EP2365584B1 - Antenna device with a planar antenna and a wide band reflector and method of realizing of the reflector - Google Patents

Antenna device with a planar antenna and a wide band reflector and method of realizing of the reflector Download PDF

Info

Publication number
EP2365584B1
EP2365584B1 EP11157387.9A EP11157387A EP2365584B1 EP 2365584 B1 EP2365584 B1 EP 2365584B1 EP 11157387 A EP11157387 A EP 11157387A EP 2365584 B1 EP2365584 B1 EP 2365584B1
Authority
EP
European Patent Office
Prior art keywords
antenna
conductive patterns
reflector
dimensions
antenna device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11157387.9A
Other languages
German (de)
French (fr)
Other versions
EP2365584A1 (en
Inventor
Michaël Grelier
Stéphane Mallegol
Michel Jousset
Xavier Begaud
Anne Claire Lepage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2365584A1 publication Critical patent/EP2365584A1/en
Application granted granted Critical
Publication of EP2365584B1 publication Critical patent/EP2365584B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/148Reflecting surfaces; Equivalent structures with means for varying the reflecting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas

Definitions

  • the invention applies to the field of planar antennas for very broadband telecommunication systems. It relates to an antenna reflector with artificial magnetic conductive type structure for a planar antenna. The invention also relates to an antenna device comprising a planar antenna and an antenna reflector, as well as a method of designing the antenna reflector.
  • the antennas must have a wide operating frequency band, for example of the order of the decade, that is to say a frequency band whose maximum frequency is at least ten times the minimum frequency.
  • the flat antennas, in particular the spiral antennas form part of these broadband antennas.
  • a spiral antenna generally consists of a dielectric support on which is etched a radiating element.
  • the radiating element comprises at least two spirally wound strands and the inner ends of which are supplied with current. Depending on the number of strands and the phase of the current in each strand, the electromagnetic radiation of the spiral antenna is different.
  • the width of the frequency band depends on the inner and outer diameters of the spiral.
  • a plane antenna has a symmetrical structure and thus radiates throughout the space, in particular in the two directions orthogonal to the plane of the antenna.
  • the planar antenna must necessarily include a support, at least to stiffen the antenna and power it. However, this generates disturbances related to the so-called rear radiation of the antenna.
  • the support can absorb some of the back radiation, thus leading to power losses.
  • the support may also reflect a portion of the back radiation, but interfering with radiation emitted in the opposite direction, referred to as forward radiation.
  • the medium can induce current and itself generate parasitic radiation, thus reducing the frequency band of operation.
  • An ideal support would be a support which absorbs nothing of the radiation received, but which reflects them integrally in phase over the whole width of the frequency band, and which does not generate parasitic radiation by induction. It would also have a minimum footprint, the implantation volume is thus limited.
  • a first solution aims to maximize the absorption of the back radiation by the support in order to reduce the radiation reflected in phase shift with the forward radiation.
  • the support then comprises a cavity made of an absorbent material, for example based on carbon or iron powder.
  • the overall size being a function of the depth of the cavity, it can be placed just behind the antenna.
  • the absorbing material also has the advantage of not inducing current and thus not generating parasitic radiation.
  • the power losses are important since all the back radiation is untapped.
  • the absorbent properties of a material depend on the frequency of the radiation.
  • the back radiation can not be absorbed over the entire operating frequency band.
  • the absorptive cavity supports are difficult to reproduce insofar as the electromagnetic properties vary from one sample of material to another.
  • the weight and the volume of the support increase rapidly when the frequency of the radiation to be absorbed decreases.
  • a second solution is to maximize the reflection of the back radiation, ensuring that the reflection is in phase.
  • a conductive plane having optimum reflection properties is disposed at a distance from the antenna equal to one quarter of the average wavelength of the radiation that it emits or receives. At such a distance, the reflected back radiation is in phase with the forward radiation.
  • the main disadvantage of this solution is that the distance can be optimally adjusted only for a single wavelength. The radiation emitted or received at wavelengths distant from this average wavelength may therefore be disturbed, effectively limiting the bandwidth of the antenna.
  • Another disadvantage of this solution is that a quarter of the wavelength quickly represents a distance important for the low frequencies, which generates an overall thickness for the relatively large antenna.
  • the conductive plane has important induction properties and reflection and diffraction phenomena occur at the edge of the antenna, thus generating parasitic radiation.
  • a CMA structure for Artificial Magnetic Conductor, is disposed under the plane of the antenna on the side of the rear radiation, so as to form an antenna reflector.
  • a conventional CMA structure comprises a dielectric support, electrical conductive patterns periodically disposed on a first surface of the dielectric support and a uniform electrical conductive plane (ground plane) on a second surface of the dielectric support. Each conductive pattern can be connected to the ground plane by vias, generally called “vias" in the Anglo-Saxon literature.
  • a CMA structure has the property of reflecting the electromagnetic waves in phase, which involves positioning it as close to the antenna as possible and which makes it possible to reduce the thickness of the antenna device comprising the antenna and the CMA structure.
  • a CMA structure may also have the property of prohibiting the propagation of electromagnetic waves in certain directions of the plane in which the conductive patterns are arranged, which prevents generating parasitic radiation. This is called electromagnetic band gap (EIB) structure.
  • EIB electromagnetic band gap
  • the properties of a BIE or CMA type structure occur only in a certain frequency band, called either BIE band or CMA band depending on the case considered. This frequency band, in particular its central frequency and its low and high cutoff frequencies, depend on the shape and dimensions of the conductive patterns, as well as the thickness of the dielectric support of the structure.
  • the bandwidth is very small, that is to say very much smaller than the octave, whether we consider the BIE band or the CMA band.
  • the congestion constraints make the current antennas having a BIE or CMA structure reflector do not make it possible to operate over a wide frequency band, greater than the decade.
  • the document FR2922687 discloses an antenna reflector comprising a periodic array of metal patterns sized so that the resonance frequency of the high impedance type surface is located in the middle of the operating frequency of the antenna.
  • the shape and dimensions of the metallic patterns are identical over the entire surface of the reflector.
  • An object of the invention is in particular to overcome the aforementioned drawbacks by proposing an antenna reflector CMA structure broadband frequency and reduced bulk.
  • the object of the invention is the local adaptation of a CMA structure as a function of the radiation emitted or received locally by the antenna.
  • the subject of the invention is a process according to claim 1.
  • An area where the electromagnetic radiation has the greatest amplitude can be determined from a predetermined threshold value, for example substantially equal to 25% of the maximum amplitude.
  • the invention has the particular advantage that it makes it possible to extend the properties of a CMA structure to a wide frequency band, the band of interest of a reflector according to the invention being formed by an assembly of operating bands. in CMA mode.
  • the figure 1 represents an example of an antenna device.
  • the antenna device 1 comprises a spiral antenna 2 and an antenna reflector 3.
  • the spiral antenna 2 comprises a dielectric support 21 and two electrically conductive strands 22a and 22b of identical length and mutually wound around a central point O to form a spiral 23.
  • the strands 22a and 22b form the radiating elements of the spiral antenna 2.
  • the first strand 22a extends between an inner end B and an outer end D of the spiral 23.
  • the second strand 22b is extends between an inner end A and an outer end C of the spiral 23.
  • the spiral antenna 2 also comprises means for supplying the radiating elements, not shown.
  • the two strands 22a and 22b are powered by microwave signals in phase opposition at their inner ends A and B.
  • the dielectric support 21 is for example a printed circuit epoxy plate. It comprises an upper surface 24 and a lower surface 25 substantially flat and parallel.
  • the strands 22a and 22b can be fixed, printed or etched on the upper surface 24.
