EP2373124B1 - Treiberschaltung zum Antrieb einer Beleuchtungsvorrichtung und Betriebsverfahren dafür - Google Patents

Treiberschaltung zum Antrieb einer Beleuchtungsvorrichtung und Betriebsverfahren dafür Download PDF

Info

Publication number
EP2373124B1
EP2373124B1 EP10158998.4A EP10158998A EP2373124B1 EP 2373124 B1 EP2373124 B1 EP 2373124B1 EP 10158998 A EP10158998 A EP 10158998A EP 2373124 B1 EP2373124 B1 EP 2373124B1
Authority
EP
European Patent Office
Prior art keywords
voltage
driver circuit
current
low
semiconductor switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10158998.4A
Other languages
English (en)
French (fr)
Other versions
EP2373124A1 (de
Inventor
Robert Jan Frohnen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to EP10158998.4A priority Critical patent/EP2373124B1/de
Priority to EP11711592A priority patent/EP2554016A1/de
Priority to PCT/EP2011/055108 priority patent/WO2011121113A1/en
Publication of EP2373124A1 publication Critical patent/EP2373124A1/de
Application granted granted Critical
Publication of EP2373124B1 publication Critical patent/EP2373124B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3574Emulating the electrical or functional characteristics of incandescent lamps
    • H05B45/3575Emulating the electrical or functional characteristics of incandescent lamps by means of dummy loads or bleeder circuits, e.g. for dimmers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light

