EP2369597A1 - Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles - Google Patents

Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles Download PDF

Info

Publication number
EP2369597A1
EP2369597A1 EP10002605A EP10002605A EP2369597A1 EP 2369597 A1 EP2369597 A1 EP 2369597A1 EP 10002605 A EP10002605 A EP 10002605A EP 10002605 A EP10002605 A EP 10002605A EP 2369597 A1 EP2369597 A1 EP 2369597A1
Authority
EP
European Patent Office
Prior art keywords
dispersion
silver nanoparticles
range
dispersant
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10002605A
Other languages
German (de)
French (fr)
Other versions
EP2369597B1 (en
Inventor
Daniel Dr. Rudhardt
Stefanie Dr. Eiden
Dirk Storch
Elsa Karoline Dr. Schaedlich
Sven Sommerfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Priority to DK10002605.3T priority Critical patent/DK2369597T3/en
Priority to PL10002605T priority patent/PL2369597T3/en
Priority to EP10002605.3A priority patent/EP2369597B1/en
Priority to PT100026053T priority patent/PT2369597E/en
Priority to ES10002605.3T priority patent/ES2495390T3/en
Priority to EP11157252A priority patent/EP2369598A1/en
Priority to CA2733600A priority patent/CA2733600A1/en
Priority to US13/044,129 priority patent/US8834960B2/en
Priority to TW100108208A priority patent/TWI592221B/en
Priority to CN201110058677.7A priority patent/CN102189072B/en
Priority to KR1020110021860A priority patent/KR20110103351A/en
Priority to JP2011054046A priority patent/JP2011190535A/en
Publication of EP2369597A1 publication Critical patent/EP2369597A1/en
Priority to HK12102639.9A priority patent/HK1162395A1/en
Application granted granted Critical
Publication of EP2369597B1 publication Critical patent/EP2369597B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition

Definitions

  • the present invention relates to a process for the preparation of conductive surface coatings with dispersion with electrostatically stabilized silver nanoparticles, dispersions particularly suitable for this process and a process for their preparation.
  • EP 1 493 780 A1 describes the preparation of conductive surface coatings with a liquid conductive composition of a binder and silver particles, wherein said silver-containing silver particles may be silver oxide particles, silver carbonate particles or silver acetate particles, each of which may have a size of 10 nm to 10 microns.
  • the binder is a polyvalent phenolic compound or one of various resins, ie, in each case a polymeric component. According to the EP 1 493 780 A1 is obtained from this composition after application to a surface with heating a conductive layer, wherein the heating is preferably carried out at temperatures of 140 ° C to 200 ° C.
  • compositions described are dispersions in a dispersing agent selected from alcohols such as methanol, ethanol and propanol, isophorones, terpineols, triethylene glycol monobutyl ethers and ethylene glycol monobutyl ether acetate.
  • a dispersing agent selected from alcohols such as methanol, ethanol and propanol, isophorones, terpineols, triethylene glycol monobutyl ethers and ethylene glycol monobutyl ether acetate.
  • dispersion stabilizers such as hydroxypropyl cellulose, polyvinylpyrrolidone and polyvinyl alcohol from aggregation. These dispersion stabilizers are also polymeric components.
  • the silver-containing particles are always sterically stabilized in the dispersion medium by the abovementioned dispersion stabilizers or the binder as dispersion stabilizer against aggregation.
  • dispersion stabilizers or the binder as dispersion stabilizer against aggregation.
  • polymeric steric dispersion stabilizers have - as already mentioned above - but the disadvantage that they are in the resulting conductive coatings by the surface coverage of the silver particles reduce the direct contact of the particles with each other and thus the conductivity of the coating.
  • the organic solvents used as dispersants accelerate the drying time or reduce the drying temperatures of the coatings applied thereto, so that also temperature-sensitive plastic surfaces can be coated, however, dissolve such organic dispersants on the surface of plastic substrates or can diffuse into them, causing swelling or damage the substrate surface and any layers underneath.
  • the object was to find such a method and dispersions suitable for this purpose.
  • the aforementioned, disadvantageous combination of improved stabilization against aggregation with the reduction of the conductivity of the surface coatings produced from the dispersions should be avoided.
  • the possibility of using this method for coating plastic surfaces with short drying and sintering times and / or low drying and sintering temperatures should not be accompanied by the risk of surface damage.
  • a process for the preparation of conductive surface coatings comprising a dispersion comprising at least one liquid dispersant and electrostatically stabilized silver nanoparticles, wherein the silver nanoparticles have a zeta potential in the range of -20 to -55 mV in the above dispersant at a pH Value in the range of 2 to 10, is applied to a surface and the surface and / or the dispersion located thereon to at least a temperature in the range of 50 ° C below the boiling point of the dispersing agent to 150 ° C above the boiling point of the dispersing agent of Dispersion is brought, solves the above object.
  • the process of the invention does not require steric, optionally polymeric dispersion stabilizers and it is possible, when using plastic substrates, to avoid high drying and sintering temperatures at which the substrate to be coated can be damaged.
  • the liquid dispersant (s) is preferably water or mixtures containing water and organic, preferably water-soluble, organic solvents.
  • the liquid dispersing agent (s) are particularly preferably water or mixtures of water with alcohols, aldehydes and / or ketones, more preferably water or mixtures of water with mono- or polyhydric alcohols having up to four carbon atoms, such as eg Methanol, ethanol, n-propanol, iso-propanol or ethylene glycol, aldehydes of up to four carbon atoms, e.g. Formaldehyde, and / or ketones of up to four carbon atoms, e.g. Acetone or methyl ethyl ketone.
  • Very particularly preferred dispersant is water.
  • Silver nanoparticles in the context of the invention are to be understood as those having a d 50 value of less than 100 nm, preferably less than 80 nm, particularly preferably less than 60 nm, measured by means of dynamic light scattering.
  • a ZetaPlus Zeta Potential Analyzer from Brookhaven Instrument Corporation is suitable for the measurement by means of dynamic light scattering.
  • a dispersion in the sense of the present invention denotes a liquid comprising these silver nanoparticles.
  • the silver nanoparticles are in the dispersion in an amount of 0.1 to 65 wt .-%, particularly preferably from 1 to 60 wt .-%, most preferably from 5 to 50 wt .-%, based on the total weight of the dispersion.
  • At least one electrostatic dispersion stabilizer is added during the preparation of the dispersions.
  • An electrostatic dispersion stabilizer in the context of the invention is to be understood as one by whose presence the silver nanoparticles are provided with repulsive forces and no longer tend to aggregate on the basis of these repulsive forces. Consequently, the presence and action of the electrostatic dispersion stabilizer between the silver nanoparticles causes repulsive electrostatic forces which counteract the van der Waals forces acting on the aggregation of the silver nanoparticles.
  • the electrostatic dispersion stabilizer (s) are preferably carboxylic acids having up to five carbon atoms, salts of such carboxylic acids or sulfates or phosphates.
  • Preferred electrostatic dispersion stabilizers are di- or tri-carboxylic acids having up to five carbon atoms or their salts. When using the di- or tri-carboxylic acids they can be used to adjust the pH together with amines. Suitable amines include monoalkyl, dialkyl or dialkanolamines, e.g. Diethanolamine, in question.
  • the salts may preferably be the alkali or ammonium salts, preferably the lithium, sodium, potassium or ammonium salts, e.g.
  • Electrostatic dispersion stabilizers are citric acid or citrates, e.g. Lithium, sodium, potassium or tetramethylammonium citrate. Most preferably, citrate, e.g. Lithium, sodium, potassium or tetramethylammonium citrate, used as an electrostatic dispersion stabilizer.
  • citrate e.g. Lithium, sodium, potassium or tetramethylammonium citrate
  • Any excess of the electrostatic dispersion stabilizer (s) is preferably removed prior to application of the dispersion to the surface.
  • known purification methods such as diafiltration, reverse osmosis and membrane filtration are suitable.
  • electrostatic dispersion stabilizers are advantageous over polymeric dispersion stabilizers which are sterically stabilizing by surface occupation, such as, PVP, because they promote the formation of said zeta potential of the silver nanoparticles in the dispersion, but at the same time have no or only a negligible steric hindrance of the silver nanoparticles in the later obtained from the dispersion conductive surface coating result.
  • the stabilization of the silver nanoparticles in the dispersion against aggregation does not become sterically hindered for the first time but the silver nanoparticles no longer tend to aggregate based on repulsive forces. Consequently, there are repulsive electrostatic forces between the silver nanoparticles which counteract the van der Waals forces acting on the aggregation of the silver nanoparticles.
  • the silver nanoparticles of the dispersion have a zeta potential in the range of -25 to -50 mV in the above dispersant with electrostatic dispersion stabilizer at a pH in the range of 4 to 10, most preferably a zeta potential in the range of -28 to -45 mV in the above dispersion medium with electrostatic dispersion stabilizer at a pH in the range of 4.5 to 10.0.
  • the determination of the pH is carried out by means of a pH electrode, preferably in the form of a glass electrode in the design as Einstabmesskette, at 20 ° C.
  • the measurement of the zeta potential is carried out by means of electrophoresis.
  • electrophoresis different devices known in the art, such. those of the ZetaPlus or ZetaPALS series from Brookhaven Instruments Corporation.
  • ELS electrophoretic light scattering
  • the light scattered by the particles moving in the electric field undergoes a change in frequency due to the Doppler effect, which is used to determine the migration speed.
  • phase analysis light scattering (PALS)” technique for example with ZetaPALS devices
  • PALS phase analysis light scattering
  • the stabilization by means of electrostatic repulsion ensures that conductive surface coatings can be produced from the dispersion in a simplified manner.
  • the surface and / or the dispersion located thereon is at least at a temperature in the range of 20 ° C below the boiling point of the dispersing agent to 100 ° C above the boiling point of the dispersing agent, more preferably at least one temperature in the range of 10 ° C below the boiling point of the dispersing agent is brought to 60 ° C above the boiling point of the dispersing agent at the prevailing pressure.
  • the heating serves both the drying of the applied coating and the sintering of the silver nanoparticles.
  • the period of heating is preferably 10 seconds to 2 hours, more preferably 30 seconds to 60 minutes.
  • the period of heating required to achieve the desired specific conductivity is shorter the higher the temperature (s) at which the surface and / or the dispersion located thereon are heated.
  • the surface and / or the dispersion located thereon is heated to at least a temperature below the Vicat softening temperature of this plastic substrate.
  • temperatures which are at least 5 ° C, more preferably at least 10 ° C, most preferably at least 15 ° C below the Vicat softening temperature of this plastic substrate.
  • the Vicat softening temperature B / 50 of a plastic is the Vicat softening temperature B / 50 according to ISO 306 (50 N, 50 ° C / h).
  • citrate as electrostatic dispersion stabilizer is particularly advantageous because it already melts at temperatures of 153 ° C, or decomposes at temperatures above 175 ° C.
  • the conductive surface coatings obtained from the dispersions it may be desirable to remove not only the dispersing agent but also the electrostatic dispersion stabilizer as much as possible from the coatings because it has reduced conductivity over the silver nanoparticles and thus the specific conductivity of the resulting coating slight can affect. Due to the aforementioned properties of citrate, this can be achieved in a simple manner by heating.
  • dispersions of the invention can be dispensed with the use of polymeric substances as stabilizers which slow down the drying and / or sintering of the surface coating obtained from the dispersion, or even require an elevated temperature until drying and / or sintering and thus a conductivity of the Surface coating occurs by sintering of the silver particles.
  • the surface to be coated is preferably the surface of a substrate. These may be substrates of any uniform or different materials and of any shape.
  • the substrates may e.g. Glass, metal, ceramic or plastic substrates or substrates in which such components were processed together.
  • Particular advantages of the inventive method in the coating of plastic-containing substrate surfaces since they are exposed only moderate thermal stress due to the possible low drying and sintering temperatures and short drying and sintering times and so unwanted deformation and / or other damage can be avoided.
  • the surface to be coated is particularly preferably the surface of a plastic substrate, preferably a plastic film or sheet or a multilayer composite sheet or sheet.
  • the conductive surface coating produced according to the method of the invention preferably has a specific conductivity of 10 2 to 3 ⁇ 10 7 S / m.
  • the specific conductivity is determined as the reciprocal value of the specific resistance.
  • the resistivity is calculated by determining the ohmic resistance and the geometry of tracks.
  • High specific conductivities of more than 10 5 S / m, preferably of more than 10 6 S / m, can be achieved with the process according to the invention. However, depending on the application, it may well be sufficient to produce surface coatings with lower specific conductivities, and thereby lower temperatures and shorter times for drying and / or sintering than would be required to achieve a higher specific conductivity.
  • the conductive surface coating produced according to the method of the invention preferably has a dry film thickness of 50 nm to 5 ⁇ m, more preferably of 100 nm to 2 ⁇ m.
  • the dry film thickness is determined, for example, by means of profilometry. For this purpose, for example, a MicroProf ® the company Fries Research & Technology (FRT) GmbH.
  • the dispersion is an ink, preferably a printing ink.
  • printing inks are preferably those which are suitable for printing by means of inkjet printing, gravure printing, flexographic printing, rotary printing, aerosol jetting, spin coating, doctor blading or roller application.
  • the dispersion may be admixed with the corresponding additives, e.g. Binders, thickeners, flow control agents, color pigments, film formers, adhesion promoters and / or defoamers are added.
  • the dispersion according to the invention may contain up to 2% by weight, preferably up to 1% by weight, of such additives, based on the total weight of the dispersion.
  • co-solvents can also be added to the dispersion.
  • the inventive dispersion can contain up to 20% by weight, preferably up to 15% by weight, of such cosolvents, based on the total weight of the dispersion.
  • the inks in a preferred embodiment of the invention for inkjet printing have a viscosity of 5 to 25 mPas (measured at a shear rate of 1 / s), for flexographic printing a viscosity of 50 to 150 mPas (measured at a shear rate of 10 / s).
  • the viscosities can be determined with a Physica Rheometer at the appropriate shear rate. on. This viscosity is preferably achieved by the addition of the aforementioned additives.
  • additives are to be understood as meaning only those additional components which are used above for the preparation of a printing ink, but do not comprise polymeric, steric dispersion stabilizers.
  • the dispersions according to the invention can be prepared by reducing a silver salt in a dispersion medium in the presence of an electrostatic dispersion stabilizer.
  • the present invention accordingly further provides a process, characterized in that a silver salt in at least one dispersant is reduced to silver in the presence of at least one electrostatic dispersion stabilizer with a reducing agent.
  • Suitable reducing agents for use in the abovementioned process according to the invention are preferably thioureas, hydroxyacetone, borohydrides, iron ammonium citrate, hydroquinone, ascorbic acid, dithionites, hydroxymethanesulfinic acid, disulfites, formamidine sulfinic acid, sulfurous acid, hydrazine, hydroxylamine, ethylenediamine, tetramethylethylenediamine and / or hydroxylamine sulfates.
  • Particularly preferred reducing agents are borohydrides.
  • Very particularly preferred reducing agent is sodium borohydride.
  • Suitable silver salts are, for example, and preferably silver nitrate, silver acetate, silver citrate. Particularly preferred is silver nitrate.
  • the electrostatic dispersion stabilizer (s) are preferably used in a molar excess to the silver salt and corresponding excesses are removed before the use of the dispersions for coating surfaces.
  • known purification methods such as diafiltration, reverse osmosis and membrane filtration are suitable.
  • the resulting reduction product is subjected to purification.
  • Purification methods which may be used for this purpose are, for example, the methods generally known to the person skilled in the art, e.g. Diafiltration, reverse osmosis and membrane filtration.
  • the ohmic resistance was determined by means of a multimeter (Benning MM6). The measurement was made at the outer points of the respective lines, i. at the two ends of the line, which corresponded to a distance of 9 cm.
  • the values obtained are data in S / m ⁇ 10 6 .
  • Example 1 Preparation of a Dispersion According to the Invention
  • the resulting dispersion was then diluted 1/200 with distilled water to a solids content of 0.05% by weight based on the total weight of the sample, and it was diluted
  • the pH of the resulting diluted dispersion was adjusted to various values by adding concentrated sodium hydroxide solution or concentrated hydrochloric acid according to the following table.
  • Example 2 Measurement of the Zeta Potential of the Dispersions According to Example 1
  • zeta potentials of the dispersions of Example 1 were measured according to the table below. All measurements of the samples were carried out three times and a resulting standard deviation of ⁇ 0.5 was determined. The measurement of the zeta potential is carried out with a Brookhaven Instruments Corporation 90 Plus, ZetaPlus Particle Sizing Software Version 3.59 measured in a dispersion having a solids content of 0.05% by weight, based on the total weight of the sample to be measured. ⁇ B> Table.
  • the electrostatically stabilized silver nanoparticles of the dispersions according to the invention have a zeta potential in the range from -23 mV to -44 mV.
  • Example 3 Production of a Conductive Surface Coating Using the Dispersion According to Example 1
  • Example 3 Of the dispersion according to Example 1 (Sample 3) A 2 mm wide line was applied to a polycarbonate film (Bayer Material Science AG, Makrolon ® DE1-1) and eluted (for ten minutes in an oven at 140 ° C and ambient pressure 1013 hPa ) dried and sintered. The surface coating was thereafter already dry, so that wiping led to no visible removal of surface coating.
  • the specific conductivity was determined directly by four-point resistance determination, wherein the distance between the contact point was 1 cm in each case.
  • the calculated specific conductivity was 1.25 ⁇ 10 6 S / m.
  • a dispersion with sterically stabilized silver nanoparticles was prepared.
  • a 0.054 molar solution of silver nitrate were mixed with a mixture of a 0.054 molar sodium hydroxide solution and the dispersing aid Disperbyk ® 190 (manufactured by BYK Chemie) (1 g / l) in a volume ratio of 1: 1 was added and stirred for 10 min.
  • An aqueous 4.6 molar aqueous formaldehyde solution was added to this reaction mixture while stirring so that the ratio of Ag + to reducing agent is 1:10. This mixture was heated to 60 ° C, held for 30 min at this temperature and then cooled.
  • the particles were separated from the unreacted starting materials by diafiltration in a first step, and then the sol was upconcentrated using a 30,000 dalton membrane.
  • the result was a colloid-stable sol with a solids content of up to 10 wt .-% (silver particles and dispersants).
  • the proportion of Disperbyk ® 190 was, according to elemental analysis, after the membrane filtration 6 wt .-% based on the silver content.
  • An investigation by means of laser correlation spectroscopy revealed an effective particle diameter of 78 nm.
  • the silver particles are stabilized by polymeric steric stabilizers PVP K 15 and Disperbyk ® 190th
  • Example 3 From this dispersion is applied in the same manner as described in Example 3, a surface coating on a polycarbonate film.
  • the analogous to Example 3 certain specific conductivity could only be determined after one hour of drying and sintering at 140 ° C and ambient pressure (1013 hPa),
  • the specific conductivity after this hour drying and sintering time was about 1 S / m. Only after a total drying and sintering time of four hours, a higher specific conductivity of 10 6 S / m could be determined.
  • the surface coating produced with the dispersions according to the invention has a significantly higher conductivity even after a significantly shorter drying and sintering time at low drying and sintering temperatures.
  • the surface coating produced with the dispersion with sterically stabilized silver nanoparticles requires substantially longer drying and sintering time to achieve a comparable specific conductivity.