  • the antenna reflector 3 comprises a dielectric support 31, a ground plane 32 and sets of patterns Conductors 33.
  • the dielectric support 31 may also be an epoxy plate of the printed circuit type. It comprises an upper surface 34 and a lower surface 35 substantially flat and parallel.
  • the ground plane 32 and the conductive patterns 33 may for example be fixed, printed or etched on the lower surface 35 and the upper surface 34, respectively. In particular, any conventional technique for producing printed circuits can be used to produce the conductive patterns 33.
  • Each conductive pattern 33 can be electrically connected to the ground plane 32, for example via metallized holes, not shown, made in the dielectric support 31.
  • the spiral antenna 2 is mounted on the antenna reflector 3, the lower surface 25 of the dielectric support 21 of the spiral antenna 2 coming opposite the upper surface 34 of the dielectric support 31 of the antenna reflector 3.
  • the dielectric support 21 can bear directly on the conductive patterns 33.
  • the dielectric support 21 then performs an isolation function between the spiral antenna 2 and the antenna reflector 3. This insulation may nevertheless be provided by any other means.
  • the invention applies equally well to any type of plane antenna in general, and to any type of spiral antenna in particular. It applies in particular to equiangular spiral antennas, also called logarithmic spiral antennas, in which the width of the strands and the spacing between the strands increase as they move away from the center.
  • the wired antenna of the figure 1 has two electrically conductive strands.
  • the invention also applies to planar antennas comprising a different number of strands but also to other types of geometry such as the sinuous antenna.
  • the invention uses the operating properties of planar antennas.
  • the radiating element of such an antenna when excited, emits electromagnetic waves from a localized operating zone, related to the relative arrangement of the strands and the phase shift of the current flowing in the different strands.
  • This operating zone has the particularity of varying according to the frequency according to a law specific to each type of plane antenna.
  • the invention therefore uses the operating properties of planar antennas to adapt the structures based on artificial magnetic conductor (AMC) to local electromagnetic radiation.
  • AMC artificial magnetic conductor
  • the conductive patterns no longer have a periodic regular arrangement, but their geometric shape and their dimensions vary between different operating areas.
  • the geometric shape and the dimensions of the conductive patterns are determined for each operating zone so as to form in said zone a high impedance surface at the corresponding frequency.
  • R Z s - not Z s + not where n is the wave impedance.
  • the figure 2 illustrates possible steps of the method of designing an antenna reflector according to the invention for a planar antenna.
  • a spiral antenna like the one shown in FIG. figure 1 .
  • the method nevertheless applies to any type of plane antenna.
  • a first step 101 the radiation emitted by the spiral antenna 2 alone, that is to say without antenna reflector, is characterized. More precisely, amplitude and phase field distributions of the electromagnetic radiation emitted by the spiral antenna 2 are determined in the near-field zone in a plane substantially parallel to the plane of the spiral antenna 2.
  • the amplitude distributions are determined successively for at least two frequencies belonging to the operating frequency band of the spiral antenna 2.
  • the strands 22a and 22b of the spiral antenna 2 are fed at their inner ends A and B by currents with the same amplitudes, generally presenting a difference in phase of 180 °.
  • the electromagnetic radiation emitted by a spiral antenna has a maximum amplitude in a zone resembling a circular ring whose central diameter is the aforementioned diameter.
  • the Figures 3a and 3b represent the amplitude distribution of the electromagnetic radiation emitted by the spiral antenna 2 at a given operating frequency in a plane belonging to the near-field area parallel to the plane of the spiral antenna 2.
  • the rings 301 and 307, 302 and 305, 303, 304, and 306 for example have amplitudes equal to 3.10 -7 J / m 3 , 3.10 -6 J / m 3 , 6.10 -6 J / m 3 , 5.10 respectively . 6 J / m 3 , and 1.5.10 -6 J / m 3 .
  • the circular ring 301 thus corresponds to the zone where the electromagnetic radiation has a maximum amplitude at the given operating frequency.
  • the figure 3b represents the amplitude distribution of the electromagnetic radiation as a function of the distance, projected on the plane of the antenna, from the center O of the spiral 23.
  • the amplitude distribution is represented on the Figures 3a and 3b as a quantity of energy radiated per cubic meter (J / m 3 ).
  • any other magnitude can be used as long as it makes it possible to determine the power of the radiation distributed in a plane close to the spiral antenna 2. From this amplitude distribution, it is possible to determine the zone where the radiation at the highest amplitude, called the operating zone 310.
  • the operating zone may be defined by a minimum radius R min and a maximum radius R max corresponding to an amplitude threshold value S predetermined.
  • the value of the threshold S is chosen to be substantially equal to 25% of the maximum amplitude of the electromagnetic radiation, this value proving to give good results.
  • the operating zone is determined for at least two frequencies belonging to the operating frequency band of the spiral antenna. After determining the amplitude distribution of the radiation at a given first frequency, one or more amplitude distributions are determined at another or other given operating frequencies.
  • a second step 102 for each amplitude distribution, that is to say for each given operating frequency or for each operating zone, the shape and dimensions of a set of conductive patterns 33 are determined when they are arranged in the vicinity of the operating zone in question, the conductive patterns 33 of this set locally form a high impedance surface at the operating frequency considered.
  • each operating zone at a given frequency is opposite the high impedance surface at said frequency formed by the antenna.
  • corresponding set of conductive patterns 33 On the figure 1 two sets 331 and 332 of conductive patterns 33 are shown.
  • the shape and dimensions of the conductive patterns 33 of an assembly can be determined as soon as the operating zone at the frequency in question is determined. In other words, the order of the first and second steps of the process is of importance only with respect to a particular operating frequency.
  • the second step 102 may for example be performed by the following substeps.
  • a first sub-step conventional CMA structures are considered, that is to say whose conductive patterns are rectangles arranged in a regular matrix, therefore periodic, whose thickness of the dielectric support is substantially equal to that of the support dielectric 31 of the antenna reflector 3 according to the invention.
  • the dimensions (length and width) of the conductive patterns of the conventional CMA structure for forming a high impedance surface are determined. in the vicinity of the operating frequency considered.
  • the conductive patterns of the conventional CMA structures are conformed to the corresponding operating zone of the spiral antenna, each conductive pattern retaining substantially the same surface as that considered for the conventional topology. .
  • the conductive patterns therefore take an annular shape.
  • the figure 4 illustrates the result of this substep.
  • An assembly 333 of conductive patterns 33 is arranged at an annular periodicity on the upper surface 34 of the dielectric support 31 and covers the considered operating zone of the spiral antenna 2.
  • the figure 5 represents an example of such a phase diagram.
  • each operating frequency is associated, on the one hand, an operating zone, for example defined by a radius of the spiral antenna 2 and, on the other hand, a phase diagram of a set of corresponding conductive patterns 33. to a classic CMA structure.
  • a fourth sub-step we choose, from the phase diagram of the figure 5 at least two sets of conductive patterns 33 so as to cover the different operating zones of the spiral antenna 2 without overlapping the conductive patterns 33 between the different sets.
  • the arrangement of sets of conductive patterns may be substantially modified to avoid overlaps.
  • the conductive patterns 33 are arranged not in a periodic but pseudoperiodic manner.
  • the figure 6 represents, in top view, an example of antenna reflector 3 according to the invention adapted to a spiral antenna.
  • the antenna reflector 3 comprises five sets 331 to 335 of conductive patterns 33 whose surfaces are larger and larger as one moves away from the center of the antenna reflector 3. Each set 331 to 335 forms a high impedance surface at the frequency radiated locally by the spiral antenna. The high impedance character can thus be maintained over the entire surface of the antenna reflector 3, and therefore over the entire operating frequency band of the spiral antenna. Due to the evolution of the dimensions of the conductive patterns 33 of the different assemblies, the antenna reflector 3 can be called an artificial magnetic quasi-conductive structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

