EP2367753A1 - Procédé et installation permettant de produire une source d énergie en utilisant du dioxyde de carbone comme source de carbone et en utilisant l énergie électrique - Google Patents

Procédé et installation permettant de produire une source d énergie en utilisant du dioxyde de carbone comme source de carbone et en utilisant l énergie électrique

Info

Publication number
EP2367753A1
EP2367753A1 EP09781782A EP09781782A EP2367753A1 EP 2367753 A1 EP2367753 A1 EP 2367753A1 EP 09781782 A EP09781782 A EP 09781782A EP 09781782 A EP09781782 A EP 09781782A EP 2367753 A1 EP2367753 A1 EP 2367753A1
Authority
EP
European Patent Office
Prior art keywords
energy
plant
silicon
carbon dioxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09781782A
Other languages
German (de)
English (en)
Inventor
Roland Meyer-Pittroff
Peter Grauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Fire AG
Original Assignee
Silicon Fire AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2008/067895 external-priority patent/WO2010069385A1/fr
Application filed by Silicon Fire AG filed Critical Silicon Fire AG
Priority to EP13175400.4A priority Critical patent/EP2647596A3/fr
Priority to EP09781782A priority patent/EP2367753A1/fr
Publication of EP2367753A1 publication Critical patent/EP2367753A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present application relates to methods and systems for providing storable and transportable carbon-based energy sources using carbon dioxide as a carbon source and using electrical energy.
  • Carbon dioxide CO 2 (usually called carbon dioxide) is a chemical compound of carbon and oxygen. Carbon dioxide is a colorless and odorless gas. It is a natural constituent of the air at a low concentration and occurs in living things during cellular respiration, but also in the combustion of carbonaceous substances with sufficient presence of oxygen. Since the beginning of industrialization, the proportion of CO 2 in the atmosphere has increased significantly. The main reason for this is man-made - the so-called anthropogenic - CO 2 emissions. The carbon dioxide in the atmosphere absorbs part of the heat radiation. This property makes carbon dioxide a so-called greenhouse gas (GHG) and is one of the contributors to the global greenhouse effect.
  • GFG greenhouse gas
  • Greenhouse gas (GHG) issuers such as industrial companies (eg car manufacturers) 1 or power plant operators 2, invest or operate, for example, wind farms 3 at other locations as part of balancing projects in order to generate energy without GHG emissions.
  • GHG Greenhouse gas
  • Numerous companies are trying to buy a "climate-neutral" vest in this way.
  • Wind and solar power plants that convert renewable energy into electrical energy have a transient power output, which greatly complicates a plant operation according to the requirements of an electrical grid and investment and operating costs for additional reserve and frequency control systems requires.
  • the power generation costs of wind farms or solar power plants are substantially increased in comparison to power plants which can directly follow the power requirements of the interconnected grid.
  • carbon dioxide! 5 is used as a carbon source.
  • the carbon dioxide is released taken from a combustion process or an oxidation process of carbon by means of CO 2 separation. It is provided electric DC power.
  • the DC power is largely generated by renewable energy, and it is used to conduct electrolysis to produce 5 hydrogen as an intermediate.
  • the carbon dioxide is then reacted with the hydrogen to convert these products to methanol or other hydrocarbon.
  • a LO transformation of siliceous starting material takes place in a reduction process to silicon, wherein the energy for this reduction process is largely provided by renewable energies. Part of the reaction products of this reduction process is then used in the process for methanol production, in which process for L5 methanol production synthesis gas of carbon dioxide and hydrogen is used, as mentioned.
  • the conversion of silicon dioxide-containing starting material to silicon can be carried out as a supplementary process step to the claimed process or combine with it.
  • the conventional power supply according to the invention becomes particular
  • the electrical energy from wind and / or solar power plants is not fed according to the invention in a network, but directly in a Silicon-Fire plant in storage and transportable forms of energy 5 (preferably converted into hydrocarbons such as methanol). This means that renewable energies are converted chemically into storage and transportable forms of energy.
  • interconnected network can be fed.
  • This feed is optional.
  • a chemical Silicon-Fire plant operated to produce storage and transportable forms of energy. If a corresponding Silicon-Fire plant is linked to a grid in order to receive a portion of the electrical energy from the interconnected grid, then by means of intelligent plant control or control, a currently available surplus share of energy can be obtained from the interconnected grid, while the remaining energy required is obtained from the plant-related solar and / or wind turbine.
  • control and regulation of the system power supply are much easier and more reliable, since the
  • Decision-making authority is the responsibility of the operator of the Silicon-Fire plant.
  • a conventional grid which draws electricity from renewable and conventional plants
  • many partners are involved, which makes the control and logic linking of the plants and making decisions very complex, which in the recent past, for example, has led to loss of supply.
  • the production of the storage and transportable form of energy can be shut down at any time or even interrupted. This happens preferably when there is a peak energy demand in the electrical grid.
