EP2378080A2 - Locking spacer assembly for circumferential attachment of rotor blades - Google Patents

Locking spacer assembly for circumferential attachment of rotor blades Download PDF

Info

Publication number
EP2378080A2
EP2378080A2 EP11162650A EP11162650A EP2378080A2 EP 2378080 A2 EP2378080 A2 EP 2378080A2 EP 11162650 A EP11162650 A EP 11162650A EP 11162650 A EP11162650 A EP 11162650A EP 2378080 A2 EP2378080 A2 EP 2378080A2
Authority
EP
European Patent Office
Prior art keywords
end portion
spacer assembly
locking spacer
profile
securing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11162650A
Other languages
German (de)
French (fr)
Other versions
EP2378080A3 (en
Inventor
Brian Denver Potter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP2378080A2 publication Critical patent/EP2378080A2/en
Publication of EP2378080A3 publication Critical patent/EP2378080A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3023Fixing blades to rotors; Blade roots ; Blade spacers of radial insertion type, e.g. in individual recesses
    • F01D5/303Fixing blades to rotors; Blade roots ; Blade spacers of radial insertion type, e.g. in individual recesses in a circumferential slot
    • F01D5/3038Fixing blades to rotors; Blade roots ; Blade spacers of radial insertion type, e.g. in individual recesses in a circumferential slot the slot having inwardly directed abutment faces on both sides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/32Locking, e.g. by final locking blades or keys

Abstract

A locking spacer assembly (218) for use with a rotor blade assembly (200) is provided. The locking spacer assembly including a first end portion (40), a second end portion (404), at least one securing device (422,424), and a center portion (406) positioned between the first end portion (402) and the second end portion (404) such that an opening (418,420) is defined between the center portion and at least one of the first end portion and the second end portion, the opening is sized to receive the securing device therein.

