EP2369022A1 - Coloured solid precious material made up of an assembly of nanoparticles of noble metals - Google Patents

Coloured solid precious material made up of an assembly of nanoparticles of noble metals Download PDF

Info

Publication number
EP2369022A1
EP2369022A1 EP11157346A EP11157346A EP2369022A1 EP 2369022 A1 EP2369022 A1 EP 2369022A1 EP 11157346 A EP11157346 A EP 11157346A EP 11157346 A EP11157346 A EP 11157346A EP 2369022 A1 EP2369022 A1 EP 2369022A1
Authority
EP
European Patent Office
Prior art keywords
noble metal
nanoparticles
sintering
gold
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11157346A
Other languages
German (de)
French (fr)
Other versions
EP2369022B1 (en
Inventor
Mikhael Bechelany
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cartier International AG
Original Assignee
Neollia Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neollia Sas filed Critical Neollia Sas
Publication of EP2369022A1 publication Critical patent/EP2369022A1/en
Application granted granted Critical
Publication of EP2369022B1 publication Critical patent/EP2369022B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1054Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a solid mass-colored and adjustable color precious material.
  • Precious metals such as gold, silver or one of their alloys are widely used in the manufacture of luxury goods such as watch products, jewelery or writing instruments.
  • Precious metals can be used in the form of a thin or thick decorative layer but also in the massive form.
  • metal nanoparticles for coloring is known in the case of coloring glasses and ceramics.
  • ceramics have been pigmented with coated nanoparticles, especially silica-coated nanoparticles, have been used to manufacture a mass-pigmented ceramic material, for example of saturated red color.
  • An object of the present invention is to provide a material free of the limitations of known.
  • the object of the invention is precisely to overcome these handicaps, by proposing a noble metal material color adjustable color in the mass and can be used advantageously in areas related to the luxury industry such as watchmaking, jewelery and writing instruments, but also in areas where aesthetic aspects are important such as cosmetics, dental, medical, or biomedical.
  • these objects are attained in particular by means of a solid material of noble metal of adjustable color formed of an assembly of nanoparticles, the nanoparticles containing a noble metal and being coated with a dielectric layer, characterized in that the nanoparticles are shaped so as to obtain an unconsolidated compact, the compact is sintered to obtain a colored noble metal material, and the colored noble metal material comprises at least 50% by weight of the noble metal, the color being determined by the composition and the chemical environment, the shape and size of the nanoparticles.
  • the noble metal is gold or a gold alloy with at least 12 carats.
  • the noble metal is a metal of class 10 or 11 of the periodic table.
  • the dielectric layer is an oxide or polymer layer.
  • the radiation source may be a microwave radiation
  • the microwave radiation may have a wavelength of between 900 and 1000 MHz but preferably a wavelength of 2.45 GHz.
  • the radiation source may be assisted by a thermal heating source.
  • the sintering is carried out simultaneously with the compaction by a method of hot pressing, flash sintering (Spark Plasma Sintering, SPS) or by laser sintering.
  • the proposed solution has the advantage over the prior art of offering a greater color palette for parts made of a noble metal or alloy of noble metals.
  • the nanoparticles are manufactured in a metal of class 11 of the periodic table, such as gold and silver, or in a metal of class 10 of the periodic table, such as palladium or aluminum.
  • a metal of class 11 of the periodic table such as gold and silver
  • a metal of class 10 of the periodic table such as palladium or aluminum.
  • platinum platinum
  • Nanoparticles can also be made from alloys of one or more of these metals, for example, 12-carat gold (50% grading) up to 18-carat (75% grading), as well as golds commonly called “white gold” goldsmiths (gold and nickel alloys), “red gold” (gold and copper alloys), “green gold” (gold and silver alloys), “gray gold” (alloys of gold and iron), “purple gold” (gold and aluminum alloys) “yellow gold", or “pink” (alloys of gold, silver and copper), etc.
  • the nanoparticle may be a solid noble metal or in the form of a core, for example consisting of a common metal or a mineral, coated with a layer of the noble metal.
  • the nanoparticles formed of a noble metal and more particularly the nanoparticles formed of a metal of class 11 of the periodic table which have a free electron on their outermost electronic layer, can induce surface plasmon resonance effects which absorbs strongly light at certain wavelengths in the visible spectrum, creating colors, especially colors between blue and red.
  • the generated colors can be adjusted in the spectral range mentioned by size, geometry (spherical, cylindrical and pyramidal), the composition and the chemical environment of the nanoparticles considered.
  • the noble metal nanoparticles are coated with a dielectric layer.
  • This dielectric layer makes it possible, among other things, to protect the nanoparticle of noble metal, in particular during the shaping and / or sintering treatments that will be seen below, and to obtain a specific solid state coloration. .
  • the dielectric layer is able to influence the wavelength of the plasmon resonance band and thus the perceived color.
  • the dielectric layer can also influence the physical properties (mechanical, thermal, electrical and magnetic) of the coated metal nanoparticle of the layer.
  • “heart” or "core” to describe the metal nanoparticle
  • shell to describe the dielectric layer.
  • the noble metal nanoparticles are coated with an inorganic monophasic layer, such as an oxide layer.
  • the inorganic layer is a layer of an oxide such as silica, zirconia or alumina or derivatives thereof.
  • the noble metal nanoparticles of controlled size and geometry can be synthesized by reducing a metal precursor in solution to produce fine colloidal particles of the noble metal.
  • the oxide layer is produced, for example, by adding a source of Si or Al to a suspension of colloids in a preferably aqueous or alcoholic solvent (in particular methanol, ethanol, propanol, or isopropanol) and in the presence of a agent for mineralization, hydrolysis and or catalysis such as ammonia.
  • the source of Si is an alkylorthosilicate whose transformation in the presence of water added to the reaction mixture will produce silica which is deposited on the metal nanoparticles (soil process). gel). Colored metal nanoparticles coated with a layer of silica are thus obtained. amorphous.
  • the oxide layer can also be produced using a Ti or Zr oxide or a mixture of at least two of these oxides.
  • the synthesized noble metal nanoparticles may have dimensions of between 1 nm and 200 nm, but preferably between 5 nm and 50 nm.
  • the thickness of the oxide layer is not critical to the extent that it is sufficient. It seems that a value of 2 nm is a minimum and 100 nm is a practical maximum that will obviously reach only for diameters of nanoparticles, of the order of 100 nm to 200 nm. This thickness has relatively little effect on the color, unlike the size of the nanoparticles themselves.
  • the noble metal nanoparticles can also be synthesized using a so-called organometallic method based on the decomposition of a metal complex used as a source of atoms, under the action of a reactive gas (CO, H2, H2O), in the presence of a stabilizing agent such as a polymer or a ligand.
  • a reactive gas CO, H2, H2O
  • a stabilizing agent such as a polymer or a ligand.
  • This route can also be applied to the synthesis of nanoparticles on a porous inorganic support (silica, alumina, organized mesoporous, etc.) or on a silicon substrate of given size and geometry (sphere, cube, rod, disk, etc.).
  • the noble metal nanoparticles are coated with an organic compound layer.
  • the organic compound is a macromolecular compound, such as a polymer, for example a polyelectrolyte that makes it possible in particular to disperse the nanoparticles in the aqueous phase.
  • the organic layer can be coated in situ, during the synthesis of the nanoparticles, or ex situ, after the synthesis of the nanoparticles. More particularly, the organic layer may be coated on the noble metal nanoparticle by the method known as "grafting from”, which consists in synthesizing the polymer chain monomer per monomer from a surface-grafted initiator.
  • the polymer thus formed has a perfectly controlled architecture and size. More particularly, an initiator may be grafted to the surface of the nanoparticle, and a macromolecule may be generated from this initiator using a controlled radical polymerization or atom transfer radical polymerization technique.
  • a "grafting on” method may be used where the organic layer is coated on the metal nanoparticle by dispersing the nanoparticles in a solution of organic material.
  • the nature of the organic material may be adjusted depending on the intended use properties of the workpiece and / or shaping processes used (see below).
  • the organic material may be a thermoplastic or thermosetting polymer or else capable of photochemical crosslinking.
  • the organic layer can be bound by strong (covalent) bonds to the surface of the nanoparticle, with or without an oxide layer, or bound by weak interactions (electrostatic, Van der Waals).
  • the nanoparticles are coated with a multilayer comprising, for example, the oxide layer coated on the metal particle, and the organic layer, coated on the oxide layer.
  • the multilayer may be formed of several layers, each of the layers having, for example, a chemical composition and / or a crystallographic structure different from the other layers.
  • the coated noble metal nanoparticles are shaped so as to obtain an unconsolidated compact.
  • shaping is meant any industrial shaping process similar to the processes used for shaping polymer parts (plastics), ceramics or metal.
  • the shaping can be performed by a method of cold compaction casting, injection molding, tape casting. Cold compaction methods such as pressing, injection or extrusion pressing, or prototyping are also possible.
  • the coated nanoparticles may be in a solid mixture or in a liquid solution, for example, a slip preparation or suspension of the coated nanoparticles.
  • the shaping method makes it possible to produce a compact in a desired geometry such as a massive piece, for example, a pellet, a coating, fibers, or even powders.
  • the shaping of the compact can be facilitated by additives such as binders and / or plasticizers added to the nanoparticles.
  • additives can be removed (debinding) during a heat treatment (see below), possibly assisted by an overpressure or a reduced pressure or microwaves, or by capillary migration, or by sublimation under vacuum.
  • the compact is sintered under a controlled atmosphere, for example, under air or under a gas such as O 2 , N 2 , Ar, H 2 , NH 3 , to consolidate the shaped nanoparticles, densify the material and impart a mechanical strength to the colored noble metal material.
  • Sintering can be facilitated by additives that accelerate the densification and / or form a vitreous or liquid phase at high temperature, or that form a new inorganic phase during sintering (reactive sintering).
  • the sintering of the compact is performed by a microwave heating source producing radiation in a range of wavelengths that are preferentially absorbed by the layer.
  • a microwave heating source produces radiation in a range of wavelengths that are preferentially absorbed by the layer.
  • Such a radiation source consolidates this compact and form the colored noble metal material by bringing the layer in a temperature range compatible with its consolidation and / or densification. Indeed, under the effect of the absorption of the incident radiation of the microwave source, the temperature of the oxide and / or organic layers rises, thus producing compact consolidation and densification. In these conditions experimental, the specific staining of nanoparticles of noble metal is not impaired.
  • the range of wavelengths is between 900 MHz and 1000 MHz or 2.45 GHz.
  • the microwave heating source is assisted by another conventional thermal heating source, for example a radiant, convective, induction heat source, or the like.
  • another conventional thermal heating source for example a radiant, convective, induction heat source, or the like.
  • the sintering of the compact form can be achieved only with the aid of the conventional thermal heating source.
  • the sintering is conventionally carried out by heating at high temperature.
  • the sintering is carried out simultaneously with the compaction, for example, by a method of hot pressing, flash sintering (Spark Plasma Sintering, SPS), or by laser sintering, for example during the design of one piece by rapid prototyping.
  • a method of hot pressing for example, by a method of hot pressing, flash sintering (Spark Plasma Sintering, SPS), or by laser sintering, for example during the design of one piece by rapid prototyping.
  • the solid noble metal material thus obtained can be machined and / or receive a surface treatment, such as polishing. Such a step of machining and / or surface treatment makes it possible to obtain a product that can be used commercially and industrially.
  • TEOS tetraethylorthosilicate
  • Aldrich a 27% solution of ammonia
  • the gold nanoparticles coated with silica are then collected by ultracentrifugation (20,000 g for 15 minutes).
  • a mass of 150 mg of gold nanoparticles coated with silica are shaped using a pelletizer by pressing at room temperature. The densification of the pellet is carried out by heating at 600 ° C. coupled with microwave irradiation at 2.45 GHz. The pellet obtained is black.
  • the synthesis of gold nanoparticles is identical to that described previously. 0.803 ml of tetraethylorthosilicate (TEOS) and 10 ml of a 27% solution of ammonia are then added and the solution is left stirring for 1 hour. The solution takes on a dark red hue.
  • the gold nanoparticles coated with silica are then collected by ultracentrifugation (20,000 g for 15 minutes). A mass of 150 mg of gold nanoparticles coated with silica are shaped using a pelletizer by pressing at room temperature. The densification of the pellet is carried out by heating at 750 ° C. in air. The pellet obtained is dark red.
  • a preliminary step 5 ml of a 0.2 M solution of CTAB (cetrimonium bromide, Aldrich) is added to 5.0 ml of a solution of 0.5 mM HAuCl 4 (Aldrich). 0.6 ml of a solution of NaBH 4 (0.01 M) (Aldrich) cooled to 0 ° C. with stirring is added to the preceding mixture. The solution becomes brown and is stirred for 5 minutes at room temperature. This first step makes it possible to obtain a solution of gold seeds.
  • 5 ml of a 0.15 M solution of BDAC benzyl dimethyl hexadecyl ammonium chloride, Aldrich
  • the mixture is dissolved by sonication for 20 minutes at 40 ° C.
  • 0.2 ml of a 4 mM solution of silver nitrate (Aldrich) is then added to the mixture.
  • 5 ml of a 1 mM solution of HAuCl 4 are then added .
  • 0.07 ml of a solution of ascorbic acid (0.8 mM) (Aldrich) is added.
  • 0.015 ml of the previously prepared seed solution is added and the mixture is stirred for 24 hours.
  • the gold particles are collected by ultracentrifugation.
  • the colored noble metal material can be shaped so as to produce massive pieces or coatings.
  • the noble metal material consists essentially of a solid noble metal material.
  • the colored noble metal material can be advantageously used for the manufacture of all or part of parts or components where the decorative aspect is important, for example, in the fields of the luxury industry, for example in the fields of watchmaking, jewelery, jewelery, writing instruments, leather goods, eyewear, tableware, etc.
  • the colored noble metal material can also be advantageously used in areas such as dental, medical and biomedical, where aesthetic aspects are important.
  • the colored noble metal material is manufactured in the form of colored particles that can be used for pigmentation in various applications such as food processing or cosmetics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