Definitions

  • the present invention relates to a driver circuit for driving a lighting device, in particular a lighting device including an energy-saving lighting element such as a light emitting diode.
  • the invention relates to a lighting device comprising a lighting element and such a driver circuit, and to a method for operating such a driver circuit.
  • LEDs light emitting diodes
  • LEDs light emitting diodes
  • Typical dimmers which are common parts of wall-based electrical installations in households, generate a lower average voltage than a mains voltage by means of phase-cut circuitry.
  • a switching triac or transistor in the dimmer circuitry is non-conductive.
  • the triac or transistor is triggered to become conductive, conducting the mains voltage to the lighting device until the triac or transistor reverts to its non-conductive state at the next zero crossing of the sine wave.
  • dimmers require a minimum load of e.g. 40 W to be connected for stable operation.
  • a minimum load e.g. 40 W
  • instability of the dimmer circuitry due to inductive effects results in strong light flickering.
  • An energy-saving lighting device designed to replace an incandescent lamp or other conventional lighting device used with a dimmer will typically require less power than the minimum load specified by the dimmer.
  • a simple approach to avoid flickering of the lighting device is to connect a bleeder resistor as a current sink in parallel to the lighting device such that the power consumption of the resistor and the lighting device combine to at least the minimum load. The increased power consumption, however, counteracts the energy saving purpose of the lighting device and is therefore highly undesirable.
  • the integrated LED driver circuit LM3445 by National Semiconductor (http://www.national.com/ds/LM/LM3445.pdf) includes a bleeder circuit to allow current flow through a bleeder resistor while the line voltage is below a fixed voltage threshold in order to enable proper firing of the dimmer triac.
  • an external resistor representing a further current sink is needed to provide the triac with a holding current throughout the AC line cycle.
  • the integrated LED driver circuit SSL21 01 by NXP B. V. contains two current sinks that are called bleeders.
  • a strong bleeder is used for zero cross reset of the dimmer and triac latching.
  • a weak bleeder is added to maintain the hold current through the dimmer.
  • the circuit includes two high-voltage transistor switches for switching the strong and weak bleeder resistors, respectively.
  • the strong bleeder switch is switched on when a sensed voltage is lower than a predefined voltage level.
  • the weak bleeder switch is switched on as soon as a sensed current drops below a predefined current level, and switched off when the sensed current exceeds a further predefined current level, or when the strong bleeder switch is switched on.
  • a driver circuit for driving a lighting device, for being connected between a dimmed supply voltage and said lighting device.
  • the driver circuit comprises a first bleeder resistor, which has a first end connected to a high-voltage terminal of the supply voltage, a second bleeder resistor, which has a first end connected to a low-voltage terminal of the supply voltage, a first semiconductor switching element connected between the second ends of the first and second bleeder resistors, and a second semiconductor switching element connected between the second end of the second bleeder resistor and the low-voltage terminal of the supply voltage.
  • the first semiconductor switching element separates the second semiconductor switching element from the high-voltage terminal of the supply voltage in a state where the first semiconductor switching element is non-conductive. In another state where the first semiconductor switching element is conductive, the voltage across the second semiconductor switching element is below a semiconductor switching element control voltage by which the first semiconductor switching element is controllable.
  • an upper limit of the semiconductor switching element control voltage represents a maximum voltage to which the second semiconductor switching element is exposable throughout both the non-conductive and conductive states of the first semiconductor switching element.
  • the driver circuit further comprises a voltage detector for detecting whether or not the supply voltage is below a predefined voltage threshold, a current detector for detecting whether an input current of the driver circuit is below a predefined current threshold, and a controller for controlling the first and second semiconductor switching elements based on output of the voltage and current detectors.
  • the controller is arranged to regulate a voltage drop across the second bleeder resistor when the supply voltage is not below the voltage threshold and the input current is below the current threshold. That is, week bleeding functionality is provided by stabilizing the voltage drop across the second bleeder resistor, which is proportional to the current passing through the second bleeder resistor. This leads to reduced energy consumption of the driver circuit because the current is kept constant at the level required for compatibility with the dimmer even when the supply voltage is high such as during power surges in the mains system.
  • the controller is arranged to switch the first semiconductor switching element to a non-conductive state when the input current is not below the current threshold. This enables to save energy by stopping all bleeding during a phase when the driver circuit draws sufficient current from the dimmer to prevent flickering.
  • the controller is arranged to switch the first and second semiconductor switching elements to a conductive state when the supply voltage is below the voltage threshold. This enables strong bleeding during a phase before the supply voltage rises due to latching of the dimmer triac or transistor. Since the supply voltage is close to zero during this phase, only little energy is consumed.