Description

    BACKGROUND OF THE INVENTION
  • The subject matter disclosed herein relates generally to turbine engines and, more particularly, to a blade assembly that may be used with a turbine engine.
  • At least some known turbine engines include a rotor, such as an axial compressor rotor, that includes a rotor blade assembly coupled thereto. Known rotor blade assemblies include a plurality of circumferentially-spaced rotor blades arranged in rows spaced axially along the rotor. Moreover, in some known rotor blade assemblies, the plurality of rotor blades are removably coupled to a wheel. More specifically, at least some known wheels include a groove defined therein that is sized and shaped to receive the plurality of rotor blades therein such that a blade root of each rotor blade is inserted in the groove.
  • After all of the rotor blades in a row are coupled to the wheel by their blade roots, a spacer is inserted into the groove to fill any remaining space in the groove between the first and last circumferentially spaced blades coupled in the groove. At least some known spacers include multiple components that are assembles together to be locked into position. However, centrifugal forces generated during operation of the turbine engine may cause known spacers to undesirably separate, which may enable the blades to shift circumferentially within the groove. Over time, continual movement of the rotor blades may cause damage to the rotor blade assembly and/or decrease the efficiency of the turbine engine.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In one aspect, a locking spacer assembly is provided for use with a rotor blade assembly. The locking spacer assembly includes a first end portion, a second end portion, at least one securing device, and a center portion positioned between the first end portion and the second end portion. An opening is defined between the center portion and at least one of the first end portion and the second end portion. The opening is configured to receive the securing device.
  • In another aspect, a rotor blade assembly is provided for use with a turbine engine. The rotor blade assembly includes a wheel, a plurality of rotor blades coupled to the wheel, and a locking spacer assembly coupled to the wheel. The locking spacer assembly includes a first end portion, a second end portion, at least one securing device, and a center portion positioned between the first end portion and the second end portion. An opening is defmed between the center portion and at least one of the first end portion and the second end portion. The opening is configured to receive the securing device.
  • In yet another aspect, a turbine engine is provided. The turbine engine includes a rotor and a rotor blade assembly. The rotor blade assembly includes a wheel, a plurality of rotor blades coupled to the wheel, and a locking spacer assembly coupled to the wheel. The locking spacer assembly includes a first end portion, a second end portion, at least one securing device, and a center portion positioned between the first end portion and the second end portion. An opening is defmed between the center portion and at least one of the first end portion and the second end portion. The opening is configured to receive the securing device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG. 1 is a schematic illustration of an exemplary gas turbine engine system;
    • FIG. 2 is a perspective illustration of an exemplary blade assembly that may be used with the turbine engine shown in FIG. 1;
    • FIG. 3 is a detailed perspective illustration of the blade assembly shown in FIG. 2
    • FIG. 4 is an exploded illustration of an exemplary locking spacer assembly that may be used with the blade assembly shown in FIG. 2; and
    • FIG. 5 is a top illustration of the locking spacer assembly shown in FIG. 4.
    DETAILED DESCRIPTION OF THE INVENTION
  • The subject matter described herein relates generally to turbine engines. More particularly, the subject matter described herein relates to a mechanism for use in retaining a plurality of rotor blades within in a groove defined in a rotor wheel. In one embodiment, a locking spacer assembly is provided for use with a rotor blade assembly. In such an embodiment, the locking spacer assembly includes a first end portion, a second end portion, at least one securing device, and a center portion that is positioned between the first and second end portions. An opening is defined between the center portion and either the first end portion and/or the second end portion. The opening is sized and shaped to receive the securing device therein. The locking spacer assembly may be used with circumferential attachments assembles with or without a loading groove. Notably, the locking spacer assembly described herein does not require a loading slot or a modified blade for the rotor blade assembly to be assembled.
  • As used herein, an element or step recited in the singular and proceeded with the word "a" or "an" should be understood as not excluding plural elements or steps unless such exclusion is explicitly recited. Furthermore, references to "one embodiment" of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
  • FIG. 1 is a schematic illustration of an exemplary gas turbine engine system 100. In the exemplary embodiment, gas turbine engine system 100 includes, coupled in serial flow arrangement, a filter house 102, a compressor 104, a combustor assembly 106, and a turbine 108 that is rotatably coupled to compressor 104 via a rotor shaft 110.
  • During operation, in the exemplary embodiment, ambient air enters filter house 102, wherein the ambient air is filtered. More specifically, in the exemplary embodiment, the filtered air is channeled through an air inlet (not shown) an is directed downstream towards compressor 104, wherein the filtered air is compressed prior to being discharged towards combustor assembly 106. The compressed air is mixed with fuel, and the resulting fuel-air mixture is ignited within combustor assembly 106 to generate combustion gases that flow towards turbine 108. In the exemplary embodiment, turbine 108 extracts rotational energy from the combustion gases and rotates a rotor shaft 110 that drives compressor 104. Moreover, in the exemplary embodiment, gas turbine engine system 100 drives a load 112, such as a generator, coupled to rotor shaft 110.
  • FIGS. 2 and 3 are perspective illustrations of an exemplary rotor blade assembly 200 that is coupled to rotor shaft 110 (shown in FIG. 1). In the exemplary embodiment, rotor blade assembly 200 includes a wheel 202 and a plurality of rotor blades 204 that extend outward from a circumference 206 of wheel 202. More specifically, in the exemplary embodiment, each rotor blade 204 includes a blade root 208 that is inserted within a groove 210 that extends about circumference 206. Groove 210 is substantially similar about an entire circumference 206 of wheel 202. In the exemplary embodiment, each blade 204 has a shape and/or size that is substantially similar to the other blades 204.