Abstract

Forming a conductive coating on the surface, comprises providing a substrate having a surface applying a dispersion to the surface, where the dispersion comprises at least one liquid dispersant, and electrostatically stabilized silver nanoparticles having a zeta potential of -20 to -55 mV in the dispersant at a pH value of 2-10, and heating one or both of the surface and the dispersion applied on it to a temperature of 50[deg] C below the boiling point of the dispersant to 150[deg] C above the boiling point of the dispersant. Independent claims are also included for: (1) the dispersion comprising the components as above per se and optionally further additives; and (2) preparation of the dispersion, comprising reducing a silver salt to silver with a reducing agent in at least one dispersant in the presence of at least one electrostatic dispersion stabilizer.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung leitfähiger Oberflächenbeschichtungen mit Dispersion mit elektrostatisch stabilisierten Silbernanopartikeln, für dieses Verfahren besonders geeignete Dispersionen sowie ein Verfahren zu deren Herstellung.The present invention relates to a process for the preparation of conductive surface coatings with dispersion with electrostatically stabilized silver nanoparticles, dispersions particularly suitable for this process and a process for their preparation.

Xia et al. beschreibt in Adv. Mater., 2003, 15, No.9, 695 - 699 die Herstellung von stabilen wässrigen Dispersionen von Silber-Nanopartikeln mit Poly(vinyl-pyrrolidon) (PVP) und Natriumcitrat als Stabilisatoren. Xia erhält so monodisperse Dispersionen mit Silber-Nanopartikeln mit Partikelgrößen unterhalb von 10 nm und enger Partikelgrößenverteilung. Die Verwendung von PVP als polymerem Stabilisator führt dabei zu sterischer Stabilisierung der Nanopartikel gegen Aggregation. Solche sterischen polymeren Dispersionsstabilisatoren haben jedoch den Nachteil, dass sie in den erhaltenen leitfähigen Beschichtungen durch die Oberflächenbelegung der Silberpartikel den direkten Kontakt der Partikel zueinander und damit die Leitfähigkeit der Beschichtung verringern. Laut Xia gelingt es nicht, solche stabilen monodispersen Dispersionen ohne den Einsatz von PVP zu erhalten. Xia et al. in Adv. Mater., 2003, 15, No. 9, 695-699 the preparation of stable aqueous dispersions of silver nanoparticles with poly (vinylpyrrolidone) (PVP) and sodium citrate as stabilizers. Xia will thus obtain monodisperse dispersions with silver nanoparticles with particle sizes below 10 nm and narrow particle size distribution. The use of PVP as a polymeric stabilizer leads to steric stabilization of the nanoparticles against aggregation. However, such steric polymeric dispersion stabilizers have the disadvantage that they reduce the direct contact of the particles with one another and thus the conductivity of the coating in the resulting conductive coatings by the surface coverage of the silver particles. According to Xia, it is not possible to obtain such stable monodisperse dispersions without the use of PVP.

EP 1 493 780 A1 beschreibt die Herstellung leitfähiger Oberflächenbeschichtungen mit einer flüssigen leitfähigen Zusammensetzung aus einem Binder und Silberpartikeln, wobei vorgenannte silberhaltige Silberpartikel Silberoxidpartikel, Silbercarbonatpartikel oder Silberacetatpartikel sein können, welche jeweils eine Größe von 10 nm bis 10 µm aufweisen können. Der Binder ist eine polyvalente Phenolverbindung oder einer von verschiedenen Harzen, d.h. in jedem Fall eine polymere Komponente. Gemäß der EP 1 493 780 A1 wird aus dieser Zusammensetzung nach Aufbringen auf eine Oberfläche unter Erhitzen eine leitfähige Schicht erhalten, wobei das Erhitzen bevorzugt bei Temperaturen von 140°C bis 200°C auszuführen ist. Die gemäß der EP 1 493 780 A1 beschriebenen leitfähigen Zusammensetzungen sind Dispersionen in einem Dispersionsmittel, ausgewählt aus Alkoholen, wie Methanol, Ethanol und Propanol, Isophoronen, Terpineolen, Triethylenglykolmonobutylethern und Ethylenglykol-Monobutylether-Acetat. Hierbei wird in der EP 1 493 780 A1 noch einmal darauf hingewiesen, dass die silberhaltigen Partikel im Dispersionsmittel bevorzugt durch Zugabe von Dispersionsstabilisatoren wie Hydroxypropylcellulose, Polyvinylpyrrolidon und Polyvinylalkohol vor einer Aggregation zu schützen sind. Auch diese Dispersionsstabilisatoren sind polymere Komponenten. Die silberhaltigen Partikel werden demnach im Dispersionsmittel stets sterisch durch die vorgenannten Dispersionsstabilisatoren oder den Binder als Dispersionsstabilisator gegen eine Aggregation stabilisiert. Solche polymeren sterisch wirkenden Dispersionsstabilisatoren haben - wie bereits oben erwähnt - jedoch den Nachteil, dass sie in den erhaltenen leitfähigen Beschichtungen durch die Oberflächenbelegung der Silberpartikel den direkten Kontakt der Partikel zueinander und damit die Leitfähigkeit der Beschichtung verringern. Die in 1 493 780 A1 als Dispersionsmittel eingesetzten organischen Lösungsmittel beschleunigen zwar die Trocknungszeit bzw. verringern die Trocknungstemperaturen der mit diesen aufgetragenen Beschichtungen, so dass damit auch temperatursensible Kunststoffoberflächen beschichtet werden können, jedoch lösen solche organischen Dispersionsmittel die Oberfläche von Kunststoffsubstraten an bzw. können in diese eindiffundieren, was zum Quellen bzw. zur Beschädigung der Substratoberfläche und etwaig darunterliegender Schichten führen kann. EP 1 493 780 A1 describes the preparation of conductive surface coatings with a liquid conductive composition of a binder and silver particles, wherein said silver-containing silver particles may be silver oxide particles, silver carbonate particles or silver acetate particles, each of which may have a size of 10 nm to 10 microns. The binder is a polyvalent phenolic compound or one of various resins, ie, in each case a polymeric component. According to the EP 1 493 780 A1 is obtained from this composition after application to a surface with heating a conductive layer, wherein the heating is preferably carried out at temperatures of 140 ° C to 200 ° C. The according to the EP 1 493 780 A1 Conductive compositions described are dispersions in a dispersing agent selected from alcohols such as methanol, ethanol and propanol, isophorones, terpineols, triethylene glycol monobutyl ethers and ethylene glycol monobutyl ether acetate. This is in the EP 1 493 780 A1 once again pointed out that the silver-containing particles in the dispersant are preferably protected by the addition of dispersion stabilizers such as hydroxypropyl cellulose, polyvinylpyrrolidone and polyvinyl alcohol from aggregation. These dispersion stabilizers are also polymeric components. Accordingly, the silver-containing particles are always sterically stabilized in the dispersion medium by the abovementioned dispersion stabilizers or the binder as dispersion stabilizer against aggregation. However, such polymeric steric dispersion stabilizers have - as already mentioned above - but the disadvantage that they are in the resulting conductive coatings by the surface coverage of the silver particles reduce the direct contact of the particles with each other and thus the conductivity of the coating. In the 1 493 780 A1 Although the organic solvents used as dispersants accelerate the drying time or reduce the drying temperatures of the coatings applied thereto, so that also temperature-sensitive plastic surfaces can be coated, however, dissolve such organic dispersants on the surface of plastic substrates or can diffuse into them, causing swelling or damage the substrate surface and any layers underneath.

