EP2373925A2 - Method for overheating vapour - Google Patents

Method for overheating vapour

Info

Publication number
EP2373925A2
EP2373925A2 EP09740035A EP09740035A EP2373925A2 EP 2373925 A2 EP2373925 A2 EP 2373925A2 EP 09740035 A EP09740035 A EP 09740035A EP 09740035 A EP09740035 A EP 09740035A EP 2373925 A2 EP2373925 A2 EP 2373925A2
Authority
EP
European Patent Office
Prior art keywords
steam
solar
overheating
solar thermal
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09740035A
Other languages
German (de)
French (fr)
Inventor
Reinhard Schu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renusol Europe GmbH
Original Assignee
Ecoenergy Gesellschaft fuer Energie und Umwelttechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecoenergy Gesellschaft fuer Energie und Umwelttechnik mbH filed Critical Ecoenergy Gesellschaft fuer Energie und Umwelttechnik mbH
Publication of EP2373925A2 publication Critical patent/EP2373925A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/06Steam superheating characterised by heating method with heat supply predominantly by radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the efficiency of the steam power plant can be increased because the individual processes can be adjusted independently of each other and the temperature optimally to the respective conditions.
  • thermal oils can only be heated to temperatures of up to 400 ° C.
  • parabolic trough systems with thermal oils in particular, can be very large, so that they have high technical optimization potential in the area of the water-steam cycle due to the selected magnitude, for example by multi-stage Have condensate and feedwater pre-heating.
  • a solar tower system 20 consists of a tower 21 on which a receiver 22 is arranged, in which the heat transfer medium is conducted in a pipeline 23.
  • the solar tower mirror units 24 are arranged, each having alignable mirrors 25. The light emitted by the sun 26 is directed by the orientable mirrors onto the receiver 22 of the solar tower, whereby the heat transfer medium is heated.
  • FIG. 3 shows by way of example and schematically a possible process flow.
  • the water-steam cycle 31 consists of a feedwater pump 32 which pumps the water into the pipe 33.
  • the evaporator 34 the water is evaporated, wherein the evaporator 34 is supplied for this purpose with solar energy via a parabolic trough system 1 with thermal oil as the heat transfer medium.
  • the resulting vapor is then superheated in the superheater 35.
  • the energy required for this purpose can be generated, for example, by a parabolic trough system 1 or a solar tower 20, a molten salt being provided as the heat transfer medium.
  • the overheating is supported by a hot air generator 36, which may also be a solar tower system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Temperature (AREA)

Abstract

The invention relates to a method for solar overheating of vapour produced by solar energy, using different solar heat producers (1, 20), wherein the process with the lower maximum possible temperature is essentially used for vapour production and the process with the higher maximum possible temperature is essentially used for vapour overheating.