  • In the exemplary embodiment, wheel 202 includes a pair of flanges 212 that are positioned within groove 210. Flanges 212 cooperate with rotor blade root 208 to securely retain rotor blades 204 within groove 210. More specifically, each blade root 208 includes a recess 214 defined therein that is shaped and/or sized to engage flange 212 such that at least a portion of flange 212 is retained therein. Alternatively, each rotor blade 204 may include a flange, and wheel 202 may include a recess defined therein.
  • In the exemplary embodiment, rotor blade assembly 200 also includes a plurality of spacers 216 that are positioned within groove 210 between adjacent circumferentially-spaced blades 204 to facilitate maintaining a distance therebetween. As such, in the exemplary embodiment, groove 210 retains a plurality of alternating blade roots 208 and spacers 216. In the exemplary embodiment, spacers 216 include at least one locking spacer assembly 218, described in more detail below. Moreover, in the exemplary embodiment, each spacer 216 includes a recess (not shown) defined therein that is shaped and/or sized to engage flange 212 such that at least a portion of flange 212 is retained therein. Notably, in the exemplary embodiment, the recess defined in spacer 216 is substantially similar in shape and size to recess 214.
  • In the exemplary embodiment, blade 204 is coupled to wheel 202 as each blade root 208 is inserted within groove 210 and after each blade 204 is rotated until recess 214 engages flange 212. Similarly, in the exemplary embodiment, spacer 216 is coupled to wheel 202 by inserting spacer 216 into groove 210 and by then rotating spacer 216 until the recess defined in spacer 216 engages flange 212. After every blade 204 is coupled to wheel 202, a void 222 is defined to receive locking spacer assembly 218 therein.
  • FIGS. 4 and 5 are illustrations of an exemplary locking spacer assembly 218. In the exemplary embodiment, locking spacer assembly 218 includes a first end portion 402, a second end portion 404, and a center portion 406 that includes a first side 408 shaped and/or sized to engage first end portion 402 and a second side 410 shaped and/or sized to engage second end portion 404.
  • In the exemplary embodiment, each end portion 402 and 404 is formed with a first profile 412, and each side 408 and 410 is formed with a second profile 414 that is complementary to first profile 412. More specifically, in the exemplary embodiment, first profile 412 is a female sliding dovetail profile, and second profile 414 is a male sliding dovetail profile that is shaped complementarily to first profile 412. As such, first profile 412 mates against second profile 414 such that end portions 402 and 404 sufficiently interlock with center portion 406 to enable axial stresses to be transmitted along a longitudinal axis 416 of wheel 202 and/or to enables circumferential or hoop stresses to be transmitted along circumference 206.
  • In the exemplary embodiment, end portions 402 and 404 are substantially similar in shape and size, and, as such, end portions 402 and 404 are interchangeable. More specifically, in the exemplary embodiment, first side 408 is substantially similar to second side 410. Alternatively, first end portion 402 may have a first configuration, first side 408 may have a first complementary configuration, second end portion 404 may have a second configuration that is different from the first configuration, and second side 410 may have a second complementary configuration that is different from first side 408. It should be understood that any of first end portion 402, second end portion 404, first side 408, and/or second side 410 may have any suitable shape and/or size that enables locking spacer assembly 218 to function as described herein.
  • In the exemplary embodiment, a first opening 418 is defined between first end portion 402 and center portion 406, and a second opening 420 is defined between second end portion 404 and center portion 406. Moreover, in the exemplary embodiment, first opening 418 is shaped and/or sized to receive a first securing device 422 therein, and second opening 420 is shaped and/or sized to receive a second securing device 424 therein. More specifically, in the exemplary embodiment, securing devices 422 and 424 are each dowels that securely couple end portions 402 and 404 to center portion 406 such that portions 402, 404, and/or 406 do not move relative to one another. Each securing device 422 and 424 is insertable such that a top 426 of each securing device 422 and 424 does not extend above a top of portion 402, 404, and/or 406. Alternatively, securing devices 422 and 424 are set screws and/or grub screws that include a socket head such that a top of each securing device 422 and 424 does not extend above a top of portion 402, 404, and/or 406.
  • In the exemplary embodiment, opening 418 and 420 are substantially similar in shape and size. As such, first securing device 422 and second securing device 424 are interchangeable. Alternatively, first opening 418 may have a first configuration, and second opening 420 may have a second configuration that is different from the first configuration such that first securing device 422 is different than second securing device 424. It should be understood that any of first opening 418, second opening 420, first securing device 422, and/or second securing device 424 may have any suitable shape and/or size that enables locking spacer assembly 218 to function as described herein. In the exemplary embodiment, openings 418 and 420 receive securing devices 422 and 424, respectively, to enable radial stresses to be transmitted along a radial direction 428 of wheel 202.
  • In the exemplary embodiment, each end portion 402 and 404 includes a recess 430 defined therein that is positioned opposite first profile 412. More specifically, in the exemplary embodiment, recess 430 is shaped and/or sized to engage flange 212 such that at least a portion of flange 212 is retained therein. Notably, in the exemplary embodiment, recess 430 is shaped and sized substantially similarly to recess 214 and to the recess defined in spacer 216.
  • In the exemplary embodiment, end portions 402 and 404 are inserted within void 222 and are moved in opposite directions along circumference 206 such that recess 430 engages flange 212. Moreover, in the exemplary embodiment, center portion 406 is inserted between end portions 402 and 404 such that first side 408 engages first end portion 402 and second side 410 engages second end portion 404. As such, when first profile 412 engages second profile 414, end portions 402 and 404 interlock with center portion 406 to enables axial stresses to be transmitted along a longitudinal axis 416 of wheel 202 and/or to enables circumferential or hoop stresses to be transmitted along circumference 206.
  • In the exemplary embodiment, during assembly, first securing device 422 is inserted into first opening 418, and second securing device 424 is inserted into second opening 420 to securely couple end portions 402 and 404 to center portion 406 such that portions 402, 404, and/or 406 do not move relative to one another. In the exemplary embodiment, openings 418 and 420 receive securing devices 422 and 424, respectively, to enables radial stresses to be transmitted along a radial direction 428 of wheel 202. After locking spacer assembly 400 is fully installed, rotor blade assembly 200 is securely retained within groove 210.