Es bestand demnach weiterhin Bedarf an einem Verfahren zur Beschichtung von Oberflächen mit leitfähigen Beschichtungen unter Einsatz von Dispersionen enthaltend Silbernanopartikel, bei dem zwar kurze Trocknungs- und Sinterzeiten und/oder niedrige Trocknungs- und Sintertemperaturen zum Einsatz kommen können, so dass auch temperaturempfmdliche Kunststoffoberflächen beschichtet werden können, bei dem aber keine Beschädigung solcher Oberflächen durch das verwendete Dispersionsmittel zu befürchten ist, wobei auch bei diesem Verfahren eine vorzeitige Aggregation und damit Ausflockung der Silbernanopartikel in den eingesetzten Dispersionen durch geeignete Stabilisierung zu verhindern ist.There was therefore still a need for a process for coating surfaces with conductive coatings using dispersions containing silver nanoparticles, in which, although short drying and sintering times and / or low drying and sintering temperatures can be used, so that temperature-sensitive plastic surfaces are coated in which, however, no damage to such surfaces due to the dispersion medium used is to be feared, whereby premature aggregation and thus flocculation of the silver nanoparticles in the dispersions used can also be prevented by appropriate stabilization in this process too.

Ausgehend vom Stand der Technik bestand also die Aufgabe darin, ein solches Verfahren und hierfür geeignete Dispersionen aufzufinden. Die vorgenannte, nachteilige Verknüpfung von verbesserter Stabilisierung gegen Aggregation mit der Verminderung der Leitfähigkeit der aus den Dispersionen hergestellten Oberflächenbeschichtungen sollte dabei vermieden werden. In bevorzugten Ausführungsformen sollte zudem die Möglichkeit der Anwendung diese Verfahrens für die Beschichtung von Kunststoffoberflächen durch kurze Trocknungs- und Sinterzeiten und/oder niedrige Trocknungs- und Sintertemperaturen nicht mit dem Risiko der Beschädigung der Oberflächen einhergehen.Starting from the prior art, the object was to find such a method and dispersions suitable for this purpose. The aforementioned, disadvantageous combination of improved stabilization against aggregation with the reduction of the conductivity of the surface coatings produced from the dispersions should be avoided. Moreover, in preferred embodiments, the possibility of using this method for coating plastic surfaces with short drying and sintering times and / or low drying and sintering temperatures should not be accompanied by the risk of surface damage.

Es wurde überraschend gefunden, dass ein Verfahren zur Herstellung leitfähiger Oberflächenbeschichtungen, bei dem eine Dispersion enthaltend wenigstens ein flüssiges Dispersionsmittel und elektrostatisch stabilisierte Silbernanopartikel, wobei die Silbernanopartikel ein Zeta-Potential im Bereich von -20 bis -55 mV in vorstehendem Dispersionsmittel bei einem pH-Wert im Bereich von 2 bis 10 aufweisen, auf eine Oberfläche aufgetragen wird und die Oberfläche und/oder die auf dieser befindliche Dispersion auf wenigstens eine Temperatur im Bereich von 50°C unterhalb des Siedepunktes des Dispersionsmittels bis 150°C oberhalb des Siedepunktes des Dispersionsmittels der Dispersion gebracht wird, die vorstehend genannte Aufgabe löst.It has surprisingly been found that a process for the preparation of conductive surface coatings comprising a dispersion comprising at least one liquid dispersant and electrostatically stabilized silver nanoparticles, wherein the silver nanoparticles have a zeta potential in the range of -20 to -55 mV in the above dispersant at a pH Value in the range of 2 to 10, is applied to a surface and the surface and / or the dispersion located thereon to at least a temperature in the range of 50 ° C below the boiling point of the dispersing agent to 150 ° C above the boiling point of the dispersing agent of Dispersion is brought, solves the above object.

Das erfindungsgemäße Verfahren kommt dabei ohne sterische, gegebenenfalls polymere Dispersionsstabilisatoren aus und es besteht die Möglichkeit, bei Verwendung von Kunststoffsubstraten hohe Trocknungs- und Sintertemperaturen, bei denen das zu beschichtende Substrat beschädigt werden kann, zu vermeiden.The process of the invention does not require steric, optionally polymeric dispersion stabilizers and it is possible, when using plastic substrates, to avoid high drying and sintering temperatures at which the substrate to be coated can be damaged.

Gegenstand der vorliegenden Erfindung ist demnach ein Verfahren zur Herstellung leitfähiger Oberflächenbeschichtungen, dadurch gekennzeichnet, dass eine Dispersion enthaltend

  • wenigstens ein flüssiges Dispersionsmittel und
  • elektrostatisch stabilisierte Silbernanopartikel,
wobei die elektrostatisch stabilisierten Silbernanopartikel ein Zeta-Potential im Bereich von - 20 bis -55 mV in vorstehendem Dispersionsmittel bei einem pH-Wert im Bereich von 2 bis 10 aufweisen,
auf eine Oberfläche aufgetragen wird und die Oberfläche und/oder die auf dieser befindliche Dispersion auf wenigstens eine Temperatur im Bereich von 50°C unterhalb des Siedepunktes des Dispersionsmittels bis 150°C oberhalb des Siedepunktes des Dispersionsmittels der Dispersion gebracht wird.The present invention accordingly provides a process for the production of conductive surface coatings, which comprises containing a dispersion
  • at least one liquid dispersant and
  • electrostatically stabilized silver nanoparticles,
wherein the electrostatically stabilized silver nanoparticles have a zeta potential in the range of -20 to -55 mV in the above dispersant at a pH in the range of 2 to 10,
is applied to a surface and the surface and / or the dispersion located thereon is brought to at least a temperature in the range of 50 ° C below the boiling point of the dispersing agent to 150 ° C above the boiling point of the dispersion medium of the dispersion.

Bei dem oder den flüssigen Dispersionsmittel(n) handelt es sich bevorzugt um Wasser oder Mischungen enthaltend Wasser und organische, vorzugsweise wasserlösliche organische Lösungsmittel. Besonders bevorzugt handelt es sich bei dem oder den flüssigen Dispersionsmittel(n) um Wasser oder Mischungen aus Wasser mit Alkoholen, Aldehyden und/oder Ketonen, besonders bevorzugt um Wasser oder Mischungen aus Wasser mit ein- oder mehrwertigen Alkoholen mit bis zu vier Kohlenstoffatomen, wie z.B. Methanol, Ethanol, n-Propanol, iso-Propanol oder Ethylenglykol, Aldehyden mit bis zu vier Kohlenstoffatomen, wie z.B. Formaldehyd, und/oder Ketonen mit bis zu vier Kohlenstoffatomen, wie z.B. Aceton oder Methylethylketon. Ganz besonders bevorzugtes Dispersionsmittel ist Wasser.The liquid dispersant (s) is preferably water or mixtures containing water and organic, preferably water-soluble, organic solvents. The liquid dispersing agent (s) are particularly preferably water or mixtures of water with alcohols, aldehydes and / or ketones, more preferably water or mixtures of water with mono- or polyhydric alcohols having up to four carbon atoms, such as eg Methanol, ethanol, n-propanol, iso-propanol or ethylene glycol, aldehydes of up to four carbon atoms, e.g. Formaldehyde, and / or ketones of up to four carbon atoms, e.g. Acetone or methyl ethyl ketone. Very particularly preferred dispersant is water.

Unter Silbernanopartikeln im Rahmen der Erfindung sind solche mit einem d50-Wert von weniger als 100 nm, bevorzugt weniger als 80 nm, besonders bevorzugt weniger als 60 nm gemessen mittels dynamischer Lichtstreuung zu verstehen. Für die Messung mittels dynamischer Lichtstreuung eignet sich beispielsweise ein ZetaPlus Zeta Potential Analyzer der Fa. Brookhaven Instrument Corporation.Silver nanoparticles in the context of the invention are to be understood as those having a d 50 value of less than 100 nm, preferably less than 80 nm, particularly preferably less than 60 nm, measured by means of dynamic light scattering. For example, a ZetaPlus Zeta Potential Analyzer from Brookhaven Instrument Corporation is suitable for the measurement by means of dynamic light scattering.

Eine Dispersion im Sinne der vorliegenden Erfindung bezeichnet eine Flüssigkeit umfassend diese Silbernanopartikel. Bevorzugt sind die Silbernanopartikel in der Dispersion in einer Menge von 0.1 bis 65 Gew.-%, besonders bevorzugt von 1 bis 60 Gew.-%, ganz besonders bevorzugt von 5 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Dispersion, enthalten.A dispersion in the sense of the present invention denotes a liquid comprising these silver nanoparticles. Preferably, the silver nanoparticles are in the dispersion in an amount of 0.1 to 65 wt .-%, particularly preferably from 1 to 60 wt .-%, most preferably from 5 to 50 wt .-%, based on the total weight of the dispersion.

Zur elektrostatischen Stabilisierung der Silbernanopartikel wird bei der Herstellung der Dispersionen wenigstens ein elektrostatischer Dispersionsstabilisator zugegeben. Unter einem elektrostatischen Dispersionsstabilisator im Sinne der Erfindung ist ein solcher zu verstehen, durch dessen Anwesenheit die Silbernanopartikel mit abstoßenden Kräften versehen werden und auf Basis dieser abstoßenden Kräfte nicht mehr zu einer Aggregation neigen. Es herrschen folglich durch die Anwesenheit und Wirkung des elektrostatischen Dispersionsstabilisators zwischen den Silbernanopartikeln abstoßende elektrostatische Kräfte, die den auf die Aggregation der Silbernanopartikel hin wirkenden van-der-Waals Kräften entgegenwirken.For the electrostatic stabilization of the silver nanoparticles at least one electrostatic dispersion stabilizer is added during the preparation of the dispersions. An electrostatic dispersion stabilizer in the context of the invention is to be understood as one by whose presence the silver nanoparticles are provided with repulsive forces and no longer tend to aggregate on the basis of these repulsive forces. Consequently, the presence and action of the electrostatic dispersion stabilizer between the silver nanoparticles causes repulsive electrostatic forces which counteract the van der Waals forces acting on the aggregation of the silver nanoparticles.

