EP2358851B2 - Use of methanesulfonic acid for producing fatty acid esters - Google Patents

Use of methanesulfonic acid for producing fatty acid esters Download PDF

Info

Publication number
EP2358851B2
EP2358851B2 EP09756298.7A EP09756298A EP2358851B2 EP 2358851 B2 EP2358851 B2 EP 2358851B2 EP 09756298 A EP09756298 A EP 09756298A EP 2358851 B2 EP2358851 B2 EP 2358851B2
Authority
EP
European Patent Office
Prior art keywords
fatty acid
oil
process according
transesterification
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09756298.7A
Other languages
German (de)
French (fr)
Other versions
EP2358851A1 (en
EP2358851B1 (en
Inventor
Stefan Fassbender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41716465&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2358851(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to PL09756298T priority Critical patent/PL2358851T5/en
Priority to EP09756298.7A priority patent/EP2358851B2/en
Publication of EP2358851A1 publication Critical patent/EP2358851A1/en
Application granted granted Critical
Publication of EP2358851B1 publication Critical patent/EP2358851B1/en
Publication of EP2358851B2 publication Critical patent/EP2358851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols

Definitions

  • the invention relates to a process for the preparation of fatty acid esters and / or fatty acid ester mixtures of monohydric alcohols having 1 to 5 carbon atoms by transesterification of fatty acid glycerides with short-chain monohydric alcohols having 1 to 5 carbon atoms in the presence of a basic catalyst, in which methanesulfonic acid is used. Furthermore, the invention relates to the use of methanesulfonic acid for the preparation of these fatty acid esters.
  • the fatty acid esters prepared according to the invention are suitable as pharmaceutical, dietary or cosmetic raw materials, as intermediates for further fatty acid derivatives, such as fatty alcohols, fatty amines or surfactants.
  • Fatty acid esters are also particularly suitable as lubricants, plasticizers, hydraulic oils, fuels or fuels for the operation of diesel engines.
  • fatty acid esters has long been known.
  • biodiesel is nowadays obtained on an industrial scale by means of a catalytic transesterification of vegetable oil.
  • This is usually dehydrated, deacidified and degummed oil with a molar excess of alcohol (usually methanol) of 6: 1 using 1 wt .-% catalyst based on the amount of the oil used (usually KOH) above the boiling point of the alcohol reacted.
  • the fatty acids contained in the fat molecules of the oil are split off catalytically and react with the present alcohol to the fatty acid ester.
  • Fats and oils are usually triglycerides, which means that one fat molecule contains three fatty acids bound to one glycerol molecule.
  • a complete transesterification reaction as it is carried out in the production of biodiesel, per molecule of fat or oil, three "molecules of biodiesel" and one molecule of glycerol.
  • Intermediates of this reaction are mono- and diglycerides.
  • Mono- and diglycerides consist of a glycerol backbone, hereinafter also referred to as glycerol backbone, to which one (monoglyceride) or two (diglyceride) fatty acids are bound. Since both polar hydroxide groups and apolar hydrocarbon chains are present in mono- and diglycerides, these have amphiphilic properties and almost always change the polarity of this solvent in organic solvents.
  • the transesterification requires a reaction time of about 8 h, with currently a conversion of about 98% is achieved.
  • the glycerol which is insoluble in the fatty acid alkyl ester (FASE), is removed from the biodiesel by means of a phase separator and used as a technical or pharmaceutical raw material after chemical and distillative purification.
  • the excess alcohol contained in the fatty acid alkyl esters (FASE) is separated by distillation and returned to the process. After removal and recycling of the excess alcohol, a dilute organic or inorganic acid is added to neutralize the remaining alkaline catalysts (eg KOH) and, after phase separation, the fatty acid ester phase is stripped off.