  • the "chemical part" of the Silicon-Fire system can be shut down or switched off relatively quickly and easily, and the decision-making authority is also the responsibility of the operator of the Silicon-Fire system.
  • the energy form can be used, which is provided with the Silicon-Fire system.
  • methanol can be stored in order to be able to provide additional electrical energy in the event of peak energy demand in the electrical grid.
  • methanol may be burned in thermal power plants as needed, or electric power may be generated in fuel cells (for example, direct methanol fuel cells, MFC).
  • the present invention is based on the production of hydrogen by means of electrical energy as far as possible from wind and / or solar power plants in combination with the direct conversion of the hydrogen to a hydrocarbon. Hydrogen is therefore not stored or highly compressed or cooled and transported over longer distances, but serves as an intermediate, which is implemented at the site of its production. According to the invention, an energy conversion process in which solar or wind energy is converted into electrical energy is followed by material-converting (chemical) processes, namely the intermediary provision of hydrogen and the conversion of the hydrogen together with carbon dioxide to a hydrocarbon (e.g., methanol).
  • material-converting chemical
  • Fig. 1 a diagram illustrating the principle of climate neutrality by investing in or operating compensation projects
  • FIG. 2 is a diagram showing the basic steps of a first method according to the invention, or a corresponding one
  • FIG. 3 is a diagram showing the basic steps of a second method according to the invention, or a corresponding method
  • Silicon-Fire plant shows; 4 is a diagram showing the basic steps of a further method according to the invention, or a corresponding method
  • Fig. 5 is a diagram showing the steps of another invention
  • Fig. 6 is a diagram showing the steps of another invention
  • the inventive method is based on a novel concept which provides so-called reaction products using existing starting materials, which can be used either directly as an energy source, or indirectly, i. E. after carrying out further intermediate steps, can be used as energy sources.
  • energy source is used here for substances that can be used either directly as fuel or fuel (such as methanol 108), and also for substances (such as silicon 603) that have an energy content or an increased energy level and the in further steps with the release of energy (see energy E3 in FIG. 6) and / or with delivery of a further energy carrier (such as hydrogen 103) can be implemented.
  • the transportability of the energy carrier is characterized here by the chemical reaction potential.
  • hydrocarbons such as methanol 1028
  • certain conditions should be observed during storage and transport, which are similar to the conditions for the handling of fossil fuels.
  • silicon 603 as an energy carrier certain conditions should be observed during storage and during transport, in order not to trigger any unwanted or uncontrolled reaction (oxidation) of the silicon.
  • the silicon 603 should preferably be stored and transported dry.
  • the silicon 603 should not be heated, otherwise the likelihood of reaction with water vapor from the ambient air or with oxygen increases. Studies have shown that silicon has up to about 300 degrees Celsius only a very low tendency to react with water or oxygen.
  • a water getter i.e., a substance that is hydrophilic
  • an oxygen getter i.e., a substance that is oxygen-attracting
  • silicon dioxide-containing starting material 601 is used here for substances which contain a large proportion of silicon dioxide (SiO 2 ). Particularly suitable are sand and shale (SiO 2 + [CO 3 ] 2 ). Sand is a .5 naturally occurring, unconsolidated sedimentary rock and occurs in greater or lesser concentrations throughout the earth's surface. Much of the sand is quartz (silicon dioxide, SiO 2 ).
  • carbon dioxide 30 is used 101 as a carbon source, as indicated schematically in Fig. 2.
  • the carbon dioxide 101 is taken from a combustion process 201 (symbolized by a fire in FIG. 3) or an oxidation process via CO 2 separation (eg, a Silicon-Fire flue gas purification plant 203).
  • DC electric power El is provided.
  • the 35 DC energy El is largely regenerative (eg by one of the plants 300 or 400 in FIG. 4).
  • the DC power El is used to perform electrolysis to produce hydrogen 103 as an intermediate.
  • the electrolysis plant, respectively, carrying out such an electrolysis, is indicated in FIG. 2 by the reference numeral 105 5.
  • the carbon dioxide 101 is then reacted (for example by a methanol synthesis) with the hydrogen 103 to convert the (intermediates 101, 103 to methanol 108 or to another hydrocarbon
  • the reaction can be carried out in a reaction vessel 106 and the removal, respectively the provision of the methanol is indicated in FIG. LO 2 by the reference numeral 107.
  • the required (electrical) energy El for this reaction of 286.02 kJ / mol corresponds to 143000 kJ per kg of H 2 .
  • reaction heat Wl can also be used, for example for a nearby desalination plant or heating system.
  • the methanol synthesis is carried out using catalysts to keep reaction temperature and pressure and 5 reaction time low and to ensure that high quality (pure) methanol 108 is formed as the reaction product.
  • CO and H 2 in O form a ratio of approximately 1: 2.
  • the CO and H 2 produced at a cathode can be converted to methanol with a copper or nickel based catalyst.