Bei dem oder den elektrostatischen Dispersionsstabilisator(en) handelt es sich bevorzugt um Carbonsäuren mit bis zu fünf Kohlenstoffatomen, Salzen solcher Carbonsäuren oder Sulfaten oder Phosphaten. Bevorzugte elektrostatische Dispersionsstabilisatoren sind Di- oder Tri-Carbonsäuren mit bis zu fünf Kohlenstoffatomen oder deren Salze. Bei Einsatz der Di- oder Tri-Carbonsäuren können diese zur Einstellung des pH-Wertes zusammen mit Aminen eingesetzt werden. Als geeignete Amine kommen Monoalkyl-, Dialkyl- oder Dialkanolamine, wie z.B. Diethanolamin, in Frage. Bei den Salzen kann es sich bevorzugt um die Alkali- oder Ammoniumsalze, vorzugsweise um die Lithium-, Natrium-, Kalium- oder Ammoniumsalze, wie z.B. Tetramethyl-, Tetraethyl- oder Tetrapropylammoniumsalze handeln. Besonders bevorzugte elektrostatische Dispersionsstabilisatoren sind Zitronensäure oder Citrate, wie z.B. Lithium-, Natrium-, Kalium-oder Tetramethylammoniumcitrat. Ganz besonders bevorzugt wird Citrat, wie z.B. Lithium-, Natrium-, Kalium- oder Tetramethylammoniumcitrat, als elektrostatischer Dispersionsstabilisator eingesetzt. In der wässrigen Dispersion liegen die salzartigen elektrostatischen Dispersionsstabilisatoren weitestgehend in ihre Ionen dissoziiert vor, wobei die jeweiligen Anionen die elektrostatische Stabilisierung bewirken. Ein etwaig vorhandener Überschuss des oder der elektrostatischen Dispersionsstabilisatoren wird bevorzugt vor dem Auftragen der Dispersion auf die Oberfläche entfernt. Hierzu eignen sich bekannte Reinigungsverfahren, wie beispielsweise Diafiltration, Umkehrosmose und Membranfiltration.The electrostatic dispersion stabilizer (s) are preferably carboxylic acids having up to five carbon atoms, salts of such carboxylic acids or sulfates or phosphates. Preferred electrostatic dispersion stabilizers are di- or tri-carboxylic acids having up to five carbon atoms or their salts. When using the di- or tri-carboxylic acids they can be used to adjust the pH together with amines. Suitable amines include monoalkyl, dialkyl or dialkanolamines, e.g. Diethanolamine, in question. The salts may preferably be the alkali or ammonium salts, preferably the lithium, sodium, potassium or ammonium salts, e.g. Tetramethyl, tetraethyl or Tetrapropylammoniumsalze act. Particularly preferred electrostatic dispersion stabilizers are citric acid or citrates, e.g. Lithium, sodium, potassium or tetramethylammonium citrate. Most preferably, citrate, e.g. Lithium, sodium, potassium or tetramethylammonium citrate, used as an electrostatic dispersion stabilizer. In the aqueous dispersion, the salt-like electrostatic dispersion stabilizers are largely dissociated into their ions, with the respective anions causing the electrostatic stabilization. Any excess of the electrostatic dispersion stabilizer (s) is preferably removed prior to application of the dispersion to the surface. For this purpose, known purification methods, such as diafiltration, reverse osmosis and membrane filtration are suitable.

Die vorgenannten elektrostatischen Dispersionsstabilisatoren sind gegenüber polymeren rein durch Oberflächenbelegung sterisch stabilisierenden Dispersionsstabilisatoren, wie z.B, PVP, vorteilhaft, weil diese die Ausbildung des genannten Zeta-Potentials der Silbernanopartikel in der Dispersion fördern, zugleich aber keine oder nur eine vernachlässigbar kleine sterische Hinderung der Silbernanopartikel in der später aus der Dispersion erhaltenen leitfähigen Oberflächenbeschichtung zur Folge haben.The abovementioned electrostatic dispersion stabilizers are advantageous over polymeric dispersion stabilizers which are sterically stabilizing by surface occupation, such as, PVP, because they promote the formation of said zeta potential of the silver nanoparticles in the dispersion, but at the same time have no or only a negligible steric hindrance of the silver nanoparticles in the later obtained from the dispersion conductive surface coating result.

Dadurch, dass die Silbernanopartikel ein Zeta-Potential im Bereich von -20 bis -55 mV in vorstehendem Dispersionsmittel bei einem pH-Wert im Bereich von 2 bis 10 aufweisen, wird die Stabilisierung der Silbernanopartikel in der Dispersion gegen Aggregation erstmalig nicht durch eine sterische Hinderung erzielt, sondern die Silbernanopartikel neigen auf Basis abstoßender Kräfte nicht mehr zu einer Aggregation. Es herrschen folglich zwischen den Silbernanopartikeln abstoßende elektrostatische Kräfte, die den auf die Aggregation der Silbernanopartikel hin wirkenden van-der-Waals Kräften entgegenwirken.By having the silver nanoparticles having a zeta potential in the range of -20 to -55 mV in the above dispersant at a pH in the range of 2 to 10, the stabilization of the silver nanoparticles in the dispersion against aggregation does not become sterically hindered for the first time but the silver nanoparticles no longer tend to aggregate based on repulsive forces. Consequently, there are repulsive electrostatic forces between the silver nanoparticles which counteract the van der Waals forces acting on the aggregation of the silver nanoparticles.

Bevorzugt weisen die Silbernanopartikel der Dispersion ein Zeta-Potential im Bereich von -25 bis - 50 mV in vorstehendem Dispersionsmittel mit elektrostatischem Dispersionsstabilisator bei einem pH-Wert im Bereich von 4 bis 10 auf, ganz besonders bevorzugt ein Zeta-Potential im Bereich von -28 bis -45 mV in vorstehendem Dispersionsmittel mit elektrostatischem Dispersionsstabilisator bei einem pH-Wert im Bereich von 4,5 bis 10,0 auf.Preferably, the silver nanoparticles of the dispersion have a zeta potential in the range of -25 to -50 mV in the above dispersant with electrostatic dispersion stabilizer at a pH in the range of 4 to 10, most preferably a zeta potential in the range of -28 to -45 mV in the above dispersion medium with electrostatic dispersion stabilizer at a pH in the range of 4.5 to 10.0.

Die Bestimmung des pH-Wertes erfolgt mittels einer pH-Elektrode, vorzugsweise in Form einer Glaselektrode in der Ausführung als Einstabmesskette, bei 20°C.The determination of the pH is carried out by means of a pH electrode, preferably in the form of a glass electrode in the design as Einstabmesskette, at 20 ° C.

Die Messung des Zeta-Potentials erfolgt mittels Elektrophorese. Hierzu eignen sich unterschiedliche dem Fachmann bekannte Geräte, wie z.B. solche der Serie ZetaPlus oder ZetaPALS der Firma Brookhaven Instruments Corporation. Die Messung der elektrophoretischen Beweglichkeit von Teilchen erfolgt dabei mittels elektrophoretischer Lichtstreuung (ELS). Das von den im elektrischen Feld bewegten Partikeln gestreute Licht erfährt aufgrund des Doppler-Effektes eine Frequenzänderung, welche zur Bestimmung der Wanderungsgeschwindigkeit herangezogen wird. Zur Messung sehr kleiner Potenziale oder für Messungen in unpolaren Medien oder bei hohen Salzkonzentrationen kann auch die sogenannte "Phase analysis light scattering (PALS)"-Technik (z.B. mit ZetaPALS-Geräten) angewandt werden.The measurement of the zeta potential is carried out by means of electrophoresis. For this purpose, different devices known in the art, such. those of the ZetaPlus or ZetaPALS series from Brookhaven Instruments Corporation. The measurement of the electrophoretic mobility of particles takes place by means of electrophoretic light scattering (ELS). The light scattered by the particles moving in the electric field undergoes a change in frequency due to the Doppler effect, which is used to determine the migration speed. For the measurement of very small potentials or for measurements in nonpolar media or at high salt concentrations, the so-called "phase analysis light scattering (PALS)" technique (for example with ZetaPALS devices) can also be used.

Da das vorgenannte Zeta-Potential abhängig ist von dem die Silbernanopartikel umgebenden flüssigen Dispersionsmittel, insbesondere von dem pH-Wert des Dispersionsmittels, und da ein solches Zeta-Potential außerhalb einer solchen Dispersion stark verringert wird, bestehen die vorgenannten abstoßenden elektrostatischen Kräfte bei Entfernung des Dispersionsmittels nicht mehr fort, so dass trotz der hervorragenden Stabilisierung gegen Aggregation der Silbernanopartikel in der Dispersion die spätere Leitfähigkeit einer aus der Dispersion hergestellten leitfähigen Oberflächebeschichtung nicht beeinträchtigt wird.Since the aforesaid zeta potential is dependent on the liquid dispersing agent surrounding the silver nanoparticles, especially the pH of the dispersing agent, and since such zeta potential outside such dispersion is greatly reduced, the aforementioned repulsive electrostatic forces exist upon removal of the dispersing agent no longer continue, so that despite the excellent stabilization against aggregation of the silver nanoparticles in the dispersion, the subsequent conductivity of a conductive surface coating prepared from the dispersion is not impaired.

Darüber hinaus wird durch die Stabilisierung mittels elektrostatischer Abstoßung erreicht, dass aus der Dispersion in vereinfachter Art und Weise leitfähige Oberflächenbeschichtungen hergestellt werden können. Mit der vorliegenden Erfindung ist es auch erstmals möglich, diese Oberflächenbeschichtungen schneller und unter geringerer thermischer Belastung der beschichteten Oberfläche zu erhalten.In addition, the stabilization by means of electrostatic repulsion ensures that conductive surface coatings can be produced from the dispersion in a simplified manner. With the present invention, it is also possible for the first time To obtain surface coatings faster and with less thermal stress on the coated surface.

Bevorzugt wird die Oberfläche und/oder die auf dieser befindliche Dispersion auf wenigstens eine Temperatur im Bereich von 20°C unterhalb des Siedepunktes des Dispersionsmittels bis 100°C oberhalb des Siedepunktes des Dispersionsmittels, besonders bevorzugt auf wenigstens eine Temperatur im Bereich von 10°C unterhalb des Siedepunktes des Dispersionsmittels bis 60°C oberhalb des Siedepunktes des Dispersionsmittels beim herrschenden Druck gebracht. Die Erwärmung dient sowohl der Trocknung der aufgetragenen Beschichtung als auch dem Sintern der Silbernanopartikel. Der Zeitraum der Erwärmung beträgt dabei bevorzugt 10 sec bis 2 Stunden, besonders bevorzugt 30 sec bis 60 min. Der zur Erreichung der gewünschten spezifischen Leitfähigkeit erforderliche Zeitraum der Erwärmung ist dabei um so kürzer, je höher die Temperatur(en) ist (sind), auf die die Oberfläche und/oder die auf dieser befindliche Dispersion erwärmt werden.Preferably, the surface and / or the dispersion located thereon is at least at a temperature in the range of 20 ° C below the boiling point of the dispersing agent to 100 ° C above the boiling point of the dispersing agent, more preferably at least one temperature in the range of 10 ° C below the boiling point of the dispersing agent is brought to 60 ° C above the boiling point of the dispersing agent at the prevailing pressure. The heating serves both the drying of the applied coating and the sintering of the silver nanoparticles. The period of heating is preferably 10 seconds to 2 hours, more preferably 30 seconds to 60 minutes. The period of heating required to achieve the desired specific conductivity is shorter the higher the temperature (s) at which the surface and / or the dispersion located thereon are heated.

Im Falle von zu beschichtenden Oberflächen auf Kunststoffsubstraten wird die Oberfläche und/oder die auf dieser befindliche Dispersion auf wenigstens eine Temperatur unterhalb der Vicat-Erweichungstemperatur dieses Kunststoffsubstates erwärmt. Bevorzugt werden dabei Temperaturen gewählt, die mindesten 5°C, besonders bevorzugt mindestens 10°C, ganz besonders bevorzugt mindestens 15°C unterhalb der Vicat-Erweichungstemperatur dieses Kunststoffsubstates liegen.In the case of surfaces to be coated on plastic substrates, the surface and / or the dispersion located thereon is heated to at least a temperature below the Vicat softening temperature of this plastic substrate. Preference is given to temperatures which are at least 5 ° C, more preferably at least 10 ° C, most preferably at least 15 ° C below the Vicat softening temperature of this plastic substrate.

Bei der Vicat-Erweichungstemperatur B/50 eines Kunststoffs handelt es sich um die Vicat-Erweichungstemperatur B/50 nach ISO 306 (50 N; 50 °C/h).The Vicat softening temperature B / 50 of a plastic is the Vicat softening temperature B / 50 according to ISO 306 (50 N, 50 ° C / h).

Die vorgenannten und nachfolgend genannten Temperaturangaben beziehen sich - soweit nicht anders angegeben - auf Angaben bei Umgebungsdruck (1013 hPa). Im Rahmen der Erfindung kann jedoch die Erwärmung auch bei erniedrigtem Umgebungsdruck und entsprechend verringerten Temperaturen erfolgen, um das gleiche Ergebnis zu erzielen.The above and below mentioned temperature data are - unless otherwise stated - to specifications at ambient pressure (1013 hPa). In the context of the invention, however, the heating can also be carried out at reduced ambient pressure and correspondingly reduced temperatures in order to achieve the same result.

