mit den in jedem Zeitabschnitt Tn zeitlich konstanten reellen Verstärkungsfaktoren kTn(fj) besteht,
    wobei jeweils ausgehend von den Verstärkungsfaktoren kTn (fj) in einem Zeitabschnitt Tn und den komplexen frequenzabhängigen Amplituden q PQ,tm(fj) bzw. p tm(fj) für ein Zeitintervall tm in dem Zeitabschnitt Tn die Verstärkungsfaktoren kTn+1 (fj) für den nächsten Zeitabschnitt Tn+1 für zumindest eine der Frequenzen fj durch die Aktualisierungsgleichung k Tn + 1 f j = - μ Im q ̲ PQ , tm f j p ̲ tm f j * + k Tn f j
    Figure imgb0015

    neu berechnet und eingestellt werden, wobei µ ein reeller Konvergenzfaktor ist und Im[x] den Imaginärteil einer komplexen Zahl x und x* die zu einer komplexen Zahl x komplex konjugierte Zahl bezeichnet.
  2. Verfahren nach Anspruch 1, bei dem die physikalische Größe q eine Beschleunigung oder eine Schnelle der oder an der schallabstrahlenden Fläche einer Schallquelle ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Neuberechnung der Verstärkungsfaktoren kTn+1 (fj) nur für Frequenzen fj durchgeführt wird, für die q ̲ PQ , tm f j ε j
    Figure imgb0016

    mit vorbestimmten Schwellenwerten εj gilt, und für die übrigen Frequenzen fj die Verstärkungsfaktoren kTn+1 (fj) auf Null gesetzt werden.
  4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem nach jeder Neuberechnung eines Verstärkungsfaktors kTn+1(fj) dessen Betrag begrenzt wird, indem geprüft wird, ob dieser einen vorbestimmten Maximalwert kmax(fj) für den Betrag überschreitet, und kTn+1(fj) bei Überschreitung in Abhängigkeit davon, ob kTn+1(fj) negativ oder positiv ist, auf - kmax (fj) bzw. + kmax (fj) gesetzt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Erzeugung des zeitabhängigen Ansteuersignals für die Sekundärschallquelle (6) die Schritte aufweist,
    für jedes der Zeitintervalle tm aus den komplexen frequenzabhängigen Amplituden q PQ,tm(fj) und den entsprechenden Verstärkungsfaktoren kTn (fj) für den Zeitabschnitt Tn für die Frequenzen fj komplexe frequenzabhängige Amplituden q SQ, tm(fj) gemäß q ̲ SQ , tm f j = k Tn f j q ̲ PQ , tm f j
    Figure imgb0017

    zu berechnen und
    auf Basis der komplexen frequenzabhängigen Amplituden q SQ,tm (fj) mit Hilfe einer Rücktransformation in den Zeitbereich den zeitabhängigen Ansteuerparameter qSQ(t) zu erhalten, der die zu erzielende schallerzeugende Bewegung der Abstrahlfläche der Sekundärschallquelle (6) kennzeichnet.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Transformation von q PQ(t) und p(t) in den Frequenzbereich zur Bestimmung der komplexen frequenzabhängigen Amplituden q PQ,tm (fj) und ptm(fj) mittels diskreter Fouriertransformation durchgeführt wird.
  7. Verfahren nach Anspruch 5 und Anspruch 6, bei dem die Rücktransformation auf Basis der komplexen frequenzabhängigen Amplituden q SQ,tm(fj) in den Zeitbereich zur Bestimmung des zeitabhängigen Ansteuerparameters qSQ(t) mittels inverser diskreter Fouriertransformation durchgeführt wird.
  8. Verfahren nach einem der Ansprüche 5 bis 7, bei dem nach jeder Berechnung der komplexen frequenzabhängigen Amplituden q SQ,tm (fj) gemäß q sQ,tm (fj) = kTn(fj) q PQ,tm (fj) für ein Zeitintervall tm die komplexen frequenzabhängigen Amplituden q SQ,tm (fj) gemäß ̲ SQ , tm f j = G - 1 ̲ f j q ̲ SQ , tm f j
    Figure imgb0018