  • the Silicon-Fire plant 100 is located in the vicinity of a CO 2 source, can be dispensed with a liquefaction for the transport and the transport itself of CO 2 . Otherwise, it is relatively easy in the prior art to liquefy the CO 2 and bring it to a Silicon-Fire plant 100. In the absence of liquefaction, storage and transport over longer distances, the CO 2 is expected to be cost-neutral, taking CO 2 avoidance credits into account. Even in the case of transport, the costs of "acquiring" CO 2 are relatively low.
  • FIG. 3 shows further steps of a first invention Process, respectively a part of a Silicon-Fire plant 200 shown.
  • the carbon dioxide 101 from a combustion process 201 symbolized here by a fire
  • an oxidation process by means of CO 2 capture eg with a Silicon-Fire flue gas cleaning system 203 taken.
  • Flue gas purification system 203 can be constructed, for example, according to the principle of flue gas scrubbing, wherein the CO 2 is "washed out” by flue gas 202.
  • a flue gas scrubbing system which uses NaOH as scrubbing solution and in which the NaOH is recycled is particularly suitable are for example the parallel application EP 1 958 683, which was filed on 7 August 2007.
  • other principles of CO 2 capture or recovery can be used.
  • the silicone-fire flue gas cleaning system 203 makes it possible to remove CO 2 (referred to herein as recyclable material) from the flue gas 202. This CO 2 is then fed directly or indirectly to the Silicon-Fire plant 100, which then generates / synthesizes a hydrocarbon (preferably methanol 108) using CO 2 as the carbon source and using electrical energy.
  • CO 2 referred to herein as recyclable material
  • This CO 2 is then fed directly or indirectly to the Silicon-Fire plant 100, which then generates / synthesizes a hydrocarbon (preferably methanol 108) using CO 2 as the carbon source and using electrical energy.
  • FIG. 4 shows, in a schematic block diagram, the most important building blocks / components or method steps of a silicon-fire installation 100.
  • This installation 100 is designed such that a method for providing storable and transportable energy sources 108 can be carried out.
  • the corresponding procedure is based on the following basic steps.
  • Carbon dioxide 101 is provided as a carbon source, as previously described.
  • the required DC electric energy El is generated here as far as possible by means of renewable energy technology and made available to the Silicon-Fire plant 100.
  • Particularly suitable as renewable energy technology are solar thermal systems 300 and photovoltaic systems 400, which are based on solar modules. It is also possible to provide a combination of both system types 300 and 400, since the area requirement, based on the electrical power, of the solar thermal system 300 is smaller than that of a Photovoltaic system 400.
  • the electrolysis 105 can be carried out according to the following three different approaches:
  • silicon is produced by electrolytic means from a silicon dioxide-containing compound, which then in a subsequent hydrolysis reaction with water 102 to form hydrogen 103 and silicon dioxide responding
  • Reactant react to methanol 108.
  • a particularly preferred system 100 is shown, which is constructed so that it reduces or compensates for the aforementioned disadvantages. For this reason, preferably an economically and ecologically optimal combination of regenerative power supply (by the systems 300 and / or 400) and conventional power supply, here by a part of a
  • the silicone fire system 100 therefore provides in a preferred embodiment, the regenerative electric energy El largely directly according to their attack for chemical reactions (here the electrolysis reaction 105) to use and thus also to save. Another portion of the required energy is obtained from the interconnected network 500. This Proportion is converted into direct current (energy) E2.
  • a corresponding converter 501 is used, as indicated in Fig. 4 in a schematic form.
  • the corresponding system components or components are also referred to here as power supply system 501. 5
  • the power supply of the system 100 is controlled and regulated.
  • the respective currently available excess energy portion E2 is taken from the interconnected network 500, while the other energy portion (here El) so far
  • .0 are so-called input quantities II, 12, etc., which are included by the controller 110 in decisions.
  • a part of the parameters can be specified within the controller 110 in a parameter memory 111.
  • Another part of the parameters can come from the outside.
  • price and / or availability information from the operator of the interconnected network 500
  • a processor of the controller 110 executes control software and makes decisions taking into account parameters 30. These decisions are implemented in switching or
  • Control commands that cause, for example, via control or signal lines 112, 113, 114, the control / regulation of energy and mass flows.
  • 35 of the Silicon-Fire system 100 is a consumer who is rapidly adding and can be switched off and is relatively flexible. If, for example, there is a sudden increase in the demand for electrical energy on the network side, then the controller 110 can shut down or completely switch off the proportion E2. In this case, either from this moment correspondingly less hydrogen 5 103 is produced, if energy El is available, or the electrolysis is temporarily stopped altogether.
  • Fig. 4 is indicated by dashed arrows 112, which emanate from the controller 110 that the controller 110, the energy flows El and
  • the LO E2 regulates.
  • the arrows 112 represent control or signal lines.
  • Other possible control or signal lines 113, 114 are also shown.
  • the control or signal line 113 controls, for example, the amount of CO 2 available for the reaction 106. For example, if less hydrogen 103 is produced because there is no energy E2 available then less CO 2 will be required