The color adjustable bulk material made of noble metal, comprises an assembly of nanoparticles, which are coated with a dielectric layer. The nanoparticles are shaped such that to obtain a non-consolidated compact, which is sintered for obtaining the colored noble metal material. The dielectric layer is an oxide layer or a polymer layer. The nanoparticles have a size of 5-50 nm. The noble metal material includes gold or gold alloy of 12 carats, where the color is determined by the composition and the chemical environment and shape and size of nanoparticles. An independent claim is included for a process for fabricating a color adjustable bulk material made of noble metal.

Description

Domaine techniqueTechnical area

La présente invention concerne un matériau précieux massif coloré dans la masse et de couleur ajustable.The present invention relates to a solid mass-colored and adjustable color precious material.

Etat de la techniqueState of the art

Les métaux précieux tels que l'or, l'argent ou un de leurs alliages sont largement utilisés dans la fabrication de produit de luxe tel que les produits horlogers, bijoux ou instruments d'écriture. Les métaux précieux peuvent être utilisés sous la forme d'une couche décorative mince ou épaisse mais également sous la forme massive.Precious metals such as gold, silver or one of their alloys are widely used in the manufacture of luxury goods such as watch products, jewelery or writing instruments. Precious metals can be used in the form of a thin or thick decorative layer but also in the massive form.

L'utilisation de tels métaux précieux permet d'obtenir des produits dans une certaine gamme de couleurs. Par exemple, dans le cas de l'or, on peut utiliser l'or « jaune » 18 carats, ainsi que les ors communément appelés en orfèvrerie "or blanc" (alliages d'or et de nickel), "or rouge" (alliages d'or et de cuivre), "or vert" (alliages d'or et d'argent), "or gris" (alliages d'or et de fer), "or violet" (alliages d'or et d'aluminium) "or jaune", ou "rose" (alliages d'or, d'argent et de cuivre), etc. La palette de couleurs obtenues par ces différents alliages reste cependant limitée essentiellement à des nuances sur la couleur originale de l'or.The use of such precious metals makes it possible to obtain products in a certain range of colors. For example, in the case of gold, we can use the "yellow" gold 18 carats, as well as the golds commonly called goldsmith "white gold" (gold and nickel alloys), "red gold" ( gold and copper alloys), "green gold" (gold and silver alloys), "gray gold" (gold and iron alloys), "purple gold" (gold and silver alloys) aluminum) "yellow gold", or "rose" (alloys of gold, silver and copper), etc. The color palette obtained by these different alloys, however, remains limited mainly to shades on the original color of gold.