L'invention s'applique au domaine des antennes planes pour des systèmes de télécommunication à très large bande. Elle concerne un réflecteur d'antenne à structure de type conducteur magnétique artificiel pour une antenne plane. L'invention concerne également un dispositif d'antenne comportant une antenne plane et un réflecteur d'antenne, ainsi qu'un procédé de conception du réflecteur d'antenne.The invention applies to the field of planar antennas for very broadband telecommunication systems. It relates to an antenna reflector with artificial magnetic conductive type structure for a planar antenna. The invention also relates to an antenna device comprising a planar antenna and an antenna reflector, as well as a method of designing the antenna reflector.

Dans le cadre de certaines applications, les antennes doivent avoir une large bande de fréquence de fonctionnement, par exemple de l'ordre de la décade, c'est-à-dire une bande de fréquence dont la fréquence maximale est au moins égale à dix fois la fréquence minimum. Les antennes planes, notamment les antennes spirales, font partie de ces antennes à large bande de fréquence. Une antenne spirale est généralement constituée d'un support diélectrique sur lequel est gravé un élément rayonnant. L'élément rayonnant comporte au moins deux brins enroulés en spirale et dont les extrémités intérieures sont alimentées en courant. Selon le nombre de brins et la phase du courant dans chaque brin, le rayonnement électromagnétique de l'antenne spirale est différent. La largeur de la bande de fréquence dépend des diamètres interne et externe de la spirale.In the context of certain applications, the antennas must have a wide operating frequency band, for example of the order of the decade, that is to say a frequency band whose maximum frequency is at least ten times the minimum frequency. The flat antennas, in particular the spiral antennas, form part of these broadband antennas. A spiral antenna generally consists of a dielectric support on which is etched a radiating element. The radiating element comprises at least two spirally wound strands and the inner ends of which are supplied with current. Depending on the number of strands and the phase of the current in each strand, the electromagnetic radiation of the spiral antenna is different. The width of the frequency band depends on the inner and outer diameters of the spiral.

D'un point de vue théorique, une antenne plane possède une structure symétrique et rayonne donc dans tout l'espace, en particulier dans les deux directions orthogonales au plan de l'antenne. Mais d'un point de vue pratique, l'antenne plane doit nécessairement comporter un support, au moins pour rigidifier l'antenne et l'alimenter en courant. Or celui-ci génère des perturbations liées au rayonnement dit arrière de l'antenne. Par exemple, le support peut absorber une partie du rayonnement arrière, conduisant ainsi à des pertes de puissance. Le support peut également réfléchir une partie du rayonnement arrière, mais interférant avec le rayonnement émis dans la direction opposée, appelé rayonnement avant. Enfin, le support peut induire du courant et générer lui-même un rayonnement parasite, réduisant ainsi la bande de fréquence de fonctionnement. Un support idéal serait un support qui n'absorbe rien des rayonnements reçus, mais qui les réfléchit intégralement en phase sur toute la largeur de la bande de fréquence, et qui ne génère pas de rayonnement parasite par induction. Il présenterait en outre un encombrement minimum, le volume d'implantation étant ainsi limité.From a theoretical point of view, a plane antenna has a symmetrical structure and thus radiates throughout the space, in particular in the two directions orthogonal to the plane of the antenna. But from a practical point of view, the planar antenna must necessarily include a support, at least to stiffen the antenna and power it. However, this generates disturbances related to the so-called rear radiation of the antenna. For example, the support can absorb some of the back radiation, thus leading to power losses. The support may also reflect a portion of the back radiation, but interfering with radiation emitted in the opposite direction, referred to as forward radiation. Finally, the medium can induce current and itself generate parasitic radiation, thus reducing the frequency band of operation. An ideal support would be a support which absorbs nothing of the radiation received, but which reflects them integrally in phase over the whole width of the frequency band, and which does not generate parasitic radiation by induction. It would also have a minimum footprint, the implantation volume is thus limited.

Une première solution vise à maximiser l'absorption du rayonnement arrière par le support dans le but de réduire le rayonnement réfléchi en décalage de phase avec le rayonnement avant. Le support comporte alors une cavité réalisée avec un matériau absorbant, par exemple à base de carbone ou de poudre de fer. L'encombrement global étant fonction de la profondeur de la cavité, celle-ci peut être placée juste derrière l'antenne. Le matériau absorbant a également l'avantage de ne pas induire de courant et donc de ne pas générer de rayonnements parasites. Cependant, les pertes de puissance sont importantes puisque tout le rayonnement arrière est inexploité. De plus, les propriétés absorbantes d'un matériau dépendent de la fréquence du rayonnement. Le rayonnement arrière ne peut donc pas être absorbé sur toute la bande de fréquence de fonctionnement. En outre, les supports à cavité absorbante sont difficilement reproductibles dans la mesure où les propriétés électromagnétiques varient d'un échantillon de matériau à un autre. Enfin, le poids et le volume du support augmentent rapidement quand la fréquence du rayonnement à absorber diminue.A first solution aims to maximize the absorption of the back radiation by the support in order to reduce the radiation reflected in phase shift with the forward radiation. The support then comprises a cavity made of an absorbent material, for example based on carbon or iron powder. The overall size being a function of the depth of the cavity, it can be placed just behind the antenna. The absorbing material also has the advantage of not inducing current and thus not generating parasitic radiation. However, the power losses are important since all the back radiation is untapped. In addition, the absorbent properties of a material depend on the frequency of the radiation. The back radiation can not be absorbed over the entire operating frequency band. In addition, the absorptive cavity supports are difficult to reproduce insofar as the electromagnetic properties vary from one sample of material to another. Finally, the weight and the volume of the support increase rapidly when the frequency of the radiation to be absorbed decreases.

Une deuxième solution vise à maximiser la réflexion du rayonnement arrière, en assurant que la réflexion se fait en phase. Pour cela, un plan conducteur ayant des propriétés de réflexion optimum est disposé à une distance de l'antenne égale au quart de la longueur d'onde moyenne du rayonnement qu'elle émet ou qu'elle reçoit. A une telle distance, le rayonnement arrière réfléchi se retrouve en phase avec le rayonnement avant. Le principal inconvénient de cette solution est que la distance ne peut être ajustée de façon optimale que pour une seule longueur d'onde. Le rayonnement émis ou reçu à des longueurs d'onde éloignées de cette longueur d'onde moyenne risque donc d'être perturbé, limitant, de fait, la largeur de bande de l'antenne. Un autre inconvénient de cette solution est que le quart de la longueur d'onde représente rapidement une distance importante pour les fréquences basses, ce qui engendre une épaisseur globale pour l'antenne relativement importante. En outre, le plan conducteur a des propriétés d'induction importantes et des phénomènes de réflexion et de diffraction se produisent au bord de l'antenne, générant ainsi des rayonnements parasites.A second solution is to maximize the reflection of the back radiation, ensuring that the reflection is in phase. For this, a conductive plane having optimum reflection properties is disposed at a distance from the antenna equal to one quarter of the average wavelength of the radiation that it emits or receives. At such a distance, the reflected back radiation is in phase with the forward radiation. The main disadvantage of this solution is that the distance can be optimally adjusted only for a single wavelength. The radiation emitted or received at wavelengths distant from this average wavelength may therefore be disturbed, effectively limiting the bandwidth of the antenna. Another disadvantage of this solution is that a quarter of the wavelength quickly represents a distance important for the low frequencies, which generates an overall thickness for the relatively large antenna. In addition, the conductive plane has important induction properties and reflection and diffraction phenomena occur at the edge of the antenna, thus generating parasitic radiation.

Enfin, une troisième solution vise à récupérer le rayonnement arrière tout en minimisant les rayonnements parasites du support. A cet effet, une structure CMA, pour Conducteur Magnétique Artificiel, est disposée sous le plan de l'antenne du côté du rayonnement arrière, de manière à former un réflecteur d'antenne. Une structure CMA classique comporte un support diélectrique, des motifs conducteurs électriques disposés périodiquement sur une première surface du support diélectrique et un plan conducteur électrique uniforme (plan de masse) sur une deuxième surface du support diélectrique. Chaque motif conducteur peut être relié au plan de masse par des trous d'interconnexion, généralement appelés "vias" dans la littérature anglo-saxonne. Une structure CMA a la propriété de réfléchir les ondes électromagnétiques en phase, ce qui implique de la positionner au plus près de l'antenne et qui permet de réduire l'épaisseur du dispositif d'antenne comportant l'antenne et la structure CMA. Une structure CMA peut aussi avoir la propriété d'interdire la propagation des ondes électromagnétiques dans certaines directions du plan dans lequel sont disposés les motifs conducteurs, ce qui empêche de générer un rayonnement parasite. On parle alors de structure à bande interdite électromagnétique (BIE). Cependant, les propriétés d'une structure de type BIE ou CMA ne se manifestent que dans une certaine bande de fréquence, appelée soit bande BIE, soit bande CMA selon le cas considéré. Cette bande de fréquence, notamment sa fréquence centrale et ses fréquences de coupure basse et haute, dépendent de la forme et des dimensions des motifs conducteurs, ainsi que de l'épaisseur du support diélectrique de la structure. En particulier, pour une épaisseur du support diélectrique relativement faible, c'est-à-dire très petite devant la longueur d'onde, la largeur de bande est très faible, c'est-à-dire très inférieure à l'octave, que l'on considère la bande BIE ou la bande CMA. Ainsi, les contraintes d'encombrement font que les antennes actuelles comportant un réflecteur à structure BIE ou CMA ne permettent pas de fonctionner sur une large bande de fréquence, supérieure à la décade.Finally, a third solution aims to recover the back radiation while minimizing spurious radiation support. For this purpose, a CMA structure, for Artificial Magnetic Conductor, is disposed under the plane of the antenna on the side of the rear radiation, so as to form an antenna reflector. A conventional CMA structure comprises a dielectric support, electrical conductive patterns periodically disposed on a first surface of the dielectric support and a uniform electrical conductive plane (ground plane) on a second surface of the dielectric support. Each conductive pattern can be connected to the ground plane by vias, generally called "vias" in the Anglo-Saxon literature. A CMA structure has the property of reflecting the electromagnetic waves in phase, which involves positioning it as close to the antenna as possible and which makes it possible to reduce the thickness of the antenna device comprising the antenna and the CMA structure. A CMA structure may also have the property of prohibiting the propagation of electromagnetic waves in certain directions of the plane in which the conductive patterns are arranged, which prevents generating parasitic radiation. This is called electromagnetic band gap (EIB) structure. However, the properties of a BIE or CMA type structure occur only in a certain frequency band, called either BIE band or CMA band depending on the case considered. This frequency band, in particular its central frequency and its low and high cutoff frequencies, depend on the shape and dimensions of the conductive patterns, as well as the thickness of the dielectric support of the structure. In particular, for a relatively small thickness of the dielectric support, that is to say very small in front of the wavelength, the bandwidth is very small, that is to say very much smaller than the octave, whether we consider the BIE band or the CMA band. Thus, the congestion constraints make the current antennas having a BIE or CMA structure reflector do not make it possible to operate over a wide frequency band, greater than the decade.