Die Verwendung von Citrat als elektrostatischem Dispersionsstabilisator ist insbesondere vorteilhaft, weil es bei Temperaturen von 153°C bereits schmilzt, bzw. sich bei Temperaturen oberhalb von 175°C zersetzt.The use of citrate as electrostatic dispersion stabilizer is particularly advantageous because it already melts at temperatures of 153 ° C, or decomposes at temperatures above 175 ° C.

Für eine weitere Verbesserung der aus den Dispersionen erhaltenen leitfähigen Oberflächebeschichtungen kann es wünschenswert sein, nicht nur das Dispersionsmittel, sondern auch den elektrostatischen Dispersionsstabilisator weitestgehend aus den Beschichtungen zu entfernen, weil dieser gegenüber den Silbernanopartikeln eine verringerte Leitfähigkeit aufweist und somit die spezifische Leitfähigkeit der resultierenden Beschichtung geringfügig beeinträchtigen kann. Aufgrund der vorgenannten Eigenschaften von Citrat ist dies in einfacher Weise durch Erwärmen zu erreichen.For a further improvement of the conductive surface coatings obtained from the dispersions, it may be desirable to remove not only the dispersing agent but also the electrostatic dispersion stabilizer as much as possible from the coatings because it has reduced conductivity over the silver nanoparticles and thus the specific conductivity of the resulting coating slight can affect. Due to the aforementioned properties of citrate, this can be achieved in a simple manner by heating.

Insbesondere kann bei den erfindungsgemäßen Dispersionen auf den Einsatz polymerer Stoffe als Stabilisatoren verzichtet werden, die die Trocknung und/oder Sinterung der aus der Dispersion erhaltenen Oberflächenbeschichtung verlangsamen, oder sogar eine erhöhte Temperatur benötigen, bis eine Trocknung und/oder Sinterung und damit eine Leitfähigkeit der Oberflächenbeschichtung durch Versinterung der Silberpartikel eintritt.In particular, in the dispersions of the invention can be dispensed with the use of polymeric substances as stabilizers which slow down the drying and / or sintering of the surface coating obtained from the dispersion, or even require an elevated temperature until drying and / or sintering and thus a conductivity of the Surface coating occurs by sintering of the silver particles.

Bei der zu beschichtenden Oberfläche handelt es sich bevorzugt um die Oberfläche eines Substrates. Dabei kann es sich um Substrate aus beliebigen einheitlichen oder unterschiedlichen Materialien und beliebiger Form handeln. Die Substrate können z.B. Glas-, Metall-, Keramik- oder Kunststoffsubstrate sein oder Substrate in denen derartige Komponenten zusammen verarbeitet wurden. Besondere Vorteile weist das erfindungsgemäße Verfahren bei der Beschichtung von kunststoffhaltigen Substratoberflächen auf, da diese aufgrund der möglichen niedrigen Trocknungs- und Sintertemperaturen und kurzen Trocknungs- und Sinterzeiten nur mäßiger thermischer Belastung ausgesetzt werden und so eine ungewünschte Verformung und/oder sonstige Beschädigung vermieden werden kann. Besonders bevorzugt handelt es sich bei der zu beschichtenden Oberfläche um die Oberfläche eines Kunststoffsubstrats, bevorzugt einer Kunststofffolie oder -platte oder einer Mehrschichtverbundfolie oder -platte.The surface to be coated is preferably the surface of a substrate. These may be substrates of any uniform or different materials and of any shape. The substrates may e.g. Glass, metal, ceramic or plastic substrates or substrates in which such components were processed together. Particular advantages of the inventive method in the coating of plastic-containing substrate surfaces, since they are exposed only moderate thermal stress due to the possible low drying and sintering temperatures and short drying and sintering times and so unwanted deformation and / or other damage can be avoided. The surface to be coated is particularly preferably the surface of a plastic substrate, preferably a plastic film or sheet or a multilayer composite sheet or sheet.

Die gemäß dem erfindungsgemäßen Verfahren hergestellte leitfähige Oberflächenbeschichtung weist bevorzugt eine spezifische Leitfähigkeit von 102 bis 3·107 S/m auf. Die spezifische Leitfähigkeit wird als reziproker Wert des spezifischen Widerstandes ermittelt. Der spezifische Widerstand wird durch Ermittlung des Ohmschen Widerstandes und der Geometrie von Leiterbahnen errechnet. Mit dem erfmdungsgemäßen Verfahren können hohe spezifische Leitfähigkeiten von mehr als 105 S/m, bevorzugt von mehr als 106 S/m erreicht werden. Es kann aber je nach Anwendung durchaus ausreichend sein, Oberflächenbeschichtungen mit niedrigeren spezifischen Leitfähigkeiten herzustellen und dabei niedrigere Temperaturen und kürzere Zeiten für die Trocknung und/oder Sinterung anzusetzen als diese zur Erzielung einer höheren spezifischen Leitfähigkeit erforderlich wären.The conductive surface coating produced according to the method of the invention preferably has a specific conductivity of 10 2 to 3 × 10 7 S / m. The specific conductivity is determined as the reciprocal value of the specific resistance. The resistivity is calculated by determining the ohmic resistance and the geometry of tracks. High specific conductivities of more than 10 5 S / m, preferably of more than 10 6 S / m, can be achieved with the process according to the invention. However, depending on the application, it may well be sufficient to produce surface coatings with lower specific conductivities, and thereby lower temperatures and shorter times for drying and / or sintering than would be required to achieve a higher specific conductivity.

Die gemäß dem erfindungsgemäßen Verfahren hergestellte leitfähige Oberflächenbeschichtung weist bevorzugt eine Trockenfilmdicke von 50 nm bis 5 µm, besonders bevorzugt von 100 nm bis 2 µm auf. Die Trockenfilmdicke wird beispielsweise mittels Profilometrie bestimmt. Hierzu eigent sich beispielsweise ein MicroProf® der Firma Fries Research & Technology (FRT) GmbH.The conductive surface coating produced according to the method of the invention preferably has a dry film thickness of 50 nm to 5 μm, more preferably of 100 nm to 2 μm. The dry film thickness is determined, for example, by means of profilometry. For this purpose, for example, a MicroProf ® the company Fries Research & Technology (FRT) GmbH.

In bevorzugten Ausführungsformen der vorliegenden Erfindung handelt es sich bei der Dispersion um eine Tinte, vorzugsweise einer Drucktinte. Derartige Drucktinten sind vorzugsweise solche, die sich für das Drucken mittels Inkjetdruck, Gravurdruck, Flexodruck, Rotationsdruck, Aerosol Jetting, Spincoating, Rakeln oder Walzenauftrag eignen. Hierzu können der Dispersion die entsprechenden Additive, wie z.B. Bindemittel, Verdicker, Verlaufmittel, Farbpigmente, Filmbildner, Haftvermittler und/oder Entschäumer zugegeben werden. In bevorzugten Ausführungsformen kann die erfindungsgemäße Dispersion bis zu 2 Gew.-%, bevorzugt bis zu 1 Gew.-% solcher Additive, bezogen auf das Gesamtgewicht der Dispersion, enthalten. Des Weiteren können der Dispersion auch Co-Lösungsmittel zugegeben werden. In bevorzugten Ausführungsformen kann die erfimdungsgemäße Dispersion bis zu 20 Gew.-%, bevorzugt bis zu 15 Gew.-% solcher Co-Lösungsmittel, bezogen auf das Gesamtgewicht der Dispersion, enthalten.In preferred embodiments of the present invention, the dispersion is an ink, preferably a printing ink. Such printing inks are preferably those which are suitable for printing by means of inkjet printing, gravure printing, flexographic printing, rotary printing, aerosol jetting, spin coating, doctor blading or roller application. For this purpose, the dispersion may be admixed with the corresponding additives, e.g. Binders, thickeners, flow control agents, color pigments, film formers, adhesion promoters and / or defoamers are added. In preferred embodiments, the dispersion according to the invention may contain up to 2% by weight, preferably up to 1% by weight, of such additives, based on the total weight of the dispersion. Furthermore, co-solvents can also be added to the dispersion. In preferred embodiments, the inventive dispersion can contain up to 20% by weight, preferably up to 15% by weight, of such cosolvents, based on the total weight of the dispersion.

Die Drucktinten weisen in einer bevorzugten Ausführungsform der Erfindung für das Drucken mittels Inkjetdruck eine Viskosität von 5 bis 25 mPas (gemessen bei einer Scherrate von 1/s), für das Drucken mittels Flexodruck eine Viskosität von 50 bis 150 mPas (gemessen bei einer Scherrate von 10/s) auf. Die Viskossitäten können mit einen Rheometer der Firma Physica bei der entsprechenden Scherrate bestimmt werden. auf. Diese Viskosität wird vorzugsweise durch die Zugabe der vorangehend genannten Additive erreicht.The inks in a preferred embodiment of the invention for inkjet printing have a viscosity of 5 to 25 mPas (measured at a shear rate of 1 / s), for flexographic printing a viscosity of 50 to 150 mPas (measured at a shear rate of 10 / s). The viscosities can be determined with a Physica Rheometer at the appropriate shear rate. on. This viscosity is preferably achieved by the addition of the aforementioned additives.

Für den Einsatz in das erfindungsgemäße Verfahren geeignet und dementsprechend ebenfalls Gegenstand der vorliegenden Erfindung sind vorzugsweise solche Dispersionen, enthaltend

  • wenigstens ein flüssiges Dispersionsmittel,
  • Silbernanopartikel und
  • wenigstens einen elektrostatischen Dispersionsstabilisator
  • gegebenenfalls weitere Additive,
dadurch gekennzeichnet, dass die Silbernanopartikel ein Zeta-Potential im Bereich von -20 bis -55 mV in vorstehendem Dispersionsmittel mit elektrostatischem Dispersionsstabilisator bei einem pH-Wert im Bereich von 2 bis 10 aufweisen, welche jedoch frei von polymeren, sterischen Dispersionsstabilisatoren sind.Suitable for use in the process according to the invention and accordingly also the subject matter of the present invention are preferably those dispersions containing
  • at least one liquid dispersant,
  • Silver nanoparticles and
  • at least one electrostatic dispersion stabilizer
  • optionally further additives,
characterized in that the silver nanoparticles have a zeta potential in the range of -20 to -55 mV in the above dispersant with electrostatic dispersion stabilizer at a pH in the range of 2 to 10, but which are free of polymeric steric dispersion stabilizers.

Ganz besonders bevorzugt sind dies solche Dispersionen, bestehend aus

  • wenigstens einem flüssigen Dispersionsmittel,
  • Silbernanopartikeln und
  • wenigstens einem elektrostatischen Dispersionsstabilisator
  • gegebenenfalls weiteren Additiven,
dadurch gekennzeichnet, dass die Silbernanopartikel ein Zeta-Potential im Bereich von -20 bis -55 mV in vorstehendem Dispersionsmittel mit elektrostatischem Dispersionsstabilisator bei einem pH-Wert im Bereich von 2 bis 10 aufweisen, welche jedoch frei von polymeren, sterischen Dispersionsstabilisatoren sind.These are very particularly preferably those dispersions consisting of
  • at least one liquid dispersant,
  • Silver nanoparticles and
  • at least one electrostatic dispersion stabilizer
  • optionally further additives,
characterized in that the silver nanoparticles have a zeta potential in the range of -20 to -55 mV in the above dispersant with electrostatic dispersion stabilizer at a pH in the range of 2 to 10, but which are free of polymeric steric dispersion stabilizers.

Dabei sind unter Additiven nur solche zusätzlichen Komponenten zu verstehen, die vorangehend zur Herstellung einer Drucktinte eingesetzt werden, jedoch keine polymeren, sterischen Dispersionsstabilisatoren umfassen.In this case, additives are to be understood as meaning only those additional components which are used above for the preparation of a printing ink, but do not comprise polymeric, steric dispersion stabilizers.

Die vorangehend für das erfindungsgemäße Verfahren genannten Vorzugsbereiche gelten für die erfindungsgemäßen Dispersionen gleichermaßen.The preferred ranges mentioned above for the process according to the invention apply equally to the dispersions according to the invention.

Die erfindungsgemäßen Dispersionen lassen sich durch Reduktion eines Silbersalzes in einem Dispersionsmittel in Gegenwart eines elektrostatischen Dispersionsstabilisators herstellen.The dispersions according to the invention can be prepared by reducing a silver salt in a dispersion medium in the presence of an electrostatic dispersion stabilizer.

Gegenstand der vorliegenden Erfindung ist demnach weiterhin ein Verfahren, dadurch gekennzeichnet, dass ein Silbersalz in wenigstens einem Dispersionsmittel in Gegenwart wenigstens eines elektrostatischen Dispersionsstabilisators mit einem Reduktionsmittel zu Silber reduziert wird.The present invention accordingly further provides a process, characterized in that a silver salt in at least one dispersant is reduced to silver in the presence of at least one electrostatic dispersion stabilizer with a reducing agent.