  • Exemplary embodiments of methods and systems are described and/or illustrated herein in detail. The exemplary methods and systems provide a blade assembly that facilitates inserting blade roots and/or spacers within a groove that is substantially similar about a circumference of a wheel. As such, the methods and systems described enable locking a blade assembly such that adjacent turbine blades are not moved, thereby enabling repairing and/or replacing one turbine blade without disturbing the other turbine blades. Moreover, implementing the locking assembly facilitates reducing a time and/or cost associated with assembling the turbine engine. The exemplary systems and methods are not limited to the specific embodiments described herein, but rather, components of each system and/or steps of each method may be utilized independently and separately from other components and/or method steps described herein. Each component and each method step may also be used in combination with other components and/or method steps.
  • This written description uses examples to disclose certain embodiments of the present invention, including the best mode, and also to enable any person skilled in the art to practice those certain embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the present invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
  • For completeness, various aspects of the invention are now set out in the following numbered clauses:
    1. 1. A locking spacer assembly for use with a rotor blade assembly, said locking spacer assembly comprising:
      • a first end portion;
      • a second end portion;
      • at least one securing device; and
      • a center portion positioned between said first end portion and said second end portion such that an opening is defined between said center portion and at least one of said first end portion and said second end portion, said opening is sized to receive said securing device therein.
    2. 2. A locking spacer assembly in accordance with clause 1, wherein said center portion comprises a first side that is configured to engage said first end portion and a second side that is configured to engage said second end portion.
    3. 3. A locking spacer assembly in accordance with clause 2, wherein at least one of said first end portion and said second end portion has a first profile, and at least one of said first side and said second side has a second profile that is shaped substantially complementary to the first profile.
    4. 4. A locking spacer assembly in accordance with clause 3, wherein one of the first profile and the second profile is a male dovetail profile, and wherein the other of the first profile and the second profile is a female dovetail profile.
    5. 5. A locking spacer assembly in accordance with clause 1, wherein said first end portion is substantially similar to said second end portion.
    6. 6. A locking spacer assembly in accordance with clause 1, wherein a top of said securing device does not extend beyond a top of at least one of said first end portion, said second end portion and said center portion.
    7. 7. A locking spacer assembly in accordance with clause 1, wherein said first end portion, said second end portion, and said center portion are configured to carry at least one of a circumferential load and an axial load, and said securing device is configured to carry a radial load.
    8. 8. A rotor blade assembly for use with a turbine engine, said rotor blade assembly comprising:
      • a wheel;
      • a plurality of rotor blades coupled to said wheel; and
      • a locking spacer assembly coupled to said wheel, said locking spacer assembly comprising a first end portion, a second end portion, at least one securing device, and
      • a center portion positioned between said first end portion and said second end portion such that an opening is defined between said center portion and at least one of said first end portion and said second end portion, said opening is sized to receive said securing device therein.
    9. 9. A rotor blade assembly in accordance with clause 8, wherein each of said plurality of blades is substantially similar to another rotor blade.
    10. 10. A rotor blade assembly in accordance with clause 8, wherein said locking spacer assembly is positioned between adjacent rotor blades.
    11. 11. A rotor blade assembly in accordance with clause 8, wherein said center portion comprises a first side that is configured to engage said first end portion and a second side that is configured to engage said second end portion.
    12. 12. A rotor blade assembly in accordance with clause 8, wherein a top of said securing device does not extend beyond a top of at least one of said first end portion, said second end portion ,and said center portion.
    13. 13. A rotor blade assembly in accordance with clause 8, wherein said first end portion, said second end portion, and said center portion are configured to carry at least one of a circumferential load and an axial load, and said securing device is configured to carry a radial load.
    14. 14. A turbine engine comprising:
      • a rotor; and
      • a rotor blade assembly comprising a wheel, a plurality of rotor blades coupled to said wheel, and a locking spacer assembly coupled to said wheel, said locking spacer assembly comprising a first end portion, a second end portion, at least one securing device, and a center portion positioned between said first end portion and said second end portion such that an opening is defined between said center portion and at least one of said first end portion and said second end portion, said opening is sized to receive said securing device therein.
    15. 15. A turbine engine in accordance with clause 14, wherein each of said plurality of blades is substantially similar to another rotor blade.
    16. 16. A turbine engine in accordance with clause 14, wherein said locking spacer assembly is positioned between adjacent rotor blades.
    17. 17. A turbine engine in accordance with clause 14, wherein said center portion comprises a first side that is configured to engage said first end portion and a second side that is configured to engage said second end portion.
    18. 18. A turbine engine in accordance with clause 14, wherein a top of said securing device does not extend beyond a top of at least one of said first end portion, said second end portion ,and said center portion.
    19. 19. A turbine engine in accordance with clause 14, wherein said first end portion, said second end portion, and said center portion are configured to carry at least one of a circumferential load and an axial load, and said securing device is configured to carry a radial load.
    20. 20. A turbine engine in accordance with clause 14, wherein said plurality of rotor blades are not directly coupled to said rotor.

