EP2366116A1 - Dispositif d'hybridation a filtres de kalman segreges - Google Patents

Dispositif d'hybridation a filtres de kalman segreges

Info

Publication number
EP2366116A1
EP2366116A1 EP09771565A EP09771565A EP2366116A1 EP 2366116 A1 EP2366116 A1 EP 2366116A1 EP 09771565 A EP09771565 A EP 09771565A EP 09771565 A EP09771565 A EP 09771565A EP 2366116 A1 EP2366116 A1 EP 2366116A1
Authority
EP
European Patent Office
Prior art keywords
measurements
filter
bank
satellite
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09771565A
Other languages
German (de)
English (en)
Inventor
Sébastien VOURC'H
Victor Mauger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Sagem Defense Securite SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Defense Securite SA filed Critical Sagem Defense Securite SA
Publication of EP2366116A1 publication Critical patent/EP2366116A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Definitions

  • the field of the invention is that of the carriers using information provided both by an inertial unit and by a satellite navigation system, such as a GPS system.
  • the invention relates to a closed-loop hybridization device, and relates more particularly to performing hybridization with protection in the sense of integrity of the output data.
  • Carriers such as aircraft or boats have many navigation systems. These systems include a hybrid INS / GNSS (Inertial Navigation System and Global Navigation System).
  • INS / GNSS Inertial Navigation System and Global Navigation System.
  • An inertial unit provides noisy and accurate information in the short term.
  • the localization performance of an inertial unit degrades (more or less quickly depending on the quality of the sensors, accelerometers or gyroscopes for example, and treatments used by the plant).
  • information acquired from a satellite navigation system is very unlikely to drift in the long term, it is often noisy and variable in accuracy.
  • inertial measurements are always available when GPS information is not available or is likely to be deceived and scrambled.
  • Hybridization consists of combining the information provided by the inertial unit with the measurements provided by the satellite navigation system to obtain hybrid position and speed information by taking advantage of both systems.
  • the accuracy of the measurements provided by the GNSS receiver makes it possible to control the inertial drift and the low noise inertial measurements make it possible to filter the noise on the measurements of the GNSS receiver.
  • Modern navigation systems calculate protection radii around the calculated position that can contain the error from true position to a given integrity risk, that's what defines the integrity of a system.
  • these protection radii can be calculated by means of a Kalman filter bank which makes it possible to protect against the appearance of a single failure.
  • filters hybridize information from the satellite navigation system to that from the inertial unit.
  • One of the filter bank filters referred to as the main filter, uses all GNSS measurements consisting of pseudo-measurements and quality information.
  • the other filters called secondary filters, use only a part of the available GNSS measurements. If a failure occurs at a satellite measurement, it will not be seen by the filter not receiving this measurement: this filter will remain unpolluted. In the state of the art, integrity is based on the fact that in the event of a satellite failure, one of the bank's filters is not affected by the failure.
  • N closed-loop filters are used on N virtual platforms.
  • This architecture has the advantages of being insensitive to inertial drift and to present high-performance outputs at high frequency. However, it is expensive in terms of computing load due to the integration of N virtual platforms.
  • N closed-loop filters are used on a virtual platform.
  • the advantages are the low cost of computing due to the integration of a single virtual platform, while the disadvantages are the sensitivity to inertial drift and the fact that the outputs are performing at the frequency of the filters.
  • a satellite failure detection must be implemented in order to select the Kalman filter whose output (state vector) will be applied (as stabilization vector) to the inertial measurements from the virtual platform to recalibrate it.
  • this document provides for selecting the main Kalman filter when no failure of one of the satellites is detected, or, when a failure is detected, to select the secondary Kalman filter not affected by the failure.
  • the corrections thus come from a single filter (the stabilization vector of the inertial measurements thus being a copy of the state vector estimated by the selected Kalman filter) and where this filter is not affected by a failure.
  • satellite one does not come to apply to the inertial measurements of erroneous corrections by propagation of information corrupted by a satellite failure.
  • a hybridization device comprising a virtual platform calculating inertial measurements, a Kalman filter bank each developing a hybrid navigation solution to from the inertial measurements of the virtual platform and measurements of signals emitted by a constellation of satellites delivered by a satellite positioning system, characterized in that it comprises, for each filter of the bank, a satellite measurements correction module delivering to the filter the measurements of the satellite positioning system which are used by the filter after correction using the hybrid navigation solution developed by the filter.
  • the satellite measurement correction module receives as input the hybrid navigation solutions developed by the filters and the measurements corresponding to the entire constellation delivered by satellite positioning system;
  • the measurements of the satellite positioning system which are used by a filter are pseudo-measurements
  • the device generates a hybrid output corresponding to the inertial measurements calculated by the virtual platform corrected by a stabilization vector
  • the stabilization vector corresponds to a state vector estimated by a filter of the bank not affected by a satellite failure.
  • each component of the stabilization vector is developed according to the corresponding components of the set of state vectors estimated by the filters of the bank;
  • the device comprises a module for generating the stabilization vector configured, for each component of the stabilization vector (dC [state]), so as: o to analyze the sign of the set of corresponding components of the state vectors; when the set of these corresponding components are not of the same sign, to develop a component of zero value for the stabilization vector; when the set of these corresponding components are of the same sign, to develop a non-zero value component for the stabilization vector, determined according to the value of each of these components of the state vectors.
  • the non-zero value of the component of the stabilization vector corresponds to the minimum of the set of corresponding components of the state vectors when all of these components corresponding are positive, and corresponds to the maximum of the set of corresponding components of the state vectors when all of these corresponding components are negative;
  • the non-zero value of the component of the stabilization vector corresponds to the average of the P plus, corresponding small components of the state vectors, taken in absolute value;
  • the stabilization vector is applied to the input of all the filters of the filter bank
  • the Kalman filter bank comprises a main Kalman filter receiving the measurements of the signals emitted by n satellites corrected with the main hybrid navigation solution that it develops, and n secondary Kalman filters each receiving the measurements of the signals emitted by the n satellites excluding a satellite corrected using the secondary hybrid navigation solution that it develops.
  • the invention proposes an INS / GNSS hybridization method implementing a bank of Kalman filters each developing a hybrid navigation solution from the inertial measurements calculated by a virtual platform and from measurements of signals transmitted by a satellite constellation delivered by a satellite positioning system, characterized in that the satellite measurements used by each filter of the bank are pre-corrected using the hybrid navigation solution developed by the filter.
  • Figure 1 is a diagram illustrating a possible embodiment of a device according to the first aspect of the invention.
  • a hybridization device 1 according to a possible embodiment of the first aspect of the invention, intended to be embedded in a carrier such as an aircraft.
  • the hybridization device 1 uses information provided by an UMI inertial measurement unit and by a GNSS satellite navigation system.
  • the device 1 comprises a single virtual platform 2 and a bank 3 of Kalman filters in parallel.
  • the virtual platform 2 receives inertial increments from the sensors (gyroscopes, accelerometers) of a unit of inertial measurements.
  • the inertial increments correspond in particular to angular increments and to increments of speed.
  • Inertial navigation information (such as the orientation, speed or position of the carrier) is calculated by the virtual platform from these increments. This inertial navigation information is designated PPVI inertial measurements thereafter.
  • inertial measurements PPVI are transmitted to a device for calculating pseudo-distances estimated a priori (not shown in Figure 1) which also receives data on the position of the satellites.
  • the device for calculating pseudo-distances estimated a priori calculates the pseudo-distances a priori between the carrier and the different visible satellites of the carrier. .