Il est impossible d'obtenir une gamme étendue de couleurs et coloris par l'utilisation de métaux précieux ou d'alliages de métaux précieux. En particulier il est difficile, sinon impossible, d'obtenir jusqu'a présent certaines gammes ou variétés de couleurs telles que le rouge qui soient franches, vives et stables dans le temps.It is impossible to obtain an extensive range of colors and colors through the use of precious metals or alloys of precious metals. In particular, it is difficult, if not impossible, to obtain up to now certain ranges or varieties of colors such as red which are frank, bright and stable over time.

Le recouvrement de la pièce de métal ou d'alliage précieux avec un revêtement afin d'ajouter une coloration de surface n'est pas satisfaisant puisque la couche colorée risque de partir à l'usure et la pièce se décolorer partiellement ou complètement avec le temps.The overlap of the precious metal or alloy part with a coating to add a surface coloring is not satisfactory since the colored layer may leave to wear and the part discolor partially or completely over time.

L'utilisation de nanoparticules métallique pour la coloration est connue dans le cas de la coloration des verres et des céramiques. Par exemple, dans EP1887052 , des céramiques ont été pigmentées avec des nanoparticules enrobées, notamment des nanoparticules revêtues de silice, ont été utilisé pour fabriquer un matériau céramique pigmenté dans la masse, par exemple de couleur rouge saturé.The use of metal nanoparticles for coloring is known in the case of coloring glasses and ceramics. For example, in EP1887052 ceramics have been pigmented with coated nanoparticles, especially silica-coated nanoparticles, have been used to manufacture a mass-pigmented ceramic material, for example of saturated red color.

Cependant, aucune des méthodes connues ne permet de colorer dans la masse afin d'obtenir des métaux ou alliages de métaux précieux dans ces tons de couleurs.However, none of the known methods makes it possible to color in the mass in order to obtain metals or alloys of precious metals in these shades of colors.

Bref résumé de l'inventionBrief summary of the invention

Un but de la présente invention est de proposer un matériau exempt des limitations des connues.An object of the present invention is to provide a material free of the limitations of known.

L'objet de l'invention vise précisément à surmonter ces handicaps, en proposant un matériau de métal noble de couleur ajustable coloré dans la masse et pouvant être utilisé avantageusement dans des domaines relatifs à l'industrie du luxe comme par exemple l'horlogerie, la joaillerie et les instruments d'écriture, mais également dans des domaines ou les aspects esthétiques ont leur importance tels que la cosmétique, le dentaire, le médical, ou le biomédical.The object of the invention is precisely to overcome these handicaps, by proposing a noble metal material color adjustable color in the mass and can be used advantageously in areas related to the luxury industry such as watchmaking, jewelery and writing instruments, but also in areas where aesthetic aspects are important such as cosmetics, dental, medical, or biomedical.

Selon l'invention, ces buts sont atteints notamment au moyen d'un matériau massif de métal noble de couleur ajustable formé d'un assemblage de nanoparticules, les nanoparticules contenant un métal noble et étant revêtues d'une couche diélectrique, caractérisé en ce que les nanoparticules sont mises en forme de sorte a obtenir un compact non consolidé, le compact est fritté pour obtenir un matériau de métal noble coloré, et que le matériau de métal noble coloré comprend au moins 50% en poids du métal noble, la couleur étant déterminée par la composition et l'environnement chimique, la forme et la taille des nanoparticules.According to the invention, these objects are attained in particular by means of a solid material of noble metal of adjustable color formed of an assembly of nanoparticles, the nanoparticles containing a noble metal and being coated with a dielectric layer, characterized in that the nanoparticles are shaped so as to obtain an unconsolidated compact, the compact is sintered to obtain a colored noble metal material, and the colored noble metal material comprises at least 50% by weight of the noble metal, the color being determined by the composition and the chemical environment, the shape and size of the nanoparticles.

Selon un mode de réalisation, le métal noble est de l'or ou un alliage d'or à au moins 12 carats.According to one embodiment, the noble metal is gold or a gold alloy with at least 12 carats.

Selon un autre mode de réalisation, le métal noble est un métal de la classe 10 ou 11 du tableau périodique.According to another embodiment, the noble metal is a metal of class 10 or 11 of the periodic table.

Encore selon un autre mode de réalisation, la couche diélectrique est une couche d'oxyde ou de polymère.According to another embodiment, the dielectric layer is an oxide or polymer layer.

L'invention comporte également un procédé de fabrication du matériau de métal noble massif, comprenant :

  • la mise en forme de l'assemblage de nanoparticules pour produire un compact de métal noble comportant les nanoparticules et ayant une géométrie définie; et
  • le frittage dudit compact; caractérisé en ce que
  • le frittage est réalisé à l'aide d'une source de rayonnement ayant une longueur d'onde absorbée préférentiellement par la couche diélectrique de sorte à ne pas altérer la coloration desdites particules et de former un matériau précieux coloré dans la masse et de couleur ajustable.
The invention also comprises a method of manufacturing the solid noble metal material, comprising:
  • shaping the nanoparticle assembly to produce a noble metal compact having the nanoparticles and having a defined geometry; and
  • sintering said compact; characterized in that
  • the sintering is carried out using a radiation source having a wavelength absorbed preferentially by the dielectric layer so as not to alter the coloration of said particles and to form a colored material in the bulk and of adjustable color .

Selon un mode de réalisation, la source de rayonnement peut être un rayonnement micro-onde, le rayonnement micro-onde pouvant avoir une longueur d'onde comprise entre 900 et 1000 MHz mais préférablement une longueur d'onde de 2.45 GHz.According to one embodiment, the radiation source may be a microwave radiation, the microwave radiation may have a wavelength of between 900 and 1000 MHz but preferably a wavelength of 2.45 GHz.

Selon un autre mode de réalisation, la source de rayonnement peut être assistée par une source de chauffage thermique.According to another embodiment, the radiation source may be assisted by a thermal heating source.

Selon un autre mode de réalisation, le frittage est réalisé simultanément avec le compactage par une méthode de hot pressing, de frittage flash (Spark Plasma Sintering, SPS) ou par frittage laser.According to another embodiment, the sintering is carried out simultaneously with the compaction by a method of hot pressing, flash sintering (Spark Plasma Sintering, SPS) or by laser sintering.

La solution proposée présente notamment l'avantage par rapport à l'art antérieur d'offrir une plus grande palette de couleurs pour des pièces réalisées dans un métal noble ou alliage de métaux nobles.The proposed solution has the advantage over the prior art of offering a greater color palette for parts made of a noble metal or alloy of noble metals.

Exemple(s) de mode de réalisation de l'inventionExample (s) of embodiment of the invention

Dans un mode de réalisation, les nanoparticules sont fabriquées dans un métal de la classe 11 du tableau périodique, tel que l'or et l'argent, ou encore dans un métal de la classe 10 du tableau périodique, tel que le palladium ou le platine. Les nanoparticules peuvent également être fabriquées à partir d'alliages de l'un ou plusieurs de ces métaux, par exemple, l'or 12 carats (titrant 50%) jusqu'à 18 carats (titrant 75%), ainsi que les ors communément appelés en orfèvrerie « or blanc » (alliages d'or et de nickel), « or rouge » (alliages d'or et de cuivre), « or vert » (alliages d'or et d'argent), « or gris » (alliages d'or et de fer), « or violet » (alliages d'or et d'aluminium) « or jaune », ou "rose" (alliages d'or, d'argent et de cuivre), etc.In one embodiment, the nanoparticles are manufactured in a metal of class 11 of the periodic table, such as gold and silver, or in a metal of class 10 of the periodic table, such as palladium or aluminum. platinum. Nanoparticles can also be made from alloys of one or more of these metals, for example, 12-carat gold (50% grading) up to 18-carat (75% grading), as well as golds commonly called "white gold" goldsmiths (gold and nickel alloys), "red gold" (gold and copper alloys), "green gold" (gold and silver alloys), "gray gold" (alloys of gold and iron), "purple gold" (gold and aluminum alloys) "yellow gold", or "pink" (alloys of gold, silver and copper), etc.