  • the controller comprises a differential amplifier, a first input of the differential amplifier being connected to the second end of the second bleeder resistor.
  • a differential amplifier a first input of the differential amplifier being connected to the second end of the second bleeder resistor.
  • an output of the differential amplifier is connected to an input of the first semiconductor switching element such that the first semiconductor switching element can be used for regulating the week bleeding action by regulating the voltage drop across the second bleeder resistor.
  • the current detector comprises a sensing resistor for sensing the input current of the driver circuit and a first Schmitt trigger for detecting a drop in the input current below the predefined current threshold. This enables to detect a crossing of the input current below the threshold in a simple and cost-effective way, using only low-voltage components.
  • the voltage detector comprises a voltage divider for deriving a sensing voltage from the supply voltage and a second Schmitt trigger for detecting a drop of the sensing voltage below said predefined voltage threshold. This enables to detect a crossing of the supply below the threshold in a simple and cost-effective way, using only low-voltage components.
  • the second semiconductor switching element and the controller are combined in an integrated circuit. This enables to keep production cost low because only a single integrated circuit has to be manufactured, and because low-energy technology may be used for manufacturing the integrated circuit.
  • the first semiconductor switching element and/or the second semiconductor switching element comprise a transistor, which are reliable and cost-efficient.
  • the first semiconductor switching element comprises a transistor
  • the voltage across the second semiconductor switching element will be below the voltage of a third control end of the first semiconductor switching element, i.e. of the gate or base of the transistor comprised by the first semiconductor switching element.
  • This enables to implement the second semiconductor switching element as a low-voltage type semiconductor switching element that is exposable to a proof voltage lower than the supply voltage by making sure the voltage on the control end of the first semiconductor switching element is less or equal to the proof voltage.
  • each of the semiconductor switching elements may be implemented as a field effect transistor or a bipolar transistor.
  • the invention provides a lighting device comprising a lighting element and a driver circuit as described above, wherein the driver circuit is configured for driving the lighting element.
  • the lighting element comprises at least one light emitting diode (LED), compact fluorescent lamp (CFL), cold cathode fluorescent lamp (CCFL), or halogen lamp in order to achieve particularly high efficiency of the lighting device.
  • the invention provides a method for operating such a driver circuit.
  • the method comprises detecting a predefined low-current phase of an input current of the driver circuit, the input current being below a predefined current threshold and the supply voltage being not below a predefined voltage threshold during the low-current phase.
  • a voltage drop across the second bleeder resistor is regulated during the low-current phase. This enables to draw only the minimal hold current from the dimmer for the complete phase where week bleeding is required.
  • the dimmer will stay switched on until the supply voltage is particularly close to the next zero crossing, such that even a very late phase cut of the dimmer can be detected with high precision, hence allowing for deeper dimming levels.
  • a predefined low-voltage phase is detected, the supply voltage being below the predefined voltage threshold during the low-voltage phase, and in which the first and second semiconductor switching elements are switched to a conductive state upon detecting the low-voltage phase.
  • the method comprises further steps of detecting a predefined high-current phase, the input current being not below the predefined current threshold during the high-current phase, and of switching the first semiconductor switching element to a non-conductive state upon detecting the high-current phase.
  • the circuit diagram of Fig. 1 shows a driver circuit 100 for driving a lighting device 110, which is exemplarily shown to comprise two light emitting diodes 111 connected in parallel to each other and to a decoupling capacitor 112 of the lighting device 110.
  • the driver circuit 100 as shown is suitable for being used with other types of lighting devices, in particular those employing energy-saving lamp technologies such as compact fluorescent lamps (CFL), cold cathode fluorescent lamps (CCFL), and light emitting diodes (LED).
  • the driver circuit 100 is furthermore suitable for use with any types of lighting device with small energy consumption such as halogen lamps of smaller wattage in order to make them compatible with standard wall dimmers. These lamps conventionally require installation of more advanced dimmers.
  • the driver circuit 100 comprises supply voltage connection terminals 114 for connection of the driver circuit 100 to a conventional dimmer (not shown) providing a dimmed mains voltage.
  • the driver circuit 100 comprises a full-wave diode bridge rectifier 106 connected to the supply voltage connection terminals 114.
  • a low-voltage output 191 of the rectifier 106 is connected to ground potential 193 via an input current sensing resistor 108.
  • a resistance of 100 ⁇ may be chosen for the input current sensing resistor 108, depending on the nominal power of the lighting device 110.