    angepasst und die angepassten komplexen frequenzabhängigen Amplituden q'SQ,tm (fj) für die Rücktransformation in den Zeitbereich zur Bestimmung des zeitabhängigen Ansteuerparameters q SQ(t) verwendet werden, wobei G -1(fj) vorbestimmte komplexe Zeitverzögerungskorrekturparameter zur Berücksichtigung von durch Signalverarbeitung und elektroakustische Umwandlungen verursachte Phasenverschiebungen sind.
  9. Aktives Lärmreduktionssystem zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8, das aufweist:
    einen Referenzsensor (2) zur zeitabhängigen Messung einer physikalischen Größe q, die die schallerzeugende Bewegung der Abstrahlfläche der Primärschallquelle (1) kennzeichnet, wobei der Referenzsensor (2) angepasst ist, um im Betrieb einen entsprechenden zeitabhängigen Referenzparameter qPQ(t), der die Phaseninformation der Primärschallquelle (1) beinhaltet, in Form eines entsprechenden Referenzsignals bereitzustellen,
    eine Sekundärschallquelle (6) mit einer zur Schallabstrahlung geeigneten Abstrahlfläche,
    einen in unmittelbarer Nähe der Abstrahlfläche der Sekundärschallquelle (6) angeordneten Schalldrucksensor (7) zur zeitabhängigen Messung des Schalldrucks p(t), wobei der Schalldrucksensor (7)angepasst ist, um im Betrieb ein entsprechendes Schalldrucksignal bereitzustellen,
    einer Steuereinrichtung (5) mit Eingängen zum Empfang des Referenzsignals und des Schalldrucksignals und einem Ausgang (10) zur Ausgabe eines zeitabhängigen Ansteuersignals für die Sekundärschallquelle (6), die Steuereinrichtung (5) angepasst ist, um im Betrieb
    - qPQ(t) und p (t) in den Frequenzbereich zu transformieren, so dass für jedes von diskreten Zeitintervallen tm jeweils eine Anzahl von komplexen frequenzabhängigen Amplituden q PQ,tm(fj) bzw. p tm(fj) für eine Anzahl von Frequenzen fj erhalten werden,
    - das zeitabhängige Ansteuersignal in der Weise zu erzeugen, dass die Abstrahlfläche der mit dem Ansteuersignal angesteuerten Sekundärschallquelle (6) gleich-oder gegenphasig zur Abstrahlfläche der Primärschallquelle (1) schwingt und ihre schallerzeugende Bewegung in jedem von aufeinanderfolgenden diskreten Zeitabschnitten Tn, die jeweils eines oder mehrere der diskreten Zeitintervalle tm umfassen, durch einen zeitlichen Verlauf qsQ(t) der physikalischen Größe q gekennzeichnet ist, bei dem zwischen den einer Transformation von qsQ(t) in den Frequenzbereich entsprechenden komplexen frequenzabhängigen Amplituden q SQ,tm(fj) und den komplexen Amplituden q PQ,tm(fj) für die Frequenzen fj in den diskreten Zeitabschnitten Tn jeweils die Beziehung q ̲ SQ , tm f j = k Tn f j q ̲ PQ , tm f j
    Figure imgb0019

    mit den in jedem Zeitabschnitt Tn zeitlich konstanten reellen Verstärkungsfaktoren kTn(fj) besteht, und
    - jeweils ausgehend von den Verstärkungsfaktoren kTn (fj) in einem Zeitabschnitt Tn und den komplexen frequenzabhängigen Amplituden q PQ,tm(fj) bzw. p tm(fj) für ein Zeitintervall tm in dem Zeitabschnitt Tn die Verstärkungsfaktoren kTn+1 (fj) für den nächsten Zeitabschnitt Tn+1 für zumindest eine der Frequenzen fj durch die Aktualisierungsgleichung k Tn + 1 f j = - μ Im q ̲ PQ , tm f j p ̲ tm f j * + k Tn f j
    Figure imgb0020

    neu zu berechnen und einzustellen, wobei µ ein reeller Konvergenzfaktor ist und Im[x] den Imaginärteil einer komplexen Zahl x und x* die zu einer komplexen Zahl x komplex konjugierte Zahl bezeichnet.
  10. System nach Anspruch 9, bei dem die Neuberechnung der Verstärkungsfaktoren kTn+1 (fj) nur für Frequenzen fj durchgeführt wird, für die q ̲ PQ , tm f j ε j
    Figure imgb0021