Claims (7)

  1. A locking spacer assembly (218) for use with a rotor blade assembly (200), said locking spacer assembly comprising:
    a first end portion (40);
    a second end portion (404);
    at least one securing device (422,424); and
    a center portion (406) positioned between said first end portion (402) and said second end portion (404) such that an opening (418,420) is defined between said center portion and at least one of said first end portion and said second end portion, said opening is sized to receive said securing device therein.
  2. A locking spacer assembly (218) in accordance with claim 1, wherein said center portion (406) comprises a first side (408) that is configured to engage said first end portion (402) and a second side (410) that is configured to engage said second end portion (404).
  3. A locking spacer assembly (218) in accordance with claim 2, wherein at least one of said first end portion (402) and said second end portion (404) has a first profile (412), and at least one of said first side and said second side (410) has a second profile that is shaped substantially complementary to the first profile.
  4. A locking spacer assembly (218) in accordance with claim 3, wherein one of the first profile (412) and the second profile (414) is a male dovetail profile, and wherein the other of the first profile and the second profile is a female dovetail profile.
  5. A locking spacer assembly (218) in accordance with any of the preceding claims, wherein said first end portion (402) is substantially similar to said second end portion (404).
  6. A locking spacer assembly (218) in accordance with any of the preceding claims, wherein a top of said securing device (420,422) does not extend beyond a top of at least one of said first end portion (402), said second end portion (404),and said center portion (406).
  7. A locking spacer assembly (218) in accordance with any of the preceding claims, wherein said first end portion (402), said second end portion (404), and said center portion (406) are configured to carry at least one of a circumferential load and an axial load, and said securing device (422,424) is configured to carry a radial load.
EP11162650.3A 2010-04-16 2011-04-15 Locking spacer assembly for circumferential attachment of rotor blades Withdrawn EP2378080A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/761,749 US20110255978A1 (en) 2010-04-16 2010-04-16 Locking Assembly For Circumferential Attachments

Publications (2)

Publication Number Publication Date
EP2378080A2 true EP2378080A2 (en) 2011-10-19
EP2378080A3 EP2378080A3 (en) 2013-12-18

Family

ID=44080305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11162650.3A Withdrawn EP2378080A3 (en) 2010-04-16 2011-04-15 Locking spacer assembly for circumferential attachment of rotor blades

Country Status (4)

Country Link
US (1) US20110255978A1 (en)
EP (1) EP2378080A3 (en)
JP (1) JP2011226475A (en)
CN (1) CN102220885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672068B1 (en) * 2012-06-06 2020-10-14 General Electric Company Turbine rotor and blade assembly with multi-piece locking blade