Description

Verfahren zur Überhitzung von Dampf Method of superheating steam
Die Erfindung betrifft ein Verfahren zur solaren Überhitzung von solar erzeugtem Dampf.The invention relates to a method for solar overheating of solar generated steam.
Der einfache Wasser-Dampf-Kreislauf eines konventionellen Kraftwerks besteht mindestens aus einer Speisewasserpumpe, einem Dampferzeuger, einer Turbine und einem Kondensator. Die Speisewasserpumpe pumpt Wasser in einen Dampferzeuger, der beispielsweise ein Kessel sein kann, in dem mittels eines Brennstoffs Wasser erhitzt wird. Der entstehende Dampf treibt beispielsweise eine stromerzeugende Turbine an. Anschließend wird der Dampf in einem Kondensator verflüssigt, so dass das entstehende Wasser erneut in den Kreislauf eingespeist werden kann. Der Wirkungsgrad einer derartigen Wärmekraftmaschine ist abhängig von den höchsten und niedrigsten Temperaturen im System, wobei der Wirkungsgrad desto höher ist, je größer die entsprechende Temperaturdifferenz ist. Im Zuge der zunehmenden Rohstoffknappheit und insbesondere aus Umweltschutzgründen liegt es im allgemeinen Interesse die Wirkungsgrade vorhandener Kraftwerke zu verbessern, und somit ihre Effizienz zu steigern.The simple water-steam cycle of a conventional power plant consists of at least a feedwater pump, a steam generator, a turbine and a condenser. The feed water pump pumps water into a steam generator, which may be, for example, a boiler in which water is heated by means of a fuel. The resulting steam, for example, drives a power-generating turbine. Subsequently, the vapor is liquefied in a condenser, so that the resulting water can be fed back into the circulation. The efficiency of such a heat engine is dependent on the highest and lowest temperatures in the system, the higher the efficiency, the higher the corresponding temperature difference. In the course of increasing scarcity of raw materials and in particular for environmental reasons, it is generally in the interest of improving the efficiencies of existing power plants, and thus to increase their efficiency.
Beispielsweise ist aus der DE 10 2005 036 792 A1 ein Verfahren zur Erzeugung von überhitztem Dampf bekannt, wobei in einer Hauptanlage im wesentlichen Satt- oder Nassdampf erzeugt wird, der in einer Nebenanlage überhitzt wird, wobei der Überhitzer der Nebenanlage in Abhängigkeit von der Dampfproduktion der Hauptanlage geregelt wird. Das vorgeschlagene Verfahren dient vor allem zur Steigerung des elektrischen Wirkungsgrades von Ersatzbrennstoffanlagen oder Atomkraftwerken.For example, DE 10 2005 036 792 A1 discloses a method for producing superheated steam, wherein substantially saturated or wet steam is generated in a main plant, which is superheated in a secondary plant, the superheater of the secondary plant depending on the steam production of Main facility is regulated. The proposed method is used primarily to increase the electrical efficiency of alternative fuel plants or nuclear power plants.
Nach dem Stand der Technik sind auch Solarthermiekraftwerke bekannt, die die Sonnenenergie dazu nutzen, ein Thermalöl als Wärmeträgermedium aufzuheizen, welches wiederum das Wasser in dem Wasserdampfkreislauf verdampft. Derzeit bekannte Thermalöle sind allerdings thermisch instabil und nur auf Temperaturen unterhalb von 400° C erhitzbar. In jüngster Zeit werden statt des Thermalöls Salz- schmelzen als Wärmeträgermedium verwendet, die eine wesentlich höhere Austrittstemperatur erlauben.According to the prior art, solar thermal power plants are also known which use the solar energy to heat a thermal oil as a heat transfer medium, which in turn evaporates the water in the steam cycle. However, currently known thermal oils are thermally unstable and can only be heated to temperatures below 400 ° C. Recently, instead of the thermal oil, salt used as a heat transfer medium, which allow a much higher exit temperature.