    mit vorbestimmten Schwellenwerten εj gilt, und für die übrigen Frequenzen fj die Verstärkungsfaktoren kTn+1 (fj) auf Null gesetzt werden.
  11. System nach Anspruch 9 oder Anspruch 10, bei dem die Steuereinrichtung (5) angepasst ist, um nach jeder Neuberechnung eines Verstärkungsfaktors kTn+1 (fj) dessen Betrag zu begrenzen, indem sie prüft, ob dieser einen vorbestimmten Maximalwert kmax(fj) für den Betrag überschreitet, und kTn+1 (fj) bei Überschreitung in Abhängigkeit davon, ob kTn+1(fj) negativ oder positiv ist, auf -kmax(fj) bzw. +kmax(fj) setzt.
  12. System nach einem der Ansprüche 9 bis 11, bei dem die Steuereinrichtung (5) angepasst ist, um zur Erzeugung des zeitabhängigen Ansteuersignals für die Sekundärschallquelle (6)
    für jedes der Zeitintervalle tm aus den komplexen frequenzabhängigen Amplituden q PQ,tm(fj) und den entsprechenden Verstärkungsfaktoren kTn (fj) für den Zeitabschnitt Tn für die Frequenzen fj komplexe frequenzabhängige Amplituden q SQ,tm (fj) gemäß q ̲ SQ , tm f j = k Tn f j q ̲ PQ , tm f j
    Figure imgb0022

    zu berechnen und
    auf Basis der komplexen frequenzabhängigen Amplituden q SQ,tm(fj) mit Hilfe einer Rücktransformation in den Zeitbereich den zeitabhängigen Ansteuerparameter qSQ(t) zu erhalten, der die zu erzielende schallerzeugende Bewegung der Abstrahlfläche der Sekundärschallquelle (6) kennzeichnet.
  13. System nach einem der Ansprüche 9 bis 12, bei dem die Steuereinrichtung (5) angepasst ist, um die Transformation von qPQ(t) und p(t) in den Frequenzbereich zur Bestimmung der komplexen frequenzabhängigen Amplituden q PQ,tm(fj) und p tm(fj) mittels diskreter Fouriertransformation durchzuführen.
  14. System nach Anspruch 12 und Anspruch 13, bei dem die Steuereinrichtung (5) angepasst ist, um die Rücktransformation auf Basis der komplexen frequenzabhängigen Amplituden q SQ,tm(fj) in den Zeitbereich zur Bestimmung des zeitabhängigen Ansteuerparameters qSQ(t) mittels inverser diskreter Fouriertransformation durchzuführen.
  15. System nach einem der Ansprüche 12 bis 14, bei dem die Steuereinrichtung (5) angepasst ist, um nach jeder Berechnung der komplexen frequenzabhängigen Amplituden qSQ,tm(fj) gemäß q SQ,tm(fj) = kTn(fj) q PQ,tm(fj) für ein Zeitintervall tm die komplexen frequenzabhängigen Amplituden q SQ,tm(fj) gemäß ̲ SQ , tm f j = G - 1 ̲ f j q ̲ SQ , tm f j
    Figure imgb0023

    anzupassen und die angepassten komplexen frequenzabhängigen Amplituden q'SQ,tm(fj) für die Rücktransformation in den Zeitbereich zur Bestimmung des zeitabhängigen Ansteuerparameters qSQ(t) zu verwenden, wobei G -1 (fj) vorbestimmte komplexe Zeitverzögerungskorrekturparameter zur Berücksichtigung von durch Signalverarbeitung und elektroakustische Umwandlungen verursachte Phasenverschiebungen sind.
EP11161701A 2010-04-08 2011-04-08 Verfahren und System zur aktiven Lärmreduktion Not-in-force EP2378513B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010014226A DE102010014226A1 (de) 2010-04-08 2010-04-08 Verfahren und System zur aktiven Lärmreduktion

Publications (2)

Publication Number Publication Date
EP2378513A1 true EP2378513A1 (de) 2011-10-19
EP2378513B1 EP2378513B1 (de) 2012-06-20

Family

ID=44278999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11161701A Not-in-force EP2378513B1 (de) 2010-04-08 2011-04-08 Verfahren und System zur aktiven Lärmreduktion