  • a high-voltage output 192 of the rectifier 106 is connected via a diode 190 to a first end 194 of a storage capacitor 113, the other end 195 of which is grounded.
  • the first end 194 of the storage capacitor 113 is furthermore connected to a high voltage supply terminal 146 of a power converter circuit, which here is exemplarily implemented as an integrated circuit 102 and includes general circuitry 104 such as e.g. a pulse width modulator for supplying the voltage received by the power converter circuit at the high-voltage supply terminal 146 and a ground terminal 145 to the lighting device 110 via first 147 and second 148 lighting device connection terminals of the power converter circuit. Since details of the general circuitry 104 are unrelated to the present invention, the general circuitry 104 is shown as an abbreviated outline only.
  • the general circuitry 104 may merely connect the storage capacitor voltage terminal 146 to the first lighting device connection terminal 147, and the ground terminal 145 to the second lighting device connection terminal 148.
  • the general circuitry 104 may comprise internal supply voltage generation components (not shown) for generating an internal supply voltage for the integrated circuit from the high voltage being initially supplied via the high-voltage supply terminal 146.
  • internal supply voltage generation components may consist e.g. of a resistor and a Zener diode connected in series.
  • the integrated circuit operates at an internal supply voltage of about 5 V while the voltage of the high-voltage supply terminal 146 is about 320 V.
  • the driver circuit 100 further comprises a first bleeder resistor 121, which has a first end 181 connected to the high-voltage output 192 of the rectifier 106, and a second bleeder resistor 122, which has a first end 182 connected to ground potential, i.e. to the low-voltage output 191 of the rectifier 106 via the sensing resistor 108.
  • a high-voltage transistor 131 implementing a first semiconductor switching element of the driver circuit 100 is connected between the second ends of the first 121 and second 122 bleeder resistors.
  • the first 121 and second 122 bleeder resistors form a voltage divider that in operation divides the supply voltage
  • the power converter circuit 102 includes a low-voltage transistor 132 implementing a second semiconductor switching element of the driver circuit 100.
  • the low-voltage transistor 132 is connected between ground potential and, via a transistor cross connection terminal 142 of the integrated circuit 102, the second end of the second bleeder resistor 122.
  • both the high-voltage transistor 131 and the low-voltage transistor 132 are field effect transistors e.g. of CMOS type in source-follower configuration.
  • the high-voltage 131 and low-voltage 132 transistors are bipolar transistors in emitter-follower configuration.
  • the integrated circuit 102 further comprises a differential amplifier 116 for controlling the high-voltage transistor 131, the output of the differential amplifier 116 being connected via a transistor control terminal 141 of the integrated circuit to an input of the high-voltage transistor 131, corresponding in the present case, where the high-voltage transistor 131 is implemented as a field effect transistor, to a gate terminal of the high-voltage transistor 131.
  • An inverting first input of the differential amplifier 116 is connected via the transistor cross connection terminal 142 to the second end of the second bleeder resistor 122, while a non-inverting second input of the differential amplifier 116 is connected to a first output of a bleeder controller unit 105, implemented within the integrated circuit 102, for controlling the bleeding functionality of the driver circuit 100.
  • a non-inverting third input of the differential amplifier 116 is connected with a second output of the bleeder controller unit 105 adapted for providing a fixed and stable reference voltage enabling weak bleeder action in which this reference voltage is reproduced across the weak bleeder resistor 122.
  • a third output of the bleeder controller unit 105 is connected to an input of the low-voltage transistor 132, corresponding in the present case, where the low-voltage transistor 132 is implemented as a field effect transistor, to a gate terminal of the low-voltage transistor 132.
  • a first input of the bleeder controller unit 105 is connected via a supply current sensing terminal 144 of the integrated circuit to the low-voltage output 191 of the rectifier 106.
  • a second input of the bleeder controller unit 105 is connected via a supply voltage sensing terminal 143 of the integrated circuit 102 to connected first ends of first 151 and second 152 supply voltage sensing resistors, which form a voltage divider for deriving a sensing voltage from the supply voltage.
  • the second end of the first supply voltage sensing resistor is connected to the high-voltage output 192 of the rectifier 106, while the second end of the second supply voltage sensing resistor is connected to ground potential 193.
  • a dimmer providing a dimmed mains voltage by means of phase-cut circuitry is connected to the supply voltage terminals 114 of the driver circuit 100.
  • Fig. 3A illustrates, in a diagram having a vertical voltage axis 302 and a horizontal time axis 300, the change over time 300 of a sinusoidal mains voltage 311 and a dimmed mains voltage 310 that the dimmer in a stable operational state supplies to the supply voltage terminals 114.
  • the mains voltage 311 begins to rise while the dimmed mains voltage 310 remains at zero potential.
  • the dimmed mains voltage 310 quickly rises to the level of the mains voltage 311. Until a following zero-crossing 362 of the mains voltage 311, the dimmed mains voltage 310 coincides with the sinusoidal waveform of the mains voltage 311. The same process is repeated for each half-wave of the mains voltage 311.