Es ist Aufgabe der vorliegenden Erfindung ein Verfahren zu schaffen, mit dem der Wirkungsgrad von Dampfkraftmaschinen weiter erhöht wird, wobei gleichzeitig umweltbelastende Mittel vermieden werden sollen.It is an object of the present invention to provide a method by which the efficiency of steam engines is further increased, at the same time polluting means to be avoided.
Diese Aufgabe wird durch das Verfahren nach Anspruch 1 gelöst. Erfindungsgemäß ist vorgesehen, dass zur solaren Überhitzung von solar erzeugtem Dampf unterschiedliche Solarthermieerzeuger eingesetzt werden, wobei der Prozess mit der niedrigen maximal möglichen Temperatur im Wesentlichen zur Dampferzeugung und der Prozess mit der höheren maximal möglichen Temperatur im Wesentlichen zur Dampfüberhitzung eingesetzt wird. Vorzugsweise wird die erzeugte Heißluft aus dem Prozess mit der höheren möglichen Temperatur durch Verwendung als Frischluft in einem Verbrennungsprozess weiter verbessert und zu noch höheren Temperaturen und Wirkungsgraden im Wasserdampfprozess geführt. Vorteilhafterweise ist zur Überhitzung von Dampf in einem Wasser-Dampf-Kreislauf eines Dampfkraftwerks vorgesehen, dass mindestens zwei unterschiedliche Solarthermieerzeuger verwendet werden, wobei mittels eines ersten Solarthermieerzeugers Dampf erzeugt wird und mittels eines weiteren Solarthermieerzeugers der Dampf überhitzt wird.This object is achieved by the method according to claim 1. According to the invention, different solar thermal generators are used for the solar overheating of steam generated by solar energy, the process with the low maximum possible temperature essentially being used for steam generation and the process with the higher maximum possible temperature essentially being used for steam superheating. Preferably, the generated hot air from the process with the higher possible temperature is further improved by using as fresh air in a combustion process and led to even higher temperatures and efficiencies in the steam process. Advantageously, it is provided for the superheating of steam in a water-steam cycle of a steam power plant, that at least two different solar thermal generator are used, wherein by means of a first solar thermal generator steam is generated and by means of another solar thermal generator, the steam is superheated.
Durch die Verwendung unterschiedlicher Solarthermieerzeugern für die Erhitzung von Wasser und die Überhitzung von Dampf kann der Wirkungsgrad des Dampfkraftwerkes erhöht werden, da die einzelnen Prozesse unabhängig voneinander und von der Temperatur optimal auf die jeweiligen Verhältnisse abgestimmt werden können.By using different solar thermal generators for the heating of water and the overheating of steam, the efficiency of the steam power plant can be increased because the individual processes can be adjusted independently of each other and the temperature optimally to the respective conditions.
Nach einer besonderen Ausführungsform ist vorgesehen, dass der erste Solarthermieerzeuger ein Parabolrinnensystem mit Thermalöl als Wärmeträgermedium ist. Ein Parabolrinnensystem besteht aus einem länglichen parabolförmigen Spiegel, der die Eigenschaft hat parallel einfallendes Licht in einem Brennpunkt zu bündeln. Entlang des Brennpunktes ist eine Leitung angeordnet, in der ein Wärmeträgermedium ge- leitet und durch die Einwirkung der Sonnenstrahlung erhitzt wird. Als Wärmeträgermedium kann beispielsweise Thermalöl verwendet werden. Es ist zwar bekannt, dass Thermalöle nur auf Temperaturen bis maximal 400° C erhitzbar sind, allerdings können insbesondere Parabolrinnensysteme mit Thermalölen sehr groß dimensioniert sein, so dass sie aufgrund der gewählten Größenordnung hohes technisches Optimierungspotential