  • the optional control or signal line 114 may regulate, for example, the amount of H 2 . Such a regulation is useful, for example, if there is a hydrogen buffer, which can be taken from hydrogen 103, even if at the moment no hydrogen or less hydrogen is produced by electrolysis 105.
  • the intelligent system controller 110 is set or programmed according to these specifications.
  • the system control 110 is set or programmed such that the networking between regenerative electrical energy source 300 and / or 400 and interconnected electrical network 500 is optimized in such a way that the maximum cost of the electrical energy is minimized with maximum utilization of the regenerative electrical energy source 300 and / or 400.
  • the plant controller 110 is set or programmed so that the networking between regenerative electrical energy source 300 and / or 400 and electrical interconnected network 500 is optimized so that the maximum utilization of the regenerative electrical energy source 300 and / or 400 and taking into account the total cost of electrical energy and the load or operating times of the entire system 100 and their equipment parts, the total cost of the hydrocarbon product 108 will be minimal.
  • the plant controller 110 is set or programmed so that the networking between regenerative electrical energy source 300 and / or 400 and electrical interconnected network 500 is optimized in that by temporarily feeding the regenerative energy source 300 and / or 400 In the interconnected electric network 500 at its peak times proceeds are achieved and thereby the total cost of electrical energy for the inventive method or the total cost of the hydrocarbon product 108 are reduced and minimized as possible.
  • silicon 603 as a first storable and transportable energy source
  • methanol 108 as a second storable and transportable energy source.
  • the method comprises at least the following steps.
  • the elemental silicon 603 is referred to here for simplicity as silicon.
  • the required electrical (P ⁇ mar) Energ ⁇ e El for this reduction process 602 is provided according to LO invention from a renewable energy source 300.
  • a downstream step at least a portion of the silicon 603 may be employed in a methanol production process. In this process, methanol production occurs e.g. Synthesis gas from carbon dioxide 101 and hydrogen 103 is used.
  • the silicon 603 can also be used as an energy carrier from the process
  • the silicon 603 may be stored or removed, for example.
  • the transform 602 is preferably indicated schematically (with the participation of electric current El), 1 O as in Fig. 5, an electrochemical electrolytic transformation.
  • the (P ⁇ mar) energy El is supplied for transformation by current generated from sunlight.
  • a • 5 solar system 300 is used, as indicated in Fig. 5 schematically.
  • the electrochemical transformation 602 may be performed by using silicon dioxide as an electrode.
  • a metal is used as the second electrode.
  • the electrolyte is used, for example
  • significantly lower temperatures preferably less than 500 ° C.
  • silicon 603 can be used as an energy source.
  • the reduced silicon 603 is a high energy substance. This silicon has the tendency to reoxidize with water in liquid or vapor form to silica 604 (reverse reaction), as shown schematically in FIG. In the so-called
  • Hydrogen 605 of silicon 603 releases energy E3 (e.g., heat energy) because it is an exothermic reaction.
  • energy E3 e.g., heat energy
  • hydrogen 1038 is produced, which can be used, for example, as an energy carrier for the production of methanol 108.
  • hydrolysis 605 occurs at elevated temperatures. Preference is given to temperatures which are marked
  • hydrolysis 605 preferably hydrolysis 605 at temperatures in the temperature range carried out between 300 and 600 0 C.
  • the hydrolysis can also be carried out with aqueous hydroxide and alkali carbonate solutions, for which preferably temperatures between 60 and 150 0 C come into question.
  • the silicon 603 is introduced into a reaction zone and mixed with water 102 in liquid or vaporous form.
  • care is taken
  • the silicon 603 has a minimum temperature. Either the silicon 603 is heated for this purpose (e.g., with heating means, or by heat-generating or heat-emitting additives), or the silicon 603 is already at a corresponding temperature level upon introduction.
  • the methanol production can be carried out according to one of the known and industrially used methods. Preference is given to a process in which a catalyst (for example a CuO-ZnO-Cr 2 O 3 or a Cu-Zn-0 Al 2 O 3 catalyst) is used.
  • a catalyst for example a CuO-ZnO-Cr 2 O 3 or a Cu-Zn-0 Al 2 O 3 catalyst
  • the invention has the advantage that in the reduction of the silicon dioxide and in the reduction of the water 102 no CO 2 is released, as long as for these reactions only energy El is used, which comes from a plant 300 and / or 400.
  • the required energy is therefore at least partly from renewable energy sources, preferably from Annexes 300 and / or 400.
  • the elemental silicon 603 is preferably used in powder form, or in granular or granular form in the hydrolysis 605.
  • CO 2 101 serves as a starting material and carbon source for the synthesis of methanol in the reactor 106.
  • the CO 2 source used are preferably: steam reforming plants, natural gas CO 2 - deposition plants, cement factories, bioethanol plants,
  • the invention makes it possible to avoid the considerable economic disadvantages of known approaches, if - as in the case of the Silicon-Fire plant 100 - the transiently accumulating electrical solar and / or wind energy is converted directly into chemical reaction enthalpy and stored chemically bound, without the need for additional capacities for reserve power and / or frequency regulation in the interconnected grid and the associated expenses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicon Compounds (AREA)

