EP2373868A1 - Composant tubulaire de garniture de forage et garniture de forage correspondante - Google Patents
Composant tubulaire de garniture de forage et garniture de forage correspondanteInfo
- Publication number
- EP2373868A1 EP2373868A1 EP10703305A EP10703305A EP2373868A1 EP 2373868 A1 EP2373868 A1 EP 2373868A1 EP 10703305 A EP10703305 A EP 10703305A EP 10703305 A EP10703305 A EP 10703305A EP 2373868 A1 EP2373868 A1 EP 2373868A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- tube
- bore
- diameter portion
- drill string
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004891 communication Methods 0.000 claims abstract description 66
- 238000005553 drilling Methods 0.000 claims abstract description 48
- 238000005452 bending Methods 0.000 claims abstract description 13
- 239000012530 fluid Substances 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 230000008054 signal transmission Effects 0.000 claims abstract description 4
- 230000036961 partial effect Effects 0.000 claims abstract description 3
- 230000005489 elastic deformation Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 abstract description 8
- 230000006835 compression Effects 0.000 abstract description 8
- 230000001939 inductive effect Effects 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011798 excavation material Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004311 natamycin Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
- E21B17/023—Arrangements for connecting cables or wirelines to downhole devices
Definitions
- the invention relates to the field of research and exploitation of oil or gas fields in which rotary drillings made of tubular components such as standard and possibly heavy drilling rods and other tubular elements are used, in particular drill collars at the downhole assembly, assembled end to end, according to the needs of the drilling.
- the invention relates to a shaped member for rotary drilling equipment, such as a standard or heavy rod or a drill collar, disposed in the body of a rotary drill string.
- Such trimmings may in particular make it possible to carry out deviated drilling, that is to say drillings whose inclination can be varied with respect to the vertical or the direction in azimuth during drilling. Deviated drilling can today reach depths of the order of 2 to 4 km and horizontal distances of the order of 2 to 14 km.
- the downhole assemblies near the bit may be provided with measuring instruments.
- the knowledge of what is happening in the hole remains very incomplete.
- Stems were provided with data transmission systems with an electromagnetic loop at each end of the rod and a wire link between the electromagnetic loops to trace the data provided by the measuring instruments.
- the wire connection may be provided in the thickness of the wall of the tube forming the central portion of the rod.
- the wall of the tube being itself the thinnest possible for reasons of mass, cost and internal diameter, a longitudinal hole in the wall can result in excessive embrittlement of the tube. Moreover, the machining of such a hole is difficult and relatively expensive.
- the wire connection may be disposed in the bore of a drill pipe.
- the wired connection must then be protected against the wear caused by the circulation of the drilling mud inside the stem or against the deformations resulting from the pressure of the mud or resulting from the axial stresses to which the rod can be subjected ( traction, compression, bending).
- Various solutions have been proposed: coaxial cable stretched at its ends, cable placed between the bore of the drill pipe and a tubular liner pressed against the bore. The Applicant has found during her research that these various solutions all had disadvantages, for example that they could significantly reduce the flow section and therefore increase the pressure losses or be complex to implement.
- the invention improves the situation.
- a tubular drill string component for drilling a hole with circulating a drilling fluid under pressure within said component comprises a first end comprising a female thread, a second end comprising a male thread, and a zone central substantially tubular, in particular of outer diameter less than or equal to the outer diameter of at least the first or the second end.
- the component comprises a communication tube disposed at least in the central zone and in contact with a bore of the central zone.
- the component typically includes at least one signal transmission cable (also called a communication cable) disposed in the communication tube.
- the communication tube comprises a body formed of at least one metal ribbon disposed with an annular component.
- the body comprises, in section along a plane passing through the axis of the tube, at least two axially elongated sections partially overlapped with an axial clearance chosen to absorb the maximum elastic deformation of the component under axial compression force and / or bending.
- the axial clearance is chosen so that the elastic deformations of the component, which is typically made of steel, are transmitted only slightly in the metal strip. This can be achieved even with very small clearances, ie games typically between a few hundredths of a millimeter (i.e. typically between 0.03 and 0.2 mm) for narrow ribbons (ie that is typically between 2 and 5 mm wide) and a few tenths of a millimeter (i.e. typically between 0.3 and 2 mm) for ribbons a few tens of millimeters wide (that is to say typically between 20 and 50 mm).
- a drill string may comprise a drill string and a downhole assembly, the downhole assembly being provided with a drill bit.
- the shank is disposed between the downhole assembly and a liner drive member.
- the drill string includes tubular components for drilling with circulation of a pressurized drilling fluid within said component.
- the drilling fluid typically descends within the component and rises out of the component, in a direction from the bottom of a borehole to its top, thereby creating a flow around the component.
- the component comprises two ends respectively provided with a female thread and a male thread.
- the component comprises a substantially tubular central zone, in particular of outside diameter less than or equal to the outside diameter of at least one of the two ends, and a communication tube disposed at least in the central zone and in contact with a bore of said central area.
- the communication tube comprises a body formed of at least one metal ribbon disposed with an annular component.
- the body comprises, in section along a plane passing through the axis of the tube, at least two axially elongated sections partially overlapped with an axial clearance chosen to absorb the maximum elastic deformation of the component under axial compression force and / or bending.
- FIG. 3 is a view of a communication tube, in axial section for the central part, in elevational side view for the lower part of the figure;
- FIG. 4 is an axial sectional view of a communication tube
- FIG. 5 is an axial sectional view of a communication tube.
- a drilling rig When digging a well, a drilling rig is placed on the ground or on a platform at sea to drill a hole in the soil layers.
- a drill string is suspended in the hole and includes a drill bit such as a drill bit at its lower end.
- the drill string is rotated by a drive mechanism, actuated by means not shown, for example hydraulic.
- the drive mechanism may include a drive shaft at the upper end of the drill string.
- the drill string is suspended from a hook attached to a muffle by means of the drive rod and a rotating head for rotation of the drill string relative to the hook.
- a drilling fluid or mud is stored in a tank.
- a slurry pump delivers drilling fluid to the interior of the drill string through an orifice of the injection head, forcing the drilling fluid to flow downwardly through the drill string.
- the drilling fluid then exits the drill string through bit channels and then back up into the generally annular form space formed between the outside of the drill string and the wall of the hole.
- the drilling fluid lubricates the drill bit and moves excavated excavation material through the drill bit from the bottom of the hole to the surface.
- the drilling fluid is then filtered for reuse.
- the downhole assembly may include a drill bit and drill bits, ensuring by their mass the support of the bit against the bottom of the hole.
- the downhole assembly may also include measurement sensors, such as pressure, temperature, stress, tilt, resistivity, etc. Signals from the sensors can be brought to the surface by a wired telemetry system.
- a plurality of magnetic couplers are interconnected within the drill string to form a communication link. We can refer to US Pat. No. 6,641,434, for example. Both ends of a drilling component are equipped with communication couplers. The two couplers of the component are connected by a cable, substantially along the length of the component.
- the cable can be mounted in a longitudinal hole in the thickness of the component wall.
- the thickness of the wall is locally decreased, resulting in a weakening of certain mechanical characteristics which can be critical.
- the cable may also travel in the bore of the drilling component in contact with the drilling fluid. Drilling mud under high pressure can cause rapid wear of the cable resulting in low service life and high maintenance costs. The sludge is also likely to damage the cable by the pressure it exerts on said cable.
- the cable may be disposed in the bore of the drilling component under special protection, but the types of protection contemplated have disadvantages. Such types of cable and protection are described in particular in US 6,641,434, US 6,670,880, US 6,717,501, US 20050115717 or US 20060225926.
- US Patent 6717501 discloses a wired connection in the form of a coaxial cable protected in the central part by a sheath of PEEK ® type organic material that can be glued against the bore of the rod.
- US application 20060225926 proposes to place a wire connection between the bore of the drill pipe and a cylindrical tubular liner hydroformed against the bore of the rod. This solution, however, requires the implementation of a fairly heavy technology and therefore expensive. It also causes a decrease in the section of the bore of the rod and causes an increase in pressure drop in service resulting in a reduction in the flow rate of the drilling muds and in the speed of digging the hole, for a pumping installation. sludge, which translates into higher costs.
- US Application 20050115717 also provides a wire connection placed between the bore of the drill pipe and a jacket obtained from a strip whose width is greater than the perimeter of the bore of the rod, bent and elastically pressed against the bore of the rod. But the strip formed in the liner causes a decrease in the section of the bore of the rod, which results in increased costs.