im Bereich des Wasser-Dampf-Kreislaufs durch beispielsweise mehrstufige Kondensat- und Speisewasservorwärmung besitzen.According to a particular embodiment, it is provided that the first solar thermal generator is a parabolic trough system with thermal oil as the heat transfer medium. A parabolic trough system consists of an elongated parabolic mirror, which has the property of concentrating parallel incident light in a focal point. Along the focal point, a line is arranged, in which a heat transfer medium ge and heated by the action of solar radiation. As a heat transfer medium, for example, thermal oil can be used. Although it is known that thermal oils can only be heated to temperatures of up to 400 ° C., parabolic trough systems with thermal oils, in particular, can be very large, so that they have high technical optimization potential in the area of the water-steam cycle due to the selected magnitude, for example by multi-stage Have condensate and feedwater pre-heating.
Als zweiter Solarthermieerzeuger ist vorzugsweise ein Solarturm oder ein Parabol- rinnensystem mit Salzschmelzen als Wärmeträger vorgesehen. Salzschmelzen sind geschmolzene Salze oder ionische Flüssigkeiten, die eine Austrittstemperatur von derzeit bis zu 565° C erlauben, so dass damit der Dampf überhitzt werden kann.As the second solar thermal generator, a solar tower or a parabolic trough system with salt melts is preferably provided as the heat transfer medium. Salt melts are molten salts or ionic liquids that allow an exit temperature of currently up to 565 ° C, so that the steam can be overheated.
Nach einer weiteren Ausführungsform ist vorgesehen, dass mittels Solartürmen mit Receivern Heißluft erzeugt wird, mittels der die Dampfüberhitzung unterstützt wird. Ein Solarturm besteht aus einem Turm, in dem das zu erhitzende Medium einige Meter oberhalb des Erdbodens entlang fließt oder gelagert ist. Um den Turm herum sind etliche hundert bis tausend bewegliche Spiegel angeordnet, die sich derart ausrichten lassen, dass sie einfallende Sonnenstrahlen in einem Punkt bündeln können. Damit kann das Wärmeträgermedium innerhalb des Turms erhitzt werden. Bei direkter Luftvorwärmung können Temperaturen von 700° C bis 1.000° C erzeugt werden, so dass die Überhitzung des Dampfs weiter erhöht werden kann.According to a further embodiment, it is provided that hot air is generated by means of solar towers with receivers, by means of which the steam overheating is supported. A solar tower consists of a tower in which the medium to be heated flows or is stored a few meters above the ground. Around the tower are several hundred to a thousand moving mirrors arranged, which can be aligned so that they can bundle incident sunbeams in one point. Thus, the heat transfer medium can be heated within the tower. With direct air preheating, temperatures of 700 ° C to 1,000 ° C can be generated, so that the overheating of the steam can be further increased.
Ein konkretes Ausführungsbeispiel wir im Folgenden anhand der Figuren erläutert.A concrete embodiment will be explained below with reference to the figures.
Dabei zeigt dieIt shows the
Fig.1a eine perspektivische Ansicht einer Parabolrinne,1a is a perspective view of a parabolic trough,
Fig. 1 b einen Querschnitt durch eine Parabolrinne,1 b is a cross section through a parabolic trough,
Fig. 2 eine Solarturmanlage undFig. 2 is a solar tower plant and