Le document FR2922687 décrit un réflecteur d'antenne comprenant un réseau périodique de motifs métalliques, dimensionnés de façon à ce que la fréquence de résonance de la surface de type haute impédance soit située au milieu de la fréquence de fonctionnement de l'antenne. La forme et les dimensions des motifs métalliques sont identiques sur toute la surface du réflecteur. Un but de l'invention est notamment de remédier aux inconvénients précités en proposant un réflecteur d'antenne à structure CMA à large bande de fréquence et à encombrement réduit. A cet effet, l'invention a pour objet l'adaptation locale d'une structure CMA en fonction du rayonnement émis ou reçu localement par l'antenne. Plus précisément, l'invention a pour objet un procédé selon la revendication 1. Une zone où le rayonnement électromagnétique a la plus forte amplitude peut être déterminée à partir d'une valeur seuil prédéterminée, par exemple sensiblement égale à 25% de l'amplitude maximale.The document FR2922687 discloses an antenna reflector comprising a periodic array of metal patterns sized so that the resonance frequency of the high impedance type surface is located in the middle of the operating frequency of the antenna. The shape and dimensions of the metallic patterns are identical over the entire surface of the reflector. An object of the invention is in particular to overcome the aforementioned drawbacks by proposing an antenna reflector CMA structure broadband frequency and reduced bulk. For this purpose, the object of the invention is the local adaptation of a CMA structure as a function of the radiation emitted or received locally by the antenna. More specifically, the subject of the invention is a process according to claim 1. An area where the electromagnetic radiation has the greatest amplitude can be determined from a predetermined threshold value, for example substantially equal to 25% of the maximum amplitude.

L'étape de détermination de la forme et des dimensions d'un ensemble de motifs conducteurs peut comporter les sous-étapes suivantes :

  • une sous-étape consistant à déterminer les dimensions des motifs conducteurs d'une structure de type conducteur magnétique artificiel dont les motifs conducteurs sont des rectangles agencés suivant une matrice régulière permettant de former une surface à haute impédance au voisinage de la fréquence de fonctionnement considérée ;
  • une sous-étape consistant à conformer les motifs conducteurs rectangulaires à la zone où le rayonnement électromagnétique a la plus forte amplitude à la fréquence de fonctionnement considérée, chaque motif conducteur conservant sensiblement une même surface ;
  • une sous-étape consistant à construire un diagramme de phase résultant de l'association de différents diagrammes de phase associés chacun à l'une des structures de type conducteur magnétique artificiel dont les motifs conducteurs sont des rectangles ;
  • une sous-étape consistant à choisir, à partir du diagramme de phase, au moins deux ensembles de motifs conducteurs de manière à couvrir les différentes zones de l'antenne plane où le rayonnement électromagnétique a les plus fortes amplitudes sans recouvrement de motifs conducteurs adjacents.
The step of determining the shape and dimensions of a set of conductive patterns may include the following substeps:
  • a sub-step of determining the dimensions of the conductive patterns of an artificial magnetic conductive type structure whose conductive patterns are rectangles arranged in a regular matrix to form a high impedance surface in the vicinity of the operating frequency considered;
  • a substep of conforming the rectangular conductive patterns to the area where the electromagnetic radiation has the greatest amplitude at the operating frequency considered, each conductive pattern retaining substantially the same surface;
  • a substep of constructing a phase diagram resulting from the combination of different phase diagrams each associated with one of the artificial magnetic conductive type structures whose conductive patterns are rectangles;
  • a substep of selecting, from the phase diagram, at least two sets of conductive patterns so as to cover the different areas of the planar antenna where the electromagnetic radiation has the highest amplitudes without overlapping adjacent conductive patterns.

L'invention a également pour objet une antenne selon la revendication 7. Selon des formes particulières de réalisation :

  • la forme et les dimensions des motifs conducteurs sont sensiblement identiques dans chaque ensemble ;
  • le réflecteur d'antenne comporte, en outre, un support diélectrique comprenant une surface supérieure et une surface inférieure sensiblement planes et parallèles, le plan de masse étant monté sur la surface inférieure et les motifs conducteurs étant montés sur la surface supérieure ;
  • les motifs conducteurs sont reliés électriquement au plan de masse, par exemple par l'intermédiaire de trous d'interconnexion réalisés dans le support diélectrique ;
  • l'élément rayonnant comporte des brins électriquement conducteurs mutuellement enroulés autour d'un point central pour former une spirale, les ensembles de motifs conducteurs formant des anneaux concentriques centrés sur le point central ;
  • la surface des motifs conducteurs augmente avec l'éloignement des motifs conducteurs du centre du réflecteur d'antenne ;
  • l'antenne plane est une antenne à spirale d'Archimède ;
  • l'antenne plane est une antenne à spirale logarithmique ;
  • l'antenne plane est une antenne sinueuse.
The invention also relates to an antenna according to claim 7. According to particular embodiments:
  • the shape and dimensions of the conductive patterns are substantially identical in each set;
  • the antenna reflector further comprises a dielectric support comprising a substantially plane and parallel upper surface and lower surface, the ground plane being mounted on the lower surface and the conductive patterns being mounted on the upper surface;
  • the conductive patterns are electrically connected to the ground plane, for example via vias made in the dielectric support;
  • the radiating element comprises electrically conductive strands mutually wound around a central point to form a spiral, the sets of conductive patterns forming concentric rings centered on the central point;
  • the surface of the conductive patterns increases with the distance of the conductive patterns from the center of the antenna reflector;
  • the plane antenna is a spiral antenna of Archimedes;
  • the plane antenna is a logarithmic spiral antenna;
  • the plane antenna is a sinuous antenna.

L'invention a notamment pour avantage qu'elle permet d'étendre les propriétés d'une structure CMA à une large bande de fréquence, la bande d'intérêt d'un réflecteur selon l'invention étant formée par un assemblage de bandes de fonctionnement en mode CMA.The invention has the particular advantage that it makes it possible to extend the properties of a CMA structure to a wide frequency band, the band of interest of a reflector according to the invention being formed by an assembly of operating bands. in CMA mode.