Country Status (3)

Country Link
EP (1) EP2378513B1 (de)
DE (1) DE102010014226A1 (de)
DK (1) DK2378513T3 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026664A1 (de) * 2014-11-28 2016-06-01 Helmut-Schmidt-Universität Verfahren und System zur aktiven Schallunterdrückung
CN110111765A (zh) * 2019-05-21 2019-08-09 东南大学 一种一维声场条件下的反射声有源控制方法
WO2020024334A1 (zh) * 2018-08-01 2020-02-06 中科振声(苏州)电子科技有限公司 一种振动噪声智能应对系统及一种振动噪声智能应对方法
CN113099350A (zh) * 2021-05-06 2021-07-09 深圳市美恩微电子有限公司 一种播放音乐时自动降噪的蓝牙耳机
CN113140209A (zh) * 2021-04-23 2021-07-20 南京邮电大学 基于相位自动补偿的无次级通道的频域主动噪声控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832095A (en) * 1996-10-18 1998-11-03 Carrier Corporation Noise canceling system
DE19832517A1 (de) * 1998-07-20 2000-01-27 Ibs Ingenieurbuero Fuer Schall Verfahren und Vorrichtung zur Steuerung eines aktiven Schalldämpfers
US20030051479A1 (en) * 2001-09-19 2003-03-20 Hogle Joseph Alan Systems and methods for suppressing pressure waves using corrective signal
EP1630788A1 (de) * 2004-08-26 2006-03-01 Airbus Deutschland GmbH Vorrichtung und Verfahren zur reduktion von Schall eines Rauschquelles in Beschränken Frequenzbereichen
US7317801B1 (en) * 1997-08-14 2008-01-08 Silentium Ltd Active acoustic noise reduction system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1349143A3 (de) * 2002-03-29 2004-09-15 Kabushiki Kaisha Toshiba Aktivschalldämpfer und Aktivschalldämpfungsverfahren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832095A (en) * 1996-10-18 1998-11-03 Carrier Corporation Noise canceling system
US7317801B1 (en) * 1997-08-14 2008-01-08 Silentium Ltd Active acoustic noise reduction system
DE19832517A1 (de) * 1998-07-20 2000-01-27 Ibs Ingenieurbuero Fuer Schall Verfahren und Vorrichtung zur Steuerung eines aktiven Schalldämpfers
US20030051479A1 (en) * 2001-09-19 2003-03-20 Hogle Joseph Alan Systems and methods for suppressing pressure waves using corrective signal
EP1630788A1 (de) * 2004-08-26 2006-03-01 Airbus Deutschland GmbH Vorrichtung und Verfahren zur reduktion von Schall eines Rauschquelles in Beschränken Frequenzbereichen

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BULLMORE, A.J. ET AL.: "The active minimization of harmonic enclosed sound fields", JOURNAL OF SOUND AND VIBRATION, 1987, pages 1 - 58
ELLIOT, S.J. ET AL.: "Flight Experiments on the Active Control of Propeller-induced Cabin Noise", JOURNAL OF SOUND AND VIBRATION, vol. 140, no. 2, 1990, pages 219 - 238, XP024198988, DOI: doi:10.1016/0022-460X(90)90525-5
ELLIOTT, S.J. ET AL.: "Power output minimization and power absorption in the active control of sound", JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, vol. 90, no. 5, 1991, pages 2501 - 2512, XP055188919, DOI: doi:10.1121/1.402054
KANG, S.W., KIM, Y.H.: "ACTIVE 95: Proceedings of the 1995 International Symposium on Active Control of Sound and Vibration, Newport Beach (U.S.A.)", 1995, NOISE CONTROL FOUNDATION, article "Active global noise control by sound power"
TOHYAMA, M., SUZUKI, A, SUGIYAMA, K.: "Active Power Minimization of a Sound Source in a Reverberant Closed Space", IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 39, no. 1, 1991, pages 246 - 248