- the invention aims in particular to provide a drilling component for signal transmission between two end couplers retaining a high passage section and respecting the integrity of the less thick parts of the component wall while providing adequate protection for the communication cable.
- the end couplers can be of any type (for example of the magnetic, inductive or electrical type, or any combination of these types, such as an electromagnetic coupler).
- the Applicant discovered during his research, that the protection around the communication cable disposed in the bore of the component was likely to break not only under the effect of abrasion of the drilling mud, but also under the effect of the deflection, in particular in elongation and bending of the component itself.
- a component must support all the weight of all components at a lower level. It is the same at the rise of the drill string: a pull is then exerted on 1 whole of the seal from the surface. The tubular component can then lengthen under the tensile force resulting in a risk of rupture of the protection surrounding the communication cable.
- the risk of rupture also occurs during bending of the drilling component, for example under the effect of deviated drilling, S-shaped drill portions ("dog-legs") to avoid certain formations, etc., the bending of translating by putting under traction the parts situated in extrados.
- the component can be subjected to axial compressive forces, for example at the drill collars which press against the drill bit or in the intrados portions of rods subjected to flexion. It is then necessary to prestress the cable in tension to prevent protrusion of the cable in the bore of the rod subjected to compression, but the cable may then break during tensile stresses. This is notably what happens during rotary drilling deviated, the generatrices of the component then passing alternately the intrados on the extrados, and the cyclic character amplifies the risks of rupture (fatigue by rotary bending). Bonding the cable against the bore does not solve the problem because the glue cracks quickly under cyclic stress.
- US 20050092499 proposes a coaxial cable drawn by stretching in a protective metal tubular sheath arranged helically and pressed against the inner bore of the rod by an axial compressive force on its ends.
- the sheathed cable according to this document shows sharp changes in direction, where the sheath enters the wall of the component, which also creates the risk of rupture of the sheath and the cable under cyclic cyclic bending stresses.
- a drill string 1 includes a bottom hole assembly 2 and a drill string 3.
- the downhole assembly 2 and the drill string 3 are, for example, Connected by a connector element 4.
- the downhole assembly 2 may comprise a drill bit 5 and one or more drill collars 6.
- the or the drill rods 6 ensure by their high mass that the drill bit 5 bears against the bottom of the hole.
- the shank 3 comprises a plurality of rods 7 which may comprise standard rods obtained by welding assembly of a male end, a long tube and a female end on the opposite side to the male end to form by assembling tight tubular threaded joints with metal sealing surfaces and possibly heavy rods.
- a rod may be of the type according to the API 7 specification of the American Petroleum Institute or according to manufacturers' own drawings, for example with ends illustrated by US6513840 or US7210710 to which the reader is referred.
- the drill string 1 may be equipped with sensors. More specifically, the downhole assembly may be provided with components provided with pressure, temperature, mechanical stress, tilt, resistivity, etc. sensors. Other elements of the drill string 1, for example, one or more drill collars 6, one or more rods 7 may also be provided with measuring sensors.
- the transmission of information between the sensors and the surface requires a high data rate, that can not be provided by a wireless transmission by pressure pulses in the sludge, and in real time, that can not provide a storage in memory at proximity of the sensor or sensors.
- the document FR 2 883 915 describes a rod provided with an expandable tubular liner sleeve.
- a cable is disposed in a soleplate formed between the liner sleeve and the bore and is connected at each end to an inductive coupler adapted to transmit a signal to another inductive coupler of another rod connected to the first.
- the invention aims to provide a drilling element, including a rod, a heavy rod, a drill collar, etc. equipped with a communication cable protected against drilling mud circulating inside the rod and capable of accompanying the deformations of the rod with preservation of the integrity of the cable and the protection.
- a rod 7 comprises a male end 8 and a tubular body 9.
- the tubular body 9 can be connected on the opposite side to a not shown female end.
- the male end 8 and the tubular body 9 may be welded, in particular by friction.
- the male end 8 comprises a male thread 10 formed on an outer surface, for example substantially frustoconical.
- the male end 8 also comprises a bore 11, an outer surface 12, a shoulder 13 for example substantially radial, between the male thread and the outer surface 12 and an end surface 14, for example substantially radial.
- the bore 11 and the outer surface 12 may have cylindrical shapes of revolution and be concentric.
- the male end 8 is connected to the tubular body 9 by a substantially frustoconical inner surface 15 and a substantially frustoconical outer surface 16.
- the bore 9a of the tubular body 9 is here (in the case of a standard drill rod) of diameter greater than the diameter of the bore 11.
- the outside diameter of the tubular body 9 is here smaller than the diameter of the outer surface 12 8 may be different for outer surface and bore diameters in the case of heavy rods or drill pipe.
- the rod 7 also comprises a coupler 17 which, in the example of FIG. 2, is an inductive coupler arranged in an annular groove formed in the male end 8 from the end surface 14.
- the annular groove may have a generally rectangular section with a depth in the direction of the shaft axis greater than its width in the radial direction.
- the inductive coupler 17 is connected to a communication cable 18 extending along the length of the rod 7 of the inductive coupler 17 to another inductive coupler disposed on the side of the female end.
- the communication cable 18 passes through a hole parallel to the axis and substantially traversing the length of the male end 8.
- the passage hole of the communication cable 18 may have a slight inclination, for example with respect to a plane passing through the axis.
- the passage hole of the communication cable 18 opens on one side into the bottom of the housing groove of the inductive coupler 17 and The other side opens into the connecting surface 15 between the male end 8 and the tubular body 9.
- the communication cable 18 can thus be connected to the inductive coupler 17 in the bottom of the groove housing said inductive coupler 17 and is protected against the drilling mud circulating in the bore of the rod 7 by the material thickness of the male end 8.
- the rod 7 comprises a communication tube 19 surrounding the communication cable 18 in the zone of the tubular body
- the communication tube 19 can be in contact with the bore 9a of the tubular body 9.
- the communication tube 19 can be fixed, for example, by fitting into an enlarged area of the passage hole of the communication cable 18 in the vicinity of the connecting surface 15.
- the communication tube 19 may have an end fitted into the passage hole of the communication cable 18, an opposite end fitted into the corresponding hole of the female end of the rod 7 and a part running in the bore of the tubular body 9.
- the communication tube 19 is in the form of a ribbon disposed helically surrounding the communication cable 18.
- the ribbon is essentially metallic, for example mild steel type E235 Euronorm or steel austenitic stainless steel type AISI 304L, and is typically shaped.
- the ribbon comprises, in section along a plane passing through the axis of the tube, a large diameter portion 20 and a small diameter portion 21 axially elongated.
- the large diameter portion of a section surrounds a small diameter portion 21 of a neighboring section.
- the notion of section of the communication tube 19 appears on the portion shown in section along an axial plane and this even while the communication tube can be formed of a single ribbon arranged in a spiral.
- the large-diameter portion 20 of a rank N segment surrounds the small-diameter portion 21 of a N-1 rank section.
- the small-diameter portion 21 of the N-section is surrounded by the part of large diameter 20 of the section of rank N + 1.
- the large diameter portion 20 and the small diameter portion 21 of a section are connected by a transition zone 22.
- the transition zone 22 may have a thickness similar to the thickness of the large diameter portion 20 and the portion of small diameter 21.
- the transition zone 22 may be substantially radial or substantially frustoconical.
- the communication tube 19 may be manufactured by a method comprising a step of burning a metal strip thus forming the transition zone 22 and a shaping step around a rigid mandrel having substantially the diameter of the communication cable 18 .
- the communication tube 19 has an outer surface formed by the large-diameter portions 20 of each section and a portion of the transition zone 22, the non-visible part of which is covered. by the part of large diameter 20 of the next section.
- the communication cable 18 is then covered by the communication tube 19 forming a shield. Due to its helical structure, the communication tube 19 can be elastically stretched easily.
- the elastic stretching of the communication tube 19 may be expressed as a percentage of its length, for example greater than 2%. This rate of elastic stretching is much greater than the rate of elastic stretching of the body of the rod 7.
- the communication tube 19 can accompany said elongation and this in the elastic domain.
- the tube of communication 19 can also contract elastically easily under the influence of compressive stresses. All that is required is that the axial clearance between two consecutive sections is sufficient to absorb the local contraction.
- the total contraction that can absorb the communication tube 19 is equal to said axial play multiplied by the number of sections.