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9726026B2 (en) * 2012-06-06 2017-08-08 General Electric Company Turbine rotor and blade assembly with multi-piece locking blade
CN103362565B (en) * 2013-07-04 2015-01-21 西安交通大学 Step-shaped blade root structure of turbine blade as well as blade root and blade separation block matching structure
US9518471B2 (en) * 2013-10-16 2016-12-13 General Electric Company Locking spacer assembly
US9416670B2 (en) * 2013-10-16 2016-08-16 General Electric Company Locking spacer assembly
US9512732B2 (en) * 2013-10-16 2016-12-06 General Electric Company Locking spacer assembly inserted between rotor blades
KR101884712B1 (en) * 2016-12-21 2018-08-03 두산중공업 주식회사 Locking spacer for rotor blade
KR101920070B1 (en) * 2016-12-23 2018-11-19 두산중공업 주식회사 Locking spacer for rotor blade
US10800128B2 (en) * 2018-01-24 2020-10-13 General Electric Company Composite components having T or L-joints and methods for forming same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721506A (en) * 1971-05-25 1973-03-20 Gen Electric Split-nut blade locking assembly
EP1028231B1 (en) * 1999-02-12 2003-09-03 ALSTOM (Switzerland) Ltd Fastening of turbomachine rotor blades
DE10134611A1 (en) * 2000-12-16 2002-06-27 Alstom Switzerland Ltd Fixing device for a blade mounting of a compressor or turbine stage of a gas turbine system comprises a blade having a counter-contour corresponding to a connecting element of a wedge element to produce a form-locking connection
DE10310432A1 (en) * 2003-03-11 2004-09-23 Alstom Technology Ltd Rotor end
DE10310431A1 (en) * 2003-03-11 2004-09-23 Alstom Technology Ltd Rotor end
CN2620090Y (en) * 2003-05-30 2004-06-09 上海汽轮机有限公司 Steam turbine rotor reaction type T type blade root vane circumference expansion device
US6929453B2 (en) * 2003-12-11 2005-08-16 Siemens Westinghouse Power Corporation Locking spacer assembly for slotted turbine component
DE102004011508A1 (en) * 2004-03-08 2005-09-29 Alstom Technology Ltd Rotor end
US7435055B2 (en) * 2005-03-29 2008-10-14 Siemens Power Generation, Inc. Locking spacer assembly for a turbine engine
EP1803900A1 (en) * 2006-01-02 2007-07-04 Siemens Aktiengesellschaft Closure unit for the remaining space between the first and the last blades of a bladed ring inserted in a circumferencial slot of a turbomachine, and corresponding turbomachine
EP1803899A1 (en) * 2006-01-02 2007-07-04 Siemens Aktiengesellschaft Blade locking assembly for a turbomachine
EP1978211A1 (en) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Assembly for axial protection on rotor blades in a rotor and gas turbine with such an assembly
US8425194B2 (en) * 2007-07-19 2013-04-23 General Electric Company Clamped plate seal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672068B1 (en) * 2012-06-06 2020-10-14 General Electric Company Turbine rotor and blade assembly with multi-piece locking blade

Also Published As

Publication number Publication date
EP2378080A3 (en) 2013-12-18
US20110255978A1 (en) 2011-10-20
CN102220885A (en) 2011-10-19
JP2011226475A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
EP2378080A2 (en) Locking spacer assembly for circumferential attachment of rotor blades
EP2613000B1 (en) System for axial retention of rotating segments of a turbine and corresponding method
US8840375B2 (en) Component lock for a gas turbine engine
JP6483995B2 (en) Locking spacer assembly
US8506253B2 (en) Balancing apparatus for rotor assembly
US20090003996A1 (en) Labyrinth Seal in a Stationary Gas Turbine
EP2236769A2 (en) Method and apparatus for turbine interstage seal ring
JP6563631B2 (en) Locking spacer assembly
US20150369123A1 (en) Gas turbine engine configured for modular assembly/disassembly and method for same
US9518471B2 (en) Locking spacer assembly
JP2015083835A (en) Locking spacer assembly
US8840374B2 (en) Adaptor assembly for coupling turbine blades to rotor disks
US8545184B2 (en) Locking spacer assembly
EP2546461A1 (en) Rotor assembly and corresponding gas turbine engine
US10876420B2 (en) Turbine blade axial retention and sealing system
US9896946B2 (en) Gas turbine engine rotor assembly and method of assembling the same
US9470098B2 (en) Axial compressor and method for controlling stage-to-stage leakage therein
EP3018301B1 (en) Vane arm with inclined retention slot
EP2653661A2 (en) Turbomachine blade mounting system
WO2014068355A1 (en) Gas turbine engine exhaust system and corresponding method for accessing turbine buckets
CN108661727B (en) Turbine engine bearing assembly and method of assembling same
US9309776B2 (en) Replaceable seals for turbine engine components and methods for installing the same
US20140023502A1 (en) Variable vane assembly for turbine system
US10865650B2 (en) Stator vane support with anti-rotation features

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/30 20060101AFI20131114BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140619