Abstract

L’invention concerne un procédé et une installation (100) permettant de produire des sources d’énergie stockables et mobiles à base de carbone (108) en utilisant du dioxyde de carbone (101) comme source de carbone et en utilisant de l’énergie électrique (E1, E2). L’installation (100) comprend une installation (300, 301 ; 400) destinée à la production d’une première part d’énergie sous la forme d’énergie électrique continue (E1) à partir de sources d’énergie renouvelable. En outre, une installation d’alimentation en énergie (501) permettant de relier l’installation (100) à un réseau de distribution (500) produit à partir de la tension alternative du réseau de distribution (500) une seconde part d’énergie sous la forme d’une énergie électrique continue (E2). Un dispositif (102, 105) est configuré pour fournir de l’hydrogène (103), une partie de la demande en énergie de ce dispositif (102, 105) étant couverte par la première part d’énergie et une autre partie par la seconde part d’énergie. Une arrivée de dioxyde de carbone sert à l’introduction du dioxyde de carbone (101) et une zone de réaction (106) permet de produire un hydrocarbure, de préférence du méthanol (108).
EP09781782A 2008-12-18 2009-08-13 Procédé et installation permettant de produire une source d énergie en utilisant du dioxyde de carbone comme source de carbone et en utilisant l énergie électrique Withdrawn EP2367753A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13175400.4A EP2647596A3 (fr) 2008-12-18 2009-08-13 Procédé et appareil pour fournir une source d'énergie en utilisant du dioxyde de carbone comme source de carbone et de l'énergie électrique
EP09781782A EP2367753A1 (fr) 2008-12-18 2009-08-13 Procédé et installation permettant de produire une source d énergie en utilisant du dioxyde de carbone comme source de carbone et en utilisant l énergie électrique

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/EP2008/067895 WO2010069385A1 (fr) 2008-12-18 2008-12-18 Procédé de préparation d'un vecteur d'énergie
EP09154271 2009-03-04
EP09781782A EP2367753A1 (fr) 2008-12-18 2009-08-13 Procédé et installation permettant de produire une source d énergie en utilisant du dioxyde de carbone comme source de carbone et en utilisant l énergie électrique
PCT/EP2009/060472 WO2010069622A1 (fr) 2008-12-18 2009-08-13 Procédé et installation permettant de produire une source d’énergie en utilisant du dioxyde de carbone comme source de carbone et en utilisant l’énergie électrique

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP13175400.4A Division EP2647596A3 (fr) 2008-12-18 2009-08-13 Procédé et appareil pour fournir une source d'énergie en utilisant du dioxyde de carbone comme source de carbone et de l'énergie électrique

Publications (1)

Publication Number Publication Date
EP2367753A1 true EP2367753A1 (fr) 2011-09-28

Family

ID=41077111

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13175400.4A Withdrawn EP2647596A3 (fr) 2008-12-18 2009-08-13 Procédé et appareil pour fournir une source d'énergie en utilisant du dioxyde de carbone comme source de carbone et de l'énergie électrique
EP09781782A Withdrawn EP2367753A1 (fr) 2008-12-18 2009-08-13 Procédé et installation permettant de produire une source d énergie en utilisant du dioxyde de carbone comme source de carbone et en utilisant l énergie électrique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13175400.4A Withdrawn EP2647596A3 (fr) 2008-12-18 2009-08-13 Procédé et appareil pour fournir une source d'énergie en utilisant du dioxyde de carbone comme source de carbone et de l'énergie électrique