Par soucis de clarté, on parlera de « métal noble »pour désigner indifféremment un métal des classes 10 et 11 du tableau périodique proprement dit, ou d'un alliage formé d'au moins l'un de ces métaux.For the sake of clarity, we will speak of "noble metal" to indifferently designate a metal of classes 10 and 11 of the periodic table proper, or an alloy formed of at least one of these metals.

La nanoparticule peut être un métal noble massif ou sous la forme d'un noyau, par exemple constitué d'un métal commun ou d'un minéral, revêtu d'une couche du métal noble.The nanoparticle may be a solid noble metal or in the form of a core, for example consisting of a common metal or a mineral, coated with a layer of the noble metal.

Les nanoparticules formées d'un métal noble, et plus particulièrement les nanoparticules formées d'un métal de la classe 11 du tableau périodique qui ont un électron libre sur leur couche électronique la plus externe, peuvent induire des effets de résonnance plasmon de surface qui absorbe fortement la lumière à certaines longueurs d'onde dans le spectre visible, créant des couleurs, notamment des couleurs entre le bleu et le rouge. Les couleurs générées peuvent être ajustées dans la gamme spectrale mentionnée selon la taille, la géométrie (sphérique, cylindrique et pyramidale), la composition et l'environnement chimique des nanoparticules considérées.The nanoparticles formed of a noble metal, and more particularly the nanoparticles formed of a metal of class 11 of the periodic table which have a free electron on their outermost electronic layer, can induce surface plasmon resonance effects which absorbs strongly light at certain wavelengths in the visible spectrum, creating colors, especially colors between blue and red. The generated colors can be adjusted in the spectral range mentioned by size, geometry (spherical, cylindrical and pyramidal), the composition and the chemical environment of the nanoparticles considered.

Les nanoparticules de métal noble sont revêtues d'une couche diélectrique. Cette couche diélectrique permet, entre autres, de protéger la nanoparticule de métal noble, en particulier lors des traitements de mise en forme et/ou de frittage que l'on verra plus bas, et d'obtenir une coloration spécifique à l'état solide. La couche diélectrique est susceptible d'influencer la longueur d'onde de la bande de résonance de plasmon et donc de la couleur perçue. La couche diélectrique peut également influencer les propriétés physiques (mécanique, thermique, électrique et magnétique) de la nanoparticule métallique revêtue de la couche. Dans la littérature, on parle communément de « coeur » ou « noyau » pour décrire la nanoparticule métallique, et de « coquille » pour décrire la couche diélectrique.The noble metal nanoparticles are coated with a dielectric layer. This dielectric layer makes it possible, among other things, to protect the nanoparticle of noble metal, in particular during the shaping and / or sintering treatments that will be seen below, and to obtain a specific solid state coloration. . The dielectric layer is able to influence the wavelength of the plasmon resonance band and thus the perceived color. The dielectric layer can also influence the physical properties (mechanical, thermal, electrical and magnetic) of the coated metal nanoparticle of the layer. In the literature, one commonly speaks of "heart" or "core" to describe the metal nanoparticle, and "shell" to describe the dielectric layer.

Dans un mode de réalisation, les nanoparticules de métal noble sont revêtues d'une couche monophasique inorganique, telle qu'une couche d'oxyde. Préférablement, la couche inorganique est une couche d'un oxyde tel que la silice, la zircone ou l'alumine ou leurs dérivés.In one embodiment, the noble metal nanoparticles are coated with an inorganic monophasic layer, such as an oxide layer. Preferably, the inorganic layer is a layer of an oxide such as silica, zirconia or alumina or derivatives thereof.

Les nanoparticules de métal noble de taille et de géométrie contrôlées (sphères, cubes, bâtonnets, etc.) peuvent être synthétisées par réduction d'un précurseur métallique en solution pour produire de fines particules colloïdales du métal noble. La couche d'oxyde est réalisée, par exemple, par addition d'une source de Si ou Al à une suspension de colloïdes dans un solvant préférentiellement aqueux ou alcoolique (notamment méthanol, éthanol, propanol, ou isopropanol) et en présence d'un agent de minéralisation, d'hydrolyse et ou de catalyse comme par exemple l'ammoniaque. Dans le cas de la fabrication d'une couche de silice, la source de Si est un alkylorthosilicate dont la transformation en présence d'eau ajoutée dans le mélange réactionnel va produire de la silice qui se dépose sur les nanoparticules de métal (processus sol-gel). On obtient ainsi des nanoparticules de métal colorées revêtues d'une couche de la silice amorphe. La couche d'oxyde peut également être réalisée à l'aide d'un oxyde de Ti ou Zr ou encore un mélange d'au moins deux de ces oxydes.The noble metal nanoparticles of controlled size and geometry (spheres, cubes, rods, etc.) can be synthesized by reducing a metal precursor in solution to produce fine colloidal particles of the noble metal. The oxide layer is produced, for example, by adding a source of Si or Al to a suspension of colloids in a preferably aqueous or alcoholic solvent (in particular methanol, ethanol, propanol, or isopropanol) and in the presence of a agent for mineralization, hydrolysis and or catalysis such as ammonia. In the case of the manufacture of a silica layer, the source of Si is an alkylorthosilicate whose transformation in the presence of water added to the reaction mixture will produce silica which is deposited on the metal nanoparticles (soil process). gel). Colored metal nanoparticles coated with a layer of silica are thus obtained. amorphous. The oxide layer can also be produced using a Ti or Zr oxide or a mixture of at least two of these oxides.

Les nanoparticules de métal noble synthétisées peuvent avoir des dimensions comprises entre 1 nm et 200 nm, mais préférablement entre 5 nm et 50 nm. L'épaisseur de la couche d'oxyde n'est pas critique dans la mesure où celle-ci est suffisante. Il semble qu'une valeur de 2 nm soit un minimum et 100 nm soit un maximum pratique qu'on n'atteindra évidemment que pour des diamètres de nanoparticules, de l'ordre de 100 nm à 200 nm. Cette épaisseur a relativement peu d'effet sur la couleur, contrairement à la taille des nanoparticules elles-mêmes.The synthesized noble metal nanoparticles may have dimensions of between 1 nm and 200 nm, but preferably between 5 nm and 50 nm. The thickness of the oxide layer is not critical to the extent that it is sufficient. It seems that a value of 2 nm is a minimum and 100 nm is a practical maximum that will obviously reach only for diameters of nanoparticles, of the order of 100 nm to 200 nm. This thickness has relatively little effect on the color, unlike the size of the nanoparticles themselves.

D'autres méthodes de synthèse des nanoparticules de métal noble permettant de contrôler la taille et la géométrie des nanoparticules peuvent être utilisées. Par exemple, les nanoparticules de métal noble peuvent également être synthétisées à l'aide d'une méthode dite organométallique reposant sur la décomposition d'un complexe métallique utilisé comme source d'atomes, sous l'action d'un gaz réactif (CO, H2, H2O), en présence d'un agent stabilisant tel qu'un polymère ou un ligand. Cette voie peut également être appliquée à la synthèse de nanoparticules sur un support inorganique poreux (silice, alumine, mésoporeux organisés, etc.) ou sur un substrat de silicium de taille et de géométrie donnée (sphère, cube, bâtonnet, disque, etc.).Other methods of synthesizing noble metal nanoparticles to control the size and geometry of the nanoparticles can be used. For example, the noble metal nanoparticles can also be synthesized using a so-called organometallic method based on the decomposition of a metal complex used as a source of atoms, under the action of a reactive gas (CO, H2, H2O), in the presence of a stabilizing agent such as a polymer or a ligand. This route can also be applied to the synthesis of nanoparticles on a porous inorganic support (silica, alumina, organized mesoporous, etc.) or on a silicon substrate of given size and geometry (sphere, cube, rod, disk, etc.). ).

Dans un autre mode de réalisation, les nanoparticules de métal noble sont revêtues d'une couche consistant en un composé organique. De préférence, le composé organique est un composé macromoléculaire, tel qu'un polymère, par exemple, un polyélectrolyte permettant notamment la dispersion des nanoparticules en phase aqueuse.In another embodiment, the noble metal nanoparticles are coated with an organic compound layer. Preferably, the organic compound is a macromolecular compound, such as a polymer, for example a polyelectrolyte that makes it possible in particular to disperse the nanoparticles in the aqueous phase.