- the axial jue between each section of the turn can be very small, or typically of the order of the pitch of the coil divided by 200 in the case of a steel component. For example, if the pitch of the turn is 20 mm, the axial clearance between the sections of the turn could be of the order of 0.1 mm. In the case of a component made of a softer material than steel, this clearance could be increased to compensate for the greater deformability of the component, typically in the same proportions as the ratio between the modulus of elasticity of the steel and the alternative material.
- the sections of the communication tube 19 having a wide overlap, of the order of 25 to 50% of the length of a section, the communication tube ensures the recovery and protection of the communication cable 19 even in an elastically elongated state .
- the risk of rupture of the communication tube 19 under the effect of excessive elongation in operation, vibration, compression, etc. is extremely weak.
- the communication tube 19 may have an outer diameter of the order of 4 to 10 mm.
- the communication tube 19 occupies a small portion of the flow section provided by the tubular body 9 of the rod 7. The flow of the drilling mud is not significantly impeded.
- the communication tube 19 comprises a plurality of partially overlapping rings 23.
- a ring 23 or sleeve includes a thick central portion 24, a first end portion 25 comprising an outer surface of smaller diameter than the outer surface of the central portion 24 and a bore substantially in the extension of the bore of the central portion 24 and a second portion of 26 end opposite the end portion 25 and having an outer surface substantially in the extension of the outer surface of the central portion 24 and a bore of diameter greater than the diameter of the bore of the central portion 24.
- the diameter of the bore of the second end portion 26 is greater than or equal to the diameter of the outer surface of the first end portion 25 thus allowing interlocking and overlapping of one end of a ring 23 by the corresponding one of a ring 23 next.
- the axial play again is typically of the order of the length of a ring 23 divided by 200. For example, if the ring 23 has a length of 200 mm, the axial clearance should be of the order of 1 mm.
- the outer surface of the end portion 25 is substantially cylindrical.
- the bore of the second end portion 26 may also be cylindrical. To promote a certain angular displacement between the axes of two successive rings, it can be provided that one or both surfaces in contact are slightly curved.
- the rings 23 may be made of steel.
- the communication tube 19 can thus lengthen while maintaining its function of protecting the communication cable 18.
- the bore of the second end portion 26 has a diameter greater than the diameter of the outer surface of the first end portion 25 and the free ends of said portions 25 and 26 are slightly folded respectively towards the outside and towards the inside, ensuring a mutual restraint by diametrical interference beyond a relative movement for a predetermined distance from the ring 23.
- the communication tube 19 is here equipped with a bellows 27.
- the bellows 27 is elastic.
- the bellows 27 may be made of synthetic material, rubber or elastic metal alloy.
- the bellows 27 has a thickness substantially less than the thickness of a ring 23.
- the bellows 27 is fitted on the outer surface of the central portion 24 of a ring 23 and on the outer surface of the central portion 24 of a another ring 23 neighbor.
- the bellows 27 covers the junction zone between two rings 23 while ensuring their axial retention. The radial retention between the rings is ensured by the mutual overlap of the end portions 25 and 26 of the two adjacent rings 23.
- the rings 23 have a structure similar to that of the embodiment illustrated in Figure 4.
- the bellows 28 is disposed in the bore of the central portions 24 of two rings 23 neighbors. The bellows 28 is thus less exposed to abrasion by the drilling mud.
- the bellows 28 can more easily be made of a material that is economical and of high elasticity while offering satisfactory durability due to its lower exposure to abrasion.
- the folds of the bellows 27 of Figure 4 extend radially while those of the bellows 28 of Figure 5 extend axially.
- Axially pleated bellows may be implemented on the outer surface of the communication tube 19 and bellows radial folds in the bore of this tube. We can still consider bellows without initial folds if the material of which they are made is sufficiently flexible.
- the central portion of the rings may have substantially the same thickness as the end portions and be connected thereto by substantially radial or frustoconical transition portions.
- the outer surface and bore diameters of the communication tube 19 are then not constant over the length of the communication tube 19.
- a tubular drill string component may comprise a female end, a male end and a tubular central portion connecting the female end and the male end with a shielded communication conduit disposed in the tubular portion.
- the shielded conduit comprises a body formed with at least one annular component and comprising in section along a plane passing through the axis of the pipe (typically the communication tube) at least two axially elongated sections partially overlapping each other with a chosen axial clearance to absorb the maximum elastic deformation of the component under axial compression and / or bending stress.
- Each section may comprise, in section along a plane passing through the axis of the pipe, a large diameter portion and a small diameter portion, both elongated axially.
- the large diameter portion may surround a small diameter portion of a neighboring section.
- the inner surfaces of the small diameter portions form the bore of the pipe.
- the large diameter portion may surround the neighboring small diameter portion with mutual contact.
- the communication tube (pipe) can be in the form a metal ribbon arranged in helical coils.
- the communication tube may be in the form of a metal ribbon arranged in a ring, the tube comprising a plurality of interlocking annular elements.
- Each annular member may include a central portion, a large diameter bore end portion, and a small diameter outer surface end portion.
- the thickness of the ribbon may be between 0.1 and 3 mm.
- the large diameter portion and the small diameter portion may have substantially equal axial dimensions.
- the communication tube may comprise a flexible layer disposed in the tube in contact with its bore.
- the flexible layer may take the form of a bellows, as illustrated, for example, in Figures 4 and 5.
- the communication tube may comprise a flexible layer disposed around its outer surface.
- the flexible layer may have folds extending radially or axially.
- the partial mutual overlap of the sections may be greater than the maximum elastic deformation of the component under axial compression and / or bending stress.
- the communication tube may be disposed longitudinally or helically against the bore of the central portion of the tubular drilling component.
- One can thus compose a drill string comprising a body (typically a drill string) and a set of downhole provided with a drill bit.
- the body is disposed between the downhole assembly and a liner driving member, said body comprising tubular components as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Primary Cells (AREA)
Abstract
Composant tubulaire de garniture de forage, pour le forage d'un trou avec circulation d'un fluide de forage autour dudit composant (7) et dans un sens allant d'un fond de trou de forage vers la surface, ledit composant comprenant une première extrémité comprenant un filetage femelle, une deuxième extrémité (8) comprenant un filetage mâle, et une zone centrale (9) sensiblement tubulaire, ledit composant comprenant un tube de communication (19) disposé au moins dans la zone centrale et en contact avec un alésage de la zone centrale, un câble de transmission de signaux (18) étant disposé dans le tube, caractérisé par le fait que le tube de communication comprend un corps formé d'au moins un ruban métallique disposé avec une composante annulaire, le corps comprenant, en section selon un plan passant par l'axe du tube, au moins deux tronçons allongés axialement, à recouvrement mutuel partiel avec un jeu axial choisi pour absorber la déformation élastique maximale du composant sous effort de compression axiale et/ou de flexion.
Description
Composant tubulaire de garniture de forage et garniture de forage correspondante
L'invention relève du domaine de la recherche et de l'exploitation de gisements pétroliers ou gaziers dans lesquels on utilise des garnitures de forage rotatif constituées de composants tubulaires tels que des tiges de forage standard et éventuellement lourdes et d'autres éléments tubulaires, notamment des masse-tiges au niveau de l'ensemble de fond de trou, assemblés bout à bout, selon les besoins du forage .
L'invention concerne plus particulièrement un élément profilé pour un équipement de forage rotatif, tel qu'une tige standard ou lourde ou une masse-tige, disposé dans le corps d'un train de tiges de forage rotatif.
De telles garnitures peuvent permettre en particulier de réaliser des forages déviés, c'est-à-dire des forages dont on peut faire varier 1 ' inclinaison par rapport à la verticale ou la direction en azimut, pendant le forage. Les forages déviés peuvent aujourd'hui atteindre des profondeurs de l'ordre de 2 à 4 km et des distances horizontales de l'ordre de 2 à 14 km.
Dans le cas de forages déviés de ce genre, comportant des tronçons pratiquement horizontaux, les couples de frottement dus à la rotation des trains de tiges dans le puits peuvent atteindre des valeurs très élevées au cours du forage. Les couples de frottement peuvent remettre en cause les équipements utilisés ou les objectifs du forage. Les couples
de frottements peuvent ainsi être tels qu'ils entrainent une impossibilité de poursuivre le forage.
Pour mieux appréhender les événements se produisant au fond du trou, les ensembles de fond de trou, à proximité du trépan peuvent être munis d'instruments de mesure. Toutefois, la connaissance de ce qui se passe dans le trou reste très incomplète .