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description faite en regard de dessins annexés qui représentent :

  • la figure 1, un exemple de dispositif d'antenne comportant un réflecteur d'antenne selon l'invention ;
  • la figure 2, des étapes possibles pour le procédé de conception d'un réflecteur d'antenne selon l'invention ;
  • les figures 3a et 3b, un exemple de distribution d'amplitude du rayonnement électromagnétique émis par une antenne spirale dans la zone de champ proche ;
  • la figure 4, un exemple de résultat partiel obtenu par le procédé de conception d'un réflecteur d'antenne selon l'invention ;
  • la figure 5, un exemple de diagramme de phase obtenu dans une étape du procédé de conception d'un réflecteur d'antenne selon l'invention ;
  • la figure 6, un exemple de réflecteur d'antenne selon l'invention.
The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment. given by way of example, description made with reference to appended drawings which represent:
  • the figure 1 an example of an antenna device comprising an antenna reflector according to the invention;
  • the figure 2 possible steps for the method of designing an antenna reflector according to the invention;
  • the Figures 3a and 3b an example of amplitude distribution of the electromagnetic radiation emitted by a spiral antenna in the near-field area;
  • the figure 4 an example of a partial result obtained by the method of designing an antenna reflector according to the invention;
  • the figure 5 an example of a phase diagram obtained in a step of the method of designing an antenna reflector according to the invention;
  • the figure 6 , an example of an antenna reflector according to the invention.

La figure 1 représente un exemple de dispositif d'antenne. Le dispositif d'antenne 1 comporte une antenne spirale 2 et un réflecteur d'antenne 3. L'antenne spirale 2 comporte un support diélectrique 21 et deux brins électriquement conducteurs 22a et 22b de longueur identique et mutuellement enroulés autour d'un point central O pour former une spirale 23. Les brins 22a et 22b forment les éléments rayonnants de l'antenne spirale 2. Le premier brin 22a s'étend entre une extrémité intérieure B et une extrémité extérieure D de la spirale 23. Le deuxième brin 22b s'étend entre une extrémité intérieure A et une extrémité extérieure C de la spirale 23. L'antenne spirale 2 comporte également des moyens d'alimentation des éléments rayonnants, non représentés. Habituellement, les deux brins 22a et 22b sont alimentés par des signaux hyperfréquences en opposition de phase au niveau de leurs extrémités intérieures A et B. Le support diélectrique 21 est par exemple une plaque époxydique de type circuit imprimé. Il comporte une surface supérieure 24 et une surface inférieure 25 sensiblement planes et parallèles. Les brins 22a et 22b peuvent être fixés, imprimés ou gravés sur la surface supérieure 24. Le réflecteur d'antenne 3 comporte un support diélectrique 31, un plan de masse 32 et des ensembles de motifs conducteurs 33. Le support diélectrique 31 peut également être une plaque époxydique de type circuit imprimé. Il comporte une surface supérieure 34 et une surface inférieure 35 sensiblement planes et parallèles. Le plan de masse 32 et les motifs conducteurs 33 peuvent par exemple être fixés, imprimés ou gravés sur la surface inférieure 35 et sur la surface supérieure 34, respectivement. En particulier, toute technique classique de réalisation des circuits imprimés peut être utilisée pour réaliser les motifs conducteurs 33. Chaque motif conducteur 33 peut être électriquement relié au plan de masse 32, par exemple par l'intermédiaire de trous métallisés, non représentés, réalisés dans le support diélectrique 31. En configuration de fonctionnement, l'antenne spirale 2 est montée sur le réflecteur d'antenne 3, la surface inférieure 25 du support diélectrique 21 de l'antenne spirale 2 venant en vis-à-vis de la surface supérieure 34 du support diélectrique 31 du réflecteur d'antenne 3. Le support diélectrique 21 peut venir en appui directement sur les motifs conducteurs 33. Le support diélectrique 21 remplit alors une fonction d'isolation entre l'antenne spirale 2 et le réflecteur d'antenne 3. Cette isolation peut néanmoins être assurée par tout autre moyen.The figure 1 represents an example of an antenna device. The antenna device 1 comprises a spiral antenna 2 and an antenna reflector 3. The spiral antenna 2 comprises a dielectric support 21 and two electrically conductive strands 22a and 22b of identical length and mutually wound around a central point O to form a spiral 23. The strands 22a and 22b form the radiating elements of the spiral antenna 2. The first strand 22a extends between an inner end B and an outer end D of the spiral 23. The second strand 22b is extends between an inner end A and an outer end C of the spiral 23. The spiral antenna 2 also comprises means for supplying the radiating elements, not shown. Usually, the two strands 22a and 22b are powered by microwave signals in phase opposition at their inner ends A and B. The dielectric support 21 is for example a printed circuit epoxy plate. It comprises an upper surface 24 and a lower surface 25 substantially flat and parallel. The strands 22a and 22b can be fixed, printed or etched on the upper surface 24. The antenna reflector 3 comprises a dielectric support 31, a ground plane 32 and sets of patterns Conductors 33. The dielectric support 31 may also be an epoxy plate of the printed circuit type. It comprises an upper surface 34 and a lower surface 35 substantially flat and parallel. The ground plane 32 and the conductive patterns 33 may for example be fixed, printed or etched on the lower surface 35 and the upper surface 34, respectively. In particular, any conventional technique for producing printed circuits can be used to produce the conductive patterns 33. Each conductive pattern 33 can be electrically connected to the ground plane 32, for example via metallized holes, not shown, made in the dielectric support 31. In the operating configuration, the spiral antenna 2 is mounted on the antenna reflector 3, the lower surface 25 of the dielectric support 21 of the spiral antenna 2 coming opposite the upper surface 34 of the dielectric support 31 of the antenna reflector 3. The dielectric support 21 can bear directly on the conductive patterns 33. The dielectric support 21 then performs an isolation function between the spiral antenna 2 and the antenna reflector 3. This insulation may nevertheless be provided by any other means.

Sur la figure 1 est représentée une antenne filaire plane dite à spirale d'Archimède, c'est-à-dire une antenne filaire plane dans laquelle chaque brin a une épaisseur constante et un espacement constant vis-à-vis de l'autre brin. Néanmoins, l'invention s'applique aussi bien à tout type d'antenne plane en général, et à tout type d'antenne à spirale en particulier. Elle s'applique notamment aux antennes à spirale équiangulaire, également appelées antennes à spirale logarithmique, dans lesquelles la largeur des brins et l'espacement entre les brins augmentent en s'éloignant du centre. De même, l'antenne filaire plane de la figure 1 comporte deux brins électriquement conducteurs. Cependant, l'invention s'applique également à des antennes planes comportant un nombre différent de brins mais également à d'autres types de géométrie comme l'antenne sinueuse.On the figure 1 is represented a flat wire antenna said spiral Archimedes, that is to say a flat wire antenna in which each strand has a constant thickness and a constant spacing vis-à-vis the other strand. Nevertheless, the invention applies equally well to any type of plane antenna in general, and to any type of spiral antenna in particular. It applies in particular to equiangular spiral antennas, also called logarithmic spiral antennas, in which the width of the strands and the spacing between the strands increase as they move away from the center. Similarly, the wired antenna of the figure 1 has two electrically conductive strands. However, the invention also applies to planar antennas comprising a different number of strands but also to other types of geometry such as the sinuous antenna.

L'invention utilise les propriétés de fonctionnement des antennes planes. L'élément rayonnant d'une telle antenne, lorsqu'il est excité, émet des ondes électromagnétiques depuis une zone de fonctionnement localisée, liée à l'agencement relatif des brins et au déphasage du courant circulant dans les différents brins. Cette zone de fonctionnement présente la particularité de varier en fonction de la fréquence selon une loi propre à chaque type d'antenne plane. L'invention utilise donc les propriétés de fonctionnement des antennes planes pour adapter les structures à base de conducteur magnétique artificiel (CMA) au rayonnement électromagnétique local. En particulier, les motifs conducteurs ne présentent plus un agencement régulier périodique, mais leur forme géométrique et leurs dimensions varient entre différentes zones de fonctionnement. La forme géométrique et les dimensions des motifs conducteurs sont déterminées pour chaque zone de fonctionnement de manière à former dans ladite zone une surface à haute impédance à la fréquence correspondante. L'impédance de surface Zs est liée au coefficient de réflexion R par la relation suivante : R = Z s n Z s + n

Figure imgb0001
où n est l'impédance d'onde. Une surface à haute impédance, c'est-à-dire avec une valeur de Zs très élevée, est donc équivalente à une surface dont le coefficient de réflexion R tend vers un.The invention uses the operating properties of planar antennas. The radiating element of such an antenna, when excited, emits electromagnetic waves from a localized operating zone, related to the relative arrangement of the strands and the phase shift of the current flowing in the different strands. This operating zone has the particularity of varying according to the frequency according to a law specific to each type of plane antenna. The invention therefore uses the operating properties of planar antennas to adapt the structures based on artificial magnetic conductor (AMC) to local electromagnetic radiation. In particular, the conductive patterns no longer have a periodic regular arrangement, but their geometric shape and their dimensions vary between different operating areas. The geometric shape and the dimensions of the conductive patterns are determined for each operating zone so as to form in said zone a high impedance surface at the corresponding frequency. The surface impedance Z s is related to the reflection coefficient R by the following relation: R = Z s - not Z s + not
Figure imgb0001
where n is the wave impedance. A high impedance surface, that is to say with a very high value of Z s , is therefore equivalent to a surface whose reflection coefficient R tends to one.