  • a dilute organic or inorganic acid is added to neutralize the remaining alkaline catalysts (eg KOH) and, after phase separation, the fatty acid ester phase is stripped off.
  • organic or inorganic acids are phosphoric, sulfuric, hydrochloric, nitric, boronic, formic, acetic, lactic, gluconic, oxalic, succinic, maleic, pelene, malic and citric acid and also called organic sulfonic acids and sulfuric acid half esters.
  • Sulfuric acid is currently preferably used in the neutralization of the alkaline catalysts.
  • the object of the present invention is to provide a process for the preparation of fatty acid esters with improved yields.
  • the process for the preparation of fatty acid esters should be able to be integrated into known production processes without great expenditure on equipment.
  • the residence time of the reaction products before carrying out step (b) is selected so that a phase separation into a fatty acid ester phase and a glycerol phase takes place.
  • the heavy glycerol phase is then removed and the catalyst residues remaining in the ester phase are neutralized by addition of the methanesulfonic acid.
  • the transesterification in step (a) can generally be carried out in one or two or more stages, i. the fatty acid glyceride is either transesterified with the entire amount of lower alcohol and catalyst or in a first stage, only a portion of the required amount of short-chain monohydric alcohol and catalyst is used for transesterification and after the deposition and separation of a glycerol phase in a second stage or in further stages, the remaining amount (s) of short-chain, monohydric alcohol and catalyst for transesterification used in the same way, the two- and multi-stage operations bring the advantage of further reduction of excess alcohol and also increased yields of fatty acid ester with it.
  • the transesterification according to an embodiment of the invention according to the two-stage procedure, in the first stage preferably 60% to 90% of the total required amount of short-chain alcohol and catalyst and in the second stage 10% to 40% of the total required amount of short-chain alcohol and catalyst used.
  • the treatment with the methanesulfonic acid can take place immediately after the second or the last transesterification stage, i. if appropriate, without previously separating off the glycerol fraction formed in the second or last stage.
  • the transesterification by the process according to the invention is usually carried out at ambient temperatures of about +5 to + 40 ° C and atmospheric pressure and can in principle in any open or closed container of any size, which is advantageously equipped with a discharge device on the ground, are running.
  • the method according to the invention can be carried out using agitators or mechanical intensive mixers.
  • the corresponding apparatus and designs are known to those skilled in the field of apparatus engineering, for this reason will not be discussed in more detail here.
  • the inventive method can also be carried out continuously.
  • Suitable fatty acid glycerides which can be transesterified in the process according to the invention are naturally occurring vegetable and animal fats and oils, such as soybean oil, palm oil and palm fat, coconut oil and coconut fat, sunflower oil, rapeseed oil, cottonseed oil, linseed oil, castor oil, peanut oil, olive oil, safflower oil, Evening primrose oil, borage oil, carob seed oil, etc., as well as mono-, di- and triglycerides such as triolein, tripalmitin, tristearin, glycerol monooleate and glycerol monostearate isolated from the aforementioned vegetable oils and fats or obtained by interesterification or synthetically prepared.
  • waste oils such as used frying oil can also be used in the context of the process according to the invention.
  • Sunflower oil and rapeseed oil are preferably used in the process according to the invention.