  • the hybridization device 1 also receives from the GNSS satellite navigation system the pseudo-measurements between the carrier and the different visible satellites.
  • the discrepancies (called observations) are then classically calculated between the pseudo-measurements estimated a priori and the pseudo-measurements delivered by the GNSS system.
  • the hybridization device 1 further comprises a Kalman filter bank 3 which hybridises between the inertial information coming from the inertial unit and the information from the satellite navigation system.
  • the role of the filters is to maintain the virtual platform 2 in a linear operating area image of that modeled in the Kalman filter each estimating a state vector dXO-dXn (generally having the order of 30 components).
  • the filterbank 3 comprises several Kalman filters in parallel.
  • One of the filters is called the main Kalman filter 8: it takes into account all the observations (and receives all the measurements from the GNSS system) and elaborates a main hybrid navigation solution.
  • the other filters 9i, 9n are called secondary filters: they take into account only a part of the observations, for example (n-1) observations among the n observations relating to the n visible satellites so that the i-th Kalman filter Secondary 6i receives from the GNSS system the measurements of all satellites except the i-th, and each develop a secondary hybrid navigation solution.
  • FIG. 1 shows only a single module for correcting the satellite measurements 4. It will be understood, however, that the hybridization device 1 according to the first aspect of the invention comprises a satellite measurements correction module. 4 by bank filter.
  • the device 1 comprises a bench of summators 10, where each summator is positioned at the output of the filter bank to add to the state vector dXO-dXn elaborated by a filter the hybrid output SH which will be presented in more detail later.
  • the reference navigation (hybrid output SH) produced by the device 1 is only used internally. It is thus the information delivered at the output of the summator bank 7 that provides the optimal navigation solutions (main navigation solution NAV INS / GPS 0 from the main Kalman filter, secondary navigation solution NAV INS / GPS i "derived from the secondary Kalman filter of index i).
  • the raw measurement correction module 4 associated with a filter of the bank receives as input the satellite measurements (typically pseudo matters) used by the filter corresponding to all (main Kalman filter) or part (secondary Kalman filter) of the all of the constellation delivered by GNSS satellite positioning system, and outputs for each of the filters of the bank 3 said satellite measurements used by the filter after implementation of a deterministic error correction model developed from the hybrid navigation solution estimated by the filter. The calculation of the observations is then made on the basis of these satellite measurements corrected from the information of the filter, and not from the information of the GNSS system as is conventionally the case.
  • the pseudo-measurements performed by a GNSS receiver are corrected inside this same receiver. Indeed deterministic errors can be corrected largely by using models that require positioning information to be calculated. It is proposed in the context of the invention to make this correction not in the receiver but for each filter of the bank, on the basis of the position estimated by the filter. Specifically, the errors that affect GNSS raw measurements are modeled. The modeling of atmospheric errors is dependent on the estimated navigation parameters. By adding (positively or negatively according to the errors and the type of measurement) the value of the error calculated by model to the gross measurement, we correct in part the error which is modeled. The error residue is then modeled statistically and characterized by a standard deviation calculated from the navigation parameters.
  • the addition (positive or negative) of errors calculated by model to gross measurements is performed by the GNSS receiver, so that the entire filter bank receives corrected measurements and error residual modeling. It follows that the calculation of the error models and standard deviations of the residuals is then dependent on the position calculated by the GNSS receiver.
  • the invention proposes to deport this calculation of the error models and the standard deviations of the residues, as well as the application of the models to the raw measurements in the module correction of the satellite measurements 4, and to perform the calculations for each filter from the navigation parameters specific to each filter. In this way, the corrected measurements received by a filter are no longer dependent on the navigation parameters estimated by the GNSS receiver. Therefore, in the event of a satellite failure, the corrected measurements received by the filter that does not use the failed satellite are not affected.
  • the main Kalman filter receives from module 4 all the pseudo-measures, corrected with the aid of the main navigation solution that it develops.
  • the secondary Kalman filter of index i 9i receives meanwhile from module 4 all the pseudo-measurements with the exception of that corresponding to the satellite of index i, corrected using the secondary navigation solution that it develops.
  • the filter which does not use the pseudo-measure polluted by the appearance of a failure is not affected by the failure (its solution of unpolluted navigation the failure makes it possible to correct the pseudo matters that it uses), and consequently it remains unpolluted.
  • the hybridization device 1 produces a hybrid output SH corresponding to the PPVI inertial measurements calculated by the virtual platform 2 and corrected by a stabilization vector dC.
  • the corrections to be applied to the inertial measurements come from a single Kalman filter.
  • the stabilization vector is equal to the correction vector estimated by the selected Kalman filter.
  • the selection is effected for example according to EP1801539 A by detecting a possible satellite failure.
  • the stabilization vector is elaborated component by component, using for each component the set of state vectors estimated by the Kalman filters.
  • the device 1 comprises for this purpose a development module of the correction 5 configured to develop each of the components dC [state] of the stabilization vector dC according to the set of corresponding components dXO [state] -dXn [state] of the correction vectors dXO-dXn.
  • the correction elaboration module 5 is configured, for each component dC [state] of the stabilization vector dC, so as to: analyzing the sign of the set of corresponding components dXO [state] -dXn [state] of the correction vectors estimated by the Kalman filters; and
  • the correction elaboration module 5 is configured in such a way that the non-zero value of the component of the stabilization vector dC [state] corresponds to the minimum of the set of corresponding components dXO [state] -dXn [ state] of the correction vectors when these components dXO [state] -dXn [state] are all positive, and corresponds to the maximum of the set of components dXO [state] - dXn [state] of the correction vectors when these components dXO [ state] - dXn [state] are all negative.
  • the correction elaboration module 5 can be configured in such a way that the non-zero value of the component of the stabilization vector dC [state] corresponds to the average of the smaller Ps (P being, for example, equal to 2) corresponding components dXO [state] - dXn [state] of the correction vectors, taken in absolute value.
  • the stabilization vector developed in accordance with this possible embodiment of the invention makes it possible to minimize the estimated errors for all the filters.
  • the stabilization vector proves judicious insofar as it is not constrained by a fault detection and exclusion mechanism (FDE mechanism according to the English terminology "Fault Detection and Exclusion”), and where the validity of the protection radii is not constrained by an EDF.
  • FDE mechanism fault detection and exclusion mechanism
  • EDF error Detection and Exclusion
  • the stabilization vector dC thus produced by the module 5 or simply selected from the state vectors of the filters makes it possible to correct, with a delay 6, the PPVI inertial measurements calculated by the virtual platform, using conventionally known per se a subtractor 7.
  • the hybrid output SH is looped back to the input of the virtual platform.
  • the stabilization vector dC can be applied to the input of all the filters of the filter bank. In this way, the Kalman filters adjust by subtracting from their estimate (correction vector dX) the correction dC, and are thus kept consistent with the virtual platform.
  • the architecture proposed by the invention has the following advantages.
  • the filters of the bank are completely segregated; the calculation of the stabilization control of the platform is not constrained by a fault detection method.
  • the invention is also not limited to a hybridization device according to its first aspect, but also extends to an INS / GNSS hybridization method implementing a bank of Kalman filters each developing a navigation solution. hybrid based on the inertial measurements calculated by a virtual platform and measurements of signals emitted by a constellation of satellites delivered by a satellite positioning system, characterized in that the satellite measurements used by each filter of the bank are corrected beforehand. help of the hybrid navigation solution developed by the filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