  • the rectifier 106 provides a rectified dimmed mains voltage 312, which is illustrated in Fig. 3A .
  • the rectified dimmed mains voltage 312 intermittently charges the storage capacitor 113 during phases where the rectified dimmed mains voltage 312 is higher than a stored voltage 314 between the ends of the storage capacitor 113, the diode 190 preventing the capacitor from being discharged during phases where the rectified dimmed mains voltage 312 is lower than the stored voltage 314.
  • Fig. 3C illustrates along a vertical current axis 306 the change in time of the input current 316 of the driver circuit 100.
  • the phases where the rectified dimmed mains voltage 312 is higher than the stored voltage at the storage capacitor 113 correspond to high-current phases 322 of the input current 316.
  • step 408 the controller unit 105, by sensing the potential at the connected first ends of the supply voltage sensing resistors 151, 152, detects a predefined low-voltage phase 321 during which the rectified dimmed mains voltage 312 is below a predefined voltage threshold 351. This will occur after the rectified dimmed mains voltage 312 crosses the level of the voltage threshold 351 from above, shortly before the next zero crossing 362 of the mains voltage 311.
  • the voltage threshold 351 as shown in Fig. 3B is e.g. 1/10 or less of the peak voltage of the rectified dimmed mains voltage 312.
  • step 410 upon detecting the low-voltage phase 321 in step 408, the bleeder controller unit 105 switches the low-voltage transistor 132 and, via the differential amplifier 116, the high-voltage transistor 131 to a conductive state. This causes the first bleeder resistor 121 to be connected between ground potential 193 and the high-voltage output 192 of the rectifier 106. Because initially in the low-voltage phase 321 the rectified dimmed mains voltage 312 is close to zero, only little energy is dissipated in the first bleeder resistor 121.
  • step 412 the controller unit 105, by sensing the potential at the low-voltage output 191 of the rectifier 106, which corresponds to the voltage drop at the current sensing resistor 108, detects a predefined high-current phase 322 during which the input current 316 is not below a predefined current threshold 352.
  • the controller unit 105 may additionally sense the voltage at the connected first ends of the supply voltage sensing resistors 151, 152 in order to detect the high-current phase 322, e.g. by requiring both the rectified dimmed mains voltage 312 voltage to rise above the voltage threshold 351 and the input current 316 to rise above the current threshold 352 for the detection to take place.
  • the current threshold 352 as shown in Fig. 3C is e.g. 1/10 or less of the peak input current 316.
  • step 414 upon detecting the high-current phase in step 412, the controller unit 105, via the differential amplifier 116, switches the high-voltage transistor 131 to a non-conductive state. This causes all bleeding action to stop.
  • step 404 by sensing by sensing the potential at the low-potential output 191 of the rectifier 106, detects a predefined low-current phase 323 during which the input current is below the predefined current threshold 352. This will occur shortly after the rectified dimmed mains voltage 312 begins to fall below the stored voltage 314 at the storage capacitor 113.
  • step 416 upon detecting the low-current phase 323 in step 404, the controller 105 switches the low-voltage transistor 132 to a non-conductive state, and activates the differential amplifier 116 such that the differential amplifier 116 via the transistor cross connection terminal 142 of the integrated circuit 102 senses the voltage drop across the second bleeder resistor 122, and regulates the voltage drop by controlling the conductivity of the high-voltage transistor 121, to a predefined constant value, based on the sensing input. Afterwards, the method continues at step 408.
  • FIG. 2 depicts an integrated circuit 102 such as used in the driver circuit 100 of Fig. 1 .
  • the controller unit 105 as shown comprises a first inverting Schmitt trigger 201 for sensing the input current of the driver circuit.
  • the inputs of the first Schmitt trigger 201 are connected to the input current sensing terminal 144 and a first constant voltage source 211, which defines the current threshold 352 in form of a corresponding threshold potential at the input current sensing resistor 122.
  • the output of the first Schmitt trigger 201 is connected via a logic inverter 203 to a first input of a first NAND gate 221.
  • the output of the first NAND gate 221 is connected to the gate of the low-voltage transistor 132.
  • the controller unit 105 further comprises a second inverting Schmitt trigger 202 for sensing the rectified dimmed mains voltage 312.
  • the inputs of the second Schmitt trigger 202 are connected to the supply voltage sensing terminal 143 and a second constant voltage source 212, which defines the voltage threshold 351 in form of a corresponding threshold potential at the connected first ends of the supply voltage sensing resistors 151, 152.
  • the output of the second Schmitt trigger 202 is connected to a second input of the first NAND gate 221 and to a first input of a second NAND gate 222.
  • the output of the second NAND gate 222 is connected to the non-inverting second input of the differential amplifier 116, the inverting first input of the differential amplifier 116 being connected to the transistor cross connection terminal 142 as described above.
  • a second input of the second NAND gate 222 is connected to the output of the first Schmitt trigger 201.
  • a third constant voltage source 213 of the controller unit 105 is connected to the non-inverting third input of the differential amplifier 116 for defining a desired voltage drop across the second bleeder resistor 122 as a regulation target during the low-current phase 323.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Claims (15)