La figure 2 illustre des étapes possibles du procédé de conception d'un réflecteur d'antenne selon l'invention pour une antenne plane. Pour la suite de la description, on continue à considérer le cas particulier d'une antenne spirale comme celle représentée à la figure 1. Le procédé s'applique néanmoins à tout type d'antenne plane. Dans une première étape 101, le rayonnement émis par l'antenne spirale 2 seule, c'est-à-dire sans réflecteur d'antenne, est caractérisé. Plus précisément, on détermine des distributions de champs en amplitude et en phase du rayonnement électromagnétique émis par l'antenne spirale 2 dans la zone de champ proche dans un plan sensiblement parallèle au plan de l'antenne spirale 2.The figure 2 illustrates possible steps of the method of designing an antenna reflector according to the invention for a planar antenna. For the rest of the description, we continue to consider the particular case of a spiral antenna like the one shown in FIG. figure 1 . The method nevertheless applies to any type of plane antenna. In a first step 101, the radiation emitted by the spiral antenna 2 alone, that is to say without antenna reflector, is characterized. More precisely, amplitude and phase field distributions of the electromagnetic radiation emitted by the spiral antenna 2 are determined in the near-field zone in a plane substantially parallel to the plane of the spiral antenna 2.

Les distributions d'amplitude sont déterminées successivement pour au moins deux fréquences appartenant à la bande de fréquence de fonctionnement de l'antenne spirale 2. A cet effet, les brins 22a et 22b de l'antenne spirale 2 sont alimentés à leurs extrémités intérieures A et B par des courants de mêmes amplitudes, présentant en général une différence de phase de 180°. Le rayonnement émis par l'antenne spirale 2 présente une amplitude maximale lorsque les courants circulant dans les brins 22a et 22b se trouvent localement en phase. Du fait de la configuration de l'antenne spirale 2 et de l'alimentation dissymétrique, les courants se retrouvent en phase au voisinage d'un cercle de diamètre D égal à la longueur d'onde À du rayonnement électromagnétique émis par l'antenne spirale 2 divisée par le nombre Pi (D = λ/π). En pratique, le rayonnement électromagnétique émis par une antenne spirale présente une amplitude maximum dans une zone s'apparentant à un anneau circulaire dont le diamètre central est le diamètre précité.The amplitude distributions are determined successively for at least two frequencies belonging to the operating frequency band of the spiral antenna 2. For this purpose, the strands 22a and 22b of the spiral antenna 2 are fed at their inner ends A and B by currents with the same amplitudes, generally presenting a difference in phase of 180 °. The radiation emitted by the spiral antenna 2 has a maximum amplitude when the currents flowing in the strands 22a and 22b are locally in phase. Due to the configuration of the spiral antenna 2 and the asymmetrical power supply, the currents are in phase in the vicinity of a circle of diameter D equal to the wavelength λ of the electromagnetic radiation emitted by the spiral antenna. 2 divided by the number Pi (D = λ / π). In practice, the electromagnetic radiation emitted by a spiral antenna has a maximum amplitude in a zone resembling a circular ring whose central diameter is the aforementioned diameter.

Les figures 3a et 3b représentent la distribution d'amplitude du rayonnement électromagnétique émis par l'antenne spirale 2 à une fréquence de fonctionnement donnée dans un plan appartenant à la zone de champ proche parallèle au plan de l'antenne spirale 2. Sur la figure 3a, on distingue des anneaux 301 à 307 correspondant à différentes amplitudes de rayonnement. Les anneaux 301 et 307, 302 et 305, 303, 304, et 306 présentent par exemple des amplitudes respectivement égales à 3.10-7 J/m3, 3.10-6 J/m3, 6.10-6 J/m3, 5.10-6 J/m3, et 1,5.10-6 J/m3. L'anneau circulaire 301 correspond ainsi à la zone où le rayonnement électromagnétique présente une amplitude maximale à la fréquence de fonctionnement donnée. La figure 3b représente la distribution d'amplitude du rayonnement électromagnétique en fonction de la distance, projetée sur le plan de l'antenne, du centre O de la spirale 23. La distribution d'amplitude est représentée sur les figures 3a et 3b comme une quantité d'énergie rayonnée par mètre cube (J/m3). Toute autre grandeur peut cependant être utilisée dans la mesure où elle permet de déterminer la puissance du rayonnement distribuée dans un plan proche de l'antenne spirale 2. A partir de cette distribution d'amplitude, il est possible de déterminer la zone où le rayonnement électromagnétique a la plus forte amplitude, appelée zone de fonctionnement 310. Dans le cas d'une antenne spirale, la zone de fonctionnement peut être définie par un rayon minimal Rmin et un rayon maximal Rmax correspondant à une valeur seuil d'amplitude S prédéterminée. La valeur du seuil S est par exemple choisie sensiblement égale à 25% de l'amplitude maximale du rayonnement électromagnétique, cette valeur s'avérant donner de bons résultats. La zone de fonctionnement est déterminée pour au moins deux fréquences appartenant à la bande de fréquence de fonctionnement de l'antenne spirale. Après la détermination de la distribution d'amplitude du rayonnement à une première fréquence donnée, une ou des distributions d'amplitude sont déterminées à une autre ou d'autres fréquences de fonctionnement données.The Figures 3a and 3b represent the amplitude distribution of the electromagnetic radiation emitted by the spiral antenna 2 at a given operating frequency in a plane belonging to the near-field area parallel to the plane of the spiral antenna 2. On the figure 3a , there are rings 301 to 307 corresponding to different amplitudes of radiation. The rings 301 and 307, 302 and 305, 303, 304, and 306 for example have amplitudes equal to 3.10 -7 J / m 3 , 3.10 -6 J / m 3 , 6.10 -6 J / m 3 , 5.10 respectively . 6 J / m 3 , and 1.5.10 -6 J / m 3 . The circular ring 301 thus corresponds to the zone where the electromagnetic radiation has a maximum amplitude at the given operating frequency. The figure 3b represents the amplitude distribution of the electromagnetic radiation as a function of the distance, projected on the plane of the antenna, from the center O of the spiral 23. The amplitude distribution is represented on the Figures 3a and 3b as a quantity of energy radiated per cubic meter (J / m 3 ). However, any other magnitude can be used as long as it makes it possible to determine the power of the radiation distributed in a plane close to the spiral antenna 2. From this amplitude distribution, it is possible to determine the zone where the radiation at the highest amplitude, called the operating zone 310. In the case of a spiral antenna, the operating zone may be defined by a minimum radius R min and a maximum radius R max corresponding to an amplitude threshold value S predetermined. For example, the value of the threshold S is chosen to be substantially equal to 25% of the maximum amplitude of the electromagnetic radiation, this value proving to give good results. The operating zone is determined for at least two frequencies belonging to the operating frequency band of the spiral antenna. After determining the amplitude distribution of the radiation at a given first frequency, one or more amplitude distributions are determined at another or other given operating frequencies.