L'invention concerne selon un premier aspect un dispositif d'hybridation (1) comportant une plateforme virtuelle (2) calculant des mesures inertielles (PPVI), un banc (3) de filtres de Kalman élaborant chacun une solution de navigation hybride à partir des mesures inertielles de la plateforme virtuelle (2) et de mesures de signaux émis par une constellation de satellites délivrées par un système de positionnement par satellites (GNSS), caractérisé en ce qu'il comporte, pour chaque filtre de la banque, un module de correction des mesures satellites (4) délivrant au filtre les mesures du système de positionnement par satellites (GNSS) qui sont utilisées par le filtre après correction à l'aide de la solution de navigation hybride élaborée par le filtre.

Description

DISPOSITIF D'HYBRIDATION A FILTRES DE KALMAN SEGREGES
Le domaine de l'invention est celui des porteurs utilisant des informations fournies à la fois par une centrale inertielle et par un système de navigation par satellite, comme par exemple un système GPS.
L'invention concerne un dispositif d'hybridation en boucle fermée, et porte plus particulièrement sur la réalisation de l'hybridation avec une protection au sens de l'intégrité des données en sortie.
Les porteurs comme les aéronefs ou encore les bateaux disposent de nombreux systèmes de navigation. Parmi ces systèmes, on compte notamment un équipement hybride INS/GNSS (de l'anglo-saxon « Inertial Navigation System » et « Global Navigation System »).
Une centrale inertielle fournit des informations peu bruitées et précises à court terme. Cependant, sur le long terme, les performances en localisation d'une centrale inertielle se dégradent (plus ou moins vite en fonction de la qualité des capteurs, accéléromètres ou gyroscopes par exemple, et des traitements utilisés par la centrale). Si les informations acquises auprès d'un système de navigation par satellites sont quant à elles très peu susceptibles de dériver sur le long terme, elles sont cependant souvent bruitées et d'une précision variable. Par ailleurs, les mesures inertielles sont toujours disponibles alors que les informations GPS ne le sont pas ou sont susceptibles d'être leurrées et brouillées.
L'hybridation consiste à combiner les informations fournies par la centrale inertielle avec les mesures fournies par le système de navigation par satellites pour obtenir des informations de position et de vitesse hybrides en tirant avantage des deux systèmes. Ainsi, la précision des mesures fournies par le récepteur GNSS permet de maîtriser la dérive inertielle et les mesures inertielles peu bruitées permettent de filtrer le bruit sur les mesures du récepteur GNSS. Les systèmes de navigation modernes calculent des rayons de protection autour de la position calculée qui permettent de contenir l'erreur de position vraie à un risque d'intégrité donné, c'est ce qui définit l'intégrité d'un système.
Selon l'état de l'art, ces rayons de protection peuvent être calculés au moyen d'un banc de filtres de Kalman qui permet de se protéger contre l'apparition d'une panne simple.
Ces filtres réalisent l'hybridation entre les informations issues du système de navigation par satellite et celles issues de la centrale inertielle. Un des filtres du banc de filtres, désigné par le terme de filtre principal, utilise toutes les mesures GNSS constituées de pseudo-mesures et d'informations sur la qualité de celles-ci. Les autres filtres, dit secondaires, du banc de filtres ne font usage que d'une partie seulement des mesures GNSS disponibles. Si une panne survient au niveau d'une mesure satellite, celle-ci ne sera pas vue par le filtre ne recevant pas cette mesure : ce filtre restera donc non pollué. Dans l'état de l'art, l'intégrité repose sur le fait qu'en cas de panne satellite, un des filtres de la banque n'est pas affecté par la panne.
Selon une première architecture décrite par exemple en tant qu'art antérieur dans le document EP1801539 A (cf. figure 1 et discussion correspondante), on utilise N filtres en boucle fermée sur N plateformes virtuelles. Cette architecture a pour avantages d'être non sensible aux dérives inertielles et de présenter des sorties performantes à haute fréquence. Elle est toutefois coûteuse en termes de charge de calcul du fait de l'intégration de N plateformes virtuelles.
Selon une seconde architecture faisant l'objet du document EP1801539 A (cf. figure 2), on utilise N filtres en boucle fermée sur une plateforme virtuelle. Les avantages sont le faible coût en charge de calcul du fait de l'intégration d'une seule plateforme virtuelle, tandis que les inconvénients en sont la sensibilité aux dérives inertielles et le fait que les sorties sont performantes à la fréquence des filtres. Comme indiqué dans ce document EP1801539 A, une détection de panne satellite doit être mise en œuvre afin de sélectionner le filtre de Kalman dont la sortie (vecteur d'états) sera appliquée (en tant que vecteur de stabilisation) aux mesures inertielles issues de la plateforme virtuelle pour la recaler.
Ainsi, ce document prévoit de sélectionner le filtre de Kalman principal lorsqu'aucune panne d'un des satellites n'est détectée, ou, lorsqu'une panne est détectée, de sélectionner le filtre de Kalman secondaire non affecté par la panne. Dans la mesure où les corrections proviennent ainsi d'un seul filtre (le vecteur de stabilisation des mesures inertielles étant ainsi une recopie du vecteur d'états estimé par le filtre de Kalman sélectionné) et où ce filtre n'est pas affecté par une panne satellite, on ne vient donc pas appliquer aux mesures inertielles des corrections erronées par propagation d'une information corrompue par une panne satellite.
Toutefois, ces deux types d'architecture ne s'avèrent pas totalement satisfaisantes dans la mesure où elles ne garantissent pas intrinsèquement que l'un des filtres de la banque ne sera pas pollué par la panne. En effet, si l'on ne détecte pas une panne ou si l'on exclut le mauvais satellite, la position calculée par le récepteur GNSS est polluée par la panne. Les modèles de correction appliqués aux pseudo-mesures sont alors pollués ce qui provoque une dégradation de toutes les pseudo-mesures corrigées et donc du filtre qui n'utilise pas la pseudo-mesure où la panne est réellement présente.