La couche organique peut être revêtue in situ, pendant la synthèse des nanoparticules, ou ex situ, après la synthèse des nanoparticules. Plus particulièrement, la couche organique peut être revêtue sur la nanoparticule de métal noble par la méthode dite de « grafting from », qui consiste à synthétiser la chaîne de polymère monomère par monomère à partir d'un amorceur greffé en surface. Le polymère ainsi formé a une architecture et une taille parfaitement contrôlées. Plus particulièrement, un initiateur peut être greffé à la surface de la nanoparticule, et une macromolécule peut être générée à partir de cet initiateur en utilisant une technique de polymérisation radicalaire contrôlée ou de polymérisation radicalaire par transfert d'atome.The organic layer can be coated in situ, during the synthesis of the nanoparticles, or ex situ, after the synthesis of the nanoparticles. More particularly, the organic layer may be coated on the noble metal nanoparticle by the method known as "grafting from", which consists in synthesizing the polymer chain monomer per monomer from a surface-grafted initiator. The polymer thus formed has a perfectly controlled architecture and size. More particularly, an initiator may be grafted to the surface of the nanoparticle, and a macromolecule may be generated from this initiator using a controlled radical polymerization or atom transfer radical polymerization technique.

Dans une autre variante du mode de réalisation, une méthode de « grafting on ») peut être utilisée où la couche organique est revêtue sur la nanoparticule métallique par dispersion des nanoparticules dans une solution de matériau organique. La nature du matériau organique peut être ajustée en fonction des propriétés d'utilisation envisagées pour la pièce et/ou des procédés de mise en forme utilisés (voir ci-dessous). Par exemple, le matériau organique peut être un polymère thermoplastique ou thermodurcissable ou encore apte à une réticulation photochimique. La couche organique peut être liée par des liaisons fortes (covalentes) à la surface de la nanoparticule, avec ou sans couche d'oxyde, ou liée par des interactions faibles (électrostatiques, Van der Waals).In another variant of the embodiment, a "grafting on" method may be used where the organic layer is coated on the metal nanoparticle by dispersing the nanoparticles in a solution of organic material. The nature of the organic material may be adjusted depending on the intended use properties of the workpiece and / or shaping processes used (see below). For example, the organic material may be a thermoplastic or thermosetting polymer or else capable of photochemical crosslinking. The organic layer can be bound by strong (covalent) bonds to the surface of the nanoparticle, with or without an oxide layer, or bound by weak interactions (electrostatic, Van der Waals).

Dans un autre mode de réalisation, les nanoparticules sont revêtues d'une multicouche comprenant, par exemple, la couche d'oxyde revêtue sur la particule métallique, et la couche organique, revêtue sur la couche d'oxyde.In another embodiment, the nanoparticles are coated with a multilayer comprising, for example, the oxide layer coated on the metal particle, and the organic layer, coated on the oxide layer.

Alternativement, la multicouche peut être formée de plusieurs couches, chacune des couches ayant, par exemple, une composition chimique et/ou une structure cristallographique différente des autres couches.Alternatively, the multilayer may be formed of several layers, each of the layers having, for example, a chemical composition and / or a crystallographic structure different from the other layers.

Dans un mode de réalisation, les nanoparticules de métal noble revêtues sont mises en forme de sorte à obtenir un compact non consolidé. Par mise en forme on entend tout procédé industriel de mise en forme similaire aux procédés utilisés pour la mise en forme de pièces polymères (plasturgie), céramiques ou métalliques. Par exemple, la mise en forme peut être réalisée par une méthode de compactage à froid de coulage, de moulage par injection, de coulée en ruban. Des méthodes de compactage à froid telles que le pressage, le pressage par injection ou par extrusion, ou le prototypage sont également possibles. Lors de la mise en forme, les nanoparticules revêtues peuvent être dans un mélange solide ou dans une solution liquide, par exemple, une préparation de barbotine ou suspension des nanoparticules revêtues. Le procédé de mise en forme permet de produire un compact dans une géométrie souhaitée telle qu'une pièce massive, par exemple, une pastille, un revêtement, des fibres, ou encore des poudres.In one embodiment, the coated noble metal nanoparticles are shaped so as to obtain an unconsolidated compact. By shaping is meant any industrial shaping process similar to the processes used for shaping polymer parts (plastics), ceramics or metal. For example, the shaping can be performed by a method of cold compaction casting, injection molding, tape casting. Cold compaction methods such as pressing, injection or extrusion pressing, or prototyping are also possible. During the shaping, the coated nanoparticles may be in a solid mixture or in a liquid solution, for example, a slip preparation or suspension of the coated nanoparticles. The shaping method makes it possible to produce a compact in a desired geometry such as a massive piece, for example, a pellet, a coating, fibers, or even powders.

La mise en forme du compact peut être facilitée par des additifs tels que des liants et/ou plastifiants ajoutés aux nanoparticules. Ces additifs peuvent être éliminés (déliantage) pendant un traitement thermique (voir plus bas), éventuellement assisté d'une surpression ou d'une pression réduite ou de microondes, ou par migration capillaire, ou par sublimation sous vide.The shaping of the compact can be facilitated by additives such as binders and / or plasticizers added to the nanoparticles. These additives can be removed (debinding) during a heat treatment (see below), possibly assisted by an overpressure or a reduced pressure or microwaves, or by capillary migration, or by sublimation under vacuum.

Le compact est fritté sous atmosphère contrôlée, par exemple, sous air ou sous un gaz tel que O2, N2, Ar, H2, NH3, pour consolider les nanoparticules mises en forme, densifier le matériau et conférer une tenue mécanique au matériau de métal noble coloré. Le frittage peut être facilité par des additifs qui viennent accélérer la densification et/ou former une phase vitreuse ou liquide à haute température, ou qui viennent former une nouvelle phase inorganique pendant le frittage (frittage réactif).The compact is sintered under a controlled atmosphere, for example, under air or under a gas such as O 2 , N 2 , Ar, H 2 , NH 3 , to consolidate the shaped nanoparticles, densify the material and impart a mechanical strength to the colored noble metal material. Sintering can be facilitated by additives that accelerate the densification and / or form a vitreous or liquid phase at high temperature, or that form a new inorganic phase during sintering (reactive sintering).

Dans un mode préféré de réalisation, le frittage du compact est réalisé par une source de chauffage micro-onde produisant un rayonnement dans une gamme de longueurs d'ondes qui sont préférentiellement absorbées par la couche. Une telle source rayonnement permet de consolider ce compact et former le matériau de métal noble coloré en amenant la couche dans une gamme de température compatible avec sa consolidation et/ou densification. En effet, sous l'effet de l'absorption du rayonnement incident de la source micro-onde, la température des couches d'oxyde et/ou organiques s'élève, produisant ainsi la consolidation et densification du compact. Dans ces conditions expérimentales, la coloration spécifique des nanoparticules de métal noble n'est donc pas altérée. Dans le cas de nanoparticules de métal noble revêtues d'une couche d'oxyde ou organique, la gamme de longueurs d'ondes est comprise entre 900 Mhz et 1000 Mhz ou encore 2,45 GHz.In a preferred embodiment, the sintering of the compact is performed by a microwave heating source producing radiation in a range of wavelengths that are preferentially absorbed by the layer. Such a radiation source consolidates this compact and form the colored noble metal material by bringing the layer in a temperature range compatible with its consolidation and / or densification. Indeed, under the effect of the absorption of the incident radiation of the microwave source, the temperature of the oxide and / or organic layers rises, thus producing compact consolidation and densification. In these conditions experimental, the specific staining of nanoparticles of noble metal is not impaired. In the case of noble metal nanoparticles coated with an oxide or organic layer, the range of wavelengths is between 900 MHz and 1000 MHz or 2.45 GHz.

Dans un autre mode de réalisation, la source de chauffage micro-onde est assistée d'une autre source de chauffage thermique conventionnelle, par exemple, une source de chauffage thermique radiant, convectif, à induction, ou autres. Alternativement, le frittage de la forme compacte peut être réalisé seulement à l'aide de la source de chauffage thermique conventionnelle.In another embodiment, the microwave heating source is assisted by another conventional thermal heating source, for example a radiant, convective, induction heat source, or the like. Alternatively, the sintering of the compact form can be achieved only with the aid of the conventional thermal heating source.