  • the vegetable oils and fats can be used in a refined or unrefined manner and can contain, in addition to mucilages, turbid substances and other impurities, free fatty acids up to a proportion of 20% by weight and beyond.
  • dehydrated, deacidified and degummed fatty acid glycerides are used as starting materials for the process according to the invention. The use of these leads to a simplified control of the process and also brings increased yields with it.
  • monohydric alcohols those having 1 to 5 carbon atoms are used. These are preferably selected from methanol, ethanol, propanol, isopropanol, butanol, isobutanol, 3-methyl-1-butanol and neopentyl alcohol, and mixtures thereof. Especially preferred are methanol and ethanol, most preferred is methanol.
  • alkali metal or alkaline earth metal compounds in the form of the oxides, hydroxides, hydrides, carbonates, acetates or alcoholates of the short-chain alcohols having 1 to 5 carbon atoms, preferably sodium hydroxide, potassium hydroxide, sodium and potassium alkoxides of the short-chain monohydric compounds, are used as basic catalysts for transesterification Alcohols having 1 to 5 carbon atoms in question.
  • the basic catalysts are particularly preferably selected from KOH, NaOH, sodium and potassium methylate. Particularly preferred are potassium and sodium methylate.
  • the basic catalyst in the transesterification of fatty acid glycerides in an amount of 0.1 to 5 wt .-%, preferably in an amount of 0.5 to 1.5 wt .-%, based on the mass of the fatty acid glyceride used.
  • the lower, monohydric alcohol is added in an excess of 0.1 mol to 2.0 mol, based on 1 mol of glycerol-bound fatty acid.
  • water is used in an amount of from 0.5 to 20% by weight, based on the reaction mixture, of the transesterification of the fatty acid glycerides.
  • the basic catalyst in the form of an aqueous or alcoholic solution is added to the fatty acid glyceride.
  • the reaction mixture formed thereby can be added with a certain amount of water, which is in the range from 0.5 to 20% by weight, based on the total mass.
  • the addition of the water can be isolated or carried out in conjunction with the methanesulfonic acid.
  • the methanesulfonic acid is in the form of a 50 to 99%, preferably in the form of a 60 to 80%, particularly preferably in the form of a 70% aqueous solution added.
  • Another object of the present invention relates to the use of methanesulfonic acid in the production of fatty acid alkyl esters or mixtures thereof using basic catalysts in the transesterification of fatty acid glycerides, wherein the basic catalysts contained in the reaction product formed are neutralized after separation of a fatty acid ester phase.
  • FIG. 1 shows a block diagram of the process for the production of rapeseed oil methyl ester (RME).
  • rapeseed oil As fatty acid glyceride, rapeseed oil (Vollraffinat) was used from retail.
  • the catalysts NaOH, KOH, sodium methylate and potassium methylate, the solvent methanol and the sulfuric acid for the neutralization were purchased from the laboratory retailer.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureestern und/oder Fettsäureestergemischen einwertiger Alkohole mit 1 bis 5 Kohlenstoffatomen durch Umesterung von Fettsäureglyceriden mit kurzkettigen einwertigen Alkoholen mit 1 bis 5 Kohlenstoffatomen in Gegenwart eines basischen Katalysators, im Rahmen dessen Methansulfonsäure verwendet wird. Ferner betrifft die Erfindung die Verwendung von Methansulfonsäure zur Herstellung dieser Fettsäureester.The invention relates to a process for the preparation of fatty acid esters and / or fatty acid ester mixtures of monohydric alcohols having 1 to 5 carbon atoms by transesterification of fatty acid glycerides with short-chain monohydric alcohols having 1 to 5 carbon atoms in the presence of a basic catalyst, in which methanesulfonic acid is used. Furthermore, the invention relates to the use of methanesulfonic acid for the preparation of these fatty acid esters.