  1. Treiberschaltung (100) zum Ansteuern einer Beleuchtungsvorrichtung (110) für einen Anschluss zwischen einer gedimmten Versorgungsspannung (114) und der Beleuchtungsvorrichtung (110), wobei die Treiberschaltung (100) Folgendes umfasst:
    - einen ersten Ableitwiderstand (121) mit einem ersten Ende, das mit einem Hochspannungsanschluss (192) der Versorgungsspannung (114) verbunden ist;
    - einen zweiten Ableitwiderstand (122) mit einem ersten Ende, das mit einem Niederspannungsanschluss (191) der Versorgungsspannung (114) verbunden ist;
    gekennzeichnet durch
    - ein erstes Halbleiter-Schaltelement (131), das zwischen den zweiten Enden des ersten (121) und des zweiten (122) Ableitwiderstands verbunden ist; und
    - ein zweites Halbleiter-Schaltelement (132), das zwischen dem zweiten Ende des zweiten Ableitwiderstands (122) und dem Niederspannungsanschluss (191) der Versorgungsspannung (114) verbunden ist.
  2. Treiberschaltung (100) nach Anspruch 1, die des Weiteren Folgendes umfasst:
    - einen Spannungsdetektor (151, 152, 202) zum Detektieren, ob die Versorgungsspannung (114) unterhalb einer zuvor festgelegten Spannungsschwelle (351) liegt;
    - einen Stromdetektor (108, 201) zum Detektieren, ob ein Eingangsstrom der Treiberschaltung (100) unterhalb einer zuvor festgelegten Stromschwelle (352) liegt; und
    - eine Steuereinheit (105, 116) zum Steuern des ersten (131) und des zweiten (132) Halbleiter-Schaltelements auf der Grundlage des Ausgangssignals des Spannungsdetektors (151, 152, 202) und des Stromdetektors (108, 201), wobei die Steuereinheit (105, 116) dafür eingerichtet ist, einen Spannungsabfall an dem zweiten Ableitwiderstand (122) zu regeln, wenn die Versorgungsspannung nicht unterhalb der Spannungsschwelle (351) liegt und der Eingangsstrom unterhalb der Stromschwelle (352) liegt.
  3. Treiberschaltung nach Anspruch 2, wobei die Steuereinheit (105, 116) dafür eingerichtet ist, das erste Halbleiter-Schaltelement (131) in einen nicht-leitfähigen Zustand zu schalten, wenn der Eingangsstrom nicht unterhalb der Stromschwelle (352) liegt.
  4. Treiberschaltung nach Anspruch 2 oder 3, wobei die Steuereinheit (105, 116) dafür eingerichtet ist, das erste (131) und das zweite (132) Halbleiter-Schaltelement in einen leitfähigen Zustand zu schalten, wenn die Versorgungsspannung unterhalb der Spannungsschwelle (351) liegt.
  5. Treiberschaltung (100) nach einem der Ansprüche 2 bis 4, wobei die Steuereinheit (105, 116) einen Differenzialverstärker (116) umfasst, wobei ein erster Eingang des Differenzialverstärkers (116) mit dem zweiten Ende des zweiten Ableitwiderstands (122) verbunden ist.
  6. Treiberschaltung (100) nach Anspruch 5, wobei ein Ausgang des Differenzialverstärkers (116) mit einem Eingang des ersten Halbleiter-Schaltelements (131) verbunden ist.
  7. Treiberschaltung (100) nach einem der Ansprüche 2 bis 6, wobei der Stromdetektor (108, 201) Folgendes umfasst:
    - einen Abfühlwiderstand (108) zum Abfühlen des Eingangsstroms der Treiberschaltung (100); und
    - einen ersten Schmitt-Trigger (201) zum Detektieren eines Abfalls des Eingangsstroms unter die zuvor festgelegte Stromschwelle (352).
  8. Treiberschaltung (100) nach einem der Ansprüche 2 bis 7, wobei der Spannungsdetektor (151, 152, 202) Folgendes umfasst:
    - einen Spannungsteiler (151, 152) zum Ableiten einer Abfühlspannung aus der Versorgungsspannung (114); und
    - einen zweiten Schmitt-Trigger (202) zum Detektieren eines Abfalls der Abfühlspannung unter die zuvor festgelegte Spannungsschwelle (351).
  9. Treiberschaltung (100) nach einem der Ansprüche 2 bis 8, wobei das zweite Halbleiter-Schaltelement (132) und die Steuereinheit (105, 116) in einem integrierten Schaltkreis (102) kombiniert sind.