Geeignete Reduktionsmittel für den Einsatz in das vorstehend genannte erfindungsgemäße Verfahren sind bevorzugt Thioharnstoffe, Hydroxyaceton, Borhydride, Eisenammoniumcitrat, Hydrochinon, Ascorbinsäure, Dithionite, Hydroxymethansulfinsäure, Disulfite, Formamidinsulfmsäure, schweflige Säure, Hydrazin, Hydroxylamin, Ethylendiamin, Tetramethylethylendiamin und/oder Hydroxylaminsulfate.Suitable reducing agents for use in the abovementioned process according to the invention are preferably thioureas, hydroxyacetone, borohydrides, iron ammonium citrate, hydroquinone, ascorbic acid, dithionites, hydroxymethanesulfinic acid, disulfites, formamidine sulfinic acid, sulfurous acid, hydrazine, hydroxylamine, ethylenediamine, tetramethylethylenediamine and / or hydroxylamine sulfates.

Besondern bevorzugte Reduktionsmittel sind Borhydride. Ganz besonders bevorzugtes Reduktionsmittel ist Natriumborhydrid.Particularly preferred reducing agents are borohydrides. Very particularly preferred reducing agent is sodium borohydride.

Geeignete Silbersalze sind beispielsweise und bevorzugt Silbernitrat, Silberacetat, Silbercitrat. Besonders bevorzugt ist Silbernitrat.Suitable silver salts are, for example, and preferably silver nitrate, silver acetate, silver citrate. Particularly preferred is silver nitrate.

Die vorangehend für das erfindungsgemäße Verfahren zur Herstellung leitfähiger Oberflächenbeschichtungen genannten Vorzugsbereiche gelten für das erfindungsgemäße Verfahren zur Herstellung von Dispersionen gleichermaßen.The preferred ranges mentioned above for the process according to the invention for the production of conductive surface coatings apply equally to the process according to the invention for the preparation of dispersions.

Der oder die elektrostatische(n) Dispersionsstabilisator(en) werden dabei vorzugsweise im molaren Überschuss zum Silbersalz eingesetzt und entsprechende Überschüsse vor dem Einsatz der Dispersionen zur Beschichtung von Oberflächen entfernt. Hierzu eignen sich bekannte Reinigungsverfahren, wie beispielsweise Diafiltration, Umkehrosmose und Membranfiltration.The electrostatic dispersion stabilizer (s) are preferably used in a molar excess to the silver salt and corresponding excesses are removed before the use of the dispersions for coating surfaces. For this purpose, known purification methods, such as diafiltration, reverse osmosis and membrane filtration are suitable.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung von Dispersionen wird demnach nach der Reduktion des Silbersalzes das erhaltene Reduktionsprodukt einer Reinigung unterzogen. Reinigungsverfahren, die hierfür Verwendung finden können, sind etwa die dem Fachmann allgemein bekannten Verfahren, wie z.B. Diafiltration, Umkehrosmose und Membranfiltration.In a preferred embodiment of the process according to the invention for the preparation of dispersions, therefore, after the reduction of the silver salt, the resulting reduction product is subjected to purification. Purification methods which may be used for this purpose are, for example, the methods generally known to the person skilled in the art, e.g. Diafiltration, reverse osmosis and membrane filtration.

Die Erfindung wird nachfolgend anhand von Beispielen und Abbildungen näher erläutert, ohne sie jedoch hierdurch darauf zu beschränken.The invention will be explained in more detail below with reference to examples and figures, without, however, restricting them thereto.

Beispiele:Examples: Messung der spezifschen Leitfähigkeiten:Measurement of specific conductivities:

Zur Messung der im Folgenden genannten spezifischen Leitfähigkeiten wurden vier Linien der gleichen Länge und in verschiedenen Breiten gedruckt:

  1. 1. Linie: Länge 9 cm, Breite 3 mm
  2. 2. Linie: Länge 9 cm, Breite 2,25 mm
  3. 3. Linie: Länge 9 cm, Breite 2 mm
  4. 4. Linie: Länge 9 cm, Breite 1 mm
To measure the specific conductivities mentioned below four lines of the same length and in different widths were printed:
  1. 1st line: length 9 cm, width 3 mm
  2. 2nd line: length 9 cm, width 2.25 mm
  3. 3rd line: length 9 cm, width 2 mm
  4. 4th line: length 9 cm, width 1 mm

Nach der Trocknung und Sinterung bei konstanter Temperatur von 140°C für 10 min in einem Trockenofen wurde der ohmsche Widerstand mittels eines Multimeters (Benning MM6) bestimmt. Die Messung wurde an den äußeren Punkten der jeweiligen Linien durchgeführt, d.h. an den beiden Enden der Linie, was einem Abstand von 9 cm entsprach.After drying and sintering at a constant temperature of 140 ° C. for 10 minutes in a drying oven, the ohmic resistance was determined by means of a multimeter (Benning MM6). The measurement was made at the outer points of the respective lines, i. at the two ends of the line, which corresponded to a distance of 9 cm.

Danach erfolgt eine Schichtdickenbestimmung durch einen Surfaceprofiler Veeco Dektak 150. Dabei wurden zwei Messungen je Linie - jeweils eine nach einem Drittel der Länge und eine nach zwei Dritteln der Länge der jeweiligen Linie - durchgeführt und der Mittelwert berechnet. Falls die Schichtdicke zu inhomogen war erfolgt eine zusätzliche Messung in der Mitte der Linie. Aus den erhaltenen Werten wurde die spezifische Leitfähigkeit κ wie folgt berechnet: κ = 1 / Breite der Linie Schichtdicke in mm gemessener Widerstand in Ohm / L a ¨ nge der Linie in m

Figure imgb0001
This is followed by a layer thickness determination by a surface profiler Veeco Dektak 150. Two measurements per line were carried out - one after one third of the length and one after two thirds of the length of the respective line - and the mean value was calculated. If the layer thickness was too inhomogeneous, an additional measurement is made in the middle of the line. From the values obtained, the specific conductivity κ was calculated as follows: κ = 1 / Width of the line Layer thickness in mm measured resistance in ohms / L a ¨ length of the line in m
Figure imgb0001

Die erhaltenen Werte sind Angaben in S/m · 106.The values obtained are data in S / m × 10 6 .

Beispiel 1: Herstellen einer erfindungsgemäßen DispersionExample 1: Preparation of a Dispersion According to the Invention

In einen Kolben mit 2 1 Fassungsvermögen wurde 1 1 destilliertes Wasser vorgelegt. Es wurden anschließend 100 ml einer 0,7 Gew.-%-igen Tri-Natrium-Citrat-Lösung und hiernach 200 ml einer 0,2-Gew.-%-igen Natriumborhydrid-Lösung unter Rühren zu gegeben. Zu der erhaltenen Mischung wurde unter Rühren eine 0,045 molare Silbernitrat-Lösung langsam über einen Zeitraum von einer Stunde mit einem Volumenstrom von 0,2 l/h zudosiert. Hierbei bildete sich die erfindungsgemäße Dispersion, welche anschließend durch Diafiltration aufgereinigt und auf 20 Gew.-% Feststoffgehalt, bezogen auf das Gesamtgewicht der Dispersion, aufkonzentriert wurde.In a flask of 2 1 capacity 1 liter of distilled water was submitted. Subsequently, 100 ml of a 0.7% by weight tri-sodium citrate solution and then 200 ml of a 0.2% by weight sodium borohydride solution were added with stirring. To the resulting mixture, a 0.045 molar silver nitrate solution was added slowly with stirring over a period of one hour at a flow rate of 0.2 l / h. This formed the dispersion of the invention, which was then purified by diafiltration and concentrated to 20 wt .-% solids content, based on the total weight of the dispersion.

Die resultierende Dispersion wurde hiernach im Verhältnis von 1/200 mit destilliertem Wasser auf einen Feststoffgehalt von 0,05 Gew.-% bezogen auf das Gesamtgewicht der Probe verdünnt und es wurde der pH-Wert der erhaltenen, verdünnten Dispersion durch Zugabe von konzentrierter Natriumhydroxid-Lösung bzw. konzentrierter Salzsäure auf verschiedene Werte gemäß der nachstehenden Tabelle eingestellt.The resulting dispersion was then diluted 1/200 with distilled water to a solids content of 0.05% by weight based on the total weight of the sample, and it was diluted The pH of the resulting diluted dispersion was adjusted to various values by adding concentrated sodium hydroxide solution or concentrated hydrochloric acid according to the following table.

Die Messung des pH-Wertes erfolgte mit einer Glaselektrode in der Ausführung als Einstabmesskette bei 20°C. Tab. 1 Probe [#] PH [-] 1 10 2 8,8 3 7,5 4 6,3 5 4,9 6 3,8 7 2,4 The measurement of the pH was carried out with a glass electrode in the form of a combination electrode at 20 ° C. <B> Table. 1 </ b> Sample [#] PH [-] 1 10 2 8.8 3 7.5 4 6.3 5 4.9 6 3.8 7 2.4

Anschließend wurde das Zeta-Potential der so erhaltenen Proben 1 bis 7 gemäß Beispiel 2 bestimmt.Subsequently, the zeta potential of the samples 1 to 7 thus obtained was determined according to Example 2.

Beispiel 2: Messung des Zeta-Potentials der Dispersionen gemäß Beispiel 1Example 2 Measurement of the Zeta Potential of the Dispersions According to Example 1

Es wurden die folgenden Zeta-Potentiale der Dispersionen aus dem Beispiel 1 gemäß der nachstehenden Tabelle gemessen. Alle Messungen der Proben wurden je dreimal ausgeführt und eine dabei resultierende Standardabweichung von ± 0,5 ermittelt. Die Messung des Zeta-Potentials erfolgt mit einem Brookhaven Instruments Corporation 90 Plus, ZetaPlus Particle Sizing Software Version 3.59 gemessen in einer Dispersion mit einem Feststoffgehalt von 0,05 Gew.% bezogen auf das Gesamtgewicht der zu vermessenden Probe. Tab. 2 Probe [#] PH [-] Zeta-Potential [mV] 1 10 -43,9±0,5 2 8,8 -34,2±0,5 3 7,5 -38,3±0,5 4 6,3 -29,1±0,5 5 4,9 -28,6±0,5 6 3,8 -23,3±0,5 7 2,4 -23,7±0,5 The following zeta potentials of the dispersions of Example 1 were measured according to the table below. All measurements of the samples were carried out three times and a resulting standard deviation of ± 0.5 was determined. The measurement of the zeta potential is carried out with a Brookhaven Instruments Corporation 90 Plus, ZetaPlus Particle Sizing Software Version 3.59 measured in a dispersion having a solids content of 0.05% by weight, based on the total weight of the sample to be measured. <B> Table. 2 </ b> Sample [#] PH [-] Zeta potential [mV] 1 10 -43.9 ± 0.5 2 8.8 -34.2 ± 0.5 3 7.5 -38.3 ± 0.5 4 6.3 -29.1 ± 0.5 5 4.9 -28.6 ± 0.5 6 3.8 -23.3 ± 0.5 7 2.4 -23.7 ± 0.5

Man erkennt, dass die elektrostatisch stabilisierten Silbernanopartikel der erfmdungsgemäßen Dispersionen ein Zeta-Potential im Bereich von -23 mV bis -44 mV aufweisen.It can be seen that the electrostatically stabilized silver nanoparticles of the dispersions according to the invention have a zeta potential in the range from -23 mV to -44 mV.

Beispiel 3: Herstellen einer leitfähigen Oberflächenbeschichtung mit der Dispersion gemäß Beispiel 1Example 3 Production of a Conductive Surface Coating Using the Dispersion According to Example 1

Von der Dispersion gemäß dem Beispiel 1 (Probe 3) wurde eine 2 mm breite Linie auf eine Polycarbonat-Folie (Bayer MaterialScience AG, Makrolon® DE1-1) aufgetragen und für zehn Minuten in einem Ofen bei 140°C und Umgebungsdruck (1013 hPa) getrocknet und gesintert. Die Oberflächenbeschichtung war hiernach bereits trocken, so dass ein Wischen zu keinem sichtbaren Abtrag an Oberflächenbeschichtung führte.Of the dispersion according to Example 1 (Sample 3) A 2 mm wide line was applied to a polycarbonate film (Bayer Material Science AG, Makrolon ® DE1-1) and eluted (for ten minutes in an oven at 140 ° C and ambient pressure 1013 hPa ) dried and sintered. The surface coating was thereafter already dry, so that wiping led to no visible removal of surface coating.