Die erfindungsgemäß hergestellten Fettsäureester eignen sich je nach eingesetzten Ausgangsmaterialien als pharmazeutische, diätische oder kosmetische Rohstoffe, als Zwischenprodukte für weitere Fettsäurederivate, wie Fettalkohole, Fettamine oder Tenside. Fettsäureester sind weiterhin als Schmiermittel, Weichmacher, Hydrauliköle, Brennstoffe oder Kraftstoffe zum Betrieb von Dieselmotoren besonders geeignet.Depending on the starting materials used, the fatty acid esters prepared according to the invention are suitable as pharmaceutical, dietary or cosmetic raw materials, as intermediates for further fatty acid derivatives, such as fatty alcohols, fatty amines or surfactants. Fatty acid esters are also particularly suitable as lubricants, plasticizers, hydraulic oils, fuels or fuels for the operation of diesel engines.

Infolge ihrer Eignung als Dieselkraftstoff haben Fettsäureester aus Gründen des Umweltschutzes, des Ersatzes fossiler durch erneuerbare Energiequellen in letzter Zeit besondere Bedeutung erlangt.As a result of their suitability as diesel fuel, fatty acid esters have become particularly important for reasons of environmental protection, the replacement of fossil fuels by renewable energy sources.

Die Herstellung der Fettsäureester ist seit langem bekannt. Insbesondere Biodiesel wird heutzutage im großtechnischen Maßstab mittels einer katalytischen Umesterung von Pflanzenöl gewonnen. Dabei wird meist entwässertes, entsäuertes und entschleimtes Öl mit einem molaren Alkoholüberschuss (meistens Methanol) von 6 : 1 unter Einsatz von 1 Gew.-% Katalysator bezogen auf die Menge des eingesetzten Öls (meist KOH) oberhalb der Siedetemperatur des Alkohols zur Reaktion gebracht. Die in den Fettmolekülen des Öls enthaltenen Fettsäuren werden dabei katalytisch abgespalten und reagieren mit dem vorliegenden Alkohol zu dem Fettsäureester. Fette und Öle sind in der Regel Triglyceride, d.h. dass ein Fettmolekül drei an ein Glycerinmolekül gebundene Fettsäuren enthält. Somit entstehen bei einer vollständigen Umesterungsreaktion, wie sie bei der Herstellung von Biodiesel durchgeführt wird, pro Molekül Fett bzw. Öl drei "Moleküle Biodiesel" sowie ein Molekül Glycerin. Zwischenprodukte dieser Reaktion sind Mono- und Diglyceride. Mono- und Diglyceride bestehen aus einem Glyceringrundgerüst, im Folgenden auch als Glycerinrückgrat bezeichnet, an das noch eine (Monoglycerid) oder zwei (Diglycerid) Fettsäuren gebunden sind. Da in Mono- und Diglyceriden sowohl polare Hydroxidgruppen als auch apolare Kohlenwasserstoffketten vorliegen, haben diese amphiphile Eigenschaften und verändern in organischen Lösungsmitteln fast immer die Polarität dieses Lösungsmittels.The production of fatty acid esters has long been known. In particular, biodiesel is nowadays obtained on an industrial scale by means of a catalytic transesterification of vegetable oil. This is usually dehydrated, deacidified and degummed oil with a molar excess of alcohol (usually methanol) of 6: 1 using 1 wt .-% catalyst based on the amount of the oil used (usually KOH) above the boiling point of the alcohol reacted. The fatty acids contained in the fat molecules of the oil are split off catalytically and react with the present alcohol to the fatty acid ester. Fats and oils are usually triglycerides, which means that one fat molecule contains three fatty acids bound to one glycerol molecule. Thus, in a complete transesterification reaction, as it is carried out in the production of biodiesel, per molecule of fat or oil, three "molecules of biodiesel" and one molecule of glycerol. Intermediates of this reaction are mono- and diglycerides. Mono- and diglycerides consist of a glycerol backbone, hereinafter also referred to as glycerol backbone, to which one (monoglyceride) or two (diglyceride) fatty acids are bound. Since both polar hydroxide groups and apolar hydrocarbon chains are present in mono- and diglycerides, these have amphiphilic properties and almost always change the polarity of this solvent in organic solvents.

Die Umesterung benötigt eine Reaktionszeit von etwa 8 h, wobei derzeit ein Umsatz von etwa 98 % erreicht wird.The transesterification requires a reaction time of about 8 h, with currently a conversion of about 98% is achieved.

Im Anschluss an die Reaktion wird das gebildete, in dem Fettsäurealkylester (FASE) unlösliche Glycerin mittels eines Phasenabscheiders aus dem Biodiesel entfernt und nach einer chemischen und destillativen Reinigung als technischer oder pharmazeutischer Rohstoff genutzt.Following the reaction, the glycerol, which is insoluble in the fatty acid alkyl ester (FASE), is removed from the biodiesel by means of a phase separator and used as a technical or pharmaceutical raw material after chemical and distillative purification.