  10. Treiberschaltung (100) nach einem der vorangehenden Ansprüche, wobei das erste (131) und/oder das zweite (132) Halbleiter-Schaltelement einen Transistor umfassen.
  11. Beleuchtungsvorrichtung (100, 110), die ein Beleuchtungselement (110) und eine Treiberschaltung (100) nach einem der vorangehenden Ansprüche umfasst, wobei die Treiberschaltung (100) zum Ansteuern des Beleuchtungselements (110) ausgebildet ist.
  12. Beleuchtungsvorrichtung (100, 110) nach Anspruch 11, wobei das Beleuchtungselement (110) mindestens eine Leuchtdiode (111), eine Kompaktleuchtstofflampe, eine kalte Katodenleuchtstofflampe oder eine Halogenlampe umfasst.
  13. Verfahren zum Betreiben einer Treiberschaltung (100) zum Ansteuern einer Beleuchtungsvorrichtung (110), wobei das Verfahren Folgendes umfasst:
    - Bereitstellen einer Treiberschaltung (100), die zwischen einer gedimmten Versorgungsspannung (114) und der Beleuchtungsvorrichtung (110) verbunden ist, wobei die Treiberschaltung (100) einen ersten Ableitwiderstand (121) umfasst, der ein erstes Ende aufweist, das mit einem Hochspannungsanschluss (192) der Versorgungsspannung (114) verbunden ist, und einen zweiten Ableitwiderstand (122) umfasst, der ein erstes Ende aufweist, das mit einem Niederspannungsanschluss (191) der Versorgungsspannung (114) verbunden ist, gekennzeichnet durch ein erstes Halbleiter-Schaltelement (131), das zwischen den zweiten Enden des ersten (121) und des zweiten (122) Ableitwiderstands verbunden ist, und ein zweites Halbleiter-Schaltelement (132), das zwischen dem zweiten Ende des zweiten Ableitwiderstandes (122) und dem Niederspannungsanschluss (191) der Versorgungsspannung (114) verbunden ist;
    - Detektieren (404) einer zuvor festgelegten Niedrigstromphase (323) eines Eingangsstroms der Treiberschaltung (100), wobei, während der Niedrigstromphase (323), der Eingangsstrom unterhalb einer zuvor festgelegten Stromschwelle (352) liegt und die Versorgungsspannung nicht unterhalb einer zuvor festgelegten Spannungsschwelle (351) liegt;
    - Regeln (416), nach dem Detektieren (404) der Niedrigstromphase (323), eines Spannungsabfalls an dem zweiten Ableitwiderstand (122) während der Niedrigstromphase (323).
  14. Verfahren nach Anspruch 13, das des Weiteren Folgendes umfasst:
    - Detektieren (408) einer zuvor festgelegten Niedrigspannungsphase (321), wobei die Versorgungsspannung während der Niedrigspannungsphase (321) unterhalb der zuvor festgelegten Spannungsschwelle (351) liegt;
    - Schalten (410), nach dem Detektieren (408) der Niedrigspannungsphase (321), des ersten (131) und des zweiten (132) Halbleiter-Schaltelements in einen leitfähigen Zustand.
  15. Verfahren nach Anspruch 13 oder 14, das des Weiteren Folgendes umfasst:
    - Detektieren (412) einer zuvor festgelegten Hochstromphase (322), wobei der Eingangsstrom während der Hochstromphase (322) nicht unterhalb der zuvor festgelegten Stromschwelle (352) liegt; und
    - Schalten (414), nach dem Detektieren (412) der Hochstromphase (322), des ersten Halbleiter-Schaltelements (131) in einen nicht-leitfähigen Zustand.
EP10158998.4A 2010-04-01 2010-04-01 Treiberschaltung zum Antrieb einer Beleuchtungsvorrichtung und Betriebsverfahren dafür Not-in-force EP2373124B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10158998.4A EP2373124B1 (de) 2010-04-01 2010-04-01 Treiberschaltung zum Antrieb einer Beleuchtungsvorrichtung und Betriebsverfahren dafür
EP11711592A EP2554016A1 (de) 2010-04-01 2011-04-01 Treiberschaltung zur ansteuerung einer beleuchtungsvorrichtung und betriebsverfahren dafür
PCT/EP2011/055108 WO2011121113A1 (en) 2010-04-01 2011-04-01 Driver circuit for driving a lighting device and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10158998.4A EP2373124B1 (de) 2010-04-01 2010-04-01 Treiberschaltung zum Antrieb einer Beleuchtungsvorrichtung und Betriebsverfahren dafür