Des tiges ont été munies de systèmes de transmission de données avec une boucle électromagnétique à chaque extrémité de la tige et une liaison filaire entre les boucles électromagnétiques pour remonter les données fournies par les instruments de mesure. La liaison filaire peut être prévue dans l'épaisseur de la paroi du tube formant la partie centrale de la tige. Toutefois, la paroi du tube étant elle- même la plus mince possible pour des raisons de masse, de coût et de diamètre intérieur, un trou longitudinal ménagé dans la paroi peut aboutir à une fragilisation excessive du tube. Par ailleurs, l'usinage d'un tel trou est difficile et relativement onéreux.
Alternativement, la liaison filaire peut être disposée dans l'alésage d'une tige de forage. La liaison filaire doit alors être protégée contre l ' usure provoquée par la circulation de la boue de forage à l'intérieur de la tige ou contre les déformations résultant de la pression de la boue ou résultant des sollicitations axiales auxquelles la tige peut être soumise (traction, compression, flexion) . Diverses solutions ont été proposées : câble coaxial tendu au niveau de ses extrémités, câble placé entre l'alésage de la tige de forage et une chemise tubulaire plaquée contre l'alésage. La demanderesse a constaté au cours de ses recherches que ces diverses solutions présentaient toutes des inconvénients, par
exemple qu'elles pouvaient significativement réduire la section d'écoulement et par conséquent augmenter les pertes de charge ou encore être complexes à mettre en œuvre.
L'invention vient améliorer la situation.
Un composant tubulaire de garniture de forage pour le forage d'un trou avec circulation d'un fluide de forage sous pression à l'intérieur dudit composant comprend une première extrémité comprenant un filetage femelle, une deuxième extrémité comprenant un filetage mâle, et une zone centrale sensiblement tubulaire, notamment de diamètre extérieur inférieur ou égal au diamètre extérieur d'au moins la première ou la deuxième extrémité. Le composant comprend un tube de communication disposé au moins dans la zone centrale et en contact avec un alésage de la zone centrale. Le composant inclut typiquement au moins un câble de transmission de signaux (également appelé câble de communication) disposé dans le tube de communication. Le tube de communication comprend un corps formé d'au moins un ruban métallique disposé avec une composante annulaire. Le corps comprend, en section selon un plan passant par l'axe du tube, au moins deux tronçons allongés axialement, à recouvrement mutuel partiel avec un jeu axial choisi pour absorber la déformation élastique maximale du composant sous effort de compression axiale et/ou de flexion. Le jeu axial est choisi de façon à ce que les déformations élastiques du composant, lequel est typiquement en acier, ne se transmettent que faiblement dans le ruban métallique. Cela peut être atteint même avec des jeux très faibles, à savoir des jeux typiquement compris entre quelques centièmes de millimètre (c'est-à-dire typiquement entre 0,03 et 0,2 mm) pour des rubans étroits (c'est-à-dire typiquement entre 2 et 5 mm de large) et quelques dixièmes de millimètre (c'est-à-dire typiquement entre 0,3 et 2 mm) pour des rubans
de quelques dizaines de millimètre de large (c'est-à-dire typiquement entre 20 et 50 mm) .
Une garniture de forage peut comprendre un train de tige et un ensemble de fond de trou, l'ensemble de fond de trou étant pourvu d'un trépan. Le train de tige est disposé entre 1 ' ensemble de fond de trou et un organe d ' entraînement de la garniture. Le train de tige comprend des composants tubulaires pour le forage avec circulation d'un fluide de forage sous pression à l'intérieur dudit composant. Le fluide de forage descend typiquement à l ' intérieur du composant et remonte à l'extérieur du composant, dans un sens allant du fond d'un trou de forage vers son sommet, créant ainsi une circulation autour du composant. Le composant comprend deux extrémités respectivement pourvues d'un filetage femelle et d'un filetage mâle. Le composant comprend une zone centrale sensiblement tubulaire, notamment de diamètre extérieur inférieur ou égal au diamètre extérieur d'au moins l'une des deux extrémités, et un tube de communication disposé au moins dans la zone centrale et en contact avec un alésage de ladite zone centrale .
Le tube de communication comprend un corps formé d'au moins un ruban métallique disposé avec une composante annulaire. Le corps comprend, en section selon un plan passant par l'axe du tube, au moins deux tronçons allongés axialement, à recouvrement mutuel partiel avec un jeu axial choisi pour absorber la déformation élastique maximale du composant sous effort de compression axiale et/ou de flexion.
La présente invention sera mieux comprise à la lecture de la description détaillée de quelques modes de réalisation pris à titre d'exemples nullement limitatifs et illustrés par les dessins annexés sur lesquels :
- la figure 1 est une vue en élévation d'une garniture de forage ; la figure 2 est une vue en élévation d'un composant de forage ;
- la figure 3 est une vue d'un tube de communication, en coupe axiale pour la partie centrale, en vue de côté en élévation pour la partie inférieure de la figure;
- la figure 4 est une vue en coupe axiale d'un tube de communication ; et
- la figure 5 est une vue en coupe axiale d'un tube de communication .
Lors du creusement d'un puits, une tour de forage est disposée à terre ou sur une plateforme en mer pour forer un trou dans les couches du sol . Une garniture de forage est suspendue dans le trou et comprend un outil de forage tel qu ' un trépan à son extrémité inférieure . La garniture de forage est entraînée en rotation par un mécanisme d'entraînement, actionné par des moyens non représentés, par exemple hydrauliques. Le mécanisme d'entraînement peut comprendre une tige d'entraînement à l'extrémité supérieure de la garniture de forage. La garniture de forage est suspendue à un crochet attaché à un moufle par le biais de la tige d'entraînement et d'une tête tournante permettant la rotation de la garniture de forage par rapport au crochet . Un fluide ou boue de forage est stocké dans un réservoir. Une pompe à boue envoie du fluide de forage à l ' intérieur de la garniture de forage par un orifice de la tête d'injection, forçant le fluide de forage à s'écouler vers le bas à travers la garniture de forage. Le fluide de forage sort ensuite de la garniture de forage par des canaux du trépan puis remonte dans 1 ' espace de forme générale annulaire formé entre l ' extérieur de la garniture de forage et la paroi du trou.
Le fluide de forage lubrifie l'outil de forage et emmène les déblais de creusement dégagés par le trépan du fond du trou jusqu'à la surface. Le fluide de forage est ensuite filtré pour pouvoir être réutilisé.
L'ensemble de fond de trou peut comprendre un trépan et des masse- tiges de forage, assurant de par leur masse l'appui du trépan contre le fond du trou . L ' ensemble de fond de trou peut également comprendre des capteurs de mesure, par exemple de pression, de température, de contrainte, d'inclinaison, de résistivité, etc. Des signaux provenant des capteurs peuvent être remontés en surface par un système de télémétrie câblée. Une pluralité de coupleurs magnétiques sont interconnectés à l'intérieur de la garniture de forage pour former un lien de communication. On peut se référer au brevet US 6 641 434 par exemple. Les deux extrémités d'un composant de forage sont équipées de coupleurs de communication. Les deux coupleurs du composant sont reliés par un câble, sensiblement sur la longueur du composant.
Le câble peut être monté dans un trou longitudinal ménagé dans l'épaisseur de la paroi du composant. L'épaisseur de la paroi est localement diminuée, d'où un affaiblissement de certaines caractéristiques mécaniques qui peut s ' avérer critique . Le câble peut également cheminer dans l ' alésage du composant de forage au contact du fluide de forage. La boue de forage circulant sous haute pression risque de provoquer une usure rapide du câble d'où une faible durée de vie et un coût d'entretien élevé. La boue est également susceptible d'endommager le câble par la pression qu'elle exerce sur ledit câble. Le câble peut être disposé dans l'alésage du composant de forage sous une protection spéciale, mais les types de protection envisagés présentent des inconvénients. De tels
types de câble et de protection sont décrits notamment dans les documents US 6 641 434, US 6 670 880, US 6 717 501, US 20050115717 ou encore US 20060225926.
Le brevet US 6717501 décrit une liaison filaire sous la forme d'un câble coaxial protégé en partie centrale par une gaine en matériau organique du type PEEK® pouvant être collée contre l'alésage de la tige.