L'invention a pour objectif de pallier à ces inconvénients, et propose à cet effet selon un premier aspect, un dispositif d'hybridation comportant une plateforme virtuelle calculant des mesures inertielles, un banc de filtres de Kalman élaborant chacun une solution de navigation hybride à partir des mesures inertielles de la plateforme virtuelle et de mesures de signaux émis par une constellation de satellites délivrées par un système de positionnement par satellites, caractérisé en ce qu'il comporte, pour chaque filtre de la banque, un module de correction des mesures satellites délivrant au filtre les mesures du système de positionnement par satellites qui sont utilisées par le filtre après correction à l'aide de la solution de navigation hybride élaborée par le filtre. Certains aspects préférés, mais non limitatifs, de ce dispositif sont les suivants :
- le module de correction des mesures satellites reçoit en entrée les solutions de navigation hybrides élaborées par les filtres et les mesures correspondant à l'ensemble de la constellation délivrées par système de positionnement par satellites ;
- les mesures du système de positionnement par satellites qui sont utilisées par un filtre sont des pseudo-mesures ;
- le dispositif élabore une sortie hybride correspondant aux mesures inertielles calculées par la plateforme virtuelle corrigées par un vecteur de stabilisation ;
- le vecteur de stabilisation correspond à un vecteur d'états estimé par un filtre de la banque non affecté par une panne satellite.
- chaque composante du vecteur de stabilisation est élaboré en fonction des composantes correspondantes de l'ensemble des vecteurs d'états estimés par les filtres de la banque ;
- le dispositif comprend un module d'élaboration du vecteur de stabilisation configuré, pour chaque composante du vecteur de stabilisation (dC[état]), de manière : o à analyser le signe de l'ensemble des composantes correspondantes des vecteurs d'états ; o lorsque l'ensemble de ces composantes correspondantes ne sont pas de même signe, à élaborer une composante de valeur nulle pour le vecteur de stabilisation ; o lorsque l'ensemble de ces composantes correspondantes sont de même signe, à élaborer une composante de valeur non nulle pour le vecteur de stabilisation, déterminée en fonction de la valeur de chacune de ces composantes des vecteurs d'états.
- la valeur non nulle de la composante du vecteur de stabilisation correspond au minimum de l'ensemble des composantes correspondantes des vecteurs d'états lorsque l'ensemble de ces composantes correspondantes sont positives, et correspond au maximum de l'ensemble des composantes correspondantes des vecteurs d'états lorsque l'ensemble de ces composantes correspondantes sont négatives ;
- la valeur non nulle de la composante du vecteur de stabilisation correspond à la moyenne des P plus, petites composantes correspondantes des vecteurs d'états, prises en valeur absolue ;
- le vecteur de stabilisation est appliqué à l'entrée de l'ensemble des filtres de la banque de filtres ;
- la sortie hybride est rebouclée à l'entrée de la plateforme virtuelle ; - le banc de filtres de Kalman comprend un filtre de Kalman principal recevant les mesures des signaux émis par n satellites corrigées à l'aide de la solution de navigation hybride principale qu'il élabore, et n filtres de Kalman secondaires recevant chacun les mesures des signaux émis par les n satellites à l'exclusion d'un satellite corrigées à l'aide de la solution de navigation hybride secondaire qu'il élabore.
Selon un second aspect, l'invention propose un procédé d'hybridation INS/GNSS mettant en œuvre une banque de filtres de Kalman élaborant chacun une solution de navigation hybride à partir des mesures inertielles calculées par une plateforme virtuelle et de mesures de signaux émis par une constellation de satellites délivrées par un système de positionnement par satellites, caractérisé en ce que les mesures satellites utilisées par chaque filtre de la banque sont préalablement corrigées à l'aide de la solution de navigation hybride élaborée par le filtre.
D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels la figure 1 est un schéma illustrant un mode de réalisation possible d'un dispositif selon le premier aspect de l'invention. En référence à la figure 1 , on a représenté un dispositif d'hybridation 1 conforme à un mode de réalisation possible du premier aspect de l'invention, destiné à être embarqué au sein d'un porteur tel qu'un aéronef. Le dispositif d'hybridation 1 utilise des informations fournies par une unité de mesures inertielles UMI et par un système de navigation par satellites GNSS. Le dispositif 1 comprend une seule plateforme virtuelle 2 et un banc 3 de filtres de Kalman en parallèle.
La plateforme virtuelle 2 reçoit des incréments inertiels provenant des capteurs (gyroscopes, accéléromètres) d'une unité de mesures inertielles. Les incréments inertiels correspondent notamment à des incréments angulaires et à des incréments de vitesse. Des informations de navigation inertielle (comme l'orientation, la vitesse ou la position du porteur) sont calculées par la plateforme virtuelle à partir de ces incréments. Ces informations de navigation inertielle sont désignées mesures inertielles PPVI par la suite.
Ces mesures inertielles PPVI sont transmises à un dispositif de calcul des pseudo-distances estimées a priori (non représenté sur la figure 1 ) qui reçoit également des données sur la position des satellites. A partir d'une part des mesures inertielles et d'autres par des données sur la position des satellites, le dispositif de calcul des pseudo-distances estimées a priori calcule les pseudo-distances a priori entre le porteur et les différents satellites visibles du porteur.
Le dispositif d'hybridation 1 reçoit également du système de navigation par satellite GNSS les pseudo-mesures entre le porteur et les différents satellites visibles. On calcule alors classiquement les écarts (appelées observations) entre les pseudo-mesures estimées a priori et les pseudo- mesures délivrées par le système GNSS.