Fig. 3 eine schematische Ansicht eines Wasser-Dampf-Kreislaufs. Ein Parabolrinnensystem 1 weist mindestens einen parabelförmigen Spiegel 2 auf, in dessen Berennpunkt F eine Leitung 3 angeordnet ist, in der das Wärmeübertragungsmedium fließt. Parallel einfallendes Sonnenlicht 4 wird von dem parabelförmigen Spiegel 2 an den Reflexionspunkten 5 derart gebrochen, dass sich das Licht im Brennpunkt F bündelt, wobei der Brennpunkt F (bzw. in diesem Fall die Brennlinie) mit der Leitung 3 zusammenfällt. Derartige Anlagen können prinzipiell beliebig groß ausgestaltet werde. Insbesondere ist die Länge einer Parabolrinne 2 kaum begrenzt, wobei auch vorgesehen sein kann mehrere Parabolrinnen nebeneinander anzuordnen.Fig. 3 is a schematic view of a water-steam cycle. A parabolic trough system 1 has at least one parabolic mirror 2, in whose focal point F a line 3 is arranged, in which the heat transfer medium flows. Parallel incident sunlight 4 is refracted by the parabolic mirror 2 at the reflection points 5 in such a way that the light is concentrated at the focal point F, the focal point F (or in this case the focal line) coinciding with the line 3. Such systems can in principle be made arbitrarily large. In particular, the length of a parabolic trough 2 is scarcely limited, and provision may also be made for arranging several parabolic troughs next to one another.
Eine Solarturmanlage 20 besteht aus einem Turm 21 auf dem ein Receiver 22 angeordnet ist in dem das Wärmeübertragungsmedium in einer Rohrleitung 23 geleitet wird. Um den Solarturm herum sind Spiegeleinheiten 24 angeordnet, die jeweils ausrichtbare Spiegel 25 aufweisen. Das von der Sonne 26 emittierte Licht wird von den ausrichtbaren Spiegeln auf den Receiver 22 des Solarturms gelenkt, wodurch das Wärmeübertragungsmittel erhitzt wird.A solar tower system 20 consists of a tower 21 on which a receiver 22 is arranged, in which the heat transfer medium is conducted in a pipeline 23. Around the solar tower mirror units 24 are arranged, each having alignable mirrors 25. The light emitted by the sun 26 is directed by the orientable mirrors onto the receiver 22 of the solar tower, whereby the heat transfer medium is heated.
In Fig. 3 ist beispielhaft und schematisch ein möglicher Prozessablauf dargestellt. Der Wasser-Dampf-Kreislauf 31 besteht aus einer Speisewasserpumpe 32 die das Wasser in die Rohleitung 33 pumpt. In dem Verdampfer 34 wird das Wasser verdampft, wobei der Verdampfer 34 dazu mit Solarenergie über ein Parabolrinnensystem 1 mit Thermalöl als Wärmeübertragungsmedium versorgt wird. Der entstehende Dampf wird anschließend in dem Überhitzer 35 überhitzt. Die dazu notwendige Energie kann beispielsweise von einem Parabolrinnensystem 1 oder einem Solarturm 20 erzeugt werden, wobei als Wärmeübertragungsmedium eine Salzschmelze vorgesehen ist. Unterstützt wird die Überhitzung durch einen Heißlufterzeuger 36, der ebenfalls eine Solarturmanlage sein kann. Der überhitzte Dampf treibt im weiteren Verlauf des Kreislaufs eine Turbine 37 an, in der kinetische Energie in elektrische Energie oder in Wärme umgewandelt wird. Abschließend wird der Dampf in dem Kondensator 38 kondensiert, so dass die Speisewasserpumpe 32 das Wasser zurück in den Wasser-Dampf-Kreislauf 31 pumpen kann. FIG. 3 shows by way of example and schematically a possible process flow. The water-steam cycle 31 consists of a feedwater pump 32 which pumps the water into the pipe 33. In the evaporator 34, the water is evaporated, wherein the evaporator 34 is supplied for this purpose with solar energy via a parabolic trough system 1 with thermal oil as the heat transfer medium. The resulting vapor is then superheated in the superheater 35. The energy required for this purpose can be generated, for example, by a parabolic trough system 1 or a solar tower 20, a molten salt being provided as the heat transfer medium. The overheating is supported by a hot air generator 36, which may also be a solar tower system. The overheated steam drives a turbine 37 in the further course of the cycle in which kinetic energy is converted into electrical energy or heat. Finally, the steam is condensed in the condenser 38 so that the feedwater pump 32 can pump the water back into the water-steam circuit 31.