Country Status (5)

Country Link
US (1) US9631287B2 (fr)
EP (2) EP2647596A3 (fr)
CA (1) CA2747097C (fr)
DE (1) DE202009019105U1 (fr)
WO (1) WO2010069622A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2647596A3 (fr) 2008-12-18 2014-08-27 Silicon Fire AG Procédé et appareil pour fournir une source d'énergie en utilisant du dioxyde de carbone comme source de carbone et de l'énergie électrique
DE202010012734U1 (de) 2010-09-03 2011-12-05 Carbon-Clean Technologies Ag Energieträger-Erzeugungsanlage zum kohlendioxidneutralen Ausgleich von Erzeugungsspitzen und Erzeugungstälern bei der Erzeugung von elektrischer Energie und/oder zur Erzeugung eines kohlenwasserstoffhaltigen Energieträgers
EP2426236B1 (fr) 2010-09-03 2013-01-02 Carbon-Clean Technologies AG Procédé et installation de production de support d'énergie pour l'équilibrage neutre en dioxyde de carbone de pointes de production et de creux de production lors de la production d'énergie électrique et/ou pour la production d'un support d'énergie contenant de l'hydrocarbure
EP2438980A1 (fr) 2010-10-06 2012-04-11 Silicon Fire AG Procédé et dispositif de préparation et d'installation de méthanol à base d'hydrogène à des fins de dénitrification
EP2438982A1 (fr) 2010-10-06 2012-04-11 Silicon Fire AG Procédé de préparation et d'utilisation d'un alcool et utilisation de l'alcool pour l'augmentation du degré d'action et de la puissance d'un moteur à combustion interne
ES2584532T3 (es) 2010-10-06 2016-09-28 Silicon Fire Ag Procedimiento e instalación para la síntesis de hidrocarburo
WO2013041249A1 (fr) 2011-09-21 2013-03-28 Silicon Fire Ag Dispositif de réception, de stockage, de transport et de distribution d'un liquide, ainsi que système global et véhicule muni d'un tel système global
EP2650401A1 (fr) * 2012-04-10 2013-10-16 Siemens Aktiengesellschaft Système de méthanation basée sur une centrale électrique
DE102012025722B3 (de) 2012-04-24 2018-08-23 Karl Werner Dietrich Verfahren zur Verbrennung von Erdgas/Methan
SG11201504619SA (en) 2013-01-04 2015-07-30 Saudi Arabian Oil Co Carbon dioxide conversion to hydrocarbon fuel via syngas production cell harnessed from solar radiation
EP3017167A1 (fr) 2013-04-11 2016-05-11 Silicon Fire AG Procede et dispositif de réglage de puissance d'un moteur à combustion interne
EP3016924A1 (fr) 2013-04-26 2016-05-11 Silicon Fire AG Procédé et système de réacteur de synthèse de méthanol avec recyclage du gaz circulant et du gaz de purge
EP2806115A1 (fr) * 2013-05-23 2014-11-26 Ivan Raisz Batterie a haute performance utilisant dioxyde de carbone
WO2015010895A1 (fr) * 2013-07-09 2015-01-29 Mitsubishi Hitachi Power Systems Europe Gmbh Centrale à fonctionnement flexible et son procédé d'exploitation
EP2876150A1 (fr) * 2013-11-21 2015-05-27 RV Lizenz AG Réseau d'énergie combiné
DE102013020511A1 (de) * 2013-12-11 2015-06-11 Karl Werner Dietrich Speicherkraftwerk Brennstoffzelle
DE102014016894A1 (de) * 2014-11-17 2016-05-19 Gensoric Gmbh Verfahren und Vorrichtung zur Umwandlung gasförmiger Kohlenstoffverbindungen
WO2016189031A1 (fr) * 2015-05-25 2016-12-01 Gas2Green Traitement électrolytique d'eau de lavage d'épurateur
DE102016208938A1 (de) 2015-10-16 2017-04-20 Volkswagen Aktiengesellschaft Verfahren und Anlage zur Erzeugung eines Kohlenwasserstoffs
EP3156519B1 (fr) 2015-10-16 2018-08-29 Volkswagen Aktiengesellschaft Procédé et appareil de production d'un hydrocarbure
DE102018105643B3 (de) 2018-03-12 2019-05-16 Edgar Harzfeld Verfahren zur unterbrechungsfreien Stromversorgung mittels einer Schnellbereitschaftsanlage sowie Schnellbereitschaftsanlage
WO2019228809A1 (fr) * 2018-05-30 2019-12-05 Siemens Aktiengesellschaft Centrale électrique comprenant un électrolysuer et synthèse de combustible
CN112886621A (zh) * 2021-03-09 2021-06-01 上海交通大学 一种可再生电能储能系统
DE202023100827U1 (de) 2023-02-22 2023-07-10 Edgar Harzfeld Schnellbereitschaftsanlage zur unterbrechungsfreien Stromversorgung einer Elektrotankstelle mit beliebig vielen Ladesäulen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332789A1 (de) * 1993-09-27 1995-03-30 Abb Research Ltd Verfahren zur Speicherung von Energie
US20020025457A1 (en) * 1998-10-27 2002-02-28 Dodd Peter Jeremy Electrical energy storage
US20040063052A1 (en) * 2000-09-29 2004-04-01 Peter Plichta Novel concept for generating power via an inorganic nitrogen cycle, based on sand as the starting material and producing higher silanes
DE102006034712A1 (de) * 2006-07-27 2008-01-31 Steag Saar Energie Ag Verfahren zur Reduzierung der CO2-Emission fossil befeuerter Kraftwerksanlagen
DE102006035893A1 (de) * 2006-07-31 2008-02-07 Wolf, Bodo M., Dr. Verfahren zur Wiederaufarbeitung von Verbrennungsprodukten fossiler Brennstoffe
EP1887071A1 (fr) * 2006-07-31 2008-02-13 Edmund Dr.-Ing. Wagner Procédé de production d'hydrocarbures synthétiques et leurs dérivés à partir de dioxide de carbone et de dihydrogène utilisés comme gaz de synthèse