Le dispositif d'hybridation 1 comporte en outre un banc de filtres de Kalman 3 réalisant l'hybridation entre les informations inertielles provenant de la centrale inertielle et les informations du système de navigation par satellite. Outre une fonction de fourniture d'informations statistiques sur les mesures en sortie, le rôle des filtres est de maintenir la plateforme virtuelle 2 dans un domaine de fonctionnement linéaire image de celui modélisé dans le filtre de Kalman en estimant chacun un vecteur d'états dXO-dXn (comportant en règle générale de l'ordre de 30 composantes).
De manière classiquement connue en soi, le banc de filtres 3 comporte plusieurs filtres de Kalman en parallèle. Un des filtres est appelé filtre de Kalman principal 8 : il prend en compte toutes les observations (et reçoit pour ce faire toutes les mesures issues du système GNSS) et élabore une solution de navigation hybride principale.
Les autres filtres 9i, 9n sont appelées filtres secondaires : ils ne prennent en compte qu'une partie des observations, par exemple (n-1 ) observations parmi les n observations relatives aux n satellites visibles de sorte que le i-ème filtre de Kalman secondaire 6i reçoit du système GNSS les mesures de tous les satellites sauf du i-ème, et élaborent chacun une solution de navigation hybride secondaire.
On relèvera que le processus d'élaboration des observations décrit ci- dessus n'est pas commun à tous les filtres de la banque 3, mais est réalisé pour chacun des filtres. Ainsi, le calcul des pseudo-distances a priori et le calcul des observations qui sont évoqués ci-dessus ne sont pas communs à tous les filtres de la banque, mais le dispositif d'hybridation 1 conforme à l'invention réalise ces calculs pour chaque filtre de la banque. De la même manière, on a représenté sur la figure 1 qu'un seul module de correction des mesures satellites 4. On comprendra cependant que le dispositif d'hybridation 1 selon le premier aspect de l'invention comporte un module de correction des mesures satellites 4 par filtre de la banque.
Dans le cadre de l'invention, on prévoit ainsi avantageusement d'associer à chaque filtre de la banque un module de correction des mesures satellites 4 délivrant au filtre les mesures (typiquement les pseudo-mesures) du système de positionnement par satellites (GNSS) qui sont utilisées par le filtre après correction à l'aide de la solution de navigation hybride élaborée par le filtre. Afin d'élaborer les solutions de navigation hybride, le dispositif 1 comporte un banc de sommateurs 10, où chaque sommateur est positionné en sortie de la banque de filtres pour ajouter au vecteur d'état dXO-dXn élaboré par un filtre la sortie hybride SH qui sera présentée plus en détail par la suite.
On relèvera que la navigation de référence (sortie hybride SH) élaborée par le dispositif 1 sert uniquement en interne. Ce sont ainsi les informations délivrées en sortie du banc de sommateurs 7 qui fournissent les solutions de navigation optimales (solution de navigation hybride principale « NAV INS/GPS 0 » issue du filtre de Kalman principal, solution de navigation hybride secondaire « NAV INS/GPS i » issue du filtre de Kalman secondaire d'indice i).
Le module de correction des mesures brutes 4 associé à un filtre de la banque reçoit en entrée les mesures satellites (typiquement les pseudomesures) utilisées par le filtre correspondant à tout (filtre de Kalman principal) ou partie (filtre de Kalman secondaire) de l'ensemble de la constellation délivrées par système de positionnement par satellites GNSS, et délivre en sortie pour chacun des filtres de la banque 3 lesdites mesures satellites utilisées par le filtre après mise en œuvre d'un modèle de correction des erreurs déterministes élaboré à partir de la solution de navigation hybride estimée par le filtre. Le calcul des observations est alors réalisé sur la base de ces mesures satellites corrigées à partir des informations du filtre, et non pas à partir des informations du système GNSS comme cela est classiquement le cas.
Classiquement les pseudo-mesures réalisées par un récepteur GNSS sont corrigées à l'intérieur de ce même récepteur. En effet les erreurs déterministes peuvent être corrigées en grande partie en utilisant des modèles qui nécessitent des informations de positionnement pour être calculés. Il est proposé dans le cadre de l'invention de réaliser cette correction non pas dans le récepteur mais pour chaque filtre de la banque, sur la base de la position estimé par le filtre. Plus précisément, les erreurs qui affectent les mesures brutes GNSS sont modélisées. La modélisation des erreurs atmosphériques est dépendante des paramètres de navigation estimés. En additionnant (positivement ou négativement selon les erreurs et le type de mesure) la valeur de l'erreur calculée par modèle à la mesure brute, on corrige en partie l'erreur qui est modélisée. Le résidu d'erreur est alors modélisé statistiquement et caractérisé par un écart-type calculé à partir des paramètres de navigation.
Classiquement, l'ajout (positif ou négatif) des erreurs calculées par modèle aux mesures brutes est réalisé par le récepteur GNSS, de sorte que l'ensemble du banc de filtre reçoit des mesures corrigées et la modélisation des résidus d'erreurs. Il s'en suit que le calcul des modèles d'erreurs et des écart-types des résidus est alors dépendant de la position calculée par le récepteur GNSS.
Prenant l'exemple des mesures de pseudo-distance :
PR brute = distance vraie + erreurs erreurs modélisées = f (X j
PR corrigée = distance vraie + erreurs - erreurs modélisées σ=h(x) L'invention propose de déporter ce calcul des modèles d'erreurs et des écart-type des résidus, ainsi que l'application des modèles aux mesures brutes dans le module de correction des mesures satellites 4, et de réaliser les calculs pour chaque filtre à partir des paramètres de navigation propres à chaque filtre. De cette manière, les mesures corrigées reçues par un filtre ne sont plus dépendantes des paramètres de navigation estimées par le récepteur GNSS. Dès lors, en cas de panne d'un satellite, les mesures corrigées reçues par le filtre qui n'utilise pas le satellite en panne ne sont pas affectées.