Claims

Ansprüche claims
1. Verfahren zur solaren Überhitzung von solar erzeugtem Dampf mit unterschiedlichen Solarthermieerzeugern, wobei der Prozess mit der niedrigen maximal möglichen Temperatur im Wesentlichen zur Dampferzeugung und der Prozess mit der höheren maximal möglichen Temperatur im Wesentlichen zur Dampfüberhitzung eingesetzt wird.A method for solar overheating of solar generated steam with different solar thermal generators, wherein the process with the low maximum possible temperature is used mainly for steam generation and the process with the higher maximum possible temperature substantially for steam superheating.
2. Verfahren nach Anspruch 1 , wobei die erzeugte Heißluft aus dem Prozess mit der höheren möglichen Temperatur durch Verwendung als Frischluft in einem Verbrennungsprozess weiter verbessert und zu noch höheren Temperaturen und Wirkungsgraden im Wasserdampf prozess geführt wird.2. The method of claim 1, wherein the generated hot air from the process with the higher possible temperature by using fresh air in a combustion process further improved and is led to even higher temperatures and efficiencies in the steam process.
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass zur Überhitzung von Dampf in einem Wasser-Dampf-Kreislauf (31 ) eines Dampfkraftwerkes zwei unterschiedliche Solarthermieerzeuger (1 , 20), wobei mittels eines ersten Solarthermieerzeugers (1 ,20) Dampf erzeugt wird und mittels eines weiteren Solarthermieerzeugers (1 ,20) der Dampf überhitzt wird.3. The method according to any one of claims 1 to 2, characterized in that for overheating of steam in a water-steam cycle (31) of a steam power plant, two different solar thermal generator (1, 20), wherein by means of a first solar thermal generator (1, 20) Steam is generated and by means of another solar thermal generator (1, 20) of the steam is overheated.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erste Solarthermieerzeuger (1 ,20) ein Parabolrinnensystem (1) mit Ther- malöl als Wärmeträgermedium ist.4. The method according to any one of claims 1 to 3, characterized in that the first solar thermal generator (1, 20) is a parabolic trough system (1) with thermal oil as the heat transfer medium.
5. Verfahren nach einem der Ansprüche 1 oder 4, dadurch gekennzeichnet, dass der zweite Solarthermieerzeuger (1 ,20) ein Solarturm (20) oder eine Parabolrinnensystem (1 ) mit Salzschmelzen als Wärmeträger ist.5. The method according to any one of claims 1 or 4, characterized in that the second solar thermal generator (1, 20) is a solar tower (20) or a parabolic trough system (1) with molten salts as the heat transfer medium.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mittels Solartürmen (20) mit Receivertechnik Heißluft erzeugt wird, mittels der die Dampfüberhitzung unterstützt wird. 6. The method according to any one of claims 1 to 5, characterized in that by means of solar towers (20) with receiver technology hot air is generated, by means of which the steam overheating is supported.
EP09740035A 2008-09-19 2009-08-31 Method for overheating vapour Withdrawn EP2373925A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008048096A DE102008048096A1 (en) 2008-09-19 2008-09-19 Method of superheating steam
PCT/DE2009/001225 WO2010031375A2 (en) 2008-09-19 2009-08-31 Method for overheating vapour

Publications (1)

Publication Number Publication Date
EP2373925A2 true EP2373925A2 (en) 2011-10-12

Family

ID=42039938

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09740035A Withdrawn EP2373925A2 (en) 2008-09-19 2009-08-31 Method for overheating vapour

Country Status (4)

Country Link
US (1) US20110162361A1 (en)
EP (1) EP2373925A2 (en)
DE (1) DE102008048096A1 (en)
WO (1) WO2010031375A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2345379B1 (en) * 2009-03-20 2011-09-16 Abengoa Solar New Technologies S.A. SOLAR PLANT COMBINED AIR AND STEAM TECHNOLOGY.
WO2012050788A2 (en) 2010-09-30 2012-04-19 Dow Global Technologies Llc Process for producing superheated steam from a concentrating solar power plant
DE102011052998A1 (en) * 2011-08-25 2013-02-28 Hitachi Power Europe Gmbh By means of a heat transfer medium heatable heat exchanger tube of a solar thermal system and heat transfer method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US290851A (en) * 1883-12-25 Apparatus for storing and distributing solar heat
US4010732A (en) * 1974-06-15 1977-03-08 Agency Of Industrial Science & Technology Multi-stage system for accumulation of heat from solar radiant energy
JPS6048604B2 (en) * 1976-11-09 1985-10-28 工業技術院長 solar power generation system
US4265223A (en) * 1978-09-18 1981-05-05 The Badger Company, Inc. Method and apparatus for utilizing solar energy
US5417052A (en) * 1993-11-05 1995-05-23 Midwest Research Institute Hybrid solar central receiver for combined cycle power plant
US7331178B2 (en) * 2003-01-21 2008-02-19 Los Angeles Advisory Services Inc Hybrid generation with alternative fuel sources
DE10326027B4 (en) * 2003-06-02 2007-02-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Plant for the evaporation of a liquid heat transfer medium and steam power plant and latent heat storage
US6957536B2 (en) * 2003-06-03 2005-10-25 The Boeing Company Systems and methods for generating electrical power from solar energy
DE10346255A1 (en) * 2003-09-25 2005-04-28 Deutsch Zentr Luft & Raumfahrt Process for generating superheated steam, steam generation stage for a power plant and power plant
US7296410B2 (en) * 2003-12-10 2007-11-20 United Technologies Corporation Solar power system and method for power generation
US7325401B1 (en) * 2004-04-13 2008-02-05 Brayton Energy, Llc Power conversion systems
DE102005036792A1 (en) 2005-08-02 2007-02-08 Ecoenergy Gesellschaft Für Energie- Und Umwelttechnik Mbh Method and device for generating superheated steam
US8365529B2 (en) * 2006-06-30 2013-02-05 United Technologies Corporation High temperature molten salt receiver
US7779635B2 (en) * 2007-10-31 2010-08-24 Wen Chang Lin Solar energy power generator
US8033110B2 (en) * 2008-03-16 2011-10-11 Brightsource Industries (Israel) Ltd. Solar power generation with multiple energy conversion modes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010031375A2 *