Encore dans un autre mode de réalisation, le frittage est réalisé de façon conventionnelle par chauffage à haute température.In yet another embodiment, the sintering is conventionally carried out by heating at high temperature.

Encore dans un autre mode de réalisation, le frittage est réalisé simultanément avec le compactage, par exemple, par une méthode de hot pressing, de frittage flash (Spark Plasma Sintering, SPS), ou par frittage laser, par exemple lors de la conception d'une pièce par prototypage rapide.In yet another embodiment, the sintering is carried out simultaneously with the compaction, for example, by a method of hot pressing, flash sintering (Spark Plasma Sintering, SPS), or by laser sintering, for example during the design of one piece by rapid prototyping.

Le matériau massif de métal noble ainsi obtenu peut être usiné et/ou recevoir un traitement de surface, tel que le polissage. Une telle étape d'usinage et/ou de traitement de surface permet d'obtenir un produit utilisable commercialement et industriellement.The solid noble metal material thus obtained can be machined and / or receive a surface treatment, such as polishing. Such a step of machining and / or surface treatment makes it possible to obtain a product that can be used commercially and industrially.

Exemple 1Example 1

On dissout 5g de HAuCl4 (99,999%, Aldrich) dans 20 ml d'eau (qualité électronique, 18,2 MΩ). On ajoute 344 ml de cette solution à 475 ml d'eau que l'on porte à reflux sous agitation magnétique. On ajoute un agent réducteur, par exemple, 25 ml d'une solution à 1 % en poids de citrate de sodium (99,9%, Aldrich) à chaud et on laisse 30 minutes sous agitation à reflux, de sorte à former les nanoparticules d'or. La solution, initialement jaune pâle, devient rouge vif. Après refroidissement, 80 ml de la solution précédente contenant les nanoparticules d'or est ajoutée à 400 ml d'isopropanol. On additionne ensuite 0.107 ml de tétraéthyl orthosilicate (TEOS) et 10 ml d'une solution d'ammoniaque à 27% (Aldrich), puis on laisse la solution sous agitation pendant 1 heure. La solution prend une teinte violette. Les nanoparticules d'or recouvertes de silice sont ensuite collectées par ultracentrifugation (20.000 g pendant 15 minutes). Une masse de 150 mg de nanoparticules d'or recouvertes de silice sont mise en forme à l'aide d'une pastilleuse par pressage à température ambiante. La densification de la pastille est réalisée par un chauffage à 600°C couplée avec une irradiation micro-onde à 2.45 GHz. La pastille obtenue est de couleur noire.5 g of HAuCl 4 (99.999%, Aldrich) are dissolved in 20 ml of water (electronic quality, 18.2 MΩ). 344 ml of this solution are added to 475 ml of water which is heated under reflux with magnetic stirring. A reducing agent, for example, 25 ml of a 1% by weight solution of sodium citrate (99.9%, Aldrich) is added hot and is left stirring for 30 minutes at reflux, so as to form the nanoparticles. Golden. The solution, initially pale yellow, becomes bright red. After cooling, 80 ml of the previous solution containing the gold nanoparticles is added to 400 ml of isopropanol. 0.107 ml of tetraethylorthosilicate (TEOS) and 10 ml of a 27% solution of ammonia (Aldrich) are then added and the solution is left stirring for 1 hour. The solution takes on a purple hue. The gold nanoparticles coated with silica are then collected by ultracentrifugation (20,000 g for 15 minutes). A mass of 150 mg of gold nanoparticles coated with silica are shaped using a pelletizer by pressing at room temperature. The densification of the pellet is carried out by heating at 600 ° C. coupled with microwave irradiation at 2.45 GHz. The pellet obtained is black.

Exemple 2Example 2

La synthèse des nanoparticules d'or est identique à celle décrite précédemment. On additionne ensuite 0.803 ml de tétraéthyl orthosilicate (TEOS) et 10 ml d'une solution d'ammoniaque à 27% puis on laisse la solution sous agitation pendant 1 heure. La solution prend une teinte rouge sombre. Les nanoparticules d'or recouvertes de silice sont ensuite collectées par ultracentrifugation (20.000 g pendant 15 minutes). Une masse de 150 mg de nanoparticules d'or recouvertes de silice sont mise en forme à l'aide d'une pastilleuse par pressage à température ambiante. La densification de la pastille est réalisée par un chauffage à 750°C sous air. La pastille obtenue est de couleur rouge sombre.The synthesis of gold nanoparticles is identical to that described previously. 0.803 ml of tetraethylorthosilicate (TEOS) and 10 ml of a 27% solution of ammonia are then added and the solution is left stirring for 1 hour. The solution takes on a dark red hue. The gold nanoparticles coated with silica are then collected by ultracentrifugation (20,000 g for 15 minutes). A mass of 150 mg of gold nanoparticles coated with silica are shaped using a pelletizer by pressing at room temperature. The densification of the pellet is carried out by heating at 750 ° C. in air. The pellet obtained is dark red.

Exemple 3Example 3

Dans une étape préliminaire, 5 ml d'une solution de CTAB (bromure de cétrimonium, Aldrich) à 0.2 M est ajoutée à 5.0 ml d'une solution de HAuCl4 à 0.5 mM (Aldrich). On ajoute au mélange précédent 0.6 ml d'une solution de NaBH4 (0.01 M) (Aldrich) refroidie à 0°C sous agitation. La solution devient brune et est maintenue sous agitation pendant 5 minutes à température ambiante. Cette première étape permet d'obtenir une solution de germes d'or. Dans une deuxième étape, 5 ml d'une solution 0.15 M de BDAC (chlorure de benzyl diméthyl hexadécyl ammonium, Aldrich) est ajoutée à 0,145 g de CTAB. Le mélange est dissous par sonication pendant 20 minutes à 40°C. On ajoute ensuite dans le mélange 0.2 ml d'une solution 4 mM de nitrate d'argent (Aldrich). On ajoute ensuite 5 ml d'une solution 1 mM d'HAuCl4. Après agitation, on ajoute 0.07 ml d'une solution d'acide ascorbique (0.8 mM) (Aldrich). Pour terminer, on ajoute 0.015 ml de la solution de germes préparés précédemment puis on laisse sous agitation pendant 24 heures. Les particules d'or sont collectées par ultracentrifugation. Pour la fabrication des revêtements, dans une solution contenant 40 ml d'isopropanol, 0.375 ml de Zr(OPr)4 (Aldrich) à 70% en poids est ajoutée à 0.082 ml d'acétate d'éthyle (Aldrich). Le mélange est laissé pendant 30 minutes sous ultrasons. On ajoute 5ml d'une solution aqueuse contenant 40 mg des nanoparticules d'or préparées précédemment à 15 ml de DMF (N,N-diméthylformamide, Aldrich). Ce mélange est ensuite additionné à la solution contenant le sel de zirconium. Le tout est alors porté à reflux sous agitation pendant 45 minutes. Après refroidissement, 44 ml de toluène sont ajoutés afin de précipiter les particules d'or revêtues. Le précipité obtenu est de couleur bleue. La poudre obtenue est intimement mélangée avec 3% d'oxyde d'yttrium (Y2O3) (Aldrich) avant d'être frittée par traitement thermique à 1000°C. Le matériau obtenu est de couleur bleue.In a preliminary step, 5 ml of a 0.2 M solution of CTAB (cetrimonium bromide, Aldrich) is added to 5.0 ml of a solution of 0.5 mM HAuCl 4 (Aldrich). 0.6 ml of a solution of NaBH 4 (0.01 M) (Aldrich) cooled to 0 ° C. with stirring is added to the preceding mixture. The solution becomes brown and is stirred for 5 minutes at room temperature. This first step makes it possible to obtain a solution of gold seeds. In a second step, 5 ml of a 0.15 M solution of BDAC (benzyl dimethyl hexadecyl ammonium chloride, Aldrich) is added to 0.145 g of CTAB. The mixture is dissolved by sonication for 20 minutes at 40 ° C. 0.2 ml of a 4 mM solution of silver nitrate (Aldrich) is then added to the mixture. 5 ml of a 1 mM solution of HAuCl 4 are then added . After stirring, 0.07 ml of a solution of ascorbic acid (0.8 mM) (Aldrich) is added. Finally, 0.015 ml of the previously prepared seed solution is added and the mixture is stirred for 24 hours. The gold particles are collected by ultracentrifugation. For the manufacture of the coatings, in a solution containing 40 ml of isopropanol, 0.375 ml of Zr (OPr) 4 (Aldrich) at 70% by weight is added to 0.082 ml of ethyl acetate (Aldrich). The mixture is left for 30 minutes under ultrasound. 5 ml of an aqueous solution containing 40 mg of the gold nanoparticles previously prepared is added to 15 ml of DMF (N, N-dimethylformamide, Aldrich). This mixture is then added to the solution containing the zirconium salt. The whole is then refluxed with stirring for 45 minutes. After cooling, 44 ml of toluene is added to precipitate the coated gold particles. The precipitate obtained is blue in color. The powder obtained is intimately mixed with 3% of yttrium (Y 2 O 3 ) oxide (Aldrich) before being sintered by heat treatment at 1000 ° C. The material obtained is blue in color.