Ainsi le filtre de Kalman principal reçoit du module 4 l'ensemble des pseudo-mesures, corrigées à l'aide de la solution de navigation principale qu'il élabore. Le filtre de Kalman secondaire d'indice i 9i reçoit quant à lui du module 4 l'ensemble des pseudo-mesures à l'exception de celle correspondant au satellite d'indice i, corrigées à l'aide de la solution de navigation secondaire qu'il élabore.
Dans la mesure où la correction des mesures brutes est propre à chaque filtre, le filtre qui n'utilise pas la pseudo-mesure polluée par l'apparition d'une panne n'est pas affecté par la panne (sa solution de navigation non polluée par la panne permet en effet de corriger les pseudomesures qu'il utilise), et par conséquent il reste non pollué.
Le dispositif d'hybridation 1 selon le premier aspect de l'invention élabore une sortie hybride SH correspondant aux mesures inertielles PPVI calculées par la plateforme virtuelle 2 et corrigées par un vecteur de stabilisation dC.
Selon une mise en œuvre possible de l'invention, les corrections à appliquer aux mesures inertielles sont issues d'un seul filtre de Kalman. Ainsi, le vecteur de stabilisation est égal au vecteur de correction estimé par le filtre de Kalman sélectionné. La sélection s'opère par exemple conformément au document EP1801539 A par détection d'une éventuelle panne satellite.
Selon une mise en œuvre avantageuse de l'invention, le vecteur de stabilisation est élaboré composante par composante, en utilisant pour chaque composante l'ensemble des vecteurs d'états estimés par les filtres de Kalman.
Le dispositif 1 selon l'invention comporte à cet effet un module d'élaboration de la correction 5 configuré pour élaborer chacune des composantes dC[état] du vecteur de stabilisation dC en fonction de l'ensemble des composantes correspondantes dXO[état]-dXn[état] des vecteurs de correction dXO-dXn.
Selon un mode de réalisation possible de l'invention, le module d'élaboration de la correction 5 est configuré, pour chaque composante dC[état] du vecteur de stabilisation dC, de manière : - à analyser le signe de l'ensemble des composantes correspondantes dXO[état]-dXn[état] des vecteurs de correction estimés par les filtres de Kalman ; et
- lorsque l'ensemble des ces composantes correspondantes ne sont pas de même signe, à élaborer une composante de valeur nulle (dC[état]
=0) pour le vecteur de stabilisation ;
- lorsque l'ensemble de ces composantes dXO[état]-dXn[état] sont de même signe, à élaborer une composante de valeur non nulle pour le vecteur de stabilisation, déterminée en fonction de la valeur de chacune de ces composantes dXO[état]-dXn[état].
Le module d'élaboration de la correction 5 est par exemple configuré de manière à ce que la valeur non nulle de la composante du vecteur de stabilisation dC[état] corresponde au minimum de l'ensemble des composantes correspondantes dXO[état]-dXn[état] des vecteurs de correction lorsque ces composantes dXO[état]-dXn[état] sont toutes positives, et corresponde au maximum de l'ensemble des composantes dXO[état]- dXn[état] des vecteurs de correction lorsque ces composantes dXO[état]- dXn[état] sont toutes négatives.
En variante, le module d'élaboration de la correction 5 peut être configuré de manière à ce que la valeur non nulle de la composante du vecteur de stabilisation dC[état] corresponde à la moyenne des P plus petites (P étant par exemple égal à 2) composantes correspondantes dXO[état]- dXn[état] des vecteurs de correction, prises en valeur absolue.
Le vecteur de stabilisation élaboré conformément à ce mode de réalisation possible de l'invention permet de minimiser les erreurs estimées pour tous les filtres.
Cette élaboration du vecteur de stabilisation s'avère judicieuse dans la mesure où elle n'est pas contrainte par un mécanisme de détection et d'exclusion des pannes (mécanisme FDE selon la terminologie anglo- saxonne « Fault Détection and Exclusion »), et où la validité des rayons de protection n'est pas contrainte par un FDE. Dans le cadre de cette variante, la plateforme virtuelle et la banque de filtres seront polluées par une panne satellite, mais pas le filtre qui exclut le satellite en panne.
Le vecteur de stabilisation dC ainsi élaboré par le module 5 ou simplement sélectionné parmi les vecteurs d'états des filtres permet de corriger, avec un retard 6, les mesures inertielles PPVI calculées par la plateforme virtuelle, en utilisant de manière classiquement connue en soi un soustracteur 7.
Dans le cadre d'un dispositif d'hybridation en boucle fermée, la sortie hybride SH est rebouclée à l'entrée de la plateforme virtuelle. Par ailleurs, comme cela représenté sur la figure 1 , le vecteur de stabilisation dC peut être appliqué à l'entrée de l'ensemble des filtres de la banque de filtres. De telle manière, les filtres de Kalman s'ajustent en soustrayant à leur estimation (vecteur de correction dX) la correction dC, et sont ainsi maintenus cohérents de la plateforme virtuelle. L'architecture proposée par l'invention présente les avantages suivants.
- elle ne nécessite l'intégration que d'une seule plateforme virtuelle ;
- le filtre de Kalman qui n'utilise pas le satellite malade n'est pas pollué par la panne ;
- les filtres de la banque sont totalement ségrégués ; - le calcul de la commande de stabilisation de la plateforme n'est pas contraint par un procédé de détection de panne.
L'invention n'est par ailleurs pas limitée à un dispositif d'hybridation selon son premier aspect, mais s'étend également à un procédé d'hybridation INS/GNSS mettant en œuvre une banque de filtres de Kalman élaborant chacun une solution de navigation hybride à partir des mesures inertielles calculées par une plateforme virtuelle et de mesures de signaux émis par une constellation de satellites délivrées par un système de positionnement par satellites, caractérisé en ce que les mesures satellites utilisées par chaque filtre de la banque sont préalablement corrigées à l'aide de la solution de navigation hybride élaborée par le filtre.