Anschließend wurde direkt die spezifische Leitfähigkeit mittels Vierpunktwiderstandsbestimmung bestimmt, wobei der Abstand zwischen den Kontaktstelle jeweils 1 cm betrug. Die berechnete spezifische Leitfähigkeit betrug 1,25 · 106S/m.Subsequently, the specific conductivity was determined directly by four-point resistance determination, wherein the distance between the contact point was 1 cm in each case. The calculated specific conductivity was 1.25 × 10 6 S / m.

Vergleichsbeispiel: Nicht erfindungsgemäße Dispersion und OberflächenbeschichtungComparative Example: Non-inventive dispersion and surface coating

Zum Vergleich wurde eine Dispersion mit sterisch stabilisierten Silbernanopartikeln hergestellt. Hierzu wurden eine 0,054 molare Silbernitratlösung mit einer Mischung aus einer 0,054 molaren Natronlauge und dem Dispergierhilfsmittel Disperbyk® 190 (Hersteller BYK Chemie) (1 g/l) in einem Volumenverhältnis von 1:1 versetzt und 10 min gerührt. Zu dieser Reaktionsmischung wurde unter Rühren eine wässrige 4,6 molare wässrige Formaldehyd-Lösung zugesetzt, so dass das Verhältnis Ag+ zu Reduktionsmittel 1:10 beträgt. Diese Mischung wurde auf 60°C erwärmt, 30 min bei dieser Temperatur gehalten und anschließend abgekühlt. Die Partikel wurden in einem ersten Schritt mittels Diafiltration von den nicht umgesetzten Edukten getrennt und anschließend wurde das Sol aufkonzentiert, dazu wurde eine Membran mit 30000 Dalton benutzt. Es entstand ein kolloidstabiles Sol mit einem Feststoffgehalt von bis zu 10 Gew.-% (Silberpartikel und Dispergierhilfsmittel). Der Anteil an Disperbyk® 190 betrug laut Elementaranalyse nach der Membranfiltration 6 Gew.-% bezogen auf den Silbergehalt. Eine Untersuchung mittels Laserkorrelationsspektroskopie ergab einen effektiven Partikeldurchmesser von 78 nm.For comparison, a dispersion with sterically stabilized silver nanoparticles was prepared. For this purpose, a 0.054 molar solution of silver nitrate were mixed with a mixture of a 0.054 molar sodium hydroxide solution and the dispersing aid Disperbyk ® 190 (manufactured by BYK Chemie) (1 g / l) in a volume ratio of 1: 1 was added and stirred for 10 min. An aqueous 4.6 molar aqueous formaldehyde solution was added to this reaction mixture while stirring so that the ratio of Ag + to reducing agent is 1:10. This mixture was heated to 60 ° C, held for 30 min at this temperature and then cooled. The particles were separated from the unreacted starting materials by diafiltration in a first step, and then the sol was upconcentrated using a 30,000 dalton membrane. The result was a colloid-stable sol with a solids content of up to 10 wt .-% (silver particles and dispersants). The proportion of Disperbyk ® 190 was, according to elemental analysis, after the membrane filtration 6 wt .-% based on the silver content. An investigation by means of laser correlation spectroscopy revealed an effective particle diameter of 78 nm.

In der resultierenden Dispersion sind die Silberpartikel durch die polymeren sterischen Stabilisatoren PVP K 15 und Disperbyk® 190 stabilisiert.In the resulting dispersion, the silver particles are stabilized by polymeric steric stabilizers PVP K 15 and Disperbyk ® 190th

Aus dieser Dispersion wird auf die gleiche Weise wie in Beispiel 3 beschrieben, eine Oberflächenbeschichtung auf eine Polycarbonat-Folie aufgebracht. Die analog zu dem Beispiel 3 bestimmte spezifische Leitfähigkeit konnte erst nach einer Stunde Trocknungs- und Sinterzeit bei 140°C und Umgebungsdruck (1013 hPa) bestimmt werden,From this dispersion is applied in the same manner as described in Example 3, a surface coating on a polycarbonate film. The analogous to Example 3 certain specific conductivity could only be determined after one hour of drying and sintering at 140 ° C and ambient pressure (1013 hPa),

Die spezifische Leitfähigkeit betrug nach dieser Stunde Trocknungs- und Sinterzeit etwa 1 S/m. Erst nach einer Gesamttrocknungs- und Sinterzeit von vier Stunden konnte eine höhere spezifische Leitfähigkeit von 106 S/m bestimmt werden.The specific conductivity after this hour drying and sintering time was about 1 S / m. Only after a total drying and sintering time of four hours, a higher specific conductivity of 10 6 S / m could be determined.

Die mit der erfindungsgemäßen Dispersionen hergestellte Oberflächenbeschichtung weist demnach bei niedriger Trocknungs- und Sintertemperatur bereits nach deutlich kürzerer Trocknungs- und Sinterzeit eine deutlich höhere Leitfähigkeit auf. Die mit der Dispersion mit sterisch stabilisierten Silbernanopartikeln hergestellte Oberflächenbeschichtung bedarf zur Erzielung einer vergleichbaren spezifischen Leitfähigkeit erheblich längerer Trocknungs- und Sinterzeit.Accordingly, the surface coating produced with the dispersions according to the invention has a significantly higher conductivity even after a significantly shorter drying and sintering time at low drying and sintering temperatures. The surface coating produced with the dispersion with sterically stabilized silver nanoparticles requires substantially longer drying and sintering time to achieve a comparable specific conductivity.

Claims (14)

Verfahren zur Herstellung leitfähiger Oberflächenbeschichtungen, dadurch gekennzeichnet, dass eine Dispersion enthaltend • wenigstens ein flüssiges Dispersionsmittel und • elektrostatisch stabilisierte Silbernanopartikel, wobei die elektrostatisch stabilisierten Silbernanopartikel ein Zeta-Potential im Bereich von -20 bis -55 mV in vorstehendem Dispersionsmittel bei einem pH-Wert im Bereich von 2 bis 10 aufweisen,
auf eine Oberfläche aufgetragen wird und die Oberfläche und/oder die auf dieser befindliche Dispersion auf wenigstens eine Temperatur im Bereich von 50°C unterhalb des Siedepunktes des Dispersionsmittels bis 150°C oberhalb des Siedepunktes des Dispersionsmittels der Dispersion gebracht wird.
Process for the production of conductive surface coatings, characterized in that a dispersion containing • at least one liquid dispersant and Electrostatically stabilized silver nanoparticles, wherein the electrostatically stabilized silver nanoparticles have a zeta potential in the range of -20 to -55 mV in the above dispersant at a pH in the range of 2 to 10,
is applied to a surface and the surface and / or the dispersion located thereon is brought to at least a temperature in the range of 50 ° C below the boiling point of the dispersing agent to 150 ° C above the boiling point of the dispersion medium of the dispersion.
Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Oberfläche und/oder die auf dieser befindliche Dispersion auf wenigstens eine Temperatur im Bereich von 20°C unterhalb des Siedepunktes des Dispersionsmittels bis 100°C oberhalb des Siedepunktes des Dispersionsmittels der Dispersion beim herrschenden Druck gebracht wird.A method according to claim 1, characterized in that the surface and / or on this dispersion is brought to at least a temperature in the range of 20 ° C below the boiling point of the dispersing agent to 100 ° C above the boiling point of the dispersion medium of the dispersion at the prevailing pressure , Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Oberfläche und/oder die auf dieser befindliche Dispersion auf für einen Zeitraum von 10 sec bis 2 h, bevorzugt von 30 sec bis 60 min auf die genannte(n) Temperatur(en) gebracht wird.Process according to Claim 1 or 2, characterized in that the surface and / or the dispersion present thereon are brought to said temperature (s) for a period of from 10 seconds to 2 hours, preferably from 30 seconds to 60 minutes becomes. Verfahren gemäß wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Silbernanopartikel der Dispersion ein Zeta-Potential im Bereich von -25 bis -50 mV in vorstehendem Dispersionsmittel mit elektrostatischem Dispersionsstabilisator bei einem pH-Wert im Bereich von 4 bis 10 aufweisen.A method according to any one of claims 1 to 3, characterized in that the silver nanoparticles of the dispersion have a zeta potential in the range of -25 to -50 mV in the above dispersant with electrostatic dispersion stabilizer at a pH in the range of 4 to 10. Verfahren gemäß wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das es sich bei dem Dispersionsmittel um Wasser oder eine Mischung aus Wasser mit Alkoholen mit bis zu vier Kohlenstoffatomen, Aldehyden mit bis zu vier Kohlenstoffatomen und/oder Ketonen mit bis zu vier Kohlenstoffatomen handelt.Process according to at least one of claims 1 to 4, characterized in that the dispersing agent is water or a mixture of water with alcohols having up to four carbon atoms, aldehydes having up to four carbon atoms and / or ketones having up to four carbon atoms is. Verfahren gemäß wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Silbernanopartikel mittels Einsatz wenigstens eines elektrostatischen Dispersionsstabilisators ausgewählt aus der Gruppe der Carbonsäuren mit bis zu fünf Kohlenstoffatomen, Salzen einer solchen Carbonsäure oder Sulfaten oder Phosphaten elektrostatisch stabilisiert wurden.Process according to at least one of Claims 1 to 5, characterized in that the silver nanoparticles are obtained by using at least one electrostatic dispersion stabilizer selected from the group of carboxylic acids of up to five Carbon atoms, salts of such a carboxylic acid or sulfates or phosphates were electrostatically stabilized. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass es sich bei dem elektrostatischen Dispersionsstabilisator um wenigstens eine Di- oder Tri-Carbonsäure mit bis zu fünf Kohlenstoffatomen oder deren Salz handelt.A method according to claim 6, characterized in that it is the electrostatic dispersion stabilizer is at least one di- or tri-carboxylic acid having up to five carbon atoms or their salt. Verfahren gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, dass es sich bei dem elektrostatischen Dispersionsstabilisator um Zitronensäure oder Citrat handelt.A method according to claim 6 or 7, characterized in that it is the electrostatic dispersion stabilizer is citric acid or citrate. Verfahren gemäß wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei der Dispersion um eine Tinte handelt.Process according to at least one of Claims 1 to 8, characterized in that the dispersion is an ink. Verfahren gemäß wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die leitfähige Oberflächenbeschichtung spezifische Leitfähigkeit von 102 bis 3·107 S/m aufweist.Method according to at least one of claims 1 to 9, characterized in that the conductive surface coating has specific conductivity of 10 2 to 3 · 10 7 S / m. Verfahren gemäß wenigstens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die leitfähige Oberflächenbeschichtung eine Trockenfilmdicke von 50 nm bis 5 µm aufweist.A method according to any one of claims 1 to 10, characterized in that the conductive surface coating has a dry film thickness of 50 nm to 5 microns. Verfahren gemäß wenigstens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass es sich bei der Oberfläche um die Oberfläche einer Kunststoffsubstrats, bevorzugt einer Kunststofffolie oder eines Mehrschichtverbundes handelt.Process according to at least one of Claims 1 to 11, characterized in that the surface is the surface of a plastic substrate, preferably a plastic film or a multilayer composite. Dispersionen enthaltend • wenigstens ein flüssiges Dispersionsmittel, • elektrostatisch stabilisierte Silbernanopartikel und • gegebenenfalls weitere Additive, dadurch gekennzeichnet, dass die elektrostatisch stabilisierten Silbernanopartikel ein Zeta-Potential im Bereich von -20 bis -55 mV in vorstehendem Dispersionsmittel bei einem pH-Wert im Bereich von 2 bis 10 aufweisen.Containing dispersions At least one liquid dispersant, • electrostatically stabilized silver nanoparticles and Optionally further additives, characterized in that the electrostatically stabilized silver nanoparticles have a zeta potential in the range of -20 to -55 mV in the above dispersant at a pH in the range of 2 to 10. Verfahren zur Herstellung von Dispersionen gemäß Anspruch 13, dadurch gekennzeichnet, dass ein Silbersalz in wenigstens einem Dispersionsmittel in Gegenwart wenigstens eines elektrostatischen Dispersionsstabilisators mit einem Reduktionsmittel zu Silber reduziert wird.Process for the preparation of dispersions according to Claim 13, characterized in that a silver salt in at least one dispersant is reduced to silver in the presence of at least one electrostatic dispersion stabilizer with a reducing agent.
EP10002605.3A 2010-03-12 2010-03-12 Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles Not-in-force EP2369597B1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
DK10002605.3T DK2369597T3 (en) 2010-03-12 2010-03-12 Preparation of conductive surface coatings with dispersion with electrostatically stabilized silver nanoparticles
PL10002605T PL2369597T3 (en) 2010-03-12 2010-03-12 Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles
EP10002605.3A EP2369597B1 (en) 2010-03-12 2010-03-12 Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles
PT100026053T PT2369597E (en) 2010-03-12 2010-03-12 Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles
ES10002605.3T ES2495390T3 (en) 2010-03-12 2010-03-12 Production of conductive surface coatings with dispersion with electrostatically stabilized silver nanoparticles
EP11157252A EP2369598A1 (en) 2010-03-12 2011-03-08 Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles
CA2733600A CA2733600A1 (en) 2010-03-12 2011-03-09 Production of conductive surface coatings using a dispersion containing electrostatically stabilised silver nanoparticles
US13/044,129 US8834960B2 (en) 2010-03-12 2011-03-09 Production of conductive surface coatings using a dispersion containing electrostatically stabilised silver nanoparticles
TW100108208A TWI592221B (en) 2010-03-12 2011-03-11 A process for producing conductive surface coating using a dispersion containing electrostatically stabilised silver nanoparticles,the dispersion and the process for preparing the dispersion
CN201110058677.7A CN102189072B (en) 2010-03-12 2011-03-11 The dispersion containing electrostatic stabilization silver nano-grain is used to produce the method for conductive surface's coating
KR1020110021860A KR20110103351A (en) 2010-03-12 2011-03-11 Production of conductive surface coatings using a dispersion containing electrostatically stabilised silver nanoparticles
JP2011054046A JP2011190535A (en) 2010-03-12 2011-03-11 Production of conductive surface coating using dispersion containing electrostatically stabilized silver nanoparticle
HK12102639.9A HK1162395A1 (en) 2010-03-12 2012-03-15 Production of conductive surface coatings using a dispersion containing electrostatically stabilised silver nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10002605.3A EP2369597B1 (en) 2010-03-12 2010-03-12 Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles

Publications (2)

Publication Number Publication Date
EP2369597A1 true EP2369597A1 (en) 2011-09-28
EP2369597B1 EP2369597B1 (en) 2014-06-25

Family

ID=42111845

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10002605.3A Not-in-force EP2369597B1 (en) 2010-03-12 2010-03-12 Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles
EP11157252A Withdrawn EP2369598A1 (en) 2010-03-12 2011-03-08 Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11157252A Withdrawn EP2369598A1 (en) 2010-03-12 2011-03-08 Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles

Country Status (12)

Country Link
US (1) US8834960B2 (en)
EP (2) EP2369597B1 (en)
JP (1) JP2011190535A (en)
KR (1) KR20110103351A (en)
CN (1) CN102189072B (en)
CA (1) CA2733600A1 (en)
DK (1) DK2369597T3 (en)
ES (1) ES2495390T3 (en)
HK (1) HK1162395A1 (en)
PL (1) PL2369597T3 (en)
PT (1) PT2369597E (en)
TW (1) TWI592221B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017071949A1 (en) * 2015-10-30 2017-05-04 Clariant International Ltd Metal dispersion with increased stability

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562766A1 (en) * 2011-08-22 2013-02-27 Bayer MaterialScience AG Dispersions containing carbon nanotubes and graphene platelets
DE102011085642A1 (en) 2011-11-03 2013-05-08 Bayer Materialscience Aktiengesellschaft Process for the preparation of a metal nanoparticle dispersion, metal nanoparticle dispersion and their use
CN103421970B (en) * 2012-03-30 2017-11-17 施耐德电器工业公司 A kind of preparation method of silver-based electric contact material
WO2013152314A1 (en) 2012-04-06 2013-10-10 University Of North Texas A facile method for making non-toxic biomedical compositions comprising hybrid metal-polymer microparticles
CN104969363A (en) * 2012-12-21 2015-10-07 倍能源有限责任公司 Apparatus, systems and methods for collecting and converting solar energy
WO2015068478A1 (en) * 2013-11-07 2015-05-14 富士電機株式会社 Radiation measuring method and metal nanoparticle composite to be used therein
DE112015000622B4 (en) * 2014-02-03 2023-09-28 Du Pont China Ltd. Compositions for high speed printing of conductive materials for electrical circuit applications and methods related thereto
JP6939025B2 (en) * 2017-03-31 2021-09-22 東洋インキScホールディングス株式会社 Bright color resin composition, bright color article and its manufacturing method
WO2018199182A1 (en) 2017-04-28 2018-11-01 日本板硝子株式会社 Lustrous pigment, pigment-containing composition, and pigment-containing coated article
JP7019996B2 (en) * 2017-08-23 2022-02-16 コニカミノルタ株式会社 Water-based ink and image formation method
CN108976914B (en) * 2018-08-14 2021-06-22 重庆文理学院 High-dispersion copper nanowire conductive ink, conductive film and preparation method thereof
CN112300430B (en) * 2020-10-23 2023-01-24 东莞市东森光电科技有限公司 Antistatic scratch-resistant toughened film
CN112589093B (en) * 2020-12-15 2022-05-27 深圳艾利佳材料科技有限公司 Nano-silver antibacterial agent, preparation method and preparation method of antibacterial stainless steel
CN112864269A (en) * 2021-01-20 2021-05-28 沈阳师范大学 High-gain ultraviolet avalanche detector based on electric field distribution regulation and control and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038002A1 (en) * 2001-11-01 2003-05-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ink-jet inks containing metal nanoparticles
EP1493780A1 (en) 2002-04-10 2005-01-05 Fujikura Ltd. Conductive composition, conductive film, and process for the formation of the film
WO2005079353A2 (en) * 2004-02-18 2005-09-01 Virginia Tech Intellectual Properties, Inc. Nanoscale metal paste for interconnect and method of use
EP1916671A2 (en) * 2006-10-05 2008-04-30 Xerox Corporation Silver-containing nanoparticles with replacement stabilizer
WO2009044389A2 (en) * 2007-10-04 2009-04-09 National University Of Ireland, Galway A process for synthesising silver nanoparticles
US20090104437A1 (en) * 2007-10-17 2009-04-23 Michael Jeremiah Bortner Scalable silver nano-particle colloid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911003B2 (en) * 2007-12-10 2012-04-04 セイコーエプソン株式会社 Conductor pattern forming ink, conductor pattern and wiring board
JP5332624B2 (en) * 2008-01-22 2013-11-06 三菱マテリアル株式会社 Metal nanoparticle dispersion and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038002A1 (en) * 2001-11-01 2003-05-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ink-jet inks containing metal nanoparticles
EP1493780A1 (en) 2002-04-10 2005-01-05 Fujikura Ltd. Conductive composition, conductive film, and process for the formation of the film
WO2005079353A2 (en) * 2004-02-18 2005-09-01 Virginia Tech Intellectual Properties, Inc. Nanoscale metal paste for interconnect and method of use
EP1916671A2 (en) * 2006-10-05 2008-04-30 Xerox Corporation Silver-containing nanoparticles with replacement stabilizer
WO2009044389A2 (en) * 2007-10-04 2009-04-09 National University Of Ireland, Galway A process for synthesising silver nanoparticles
US20090104437A1 (en) * 2007-10-17 2009-04-23 Michael Jeremiah Bortner Scalable silver nano-particle colloid

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HENGLEIN A; GIERSIG M: "Formation of colloidal Silver Nanoparticles: Cappping Action of Citrate", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 103, 10 December 1999 (1999-12-10), pages 9533 - 9539, XP002584396 *
LEDWITH D M ; WHELAN A M; KELLY J M: "A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles", JOURNAL OF MATERIALS CHEMISTRY, vol. 17, 2007, pages 2459 - 2464, XP002584395, DOI: 10.1039/b702141k *
LEE P C ET AL: "ADSORPTION AND SURFACE-ENHANCED RAMAN OF DYES ON SILVER AND GOLD SOLS", JOURNAL OF PHYSICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US LNKD- DOI:10.1021/J100214A025, vol. 86, no. 17, 19 August 1982 (1982-08-19), pages 3391 - 3395, XP001118070, ISSN: 0022-3654 *
XIA ET AL., ADV. MATER., vol. 15, no. 9, 2003, pages 695 - 699

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017071949A1 (en) * 2015-10-30 2017-05-04 Clariant International Ltd Metal dispersion with increased stability
CN108348884A (en) * 2015-10-30 2018-07-31 科莱恩国际有限公司 The metal dispersion of stability with raising

Also Published As

Publication number Publication date
DK2369597T3 (en) 2014-10-06
TWI592221B (en) 2017-07-21
ES2495390T3 (en) 2014-09-17
US20110223322A1 (en) 2011-09-15
EP2369598A1 (en) 2011-09-28
PL2369597T3 (en) 2015-03-31
EP2369597B1 (en) 2014-06-25
JP2011190535A (en) 2011-09-29
HK1162395A1 (en) 2012-08-31
CN102189072B (en) 2016-02-10
KR20110103351A (en) 2011-09-20
PT2369597E (en) 2014-09-23
US8834960B2 (en) 2014-09-16
TW201217070A (en) 2012-05-01
CA2733600A1 (en) 2011-09-12
CN102189072A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
EP2369597B1 (en) Production of conductive surface coatings with dispersion with electrostatically stabilised silver nanoparticles
DE60204650T2 (en) Slurry of ultrafine metal powder with increased dispersibility
DE102015206065B4 (en) Method of making an article of manufacture having a silver nanoparticle based stretchable conductive film
EP2087490B1 (en) Aqueous formulation containing silver, and its use for production of electrically conductive or reflective coatings
DE102017203069B4 (en) Ink composition, method of preparation and printing method
DE112015000957B4 (en) Silver paste excellent in low-temperature sinterability and process for preparing this silver paste
DE60128924T2 (en) COLLOIDAL METAL SOLUTION, MANUFACTURING METHOD THEREFOR AND COATING MATERIAL CONTAINING THIS SOLUTION
EP2468826A1 (en) Pickering emulsion for producing electrically conductive coatings and method for producing a Pickering emulsion
DE10362231B4 (en) Copper oxide ultrafine
WO2013064502A1 (en) Method for producing a metal nanoparticle dispersion, metal nanoparticle dispersion, and use of said metal nanoparticle dispersion
EP2562766A1 (en) Dispersions containing carbon nanotubes and graphene platelets
DE112014002552B4 (en) Process for producing silver particles
EP2721114A1 (en) Silver-containing aqueous ink formulation for producing electrically conductive structures, and ink jet printing method for producing such electrically conductive structures
EP1926805A1 (en) Stable aqueous graphite dispersion with high solids content
WO2014170050A1 (en) Sintering paste having coated silver oxide on high-grade and low-grade surfaces that are difficult to sinter
DE102015202283A1 (en) SILVER NANOPARTICLE INKS WITH GELENTS FOR DEEP AND FLEXOGRAPHY PRESSURE
DE112015002007T5 (en) Binding composition and metal-bound body and their use
DE102015202281A1 (en) SILVER FLOOR GUIDED PAST PRINTING COLOR WITH NICKEL PARTICLES
DE112020000740T5 (en) Aqueous MONODISPERSE STARCH GOLD NANOPARTICLES AND METHOD OF MANUFACTURING THE SAME
WO2017054792A1 (en) Method for producing an assembly from an electrically conductive layer on a substrate formed by a suspension, and assembly formed by an electrically conductive layer on a substrate and use thereof
DE102012109928B4 (en) Paste composition for a solar cell electrode
WO2017045989A1 (en) Conductive nanocomposites
DE112014006907T5 (en) Copper-containing conductive pastes and electrodes made therefrom
DE60212950T2 (en) USE OF LADDER COMPOSITIONS IN ELECTRONIC CIRCUITS
DE112014006903B4 (en) Solar cells with copper electrodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER TECHNOLOGY SERVICES GMBH

17P Request for examination filed

Effective date: 20120321

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 1/22 20060101AFI20131029BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140103

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT INTERNATIONAL AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 675124

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010007270

Country of ref document: DE

Effective date: 20140807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2495390

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140917

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140916

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140930

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140926

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140925

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010007270

Country of ref document: DE

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150326

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E023421

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20160215

Year of fee payment: 7

Ref country code: IT

Payment date: 20160222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20160208

Year of fee payment: 7

Ref country code: PT

Payment date: 20160208

Year of fee payment: 7

Ref country code: PL

Payment date: 20160321

Year of fee payment: 7

Ref country code: BE

Payment date: 20160223

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200325

Year of fee payment: 11

Ref country code: AT

Payment date: 20200319

Year of fee payment: 11

Ref country code: SE

Payment date: 20200325

Year of fee payment: 11

Ref country code: FI

Payment date: 20200319

Year of fee payment: 11

Ref country code: GB

Payment date: 20200326

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200326

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200528

Year of fee payment: 11

Ref country code: ES

Payment date: 20200427

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010007270

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210312

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 675124

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210312

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210312

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210313

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210312

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210313