Also Published As

Publication number Publication date
WO2010031375A2 (en) 2010-03-25
DE102008048096A1 (en) 2010-07-15
US20110162361A1 (en) 2011-07-07
WO2010031375A3 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
EP2419634B1 (en) Steam power plant having solar collectors
EP2342458B1 (en) Solar hybrid power plant with gas and steam power plant
EP0986695B1 (en) Energy generating installation
WO2008113482A2 (en) Method and device for fired intermediate overheating during direct solar vapourisation in a solar thermal power station
DE102010041903B4 (en) Continuous steam generator with integrated reheater
EP2521861A2 (en) Solar thermal power plant using indirect evaporation and method for operating such a solar thermal power plant
EP2467601B1 (en) Solar thermal power plant having a heat exchanger in the feedwater preheating section and method for operating the power plant
EP1984624A1 (en) Method and device for a targeted increase in the electric energy production of a heliothermal power station
EP0856104B1 (en) Energy-generation process and power station for carrying out the process
DE3017699A1 (en) SOLAR POWER PLANT WITH A SOLAR HEATER ARRANGED ON A TOWER
EP2553244A1 (en) Method for increasing the efficiency of a power plant equipped with a gas turbine, and power plant for carrying out the method
EP2373925A2 (en) Method for overheating vapour
DE102010040208B4 (en) Solar thermal continuous evaporator heating surface with local cross-sectional constriction at its inlet
WO2015003898A1 (en) Pre-heating system and method with such a pre-heating system
WO2012028514A2 (en) Solar-thermal absorber for direct evaporation, in particular in a solar tower power station
WO2012025284A1 (en) Method for operating a steam turbine of a solar thermal power station, and boiler system for carrying out the method
WO2012028517A2 (en) Solar-thermal continuous flow evaporator
EP2177757A1 (en) Method and device for intermediate heating with saturated steam for direct solar damping in a solar thermal power plant
DE102011004271A1 (en) Solar-thermal continuous steam generator for use in solar tower-power plant utilized to generate electricity, has steam generator pipe whose flow cross-section and passage area are varied in flow direction of medium to be evaporated
DE102011004276A1 (en) Continuous evaporator for steam generator of solar tower power plant, has steam generator pipes arranged upstream of inlet header and comprising constricted local cross-sections at inlet
DE102012103621A1 (en) Solar-thermal power plant e.g. paraboloid power plant, for electricity generation, has heat accumulators comprising electrical heater attached to public, external electricity main and/or power plant-self electricity generator
DE102012006729A1 (en) Solar thermal power plant for converting solar energy into electrical energy, has multiple devices for conversion of solar radiation into heat, which are optimally adapted to respective temperature of energy-absorbing mediums
DE102011075932A1 (en) Steam generator for solar-thermal power plant, has heating surface pipe arranged in meander form, where free cross section of heating surface pipe is increased in flow direction of medium to be evaporated
WO2012041980A2 (en) Apparatus and method for producing superheated steam by means of a solar-thermally operated reheater and use of the superheated steam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

R17D Deferred search report published (corrected)

Effective date: 20110929

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

DAX Request for extension of the european patent (deleted)
18D Application deemed to be withdrawn

Effective date: 20120301