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026664A1 (de) * 2014-11-28 2016-06-01 Helmut-Schmidt-Universität Verfahren und System zur aktiven Schallunterdrückung
WO2016083513A1 (de) * 2014-11-28 2016-06-02 Helmut-Schmidt-Universität Verfahren und system zur aktiven schallunterdrückung
WO2020024334A1 (zh) * 2018-08-01 2020-02-06 中科振声(苏州)电子科技有限公司 一种振动噪声智能应对系统及一种振动噪声智能应对方法
CN110111765A (zh) * 2019-05-21 2019-08-09 东南大学 一种一维声场条件下的反射声有源控制方法
CN110111765B (zh) * 2019-05-21 2022-06-14 东南大学 一种一维声场条件下的反射声有源控制方法
CN113140209A (zh) * 2021-04-23 2021-07-20 南京邮电大学 基于相位自动补偿的无次级通道的频域主动噪声控制方法
CN113099350A (zh) * 2021-05-06 2021-07-09 深圳市美恩微电子有限公司 一种播放音乐时自动降噪的蓝牙耳机
CN113099350B (zh) * 2021-05-06 2023-02-03 深圳市美恩微电子有限公司 一种播放音乐时自动降噪的蓝牙耳机

Also Published As

Publication number Publication date
DK2378513T3 (da) 2012-09-24
EP2378513B1 (de) 2012-06-20
DE102010014226A1 (de) 2011-11-24

Similar Documents

Publication Publication Date Title
DE4228695C2 (de) Schaltungsvorrichtung zum aktiven Verringern von Lärm im Innern eines geschlossenen Raumes
Joseph et al. Near field zones of quiet
DE102014005381B3 (de) Anordnung und Verfahren zur Identifikation und Kompensation nichtlinearer Partialschwingungen elektromechanischer Wandler
EP2378513B1 (de) Verfahren und System zur aktiven Lärmreduktion
DE3908881A1 (de) Elektronisches stoerschalldaempfungssystem
DE102005037034B4 (de) Verfahren und System zur Steuerung der Energiedichte mit Verwendung eines zweidimensionalen Energiedichtesensors
EP3183891B1 (de) Fir-filter-koeffizienten-berechnung für beamforming-filter
WO2008034789A1 (de) Anordnung mit einem aktiven geräuschreduktionssystem
EP2984503B1 (de) Verfahren zur messung mittels ultraschall, insbesondere als parkhilfe für fahrzeuge, und ultraschallmesssysteme
DE60009353T2 (de) Einrichtung zur aktiven schallsteuerung in einem raum
WO2006111039A1 (de) Verfahren zur nachbildung eines secondary-path bei einem aktiven geräuschreduktionssystem
DE4229436C2 (de) Einrichtung zur Störgeräuschminderung
DE102012103607A1 (de) Anordnung zur Verringerung des durch eine Schallquelle verursachten Geräuschs und Verfahren zur Verringerung des Geräuschs
EP3026664B1 (de) Verfahren und system zur aktiven schallunterdrückung
DE102019123971B4 (de) Aktives lärmkompensationssystem und verfahren
DE102008011285A1 (de) Aktiver Schallblocker
DE3821939A1 (de) Schalldaemmende vorrichtung
DE112017007051B4 (de) Signalverarbeitungsvorrichtung
DE10027618B4 (de) Schallwandler
WO2008015215A2 (de) Anordnung mit einem aktiven geräuschreduktionssystem
Kim et al. Narrowband feedback for narrowband control of resonant and non-resonant vibration
DE2712534C2 (de) Verfahren und Vorrichtung zur Schalldämpfung
DE4127473A1 (de) Verfahren und vorrichtung zur abminderung von schall
EP1952386B1 (de) Aktiver kanalschalldämpfer
WO2018011296A1 (de) Kompensationsmittel für ein lautsprechersystem

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20110922

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G10K 11/178 20060101AFI20111102BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 563431

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011000044

Country of ref document: DE

Effective date: 20120816

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120920

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121022

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130321

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011000044

Country of ref document: DE

Effective date: 20130321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120920

BERE Be: lapsed

Owner name: HELMUT-SCHMIDT-UNIVERSITAT

Effective date: 20130430

Owner name: HAMBURG INNOVATION G.M.B.H.

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130408

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110408

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 563431

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190313

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190412

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20190528

Year of fee payment: 17

Ref country code: IT

Payment date: 20190419

Year of fee payment: 9

Ref country code: DK

Payment date: 20190410

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190410

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200325

Year of fee payment: 10

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200430

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200408

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011000044

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103