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215522A (en) 1960-11-22 1965-11-02 Union Carbide Corp Silicon metal production
DE2924584A1 (de) 1979-06-19 1981-01-15 Straemke Siegfried Verfahren zur herstellung von silicium fuer solarzellen
US4457902A (en) 1980-10-24 1984-07-03 Watson Keith R High efficiency hydrocarbon reduction of silica
US4897852A (en) 1988-08-31 1990-01-30 Dow Corning Corporation Silicon smelting process
NO310142B1 (no) 1999-03-29 2001-05-28 Elkem Materials Fremgangsmåte for fremstilling av amorft silica fra silisium og fra silisiumholdige materialer
JP2002088493A (ja) 2000-09-14 2002-03-27 Honda Motor Co Ltd 水電解システム
DE10291940D2 (de) 2001-05-03 2004-11-11 Wacker Chemie Gmbh Verfahren zur Energieerzeugung
US6540902B1 (en) 2001-09-05 2003-04-01 The United States Of America As Represented By The United States Department Of Energy Direct electrochemical reduction of metal-oxides
DE10258072A1 (de) 2002-12-11 2004-07-01 Wacker-Chemie Gmbh Verfahren zur Erzeugung von Wasserstoff
GB0422129D0 (en) 2004-10-06 2004-11-03 Qinetiq Ltd Electro-reduction process
GB0504444D0 (en) 2005-03-03 2005-04-06 Univ Cambridge Tech Method and apparatus for removing oxygen from a solid compound or metal
WO2007116326A2 (fr) 2006-02-20 2007-10-18 Hyattville Company Ltd. Production de silicium de qualité solaire et électronique à partir d'une matière contenant un aluminosilicate
EP1918248A3 (fr) * 2006-10-29 2010-06-09 Silicon Fire AG Préparation d'H2O2 à partir d'acide sulfurique, obtenu par combustion de matières combustibles fossiles contenant de résidus de soufre, et utilisation de H2O2 en tant que source d'énergie
EP1958683A3 (fr) 2007-01-11 2010-08-25 Silicon Fire AG Procédé destiné au traitement de gaz de fumée pour centrales et autres installations
US8277631B2 (en) * 2007-05-04 2012-10-02 Principle Energy Solutions, Inc. Methods and devices for the production of hydrocarbons from carbon and hydrogen sources
EP2647596A3 (fr) 2008-12-18 2014-08-27 Silicon Fire AG Procédé et appareil pour fournir une source d'énergie en utilisant du dioxyde de carbone comme source de carbone et de l'énergie électrique
WO2010069385A1 (fr) 2008-12-18 2010-06-24 Silicon Fire Ag Procédé de préparation d'un vecteur d'énergie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332789A1 (de) * 1993-09-27 1995-03-30 Abb Research Ltd Verfahren zur Speicherung von Energie
US20020025457A1 (en) * 1998-10-27 2002-02-28 Dodd Peter Jeremy Electrical energy storage
US20040063052A1 (en) * 2000-09-29 2004-04-01 Peter Plichta Novel concept for generating power via an inorganic nitrogen cycle, based on sand as the starting material and producing higher silanes
DE102006034712A1 (de) * 2006-07-27 2008-01-31 Steag Saar Energie Ag Verfahren zur Reduzierung der CO2-Emission fossil befeuerter Kraftwerksanlagen
DE102006035893A1 (de) * 2006-07-31 2008-02-07 Wolf, Bodo M., Dr. Verfahren zur Wiederaufarbeitung von Verbrennungsprodukten fossiler Brennstoffe
EP1887071A1 (fr) * 2006-07-31 2008-02-13 Edmund Dr.-Ing. Wagner Procédé de production d'hydrocarbures synthétiques et leurs dérivés à partir de dioxide de carbone et de dihydrogène utilisés comme gaz de synthèse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010069622A1 *