Lors de la fabrication du matériau de métal noble coloré, ce dernier peut être mis en forme de sorte à produire des pièces massives ou encore des revêtements. Dans ces deux cas, le matériau de métal noble consiste essentiellement en un matériau de métal noble massif. Le matériau de métal noble coloré peut être avantageusement utilisé pour la fabrication de tout ou partie de pièces ou composants où l'aspect décoratif est important, par exemple, dans les domaines de l'industrie du luxe, comme par exemple dans les domaines de l'horlogerie, de la joaillerie, de la bijouterie, des instruments d'écriture, de la maroquinerie, de la lunetterie, des arts de la table, etc.During the manufacture of the colored noble metal material, the latter can be shaped so as to produce massive pieces or coatings. In both cases, the noble metal material consists essentially of a solid noble metal material. The colored noble metal material can be advantageously used for the manufacture of all or part of parts or components where the decorative aspect is important, for example, in the fields of the luxury industry, for example in the fields of watchmaking, jewelery, jewelery, writing instruments, leather goods, eyewear, tableware, etc.

Le matériau de métal noble coloré peut également avantageusement être utilisé dans des domaines tels que le dentaire, le médical et biomédical, où les aspects esthétiques ont leur importance.The colored noble metal material can also be advantageously used in areas such as dental, medical and biomedical, where aesthetic aspects are important.

Dans un autre mode de réalisation, le matériau de métal noble coloré est fabriqué sous la forme de particules colorées pouvant être utilisées pour la pigmentation dans diverses applications telles que l'agroalimentaire ou la cosmétique.In another embodiment, the colored noble metal material is manufactured in the form of colored particles that can be used for pigmentation in various applications such as food processing or cosmetics.

Claims (15)

Matériau massif de métal noble de couleur ajustable formé d'un assemblage de nanoparticules, les nanoparticules contenant un métal noble et étant revêtues d'une couche diélectrique, caractérisé en ce que
les nanoparticules sont mises en forme de sorte a obtenir un compact non consolidé,
le compact est fritté pour obtenir le matériau de métal noble coloré, et que
le matériau de métal noble coloré comprend au moins 50% en poids du métal noble, la couleur étant déterminée par la composition et l'environnement chimique, la forme et la taille des nanoparticules.
A solid noble metal material of adjustable color formed of an assembly of nanoparticles, the nanoparticles containing a noble metal and being coated with a dielectric layer, characterized in that
the nanoparticles are shaped so as to obtain an unconsolidated compact,
the compact is sintered to obtain the colored noble metal material, and that
the colored noble metal material comprises at least 50% by weight of the noble metal, the color being determined by the composition and the chemical environment, the shape and size of the nanoparticles.
Matériau selon la revendication 1, dans lequel le métal noble est de l'or ou un alliage d'or à au moins 12 carats.The material of claim 1, wherein the noble metal is gold or a gold alloy of at least 12 carats. Matériau selon la revendication 1, dans lequel le métal noble est un métal de la classe 10 ou 11 du tableau périodique.Material according to claim 1, wherein the noble metal is a metal of class 10 or 11 of the periodic table. Matériau selon l'une des revendications de 1 à 3, dans lequel la couche diélectrique est une couche d'oxyde ou une couche de polymère.Material according to one of claims 1 to 3, wherein the dielectric layer is an oxide layer or a polymer layer. Matériau selon l'une des revendications de 1 à 4, dans lequel la taille des nanoparticules de métal noble est comprise entre 1 nm et 200 nm, mais préférablement entre 5 nm et 50 nm.Material according to one of claims 1 to 4, wherein the size of the nanoparticles of noble metal is between 1 nm and 200 nm, but preferably between 5 nm and 50 nm. Matériau selon l'une des revendications de 1 à 5,
utilisé pour fabriquer tout ou partie de pièces ou composants pour des applications dans le domaine du luxe ou de la cosmétique.
Material according to one of Claims 1 to 5,
used to manufacture all or part of parts or components for applications in the field of luxury or cosmetics.
Matériau selon l'une des revendications de 1 à 5,
utilisé pour fabriquer tout ou partie de pièces ou composants dans le domaine de l'horlogerie, de la bijouterie, de la joaillerie, de la maroquinerie ou des instruments d'écriture.
Material according to one of Claims 1 to 5,
used to manufacture all or part of parts or components in the field of watchmaking, jewelery, jewelery, leather goods or writing instruments.
Matériau selon l'une des revendications de 1 à 5,
utilisé pour fabriquer tout ou partie de pièces ou composants dans le domaine dentaire, médical ou biomédical.
Material according to one of Claims 1 to 5,
used to manufacture all or part of parts or components in the dental, medical or biomedical field.
Procédé de fabrication d'un matériau de métal noble massif de couleur ajustable formé d'un assemblage de nanoparticules contenant un métal noble et revêtue d'une couche diélectrique, le matériau comprenant au moins 50% en poids du métal noble, comprenant : la mise en forme de l'assemblage de nanoparticules pour produire un compact de métal noble comportant les nanoparticules et ayant une géométrie définie ; et le frittage dudit compact; caractérisé en ce que le frittage est réalisé à l'aide d'une source de rayonnement ayant une longueur d'onde absorbée préférentiellement par la couche diélectrique de sorte à ne pas altérer la coloration desdites particules et de former un matériau précieux coloré dans la masse et de couleur ajustable. A method of manufacturing an adjustable color solid noble metal material formed of a noble metal-containing nanoparticle assembly coated with a dielectric layer, the material comprising at least 50% by weight of the noble metal, comprising: shaping the nanoparticle assembly to produce a noble metal compact having the nanoparticles and having a defined geometry; and sintering said compact; characterized in that the sintering is carried out using a radiation source having a wavelength absorbed preferentially by the dielectric layer so as not to alter the coloration of said particles and to form a colored material in the bulk and of adjustable color . Procédé selon la revendication 9, où
la source de rayonnement est un rayonnement micro-onde.
The method of claim 9 wherein
the radiation source is a microwave radiation.
Procédé selon la revendication 10, où
le rayonnement micro-onde a une longueur d'onde comprise entre 900 et 1000 MHz.
The method of claim 10 wherein
the microwave radiation has a wavelength between 900 and 1000 MHz.
Procédé selon la revendication 10, où
le rayonnement micro-onde a une longueur d'onde de 2.45 GHz
The method of claim 10 wherein
the microwave radiation has a wavelength of 2.45 GHz
Procédé selon l'une des revendications de 9 à 12, où la source de rayonnement est assistée par une source de chauffage thermique.Method according to one of claims 9 to 12, wherein the radiation source is assisted by a thermal heating source. Procédé selon l'une des revendications de 9 à 13, où le frittage est réalisé simultanément avec le compactage par une méthode de hot pressing, de frittage flash ou par frittage laser.Process according to one of Claims 9 to 13, in which the sintering is carried out simultaneously with the compacting by hot pressing, flash sintering or laser sintering method. Procédé selon l'une des revendications de 9 à 14 où le frittage est réalisé sous atmosphère contrôlée.Process according to one of Claims 9 to 14, in which the sintering is carried out under a controlled atmosphere.
EP11157346.5A 2010-03-11 2011-03-08 Coloured solid precious material made up of an assembly of nanoparticles of noble metals Active EP2369022B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00343/10A CH702835A2 (en) 2010-03-11 2010-03-11 colored solid precious material formed by assembly of noble metal nanoparticles.