Der in den Fettsäurealkylestern (FASE) enthaltene Überschussalkohol wird mittels Destillation abgetrennt und in den Prozess zurückgeführt. Nach Entfernen und Zurückführen des überschüssigen Alkohols wird zur Neutralisation der verbliebenen alkalischen Katalysatoren (z. B. KOH) eine verdünnte organische oder anorganische Säure hinzugegeben und nach erfolgter Phasentrennung die Fettsäureesterphase abgezogen. Ein derartiges Verfahren ist beispielsweise in der EP 0 658 183 A1 oder in der WO 2007/020 465 A1 offenbart. Als organische oder anorganische Säuren sind dabei Phosphor-, Schwefel-, Salz-, Salpeter-, Bor-, Ameisen-, Essig-, Milch-, Glucon-, Oxal-, Bernstein-, Malein-, Weln-, Äpfel- und Zitronensäure sowie organische Sulfonsäuren und Schwefelsäurehalbester genannt. Bevorzugt findet derzeit Schwefelsäure bei der Neutralisierung der alkalischen Katalysatoren Verwendung.The excess alcohol contained in the fatty acid alkyl esters (FASE) is separated by distillation and returned to the process. After removal and recycling of the excess alcohol, a dilute organic or inorganic acid is added to neutralize the remaining alkaline catalysts (eg KOH) and, after phase separation, the fatty acid ester phase is stripped off. Such a method is for example in the EP 0 658 183 A1 or in the WO 2007/020 465 A1 disclosed. As organic or inorganic acids are phosphoric, sulfuric, hydrochloric, nitric, boronic, formic, acetic, lactic, gluconic, oxalic, succinic, maleic, pelene, malic and citric acid and also called organic sulfonic acids and sulfuric acid half esters. Sulfuric acid is currently preferably used in the neutralization of the alkaline catalysts.

Der Absatz an Biodiesel in der Bundesrepublik Deutschland betrug im Jahre 2004 1,2 Millionen Tonnen und lag im Jahr 2005 bereits bei 1,8 Millionen Tonnen. Die vorstehend angeführten Mengen machen deutlich, dass es aus wirtschaftlicher Sicht sinnvoll ist, Verfahren zur Herstellung von Biodiesel zur Verfügung zu stellen, welche gegenüber den bisher genutzten Verfahren erhöhte Ausbeuten an Fettsäureestern liefern.The sales volume of biodiesel in the Federal Republic of Germany amounted to 1.2 million tons in 2004 and was already 1.8 million tons in 2005. The amounts given above make it clear that from an economic point of view it makes sense to provide processes for the production of biodiesel which, compared with the processes used hitherto, provide increased yields of fatty acid esters.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung von Fettsäureestern mit verbesserten Ausbeuten zur Verfügung zu stellen. Das Verfahren zur Herstellung von Fettsäureestern soll dabei ohne großen apparativen Aufwand in bekannte Herstellungsverfahren integriert werden können.The object of the present invention is to provide a process for the preparation of fatty acid esters with improved yields. The process for the preparation of fatty acid esters should be able to be integrated into known production processes without great expenditure on equipment.

Gelöst wird diese Aufgabe durch ein Verfahren zur Herstellung von Fettsäureestern oder Fettsäureestergemischen kurzkettiger einwertiger Alkohole mit 1 bis 5 Kohlenstoffatomen umfassend

  1. (a) die Umesterung von Fettsäureglyceriden mit kurzkettigen einwertigen Alkoholen mit 1 bis 5 Kohlenstoffatomen in Gegenwart zumindest eines basischen Katalysators zur Bildung eines Reaktionsgemisches, welches den Fettsäureester und/oder das Fettsäureestergemisch enthält, und
  2. (b) die Behandlung zumindest eines Teiles des bei der Umesterung in Schritt (a) gebildeten Reaktionsgemisches mit Methansulfonsäure, wobei in Schritt (a) nach erfolgter Umesterung und vor Durchführung des Schrittes (b) die Verweilzeit des Reaktionsgemisches so gewählt wird, dass eine Phasentrennung in eine Fettsäureesterphase und eine Glycerinphase stattfindet und die Fettsäureesterphase ausgebildet, abgetrennt und in Schritt (b) mit Methansulfonsäure behandelt wird.
This object is achieved by a process for the preparation of fatty acid esters or fatty acid ester mixtures of short-chain monohydric alcohols having 1 to 5 carbon atoms comprising
  1. (a) the transesterification of fatty acid glycerides with short-chain monohydric alcohols having 1 to 5 carbon atoms in the presence of at least one basic catalyst to form a reaction mixture containing the fatty acid ester and / or the fatty acid ester mixture, and
  2. (B) the treatment of at least a portion of the reaction mixture formed in the transesterification in step (a) with methanesulfonic acid, wherein in step (a) after the transesterification and before performing step (b), the residence time of the reaction mixture is selected so that a phase separation takes place in a fatty acid ester phase and a glycerol phase and the fatty acid ester phase is formed, separated and treated in step (b) with methanesulfonic acid.