Also Published As

Publication number Publication date
EP2647596A3 (fr) 2014-08-27
EP2647596A2 (fr) 2013-10-09
DE202009019105U1 (de) 2016-07-14
CA2747097C (fr) 2017-05-23
US9631287B2 (en) 2017-04-25
CA2747097A1 (fr) 2010-06-24
WO2010069622A1 (fr) 2010-06-24
US20120010305A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
EP2367753A1 (fr) Procédé et installation permettant de produire une source d énergie en utilisant du dioxyde de carbone comme source de carbone et en utilisant l énergie électrique
EP2464617B1 (fr) Procédé et installation de production d'une ressource énergétique à base d'hydrocarbure en utilisant une fraction de méthanol produit par régénération et une fraction de méthanol qui est produit par oxydation directe ou par oxydation partielle ou par reformage
EP3019582B1 (fr) Centrale à fonctionnement flexible et son procédé d'exploitation
EP2426236B1 (fr) Procédé et installation de production de support d'énergie pour l'équilibrage neutre en dioxyde de carbone de pointes de production et de creux de production lors de la production d'énergie électrique et/ou pour la production d'un support d'énergie contenant de l'hydrocarbure
EP2100869B1 (fr) Procédé de fabrication de méthanol en utilisant du dioxyde de carbone à partir de gaz d'échappement d'installations de production d'énergie à fonctionnement fossile
DE102012216090A1 (de) Grüne Verbundanlage zur Herstellung von chemischen und petrochemischen Produkten
DE102012103458B4 (de) Anlage und Verfahren zur ökologischen Erzeugung und Speicherung von Strom
EP2823088A1 (fr) Système de méthanisation basé sur une centrale électrique
EP3156519B1 (fr) Procédé et appareil de production d'un hydrocarbure
EP3739714A1 (fr) Procédé de fonctionnement d'une installation industrielle et installation industrielle correspondante
DE102015005940A1 (de) Verfahren zur verbesserten Integration regenerativer Energiequellen in das existierende Energiesystem durch Umwandlung elektrischer Energie in chemische Energie mit Zwischenspeicherung des verflüssigten CO, wodurch eine Reduzierung der CO2 Emission erziel
EP2682450B1 (fr) Procédé de méthanisation catalytique et installation de méthanisation
Ausfelder et al. Energy storage technologies as options to a secure energy supply
EP2624947A1 (fr) Procédé et installation de synthèse d'hydrocarbure
DE102020002774A1 (de) Verfahren zur Erzeugung von thermischer Energie und von Grundchemikalien mittels aluminothermischer Reaktion
WO2023212754A1 (fr) Procédé et appareil de production de méthane
DE102015216037A1 (de) Verfahren zur Bereitstellung eines Synthesegases
EP4026932A1 (fr) Procédé de décarbonisation d'un site industriel
DE102021122602B4 (de) Anlage und Verfahren zur kontinuierlichen Herstellung von Ammoniak unter Verwendung von erneuerbaren Energien
EP2438980A1 (fr) Procédé et dispositif de préparation et d'installation de méthanol à base d'hydrogène à des fins de dénitrification
EP4396127A1 (fr) Installation et procédé pour la production continue d'ammoniac à l'aide d'énergies renouvelables
DE102016208938A1 (de) Verfahren und Anlage zur Erzeugung eines Kohlenwasserstoffs
DE102013211685B4 (de) Kombiniertes Verfahren zur Nutzung von Roh-Biogas enthaltend Kohlendioxid und ein Nutzgas
DE102015017254B3 (de) Verfahren zur Integration regenerativ erzeugten Stroms unter Nutzung von Kohlenmonoxid
DE102020210478A1 (de) Verfahren zur Wasserstoffsynthese unter Wärmenutzung aus einem Wärmenetzwerk mittels einem Hochtemperaturelektrolysesystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140410

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141021