Dans une deuxième étape 102, pour chaque distribution d'amplitude, c'est-à-dire pour chaque fréquence de fonctionnement donnée ou pour chaque zone de fonctionnement, la forme et les dimensions d'un ensemble de motifs conducteurs 33 est déterminée de manière à ce que, lorsqu'ils sont disposés au voisinage de la zone de fonctionnement considérée, les motifs conducteurs 33 de cet ensemble forment localement une surface haute impédance à la fréquence de fonctionnement considérée. Ainsi, en configuration normale, lorsque l'antenne spirale 2 est montée sur le réflecteur d'antenne 3, chaque zone de fonctionnement à une fréquence donnée se trouve en vis-à-vis de la surface haute impédance à ladite fréquence, formée par l'ensemble de motifs conducteurs 33 correspondant. Sur la figure 1, deux ensembles 331 et 332 de motifs conducteurs 33 sont représentés. Il est bien entendu possible de déterminer un plus grand nombre de distributions d'amplitude du rayonnement correspondant à différentes fréquences de fonctionnement, de manière à déterminer au moins autant d'ensembles de motifs conducteurs. Il est également possible de déterminer des ensembles de motifs conducteurs par interpolation de plusieurs distributions d'amplitude. Par ailleurs, la forme et les dimensions des motifs conducteurs 33 d'un ensemble peuvent être déterminées dès que la zone de fonctionnement à la fréquence considérée est déterminée. Autrement dit, l'ordre des première et deuxième étapes du procédé n'a d'importance qu'en ce qui concerne une fréquence de fonctionnement particulière.In a second step 102, for each amplitude distribution, that is to say for each given operating frequency or for each operating zone, the shape and dimensions of a set of conductive patterns 33 are determined when they are arranged in the vicinity of the operating zone in question, the conductive patterns 33 of this set locally form a high impedance surface at the operating frequency considered. Thus, in the normal configuration, when the spiral antenna 2 is mounted on the antenna reflector 3, each operating zone at a given frequency is opposite the high impedance surface at said frequency formed by the antenna. corresponding set of conductive patterns 33. On the figure 1 two sets 331 and 332 of conductive patterns 33 are shown. It is of course possible to determine a larger number of radiation amplitude distributions corresponding to different operating frequencies, so as to determine at least as many sets of conductive patterns. It is also possible to determine sets of conductive patterns by interpolation of several amplitude distributions. Moreover, the shape and dimensions of the conductive patterns 33 of an assembly can be determined as soon as the operating zone at the frequency in question is determined. In other words, the order of the first and second steps of the process is of importance only with respect to a particular operating frequency.

La deuxième étape 102 peut par exemple être réalisée par les sous-étapes suivantes. Dans une première sous-étape, on considère des structures CMA classiques, c'est-à-dire dont les motifs conducteurs sont des rectangles agencés suivant une matrice régulière, donc périodique, dont l'épaisseur du support diélectrique est sensiblement égale à celle du support diélectrique 31 du réflecteur d'antenne 3 selon l'invention. On détermine, pour ces structures CMA classiques et pour plusieurs fréquences de fonctionnement appartenant à la fréquence de fonctionnement de l'antenne spirale 2, les dimensions (longueur et largeur) des motifs conducteurs de la structure CMA classique permettant de former une surface à haute impédance au voisinage de la fréquence de fonctionnement considérée. Dans une deuxième sous-étape, pour chaque fréquence de fonctionnement considérée, on conforme les motifs conducteurs des structures CMA classiques à la zone de fonctionnement correspondante de l'antenne spirale, chaque motif conducteur conservant sensiblement une même surface que celle considérée pour la topologie classique. Dans une antenne spirale, les motifs conducteurs prennent donc une forme annulaire. La figure 4 illustre le résultat de cette sous-étape. Un ensemble 333 de motifs conducteurs 33 est disposé suivant une périodicité annulaire sur la surface supérieure 34 du support diélectrique 31 et couvre la zone de fonctionnement considérée de l'antenne spirale 2. Dans une troisième sous-étape, on construit un diagramme de phase résultant de l'association des différents diagrammes de phase associés chacun à l'une des structures CMA classiques considérées. La figure 5 représente un exemple d'un tel diagramme de phase. A chaque fréquence de fonctionnement est associée, d'une part, une zone de fonctionnement, par exemple définie par un rayon de l'antenne spirale 2 et, d'autre part, un diagramme de phase d'un ensemble de motifs conducteurs 33 correspondant à une structure CMA classique. Dans une quatrième sous-étape, on choisit, à partir du diagramme de phase de la figure 5, au moins deux ensembles de motifs conducteurs 33 de manière à couvrir les différentes zones de fonctionnement de l'antenne spirale 2 sans qu'il y ait recouvrement des motifs conducteurs 33 entre les différents ensembles. Eventuellement, l'agencement des ensembles de motifs conducteurs peut être sensiblement modifié de manière à éviter des recouvrements. Dans une antenne spirale, les motifs conducteurs 33 se trouvent agencés de manière non pas périodique mais pseudopériodique. La figure 6 représente, en vue de dessus, un exemple de réflecteur d'antenne 3 selon l'invention adapté à une antenne spirale. Le réflecteur d'antenne 3 comporte cinq ensembles 331 à 335 de motifs conducteurs 33 dont les surfaces sont de plus en plus grandes à mesure que l'on s'éloigne du centre du réflecteur d'antenne 3. Chaque ensemble 331 à 335 forme une surface à haute impédance à la fréquence rayonnée localement par l'antenne spirale. Le caractère de haute impédance peut ainsi être maintenu sur toute la surface du réflecteur d'antenne 3, et donc sur toute la bande de fréquence de fonctionnement de l'antenne spirale. Du fait de l'évolution des dimensions des motifs conducteurs 33 des différents ensembles, le réflecteur d'antenne 3 peut être qualifié de structure quasi-conducteur magnétique artificiel.The second step 102 may for example be performed by the following substeps. In a first sub-step, conventional CMA structures are considered, that is to say whose conductive patterns are rectangles arranged in a regular matrix, therefore periodic, whose thickness of the dielectric support is substantially equal to that of the support dielectric 31 of the antenna reflector 3 according to the invention. For these conventional CMA structures and for several operating frequencies belonging to the operating frequency of the spiral antenna 2, the dimensions (length and width) of the conductive patterns of the conventional CMA structure for forming a high impedance surface are determined. in the vicinity of the operating frequency considered. In a second sub-step, for each operating frequency considered, the conductive patterns of the conventional CMA structures are conformed to the corresponding operating zone of the spiral antenna, each conductive pattern retaining substantially the same surface as that considered for the conventional topology. . In a spiral antenna, the conductive patterns therefore take an annular shape. The figure 4 illustrates the result of this substep. An assembly 333 of conductive patterns 33 is arranged at an annular periodicity on the upper surface 34 of the dielectric support 31 and covers the considered operating zone of the spiral antenna 2. In a third substep, a phase diagram resulting from the association of the different phase diagrams each associated with one of the conventional CMA structures considered. The figure 5 represents an example of such a phase diagram. At each operating frequency is associated, on the one hand, an operating zone, for example defined by a radius of the spiral antenna 2 and, on the other hand, a phase diagram of a set of corresponding conductive patterns 33. to a classic CMA structure. In a fourth sub-step, we choose, from the phase diagram of the figure 5 at least two sets of conductive patterns 33 so as to cover the different operating zones of the spiral antenna 2 without overlapping the conductive patterns 33 between the different sets. Optionally, the arrangement of sets of conductive patterns may be substantially modified to avoid overlaps. In a spiral antenna, the conductive patterns 33 are arranged not in a periodic but pseudoperiodic manner. The figure 6 represents, in top view, an example of antenna reflector 3 according to the invention adapted to a spiral antenna. The antenna reflector 3 comprises five sets 331 to 335 of conductive patterns 33 whose surfaces are larger and larger as one moves away from the center of the antenna reflector 3. Each set 331 to 335 forms a high impedance surface at the frequency radiated locally by the spiral antenna. The high impedance character can thus be maintained over the entire surface of the antenna reflector 3, and therefore over the entire operating frequency band of the spiral antenna. Due to the evolution of the dimensions of the conductive patterns 33 of the different assemblies, the antenna reflector 3 can be called an artificial magnetic quasi-conductive structure.