Publications (2)

Publication Number Publication Date
EP2373124A1 EP2373124A1 (de) 2011-10-05
EP2373124B1 true EP2373124B1 (de) 2013-10-23

Family

ID=42727584

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10158998.4A Not-in-force EP2373124B1 (de) 2010-04-01 2010-04-01 Treiberschaltung zum Antrieb einer Beleuchtungsvorrichtung und Betriebsverfahren dafür
EP11711592A Withdrawn EP2554016A1 (de) 2010-04-01 2011-04-01 Treiberschaltung zur ansteuerung einer beleuchtungsvorrichtung und betriebsverfahren dafür

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11711592A Withdrawn EP2554016A1 (de) 2010-04-01 2011-04-01 Treiberschaltung zur ansteuerung einer beleuchtungsvorrichtung und betriebsverfahren dafür

Country Status (2)

Country Link
EP (2) EP2373124B1 (de)
WO (1) WO2011121113A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772871B1 (de) * 2019-08-09 2023-06-14 Xiamen Leedarson Lighting Co., Ltd. Stabilisierungssystem und stromsteuergerät dafür

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608637B1 (de) * 2011-12-21 2018-11-14 Silergy Corp. Anstiegsflanken-Phasenschnittableitwiderstandssteuerung
WO2014013407A1 (en) * 2012-07-16 2014-01-23 Koninklijke Philips N.V. Driver device and driving method for driving a load, in particular a light unit including controlling input supply current to meet predefined conditions
CN105247959B (zh) 2013-05-17 2017-10-31 飞利浦照明控股有限公司 用于驱动负载特别是led单元的驱动器设备和驱动方法
EP2890220B1 (de) * 2013-12-24 2023-10-25 Silergy Semiconductor (Hong Kong) Limited Ableitschaltungssteuerung
US9402293B2 (en) 2014-04-24 2016-07-26 Power Integrations, Inc. Multi-bleeder mode control for improved LED driver performance
JP2017523581A (ja) * 2014-08-07 2017-08-17 フィリップス ライティング ホールディング ビー ヴィ ステップドライバに接続されたled素子の配置
WO2018032511A1 (en) * 2016-08-19 2018-02-22 Lucis Technologies Holdings Limited System and method for controlling appliances
CN109275230B (zh) * 2018-10-24 2020-12-29 矽力杰半导体技术(杭州)有限公司 泄放电路和应用其的led驱动电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ545325A (en) * 2004-05-19 2008-08-29 Goeken Group Corp Dynamic snubbing for LED lighting converter
GB2435724A (en) * 2006-03-04 2007-09-05 Mood Concepts Ltd TRIAC dimming of LED lighting units
US7852017B1 (en) * 2007-03-12 2010-12-14 Cirrus Logic, Inc. Ballast for light emitting diode light sources
JP2009140631A (ja) * 2007-12-04 2009-06-25 Matsumura Denki Seisakusho:Kk 調光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772871B1 (de) * 2019-08-09 2023-06-14 Xiamen Leedarson Lighting Co., Ltd. Stabilisierungssystem und stromsteuergerät dafür

Also Published As

Publication number Publication date
WO2011121113A1 (en) 2011-10-06
EP2554016A1 (de) 2013-02-06
EP2373124A1 (de) 2011-10-05

Similar Documents

Publication Publication Date Title
EP2373124B1 (de) Treiberschaltung zum Antrieb einer Beleuchtungsvorrichtung und Betriebsverfahren dafür
CN108200685B (zh) 用于可控硅开关控制的led照明系统
US9635719B2 (en) High voltage converter without auxiliary winding
US8664880B2 (en) Ballast/line detection circuit for fluorescent replacement lamps
JP4620773B2 (ja) 2線式調光装置および輝度を制御するための方法
US8723431B2 (en) Bleeder circuit
US9173273B2 (en) Solid state lightening driver with mixed control of power switch
US8896288B2 (en) TRIAC dimmer detection
US9949324B2 (en) Powerless bleeder
RU2621720C2 (ru) Шунтирующее устройство в системе управления освещением без нейтрального провода
JP6617099B2 (ja) 低電圧照明のための安定化回路
US9277609B2 (en) Back-up capacitor
JP2013105729A (ja) Led点灯装置
JP2013065487A (ja) Led点灯装置
US10362659B2 (en) Illumination control system, lighting system, illumination system, non-transitory recording medium, and illumination control method
US11172551B2 (en) Solid-state lighting with a driver controllable by a power-line dimmer
US9277611B2 (en) LED driver with high dimming compatibility without the use of bleeders
JP5473377B2 (ja) 発光素子の制御回路
KR101285644B1 (ko) 전류 감지 방식 엘이디 조명장치
CN111246619B (zh) 用于切相调光器的led驱动器
JP2016152087A (ja) Led点灯装置及び照明器具

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

17P Request for examination filed

Effective date: 20120405

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 638163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010011100

Country of ref document: DE

Effective date: 20131219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 638163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010011100

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

26N No opposition filed

Effective date: 20140724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010011100

Country of ref document: DE

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140401

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100401

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010011100

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210316

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010011100

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103