La demande US 20060225926 propose de placer une liaison filaire entre l'alésage de la tige de forage et une chemise tubulaire cylindrique plaquée par hydroformage contre l'alésage de la tige. Cette solution nécessite toutefois la mise en œuvre d'une technologie assez lourde et donc coûteuse. Elle entraine également une diminution de la section de l'alésage de la tige et provoque en service une augmentation des pertes de charge d'où une réduction du débit des boues de forage et de la vitesse de creusement du trou, pour une installation de pompage de boues donnée, ce qui se traduit par une augmentation des coûts .
La demande US 20050115717 prévoit également une liaison filaire placée entre l'alésage de la tige de forage et une chemise obtenue à partir d'un feuillard dont la largeur est supérieure au périmètre de l'alésage de la tige, cintrée et plaquée élastiquement contre l'alésage de la tige. Mais le feuillard formé en chemise entraîne une diminution de la section de l'alésage de la tige, ce qui se traduit par une augmentation des coûts.
L'invention vise notamment à proposer un composant de forage permettant une transmission de signaux entre deux coupleurs d'extrémité conservant une section de passage élevée et respectant l'intégrité des parties les moins épaisses de la
paroi du composant tout en offrant une protection convenable au câble de communication. Les coupleurs d'extrémité peuvent être de tout type (par exemple de type magnétique, inductif ou électrique, ou toute combinaison de ces types, telle qu'un coupleur électromagnétique) .
En outre, la Demanderesse a découvert au cours de ses recherches, que la protection autour du câble de communication disposé dans l ' alésage du composant était susceptible de se rompre non seulement sous l'effet d'abrasion de la boue de forage, mais aussi sous l'effet du débattement, notamment en allongement et en flexion du composant lui-même. Lors d'opérations de forage, un composant doit supporter tout le poids de l'ensemble des composants situés à un niveau inférieur. Il en est de même à la remontée de la garniture de forage : une traction est alors exercée sur 1 ' ensemble de la garniture depuis la surface. Le composant tubulaire peut alors s'allonger sous l'effort de traction d'où un risque de rupture de la protection entourant le câble de communication. Le risque de rupture se présente également lors de flexion du composant de forage, par exemple sous l'effet d'un forage dévié, de portions de forage en S (« dog-legs_») pour éviter certaines formations, etc, la flexion se traduisant par une mise sous traction des parties situées en extrados.
Le composant peut être soumis à des efforts de compression axiale, par exemple au niveau des masse-tiges qui appuient sur le trépan ou dans les portions en intrados de tiges soumises à' flexion. Il est alors nécessaire de pré-contraindre le câble en traction pour empêcher une saillie du câble dans l'alésage de la tige soumise à compression, mais le câble risque alors de se rompre lors de sollicitations en traction. C'est notamment ce qui se produit en cours de forage rotatif dévié, les génératrices du composant passant alors alternativement de
l'intrados à l'extrados, et le caractère cyclique amplifie les risques de rupture (fatigue par flexion rotative) . Le collage du câble contre l'alésage ne résout pas le problème car la colle se fissure rapidement sous sollicitations cycliques.
La demande US 20050092499 propose un câble coaxial serti par étirage dans une gaine tubulaire métallique de protection disposée en hélice et plaquée contre l'alésage intérieur de la tige par un effort axial de compression sur ses extrémités. Mais le câble gainé selon ce document présente des changements vifs de direction, là où la gaine entre dans la paroi du composant, ce qui crée également des risques de rupture de la gaine et du câble sous sollicitations cycliques de flexion rotative .
Comme cela est illustré sur la figure 1, une garniture de forage 1 comprend un ensemble de fond de trou 2 et un train de tige de forage 3. L'ensemble de fond de trou 2 et le train de tige de forage 3 sont par exemple connectés par un élément connecteur 4. L'ensemble de fond de trou 2 peut comprendre un trépan 5 et une ou plusieurs masse-tiges 6. La ou les masse- tiges 6 assurent de par leur masse élevée la mise en appui du trépan 5 contre le fond du trou. Le train de tige 3 comprend une pluralité de tiges 7 pouvant comprendre des tiges standards obtenues par assemblage par soudure d'une extrémité mâle, d'un tube de grande longueur et d'une extrémité femelle du côté opposé à l ' extrémité mâle pour former par assemblage des joints filetés tubulaires étanches munis de surfaces d'étanchéité métalliques et éventuellement des tiges lourdes. Une tige peut être du type selon spécification API 7 de 1 'American Petroleum Institute ou selon des dessins propres aux fabricants, par exemple avec des extrémités illustrées par les documents US6513840 ou US7210710 auxquels le lecteur est invité à se reporter.
La garniture de forage 1 peut être équipée de capteurs. Plus précisément, l'ensemble de fond de trou peut être muni de composants 30 munis de capteurs de pression, de température, de contrainte mécanique, d'inclinaison, de résistivité, etc. D'autres éléments de la garniture de forage 1, par exemple, une ou plusieurs masse-tiges 6, une ou plusieurs tiges 7 peuvent également être munis de capteurs de mesure. La transmission d'informations entre les capteurs et la surface nécessite un débit de données élevées, que ne peut pas fournir une transmission sans fil par impulsions de pression dans la boue, et en temps réel, que ne peut pas fournir un stockage en mémoire à proximité du ou des capteurs. Le document FR 2 883 915 décrit une tige munie d'un manchon tubulaire expansible de chemisage. Un câble est disposé dans une semelle ménagée entre le manchon de chemisage et l'alésage et est relié à chaque extrémité à un coupleur inductif conçu pour transmettre un signal à un autre coupleur inductif d'une autre tige connectée à la première .
L'invention vise à fournir un élément de forage, notamment une tige, une tige lourde, une masse-tige, etc. munies d'un câble de communication protégé contre la boue de forage circulant à l ' intérieur de la tige et susceptible d'accompagner les déformations de la tige avec conservation de l'intégrité du câble et de la protection.
Comme on peut le voir sur la figure 2, une tige 7 comprend une extrémité mâle 8 et un corps tubulaire 9. Le corps tubulaire 9 peut être relié du côté opposé à une extrémité femelle non représentée. L'extrémité mâle 8 et le corps tubulaire 9 peuvent être soudés, notamment par friction. L'extrémité mâle 8 comprend un filetage mâle 10 ménagé sur une surface extérieure par exemple sensiblement tronconique.
L'extrémité mâle 8 comprend également un alésage 11, une surface extérieure 12, un épaulement 13 par exemple sensiblement radial, entre le filetage mâle et la surface extérieure 12 et une surface d'extrémité 14 par exemple sensiblement radiale. L'alésage 11 et la surface extérieure 12 peuvent présenter des formes cylindriques de révolution et être concentriques. L'extrémité mâle 8 se raccorde au corps tubulaire 9 par une surface intérieure 15 sensiblement tronconique et une surface extérieure 16 sensiblement tronconique. L'alésage 9a du corps tubulaire 9 est ici (dans le cas d'une tige standard de forage) de diamètre supérieur au diamètre de l ' alésage 11. Le diamètre extérieur du corps tubulaire 9 est ici inférieur au diamètre de la surface extérieure 12 de l'extrémité mâle 8. Il peut en être autrement pour les diamètres de surface extérieure et d'alésage dans le cas de tiges lourdes ou de masse-tiges de forage.
La tige 7 comprend également un coupleur 17 qui, dans l'exemple de la figure 2, est un coupleur inductif disposé dans une rainure annulaire ménagée dans l ' extrémité mâle 8 à partir de la surface d'extrémité 14. La rainure annulaire peuvent présenter une section globalement rectangulaire avec une profondeur dans le sens de l ' axe de la tige supérieure à sa largeur dans le sens radial. Le coupleur inductif 17 est relié à un câble de communication 18 s 'étendant sur la longueur de la tige 7 du coupleur inductif 17 à un autre coupleur inductif disposé du côté de l'extrémité femelle. Le câble de communication 18 passe dans un trou parallèle à l'axe et traversant sensiblement la longueur de l'extrémité mâle 8. Optionnellement , le trou de passage du câble de communication 18 peut présenter une légère inclinaison, par exemple par rapport à un plan passant par l'axe. Le trou de passage du câble de communication 18 débouche d'un côté dans le fond de la rainure formant logement du coupleur inductif 17 et de
1 ' autre côté débouche dans la surface de raccordement 15 entre 1 ' extrémité mâle 8 et le corps tubulaire 9. Le câble de communication 18 peut ainsi être relié au coupleur inductif 17 dans le fond de la rainure logeant ledit coupleur inductif 17 et est protégé contre la boue de forage circulant dans 1 ' alésage de la tige 7 par l ' épaisseur de matière de 1 ' extrémité mâle 8.