Claims

REVENDICATIONS
1. Dispositif d'hybridation (1 ) comportant une plateforme virtuelle (2) calculant des mesures inertielles (PPVI), un banc (3) de filtres de Kalman élaborant chacun une solution de navigation hybride à partir des mesures inertielles de la plateforme virtuelle (2) et de mesures de signaux émis par une constellation de satellites délivrées par un système de positionnement par satellites (GNSS), caractérisé en ce qu'il comporte, pour chaque filtre de la banque, un module de correction des mesures satellites (4) délivrant au filtre les mesures du système de positionnement par satellites (GNSS) qui sont utilisées par le filtre après correction à l'aide de la solution de navigation hybride élaborée par le filtre.
2. Dispositif selon la revendication 1 , dans lequel le module de correction des mesures satellites (4) reçoit en entrée les solutions de navigation hybrides élaborées par les filtres et les mesures correspondant à l'ensemble de la constellation délivrées par système de positionnement par satellites (GNSS).
3. Dispositif selon l'une des revendications 1 à 2, dans lequel les mesures du système de positionnement par satellites (GNSS) qui sont utilisées par un filtre sont des pseudo-mesures.
4. Dispositif selon l'une des revendications 1 à 3, élaborant une sortie hybride (SH) correspondant aux mesures inertielles (PPVI) calculées par la plateforme virtuelle (2) et corrigées par un vecteur de stabilisation (dC).
5. Dispositif selon la revendication 4, dans lequel le vecteur de stabilisation correspond à un vecteur d'états estimé par un filtre de la banque non affecté par une panne satellite.
6. Dispositif selon la revendication 4, dans lequel chaque composante du vecteur de stabilisation (dC[état]) est élaboré en fonction des composantes correspondantes de l'ensemble des vecteurs d'états estimés par les filtres de la banque.
7. Dispositif selon la revendication 6, comprenant un module d'élaboration du vecteur de stabilisation configuré, pour chaque composante du vecteur de stabilisation (dC[état]), de manière :
- à analyser le signe de l'ensemble des composantes correspondantes (dXO[état]-dXn[état]) des vecteurs d'états ;
- lorsque l'ensemble de ces composantes correspondantes ne sont pas de même signe, à élaborer une composante de valeur nulle (dC[état] =0) pour le vecteur de stabilisation ;
- lorsque l'ensemble de ces composantes correspondantes sont de même signe, à élaborer une composante de valeur non nulle pour le vecteur de stabilisation, déterminée en fonction de la valeur de chacune de ces composantes des vecteurs d'états.
8. Dispositif selon la revendication 7, dans lequel la valeur non nulle de la composante du vecteur de stabilisation correspond au minimum de l'ensemble des composantes correspondantes des vecteurs d'états lorsque l'ensemble de ces composantes correspondantes sont positives, et correspond au maximum de l'ensemble des composantes correspondantes des vecteurs d'états lorsque l'ensemble de ces composantes correspondantes sont négatives.
9. Dispositif selon la revendication 7, dans lequel la valeur non nulle de la composante du vecteur de stabilisation correspond à la moyenne des P plus, petites composantes correspondantes des vecteurs d'états, prises en valeur absolue.
10. Dispositif selon l'une des revendications 1 à 9, dans lequel le vecteur de stabilisation est appliqué à l'entrée de l'ensemble des filtres de la banque de filtres.
11. Dispositif selon l'une des revendications 1 à 10, dans lequel la sortie hybride est rebouclée à l'entrée de la plateforme virtuelle.
12. Dispositif selon l'une des revendications 1 à 11 , dans lequel le banc de filtres de Kalman (3) comprend un filtre de Kalman principal (8) recevant les mesures des signaux émis par n satellites corrigées par la solution de navigation hybride principale qu'il élabore, et n filtres de Kalman secondaires (9i, 9n) recevant chacun les mesures des signaux émis par les n satellites à l'exclusion d'un satellite corrigées à l'aide de la solution de navigation hybride secondaire qu'il élabore.
13. Procédé d'hybridation INS/GNSS mettant en œuvre une banque de filtres de Kalman élaborant chacun une solution de navigation hybride à partir des mesures inertielles calculées par une plateforme virtuelle (2) et de mesures de signaux émis par une constellation de satellites délivrées par un système de positionnement par satellites (GNSS), caractérisé en ce que les mesures satellites utilisées par chaque filtre de la banque sont préalablement corrigées à l'aide de la solution de navigation hybride élaborée par le filtre.
EP09771565A 2008-12-17 2009-12-16 Dispositif d'hybridation a filtres de kalman segreges Withdrawn EP2366116A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858726A FR2939901B1 (fr) 2008-12-17 2008-12-17 Dispositif d'hybridation a filtres de kalman segreges
PCT/EP2009/067333 WO2010070011A1 (fr) 2008-12-17 2009-12-16 Dispositif d'hybridation a filtres de kalman segreges