Claims (14)

  1. A method for producing an antenna device as claimed in claim 7, the method comprising the following steps:
    - a step (101) of determining amplitude distributions of the electromagnetic radiation that can be emitted by the planar antenna (2) in the near field zone in a plane substantially parallel to the surface (24) of the antenna support (21) for at least two distinct frequencies belonging to the operating frequency band of the planar antenna (2);
    - a step (102) of determining, for each amplitude distribution, the shape and dimensions of a set (331-335) of conductive patterns (33) to be disposed in the vicinity of the zone where the electromagnetic radiation has the greatest amplitude, so that each set (331-335) of conductive patterns (33) locally forms a high impedance surface at the frequency corresponding to the considered amplitude distribution.
  2. The method as claimed in claim 1, wherein the step (102) of determining the shape and dimensions of a set (331-335) of conductive patterns (33) comprises a sub-step comprising determining the dimensions of the conductive patterns of a structure of the artificial magnetic conductor type, the conductive patterns of which are rectangles arranged according to a regular matrix allowing a high impedance surface to be formed in the vicinity of the considered operating frequency.
  3. The method as claimed in claim 2, wherein the step (102) of determining the shape and dimensions of a set (331-335) of conductive patterns (33) comprises a sub-step involving causing the rectangular conductive patterns to conform to the zone where the electromagnetic radiation has the greatest amplitude to the considered operating frequency, each conductive pattern substantially maintaining the same surface.
  4. The method as claimed in any one of claims 2 and 3, wherein the step (102) of determining the shape and dimensions of a set (331-335) of conductive patterns (33) comprises a sub-step involving constructing a phase pattern resulting from the association of various phase patterns each associated with one of the artificial magnetic conductor type structures, the conductive patterns of which are rectangles.
  5. The method as claimed in claims 3 and 4, wherein the step (102) of determining the shape and dimensions of a set (331-335) of conductive patterns (33) comprises a sub-step comprising selecting, on the basis of the phase pattern, at least two sets (331-335) of conductive patterns (33) so as to cover the various zones of the planar antenna (2) where the electromagnetic radiation has the greatest amplitudes without overlap of adjacent conductive patterns (33).
  6. The method as claimed in any one of the preceding claims, wherein a zone where the electromagnetic radiation has the greatest amplitude is determined on the basis of a predetermined threshold value (S).
  7. An antenna device comprising a planar antenna (2) comprising:
    - an antenna support (21), a surface (24) of which is substantially flat; and
    - a radiating element (23) mounted on the surface (24) of the antenna support (21), able to emit radiation at least at two distinct operating frequencies, each operating frequency being emitted from an operating zone distinct from the other zones,
    - an antenna reflector (3) comprising:
    - a ground plane (32) forming a substantially flat surface (35); and
    - a set (331-335) of conductive patterns (33) for each operating frequency, the sets (331-335) of conductive patterns (33) being disposed in a non-contiguous manner in a plane substantially parallel to the surface (35) of the ground plane, each set of conductive patterns being opposite an operating zone of the radiating element, said radiating element (23) comprising electrically conductive strands (22a, 22b) mutually wound around a central point (O) in order to form a spiral (23), the sets (331-335) of conductive patterns (33) forming concentric rings centred on the central point (O), the surface of the conductive patterns (33) increasing with the distancing of the conductive patterns (33) from the centre of the antenna reflector (3);
    the planar antenna (2) being mounted on the reflector antenna (3) such that the surface (24) of the antenna support (21) is substantially parallel to the surface (35) of the ground plane (32).
  8. The antenna device as claimed in claim 7, wherein the planar antenna (2) is an Archimedean spiral antenna.
  9. The antenna device as claimed in claim 7, wherein the planar antenna (2) is a logarithmic spiral antenna.
  10. The antenna device as claimed in claim 7, wherein the planar antenna (2) is a sinuous antenna.
  11. The antenna device as claimed in any one of claims 7 to 10, wherein the shape and the dimensions of the conductive patterns (33) are substantially identical in each set (331-335).
  12. The antenna device as claimed in any one of claims 7 to 11, wherein the reflector antenna (3) further comprises a dielectric support (31) comprising a substantially flat and parallel upper surface (34) and lower surface (35), the ground plane (32) being mounted on the lower surface (35) and the conductive patterns (33) being mounted on the upper surface (34).
  13. The antenna device as claimed in any one of claims 7 to 12, wherein the conductive patterns (33) are electrically connected to the ground plane (32).
  14. The antenna device as claimed in any one of claims 12 to 13, wherein the conductive patterns (33) are electrically connected to the ground plane (32) by means of interconnection holes produced in the dielectric support (31).
EP11157387.9A 2010-03-09 2011-03-08 Antenna device with a planar antenna and a wide band reflector and method of realizing of the reflector Active EP2365584B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1000943A FR2957462B1 (en) 2010-03-09 2010-03-09 ANTENNA DEVICE COMPRISING A PLANAR ANTENNA AND A BROADBAND ANTENNA REFLECTOR AND METHOD FOR PRODUCING THE ANTENNA REFLECTOR

Publications (2)

Publication Number Publication Date
EP2365584A1 EP2365584A1 (en) 2011-09-14
EP2365584B1 true EP2365584B1 (en) 2018-07-11

Family

ID=42941862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11157387.9A Active EP2365584B1 (en) 2010-03-09 2011-03-08 Antenna device with a planar antenna and a wide band reflector and method of realizing of the reflector

Country Status (3)

Country Link
EP (1) EP2365584B1 (en)
ES (1) ES2687170T3 (en)
FR (1) FR2957462B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2965669B1 (en) * 2010-10-01 2012-10-05 Thales Sa BROADBAND ANTENNA REFLECTOR FOR CIRCULAR POLARIZED PLANE WIRE ANTENNA AND METHOD FOR PRODUCING THE ANTENNA DEFLECTOR
EP3504751B1 (en) * 2016-08-29 2022-11-23 Arralis Holdings Limited A multiband circularly polarised antenna
CN109904619B (en) * 2019-01-25 2021-06-11 东南大学 Planar equiangular spiral line type broadband frequency selective surface
CN113675594B (en) * 2021-07-06 2022-09-13 北京交通大学 High-efficiency leaky-wave antenna
CN116666990B (en) * 2023-07-26 2023-10-31 南京理工大学 Characteristic mode design method of reconfigurable super-surface absorber and super-surface absorber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905014A (en) * 1988-04-05 1990-02-27 Malibu Research Associates, Inc. Microwave phasing structures for electromagnetically emulating reflective surfaces and focusing elements of selected geometry
JP2007096868A (en) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp Reflecting plate and reflector antenna provided with the reflecting plate
US7855689B2 (en) * 2007-09-26 2010-12-21 Nippon Soken, Inc. Antenna apparatus for radio communication
FR2922687B1 (en) * 2007-10-23 2011-06-17 Thales Sa COMPACT BROADBAND ANTENNA.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2957462B1 (en) 2015-06-26
ES2687170T3 (en) 2018-10-24
EP2365584A1 (en) 2011-09-14
FR2957462A1 (en) 2011-09-16

Similar Documents

Publication Publication Date Title
EP2622685B1 (en) Broadband antenna reflector for a circularly-polarized planar wire antenna and method for producing said antenna reflector
EP1407512B1 (en) Antenna
EP0575211B1 (en) Radiating element of an antenna with wide bandwidth and antenna array comprising such elements
EP0805512B1 (en) Compact printed antenna with little radiation in elevation
EP2365584B1 (en) Antenna device with a planar antenna and a wide band reflector and method of realizing of the reflector
CA2148796C (en) Monopolar wire-plate antenna
WO2005036697A1 (en) Low volume internal antenna
CA2640481C (en) Circularly or linearly polarized antenna
EP3469657A1 (en) Broadband wire antenna with resistive patterns having variable resistance
EP2817850B1 (en) Electromagnetic band gap device, use thereof in an antenna device, and method for determining the parameters of the antenna device
WO2019211446A1 (en) Broadband wire antenna
EP2469656B1 (en) High-power broadband antenna
FR3017493A1 (en) COMPACT WIRED ANTENNA WITH RESISTIVE PATTERNS
EP1350285A1 (en) Electromagnetic probe
CA2800949C (en) Linear dual-polarised wide band compact antenna
FR2939567A1 (en) High frequency wireless connection antenna for transmitting animated image, has core and pillars arranged such that coupling of core with pillars has intensity at each pillar and/or intensity varies from one section to other of one pillar
WO2020187821A1 (en) Compact directional antenna, device comprising such an antenna
FR3031396A1 (en) ANTENNA FOR RADAR, ANTENNA STRUCTURE AND RADAR
FR2522888A1 (en) ANTENNA WITH DOUBLE REFLECTOR WITH POLARIZATION TRANSFORMER INCORPORATED
EP2736118A1 (en) Nested-loop antenna system and vehicle including such an antenna system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120309

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170202

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180424

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1017878

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011049897

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2687170

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181024

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1017878

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181011

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181012

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181111

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011049897

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

26N No opposition filed

Effective date: 20190412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190308

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230228

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230407

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 14

Ref country code: GB

Payment date: 20240215

Year of fee payment: 14