La tige 7 comprend un tube de communication 19 entourant le câble de communication 18 dans la zone du corps tubulaire
9. Le tube de communication 19 peut être en contact avec l'alésage 9a du corps tubulaire 9. Le tube de communication 19 peut être fixé, par exemple, par emmanchement dans une zone élargie du trou de passage du câble de communication 18 au voisinage de la surface de raccordement 15. Le tube de communication 19 peut présenter une extrémité emmanchée dans le trou de passage du câble de communication 18, une extrémité opposée emmanchée dans le trou correspondant de l ' extrémité femelle de la tige 7 et une partie courante dans l ' alésage du corps tubulaire 9.
Comme illustré sur la figure 3, le tube de communication 19 se présente sous la forme d'un ruban disposé en hélice entourant le câble de communication 18. Le ruban est essentiellement métallique, par exemple en acier doux de type E235 selon Euronorm ou en acier inoxydable austénitique de type AISI 304L, et est typiquement profilé. Le ruban comprend, en section selon un plan passant par l'axe du tube, une partie de grand diamètre 20 et une partie de petit diamètre 21 allongées axialement. La partie de grand diamètre 20 d'un tronçon entoure une partie de petit diamètre 21 d'un tronçon voisin. La notion de tronçon du tube de communication 19 apparaît sur la partie représentée en coupe selon un plan axial et ce alors même alors que le tube de communication peut
être formé d'un ruban unique disposé en spirale. En d'autres termes, la partie de grand diamètre 20 d'un tronçon de rang N entoure la partie de petit diamètre 21 d'un tronçon de rang N- 1. La partie de petit diamètre 21 du tronçon de N est entourée par la partie de grand diamètre 20 du tronçon de rang N+l.
La partie de grand diamètre 20 et la partie de petit diamètre 21 d'un tronçon se raccordent par une zone de transition 22. La zone de transition 22 peut présenter une épaisseur semblable à l'épaisseur de la partie de grand diamètre 20 et de la partie de petit diamètre 21. La zone de transition 22 peut être sensiblement radiale ou sensiblement tronconique. Le tube de communication 19 peut être fabriqué par un procédé comprenant une étape de galetage d'un feuillard métallique formant ainsi la zone de transition 22 et une étape de mise en forme autour d'un mandrin rigide ayant sensiblement le diamètre du câble de communication 18.
En vue extérieure, voir le bas de la figure 3, le tube de communication 19 présente une surface extérieure formée par les parties de grand diamètre 20 de chaque tronçon ainsi qu'une portion de la zone de transition 22 dont la partie non visible est recouverte par la partie de grand diamètre 20 du tronçon suivant. Le câble de communication 18 est alors recouvert par le tube de communication 19 formant blindage. De part sa structure hélicoïdale, le tube de communication 19 peut être étiré élastiquement de façon aisée. L'étirement élastique du tube de communication 19 peut être exprimé en pourcentage de sa longueur, par exemple supérieur à 2%. Ce taux d'étirement élastique est très supérieur au taux d'étirement élastique du corps de la tige 7. Ainsi, dans le cas où la tige 7 subit un effort de traction élevé provoquant un allongement, le tube de communication 19 peut accompagner ledit allongement et ce dans le domaine élastique. Le tube de
communication 19 peut également se contracter élastiquement de manière aisée sous l'influence de sollicitations de compression. Il suffit pour cela que le jeu axial entre deux tronçons consécutifs soit suffisant pour absorber la contraction locale. La contraction totale que peut absorber le tube- de communication 19 est égale au dit jeu axial multiplié par le nombre de tronçons . Le j eu axial entre chaque tronçon de la spire peut être très réduit, soit typiquement de l'ordre du pas de la spire divisé par 200 dans le cas d'un composant en acier. Par exemple, si le pas de la spire est de 20 mm, le jeu axial entre les tronçons de la spire pourrait être de l'ordre de 0,1 mm. Dans le cas d'un composant en matériau plus souple que l'acier, ce jeu pourrait être augmenté pour compenser la plus grande déformabilité du composant, typiquement dans les mêmes proportions que le rapport entre les modules d'élasticité de l'acier et du matériau alternatif.
Les tronçons du tube de communication 19 présentant un large recouvrement, de l'ordre de 25 à 50 % de la longueur d'un tronçon, le tube de communication assure le recouvrement et la protection du câble de communication 19 même dans un état allongé élastiquement. Le risque de rupture du tube de communication 19 sous l'effet d'un allongement excessif en fonctionnement, de vibrations, de compression, etc. est extrêmement faible. Le tube de communication 19 peut présenter un diamètre extérieur de l'ordre de 4 à 10 mm. Le tube de communication 19 occupe une faible partie de la section d'écoulement offerte par le corps tubulaire 9 de la tige 7. L'écoulement de la boue de forage n'est pas significativement gêné .
Dans le mode de réalisation illustré sur la figure 4, le tube de communication 19 comprend une pluralité d'anneaux 23 à recouvrement mutuel partiel. Un anneau 23 ou manchon comprend
une partie centrale 24 épaisse, une première partie d'extrémité 25 comprenant une surface extérieure de diamètre inférieur à la surface extérieure de la partie centrale 24 et un alésage sensiblement dans le prolongement de l'alésage de la partie centrale 24 et une deuxième partie d'extrémité 26 opposée à la partie d'extrémité 25 et présentant une surface extérieure sensiblement dans le prolongement de la surface extérieure de la partie centrale 24 et un alésage de diamètre supérieur au diamètre de l ' alésage de la partie centrale 24. Le diamètre de l'alésage de la deuxième partie d'extrémité 26 est supérieur ou égal au diamètre de la surface extérieure de la première partie d'extrémité 25 permettant ainsi un emboîtement et un recouvrement d'une extrémité d'un anneau 23 par celle correspondante d'un anneau 23 suivant. Le jeu axial là encore est typiquement de l'ordre de la longueur d'un anneau 23 divisé par 200. Par exemple si l'anneau 23 a une longueur de 200 mm, le jeu axial devrait être de l'ordre de 1 mm.
Dans un mode de réalisation, la surface extérieure de la partie d'extrémité 25 est sensiblement cylindrique. L'alésage de la deuxième partie d'extrémité 26 peut également être cylindrique. Pour favoriser un certain débattement angulaire entre les axes de deux anneaux successifs, on peut prévoir que l'une ou les deux surfaces en contact soient légèrement bombées .
Les anneaux 23 peuvent être réalisés en acier. Le tube de communication 19 peut ainsi s'allonger tout en conservant sa fonction de protection du câble de communication 18.
Dans une variante, l'alésage de la deuxième partie d'extrémité 26 présente un diamètre supérieur au diamètre de la surface extérieure de la première partie d'extrémité 25 et les extrémités libres desdites parties 25 et 26 sont
légèrement rabattues respectivement vers 1 • extérieur et vers l'intérieur assurant une retenue mutuelle par interférence diamétrale au-delà d'un mouvement relatif sur une distance prédéterminée de l'anneau 23.
Pour améliorer l'étanchéité du tube de communication 19 et assurer une liaison souple entre deux anneaux 23 voisins, le tube de communication 19 est ici équipé d'un soufflet 27. Le soufflet 27 est élastique. Le soufflet 27 peut être réalisé en matériau synthétique, en caoutchouc, ou encore en alliage métallique élastique. Le soufflet 27 présente une épaisseur nettement inférieure à l'épaisseur d'un anneau 23. Le soufflet 27 est emmanché sur la surface extérieure de la partie centrale 24 d'un anneau 23 et sur la surface extérieure de la partie centrale 24 d'un autre anneau 23 voisin. Le soufflet 27 recouvre la zone de jonction entre deux anneaux 23 tout en assurant leur retenue axiale. La retenue radiale entre les anneaux est assurée par le recouvrement mutuel des parties d'extrémité 25 et 26 des deux anneaux 23 voisins.
Dans le mode de réalisation de la figure 5, les anneaux 23 présentent une structure similaire à celle du mode de réalisation illustré sur la figure 4. Le soufflet 28 est disposé dans l'alésage des parties centrales 24 de deux anneaux 23 voisins. Le soufflet 28 est ainsi moins exposé à l'abrasion par la boue de forage. Le soufflet 28 peut plus aisément être réalisé en un matériau économique et d'élasticité élevée tout en offrant une longévité satisfaisante grâce à sa moindre exposition à l'abrasion.