Publications (1)

Publication Number Publication Date
EP2366116A1 true EP2366116A1 (fr) 2011-09-21

Family

ID=40911014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09771565A Withdrawn EP2366116A1 (fr) 2008-12-17 2009-12-16 Dispositif d'hybridation a filtres de kalman segreges

Country Status (4)

Country Link
US (1) US8625696B2 (fr)
EP (1) EP2366116A1 (fr)
FR (1) FR2939901B1 (fr)
WO (1) WO2010070011A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746881B2 (en) * 2017-08-09 2020-08-18 Rohde & Schwarz Gmbh & Co. Kg Measuring device and measuring method for testing a location tracking employing real time kinematics
US11402514B2 (en) 2020-07-10 2022-08-02 Samsung Electronics Co., Ltd. Geographical feature/artificial structures detection and application for GNSS navigation with map information
CN113156999B (zh) * 2021-05-08 2022-11-11 一飞(海南)科技有限公司 一种集群编队飞机异常故障等级处理的方法、系统及应用
FR3130399B1 (fr) 2021-12-14 2024-01-26 Safran Electronics & Defense Procédé de navigation par satellite avec détection de satellite en panne par traitement statistique de l’innovation croisée

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991691A (en) * 1997-02-20 1999-11-23 Raytheon Aircraft Corporation System and method for determining high accuracy relative position solutions between two moving platforms
FR2866423B1 (fr) * 2004-02-13 2006-05-05 Thales Sa Dispositif de surveillance de l'integrite des informations delivrees par un systeme hybride ins/gnss
US7373223B2 (en) * 2004-02-13 2008-05-13 The Boeing Company Global navigation satellite system landing systems and methods
US7317977B2 (en) * 2004-08-23 2008-01-08 Topcon Positioning Systems, Inc. Dynamic stabilization and control of an earthmoving machine
JP5127128B2 (ja) * 2004-12-21 2013-01-23 韓國電子通信研究院 カメラの位置及び姿勢情報補正方法及びその装置
US7609204B2 (en) * 2005-08-30 2009-10-27 Honeywell International Inc. System and method for dynamically estimating output variances for carrier-smoothing filters
FR2895073B1 (fr) * 2005-12-20 2008-02-08 Thales Sa Dispositif d'hybridation en boucle fermee avec surveillance de l'integrite des mesures.
US8600660B2 (en) * 2006-09-29 2013-12-03 Honeywell International Inc. Multipath modeling for deep integration
FR2906893B1 (fr) * 2006-10-06 2009-01-16 Thales Sa Procede et dispositif de surveillance de l'integrite des informations delivrees par un systeme hybride ins/gnss
US20080114546A1 (en) * 2006-11-15 2008-05-15 Space Systems/Loral, Inc. Image navigation and registration accuracy improvement using parametric systematic error correction
US7869811B2 (en) * 2007-05-01 2011-01-11 Nokia Corporation Determination of a relative position of a satellite signal receiver
CA2701529C (fr) * 2007-10-04 2017-07-25 Trusted Positioning Inc. Systeme et procede pour affinage intelligent de filtres de kalman pour des applications de navigation ins/gps

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010070011A1 *

Also Published As

Publication number Publication date
US8625696B2 (en) 2014-01-07
FR2939901A1 (fr) 2010-06-18
WO2010070011A1 (fr) 2010-06-24
US20110243194A1 (en) 2011-10-06
FR2939901B1 (fr) 2011-02-18

Similar Documents

Publication Publication Date Title
EP2374022B1 (fr) Dispositif d'hybridation en boucle fermee integre par construction
EP2411832B1 (fr) Procédé et dispositif de détection et d'exclusion de pannes satellite dans un système hybride ins/gnss
EP3623758B1 (fr) Système de localisation, et procédé de localisation associé
EP2614385B1 (fr) Procede et dispositif de detection et d'exclusion de pannes satellite multiples dans un systeme gnss
EP2069818B1 (fr) Procede et dispositif de surveillance de l'integrite des informations delivrees par un systeme hybride ins/gnss
EP2459965B1 (fr) Procede de determination de parametres de navigation d'un porteur et dispositif d'hybridation associe a banc de filtres de kalman
WO2016091949A1 (fr) Procédé et système de validation de géolocalisation par satellite
EP2245479A1 (fr) Systeme de navigation a hybridation par les mesures de phase
EP2449409B1 (fr) Procede de determination de la position d'un mobile a un instant donne et de surveillance de l'integrite de la position dudit mobile.
EP2998765A1 (fr) Système d'exclusion d'une défaillance d'un satellite dans un système gnss
EP2366116A1 (fr) Dispositif d'hybridation a filtres de kalman segreges
EP3385677B1 (fr) Systeme et procede d'analyse et de surveillance des mouvements parasites d'une centrale inertielle pendant une phase d alignement statique
EP2452157B1 (fr) Procede de determination de parametres de navigation d'un porteur et dispositif d'hybridation associe
FR2853062A1 (fr) Aide a la navigation augmentee en integrite verticale
WO2024008635A1 (fr) Dispositif et procede de maintien de l'integrite du positionnement d'un vehicule independamment de la vulnerabilite de donnees satellitaires
WO2024008942A1 (fr) Dispositif de navigation et de positionnement
WO2024008640A1 (fr) Dispositif et procédé de navigation et de positionnement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAGEM DEFENSE SECURITE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150911

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAUGER, VICTOR

Inventor name: VOURC'H, SEBASTIEN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160122