Publications (2)

Publication Number Publication Date
EP2369022A1 true EP2369022A1 (en) 2011-09-28
EP2369022B1 EP2369022B1 (en) 2020-06-17

Family

ID=44141221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11157346.5A Active EP2369022B1 (en) 2010-03-11 2011-03-08 Coloured solid precious material made up of an assembly of nanoparticles of noble metals

Country Status (2)

Country Link
EP (1) EP2369022B1 (en)
CH (1) CH702835A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH711352A1 (en) * 2015-07-24 2017-01-31 Cartier Int Ag A method of making a solid colored noble metal material.
FR3078966A1 (en) * 2018-03-16 2019-09-20 Luxeram TRANSPARENT CERAMIC MATRIX HAVING VISIBLE INCLUSION
ES2941332A1 (en) * 2021-11-18 2023-05-19 Univ Jaume I Procedure for obtaining in situ a ground ceramic pigment (Machine-translation by Google Translate, not legally binding)
EP3482851B1 (en) * 2017-11-14 2023-08-30 Cartier International AG Method of manufacturing a black or anthracite colour material comprising at least 18 gold carats
EP4257265A1 (en) 2022-04-06 2023-10-11 Patek Philippe SA Genève Method for manufacturing a timepiece component or jewellery item and said timepiece component or jewellery item

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782439A (en) * 1980-11-13 1982-05-22 Tanaka Kikinzoku Kogyo Kk Manufacture of material for decoration
US4963184A (en) * 1988-06-22 1990-10-16 Degussa Aktiengesellschaft Tooth filling material and method of its preparation
ZA938045B (en) * 1992-09-23 1994-06-20 Mintek Gold or yellow coloured noble metal compositions and their production
JP2000219902A (en) * 1999-01-28 2000-08-08 Citizen Watch Co Ltd Powder sintered compact with injection-compacting and production thereof
US6136061A (en) * 1995-12-01 2000-10-24 Gibson; Charles P. Nanostructured metal compacts, and method of making same
WO2006126771A1 (en) * 2005-05-23 2006-11-30 Korea Research Institute Of Bioscience And Biotechnology Multicolor-encoded colloidal particles coated with metal nanoparticles mixture having colors in the visible region and method for preparing the same
EP1887052A1 (en) 2006-07-31 2008-02-13 Rolex Sa Pigmented ceramic element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782439A (en) * 1980-11-13 1982-05-22 Tanaka Kikinzoku Kogyo Kk Manufacture of material for decoration
US4963184A (en) * 1988-06-22 1990-10-16 Degussa Aktiengesellschaft Tooth filling material and method of its preparation
ZA938045B (en) * 1992-09-23 1994-06-20 Mintek Gold or yellow coloured noble metal compositions and their production
US6136061A (en) * 1995-12-01 2000-10-24 Gibson; Charles P. Nanostructured metal compacts, and method of making same
JP2000219902A (en) * 1999-01-28 2000-08-08 Citizen Watch Co Ltd Powder sintered compact with injection-compacting and production thereof
WO2006126771A1 (en) * 2005-05-23 2006-11-30 Korea Research Institute Of Bioscience And Biotechnology Multicolor-encoded colloidal particles coated with metal nanoparticles mixture having colors in the visible region and method for preparing the same
EP1887052A1 (en) 2006-07-31 2008-02-13 Rolex Sa Pigmented ceramic element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 198226, Derwent World Patents Index; AN 1982-53713E, XP002644376 *
DATABASE WPI Week 199440, Derwent World Patents Index; AN 1994-324884, XP002644375 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH711352A1 (en) * 2015-07-24 2017-01-31 Cartier Int Ag A method of making a solid colored noble metal material.
EP3482851B1 (en) * 2017-11-14 2023-08-30 Cartier International AG Method of manufacturing a black or anthracite colour material comprising at least 18 gold carats
FR3078966A1 (en) * 2018-03-16 2019-09-20 Luxeram TRANSPARENT CERAMIC MATRIX HAVING VISIBLE INCLUSION
ES2941332A1 (en) * 2021-11-18 2023-05-19 Univ Jaume I Procedure for obtaining in situ a ground ceramic pigment (Machine-translation by Google Translate, not legally binding)
EP4257265A1 (en) 2022-04-06 2023-10-11 Patek Philippe SA Genève Method for manufacturing a timepiece component or jewellery item and said timepiece component or jewellery item
WO2023194293A1 (en) 2022-04-06 2023-10-12 Patek Philippe Sa Geneve Method for manufacturing a timepiece or jewellery component, and said timepiece or jewellery component

Also Published As

Publication number Publication date
EP2369022B1 (en) 2020-06-17
CH702835A2 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
EP1887052B1 (en) Pigmented ceramic element
EP2369022B1 (en) Coloured solid precious material made up of an assembly of nanoparticles of noble metals
Hunyadi et al. Bimetallic silver–gold nanowires: fabrication and use in surface-enhanced Raman scattering
JP5327877B2 (en) Method for producing metal nanomaterial and metal nanomaterial obtained thereby
EP3227037B1 (en) Universal one-pot and up-scalable synthesis of sers encoded nanoparticles
EP3245259B1 (en) Method to obtain a ceramic composite material
FR2898519A1 (en) NANOPARTICLES, IN PARTICULAR WITH STRUCTURE HEART SHELLS, COATED
CH707423A2 (en) colored technical ceramics and process for their preparation.
CA3034169A1 (en) Multimaterial powder with composite grains for additive synthesis
EP3395784A1 (en) Ceramic component for a timepiece
WO2020020528A1 (en) Gold-based alloy which changes colour, and use thereof in the field of jewellery and watchmaking
FR2489371A1 (en) ALUMINA DISPERSION CURED COPPER ALLOY, ALLOY POWDER, AND MANUFACTURING METHOD THEREOF
EP3012239B1 (en) Method for manufacturing a zirconia-based grey article, and grey zirconia decorative article obtained according to said method
EP3612503B1 (en) Production of a ceramic component
EP3482851B1 (en) Method of manufacturing a black or anthracite colour material comprising at least 18 gold carats
Rajesh et al. ZnO nanowire arrays decorated with titanium nitride nanoparticles as surface-enhanced Raman scattering substrates
Morovvati et al. Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
CH711352B1 (en) Process for manufacturing a material of a colored solid noble metal
CH718069A1 (en) Process for manufacturing a ceramic casing element, in particular for watchmaking, and corresponding casing element.
Du et al. Developing an aqueous approach for synthesizing Au and M@ Au (M= Pd, CuPt) hybrid nanostars with plasmonic properties
Zhang et al. Symmetric and asymmetric overgrowth of a Ag shell onto gold nanorods assisted by Pt pre-deposition
EP4257265A1 (en) Method for manufacturing a timepiece component or jewellery item and said timepiece component or jewellery item
Kokin et al. Organothiol-directed synthesis and growth mechanism of Ag octahedra with tunable optical properties in aqueous solution
Gandra et al. Bimetallic Janus nanostructures via programmed shell growth
EP3976716A1 (en) Coloured material based on metal nanoparticles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120326

17Q First examination report despatched

Effective date: 20140616

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARTIER INTERNATIONAL AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NEOLLIA SAS

Owner name: CARTIER INTERNATIONAL AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARTIER INTERNATIONAL AG

RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 3/105 20060101ALI20191017BHEP

Ipc: C09C 1/62 20060101ALI20191017BHEP

Ipc: B22F 1/02 20060101ALI20191017BHEP

Ipc: C22C 5/02 20060101ALI20191017BHEP

Ipc: C22C 5/00 20060101AFI20191017BHEP

Ipc: B22F 9/16 20060101ALI20191017BHEP

Ipc: C22C 5/06 20060101ALI20191017BHEP

Ipc: B22F 3/02 20060101ALI20191017BHEP

Ipc: B22F 1/00 20060101ALI20191017BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200424

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011067318

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: P&TS SA, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1281374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1281374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011067318

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210308

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110308

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230401

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 14

Ref country code: GB

Payment date: 20240320

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240322

Year of fee payment: 14