Les plis du soufflet 27 de la figure 4 s'étendent radialement alors que ceux du soufflet 28 de la figure 5 s'étendent axialement. On peut mettre en œuvre des soufflets à plis axiaux sur la surface extérieure du tube de communication
19 et des soufflets à plis radiaux dans l'alésage de ce tube. On peut encore envisager des soufflets sans plis initiaux si le matériau dont ils sont constitués est suffisamment souple.
En variante non représentée des figures 4 et 5, la partie centrale des anneaux peut avoir sensiblement la même épaisseur que les parties d'extrémités et être reliées à celles-ci par des parties de transition sensiblement radiales ou tronconiques . Les diamètres de surface extérieure et d'alésage du tube de communication 19 ne sont alors pas constants sur la longueur du tube de communication 19.
Ainsi, un composant tubulaire de garniture de forage peut comprendre une extrémité femelle, une extrémité mâle et une partie centrale tubulaire reliant l'extrémité femelle et l'extrémité mâle avec une conduite blindée de communication disposée dans la partie tubulaire. La conduite blindée comprend un corps formé avec au moins une composante annulaire et comprenant en section selon un plan passant par l ' axe de la conduite (typiquement du tube de communication) au moins deux tronçons allongés axialement se recouvrant partiellement mutuellement avec un jeu axial choisi pour absorber la déformation élastique maximale du composant sous effort de compression axiale et/ou de flexion.
Chaque tronçon peut comprendre, en section selon un plan passant par l'axe de la conduite, une partie de grand diamètre et une partie de petit diamètre, toutes deux allongées axialement . La partie de grand diamètre peut entourer une partie de petit diamètre d'un tronçon voisin. Les surfaces intérieures des parties de petit diamètre forment l'alésage de la conduite. La partie de grand diamètre peut entourer la partie de petit diamètre voisine avec contact mutuel. Le tube de communication (conduite) peut se présenter sous la forme
d'un ruban métallique disposé en spires hélicoïdales. Le tube de communication peut se présenter sous la forme d'un ruban métallique disposé en anneau, le tube comprenant une pluralité d'éléments annulaires à emboîtement. Chaque élément annulaire peut comprendre une partie centrale, une partie d'extrémité à alésage de grand diamètre et une autre partie d'extrémité à surface extérieure de petit diamètre. L'épaisseur du ruban peut être comprise entre 0,1 et 3 mm. La partie de grand diamètre et la partie de petit diamètre peuvent présenter des dimensions axiales sensiblement égales.
Le tube de communication peut comprendre une couche souple disposée dans le tube en contact avec son alésage . La couche souple peut prendre la forme d'un soufflet, tel qu'illustré, par exemple, aux figures 4 et 5.
Le tube de communication peut comprendre une couche souple disposée autour de sa surface extérieure. La couche souple peut présenter des plis s ' étendant radialement ou axialement.
Le recouvrement mutuel partiel des tronçons peut être supérieur à la déformation élastique maximale du composant sous effort de compression axial et/ou de flexion.
Le tube de communication peut être disposé longitudinalement ou hélicoïdalement contre l'alésage de la partie centrale du composant tubulaire de forage.
On peut ainsi composer une garniture de forage comprenant un corps (typiquement un train de tiges) et un ensemble de fond de trou pourvu d'un trépan. Le corps est disposé entre 1 ' ensemble de fond de trou et un organe d ' entraînement de la garniture, ledit corps comprenant des composants tubulaires décrits ci-dessus.
Claims
1. Composant tubulaire de garniture de forage (1), pour le forage d'un trou avec circulation d'un fluide de forage autour dudit composant (7) et dans un sens allant d'un fond de trou de forage vers la surface, ledit composant (7) comprenant une première extrémité comprenant un filetage femelle, une deuxième extrémité (8) comprenant un filetage mâle, et une zone centrale (9) sensiblement tubulaire, ledit composant (7) comprenant un tube de communication (19) disposé au moins dans la zone centrale (9) et en contact avec un alésage de la zone centrale, un câble de transmission de signaux (18) étant disposé dans le tube, caractérisé par le fait que le tube de communication (19) comprend un corps formé d'au moins un ruban métallique disposé avec une composante annulaire, le corps comprenant, en section selon un plan passant par l'axe du tube, au moins deux tronçons allongés axialement, à recouvrement mutuel partiel avec un jeu axial choisi pour absorber la déformation élastique maximale du composant sous effort de compression axiale et/ou de flexion.
2. Composant selon la revendication 1, dans lequel chaque tronçon comprend, en section selon un plan passant par l'axe du tube, une partie de grand diamètre (20) , et une partie de petit diamètre (21) , la partie de grand diamètre et la partie de petit diamètre étant allongées axialement, la partie de grand diamètre entourant une partie de petit diamètre d'un tronçon voisin, de façon que les surfaces intérieures des parties de petit diamètre forment l'alésage du tube.
3. Composant selon la revendication 2, dans lequel la partie de grand diamètre (20) entoure une partie de petit diamètre (21) voisine avec contact mutuel.
4. Composant selon l'une des revendications 1 à 3, dans lequel le ruban métallique est disposé en spires hélicoïdales.
5. Composant selon l'une des revendications 1 à 3, dans lequel le ruban métallique est disposé en anneau, le tube comprenant une pluralité d'éléments annulaires (23) à emboîtement.
6. Composant selon l'une des revendications 1 à 5, dans lequel l'épaisseur du ruban est comprise entre 0,1 et 3 mm.
7. Composant selon l'une des revendications 1 à 6, dans lequel la partie de grand diamètre et la partie de petit diamètre présentent des dimensions axiales sensiblement égales .
8. Composant selon l'une des revendications 1 à 7, comprenant une couche souple (28) disposée dans le tube en contact avec l'alésage du tube.
9. Composant selon l'une des revendications 1 à 8, comprenant une couche souple (27) disposée autour du tube, la couche souple présentant des plis s 'étendant radialement ou axialement .
10. Composant selon l'une des revendications 1 à 9, dans lequel le recouvrement mutuel partiel des tronçons est supérieur à la déformation élastique maximale du composant sous efforts de compression axiale et/ou de flexion.
11. Garniture de forage (1) comprenant un corps (2) et un ensemble de fond de trou (3), l'ensemble de fond de trou (3) étant pourvu d'un trépan (5) , le corps (2) étant disposé entre l'ensemble de fond de trou et un organe d'entraînement de la garniture, le corps (2) comprenant des composants (7) selon l'une des revendications précédentes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0900019A FR2940816B1 (fr) | 2009-01-06 | 2009-01-06 | Composant tubulaire de garniture de forage et garniture de forage correspondante |
PCT/FR2010/000001 WO2010079283A1 (fr) | 2009-01-06 | 2010-01-04 | Composant tubulaire de garniture de forage et garniture de forage correspondante |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2373868A1 true EP2373868A1 (fr) | 2011-10-12 |
Family
ID=40887014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10703305A Withdrawn EP2373868A1 (fr) | 2009-01-06 | 2010-01-04 | Composant tubulaire de garniture de forage et garniture de forage correspondante |
Country Status (11)
Country | Link |
---|---|
US (1) | US9291004B2 (fr) |
EP (1) | EP2373868A1 (fr) |
JP (1) | JP2012514702A (fr) |
CN (1) | CN102272408A (fr) |
AR (1) | AR074988A1 (fr) |
CA (1) | CA2748575A1 (fr) |
FR (1) | FR2940816B1 (fr) |
MX (1) | MX2011007230A (fr) |
RU (1) | RU2011132788A (fr) |
SG (1) | SG172883A1 (fr) |
WO (1) | WO2010079283A1 (fr) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2236736B8 (fr) | 2009-03-30 | 2018-02-14 | Vallourec Drilling Products France | Tige de forage câblée |
FR2948145B1 (fr) | 2009-07-20 | 2011-08-26 | Vam Drilling France | Tige de forage et train de tiges de forage correspondant |
FR2965415B1 (fr) | 2010-09-24 | 2012-09-07 | Electronique Ind De L Ouest Tronico | Coupleur pour coupler une premiere et une seconde section d'une ligne de transmission, systeme de transmission de donnees correspondant et composant correspondant |
FR2965602B1 (fr) | 2010-10-04 | 2013-08-16 | Electronique Ind De L Ouest Tronico | Tube destine a transporter des substances et assemblage de tubes correspondant |
EP2681401B1 (fr) | 2011-03-01 | 2018-10-17 | Vallourec Drilling Products France | Composant tubulaire pour tige de forage pouvant être câblé, et procédé de montage d'un câble dans ledit composant |
FR2972215B1 (fr) | 2011-03-01 | 2013-03-22 | Vam Drilling France | Composant de garniture de forage comprenant un coupleur mobile et une chambre a pression |
FR2972311B1 (fr) | 2011-03-01 | 2013-11-01 | Vam Drilling France | Coupleur annulaire pour composant de garniture de forage |
FR2981394B1 (fr) | 2011-10-14 | 2013-11-01 | Vam Drilling France | Composant tubulaire de garniture de forage muni d'une gaine de transmission fixee par filetages et procede de montage d'un tel composant |
FR2981393B1 (fr) | 2011-10-17 | 2013-11-01 | Vam Drilling France | Composant tubulaire de garniture de forage et procede de mise en tension d'un tube de communication monte dans un tel composant |
US9322223B2 (en) * | 2012-05-09 | 2016-04-26 | Rei, Inc. | Method and system for data-transfer via a drill pipe |
US9816328B2 (en) * | 2012-10-16 | 2017-11-14 | Smith International, Inc. | Friction welded heavy weight drill pipes |
CN104120994A (zh) * | 2014-07-16 | 2014-10-29 | 平顶山市铁福来机电设备有限公司 | 一种煤矿冲孔用钻杆孔密封装置 |
CN111550198A (zh) * | 2020-06-02 | 2020-08-18 | 天津森特聚尔新能源技术有限公司 | 一种双水平井穿心电缆锁紧保护系统及应用方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2414719A (en) * | 1942-04-25 | 1947-01-21 | Stanolind Oil & Gas Co | Transmission system |
FR2119266A5 (en) * | 1970-12-24 | 1972-08-04 | Inst Francais Du Petrole | Flexible reinforced tube - for carrying fragile telemetering and tele lines in turbo drilling boreholes |
SU960483A1 (ru) * | 1979-09-12 | 1982-09-23 | Институт Математики И Механики Ан Азсср | Гибка труба |
GB2336886B (en) * | 1998-05-01 | 2001-08-29 | Univ London | Improvements in or relating to helically wound reinforcing components for flexible tubular conduits |
DE19827821C1 (de) | 1998-06-17 | 1999-11-25 | Mannesmann Ag | Bohrgestängeverbinder |
US6145597A (en) * | 1999-02-17 | 2000-11-14 | Camco International, Inc. | Method and apparatus for retaining a cable in a conduit |
US6670880B1 (en) | 2000-07-19 | 2003-12-30 | Novatek Engineering, Inc. | Downhole data transmission system |
EP1305547B1 (fr) | 2000-07-19 | 2009-04-01 | Novatek Engineering Inc. | Systeme de transmission de donnees pour colonne d'organes de forage de fond de trou |
US6641434B2 (en) | 2001-06-14 | 2003-11-04 | Schlumberger Technology Corporation | Wired pipe joint with current-loop inductive couplers |
US7017667B2 (en) | 2003-10-31 | 2006-03-28 | Intelliserv, Inc. | Drill string transmission line |
US20050115717A1 (en) | 2003-11-29 | 2005-06-02 | Hall David R. | Improved Downhole Tool Liner |
US7210710B2 (en) | 2004-03-01 | 2007-05-01 | Omsco, Inc. | Drill stem connection |
US7201240B2 (en) * | 2004-07-27 | 2007-04-10 | Intelliserv, Inc. | Biased insert for installing data transmission components in downhole drilling pipe |
US7413021B2 (en) | 2005-03-31 | 2008-08-19 | Schlumberger Technology Corporation | Method and conduit for transmitting signals |
US8344905B2 (en) * | 2005-03-31 | 2013-01-01 | Intelliserv, Llc | Method and conduit for transmitting signals |
US7644755B2 (en) * | 2006-08-23 | 2010-01-12 | Baker Hughes Incorporated | Annular electrical wet connect |
US8118093B2 (en) * | 2008-11-04 | 2012-02-21 | Intelliserv, Llc | Threaded retention device for downhole transmission lines |
US8208777B2 (en) * | 2009-02-24 | 2012-06-26 | Intelliserv, Llc | Structure for electrical and/or optical cable using impregnated fiber strength layer |
-
2009
- 2009-01-06 FR FR0900019A patent/FR2940816B1/fr not_active Expired - Fee Related
-
2010
- 2010-01-04 MX MX2011007230A patent/MX2011007230A/es not_active Application Discontinuation
- 2010-01-04 RU RU2011132788/03A patent/RU2011132788A/ru not_active Application Discontinuation
- 2010-01-04 EP EP10703305A patent/EP2373868A1/fr not_active Withdrawn
- 2010-01-04 CN CN2010800040121A patent/CN102272408A/zh active Pending
- 2010-01-04 US US13/143,119 patent/US9291004B2/en not_active Expired - Fee Related
- 2010-01-04 CA CA2748575A patent/CA2748575A1/fr not_active Abandoned
- 2010-01-04 WO PCT/FR2010/000001 patent/WO2010079283A1/fr active Application Filing
- 2010-01-04 SG SG2011049384A patent/SG172883A1/en unknown
- 2010-01-04 JP JP2011544074A patent/JP2012514702A/ja active Pending
- 2010-01-05 AR ARP100100012A patent/AR074988A1/es unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2010079283A1 * |
Also Published As
Publication number | Publication date |
---|---|
AR074988A1 (es) | 2011-03-02 |
WO2010079283A1 (fr) | 2010-07-15 |
SG172883A1 (en) | 2011-08-29 |
FR2940816A1 (fr) | 2010-07-09 |
FR2940816B1 (fr) | 2011-02-18 |
JP2012514702A (ja) | 2012-06-28 |
US20110290475A1 (en) | 2011-12-01 |
CN102272408A (zh) | 2011-12-07 |
CA2748575A1 (fr) | 2010-07-15 |
US9291004B2 (en) | 2016-03-22 |
RU2011132788A (ru) | 2013-02-20 |
MX2011007230A (es) | 2011-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2373868A1 (fr) | Composant tubulaire de garniture de forage et garniture de forage correspondante | |
FR2883915B1 (fr) | Methode et conduit pour transmettre des signaux, en particulier dans un puits de forage | |
WO2011010016A2 (fr) | Tige de forage et garniture de forage correspondante | |
EP3469244B1 (fr) | Embout de connexion de ligne flexible, ligne flexible et procédé associés | |
EP2236736B1 (fr) | Tige de forage câblée | |
EP2536969B1 (fr) | Joint fileté expansible et procédé de réalisation | |
CA2247310C (fr) | Methode et systeme de mesure dans un conduit horizontal | |
US9725997B2 (en) | Armored power cable installed in coiled tubing while forming | |
EP2834546B1 (fr) | Assemblage d'une conduite tubulaire flexible pour le transport de fluides d'hydrocarbures avec un tube metallique secondaire | |
FR2898935A1 (fr) | Dispositif d'orientation d'outils de forage | |
FR2757563A1 (fr) | Joint de train de tiges et de tubage pour forages d'exploration de minerais | |
WO2018073539A1 (fr) | Procédé de surveillance de la poussée d'une bouée de conduite sous-marine | |
EP1225301B1 (fr) | Tige creuse de forage pour la transmission d'informations | |
FR3027338A1 (fr) | Connexion polyvalente etanche a double butee | |
WO2013190219A1 (fr) | Element de garniture de forage avec zone d'activation des fluides | |
FR2976015A1 (fr) | Composant tubulaire pour l'exploration d'un puits d'hydrocarbures | |
US8668510B2 (en) | Tubular component having an electrically insulated link portion with a dielectric defining an annular sealing surface | |
EP1509671B1 (fr) | Colonne montante du type multi-catenaire | |
FR2997439A1 (fr) | Dispositif stabilisateur pour garniture de fond de puits | |
FR3126139A1 (fr) | Dispositif d’acquisition et communication de données entre colonnes de puits de pétrole ou de gaz | |
WO2012175572A1 (fr) | Dispositif de decouplage pour connecter un outil de forage a l'extremite d'une colonne de forage et un systeme de forage comprenant un tel dispositif de decouplage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110617 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120313 |