Dabei stellt es sich heraus, dass sich insbesondere durch die Verwendung der Methansulfonsäuren im Rahmen des erfindungsgemäßen Verfahrens zur Neutralisation der bei der Umesterung in Verfahrensschritt (a) verwendeten basischen Katalysatoren deutlich höhere Ausbeuten an Fettsäureestern bzw. Fettsäureestergemischen im Vergleich zu üblichen Verfahren, bei denen z. B. eine Behandlung mit Schwefelsäure durchgeführt wird, erhalten lassen. "Die Behandlung zumindest eines Teiles des bei der Umesterung in Verfahrensschritt (a) gebildeten Reaktionsgemisches mit Methansulfonsäure" ist dabei so zu verstehen, dass die in dem gebildeten Reaktionsprodukt enthaltenen basischen Katalysatoren nach erfolgter Abtrennung der Fettsäureesterphase neutralisiert werden.It turns out that, in particular by the use of methanesulfonic in the process of the invention for neutralizing the basic catalysts used in the transesterification in step (a) significantly higher yields of fatty acid esters or fatty acid ester mixtures compared to conventional methods in which z , B. a treatment with sulfuric acid is carried out. "The treatment of at least part of the reaction mixture formed in the transesterification in process step (a) with methanesulfonic acid" is understood to mean that the basic catalysts contained in the formed reaction product are neutralized after separation of the fatty acid ester phase.

Gemäß der Erfindung wird nach erfolgter Umesterung in Schritt (a) die Verweilzeit der Reaktionsprodukte vor Durchführung des Schrittes (b) so gewählt, dass eine Phasentrennung in eine Fettsäureesterphase und eine Glycerinphase stattfindet. Die schwere Glycerinphase wird daraufhin entfernt, und die in der Esterphase verbliebenen Katalysatorreste werden durch Zugabe der Methansulfonsäure neutralisiert.According to the invention, after transesterification in step (a), the residence time of the reaction products before carrying out step (b) is selected so that a phase separation into a fatty acid ester phase and a glycerol phase takes place. The heavy glycerol phase is then removed and the catalyst residues remaining in the ester phase are neutralized by addition of the methanesulfonic acid.

Die Umesterung in Schritt (a) kann allgemein in einer oder in zwei oder in mehreren Stufen durchgeführt werden, d.h. das Fettsäureglycerid wird entweder mit der gesamten Menge an niederem Alkohol und Katalysator umgeestert oder es wird in einer ersten Stufe nur ein Teil der benötigen Menge an kurzkettigem, einwertigem Alkohol und Katalysator zur Umesterung eingesetzt und nach erfolgter Absetzung und Abtrennung einer Glycerinphase in einer zweiten Stufe oder in weiteren Stufen die restliche(n) Menge(n) an kurzkettigem, einwertigem Alkohol und Katalysator zur Umesterung in gleicher Weise eingesetzt, wobei die zwei- und mehrstufigen Arbeitsweisen den Vorteil einer weiteren Verringerung des Alkoholüberschusses und zudem erhöhte Ausbeuten an Fettsäureester mit sich bringen.The transesterification in step (a) can generally be carried out in one or two or more stages, i. the fatty acid glyceride is either transesterified with the entire amount of lower alcohol and catalyst or in a first stage, only a portion of the required amount of short-chain monohydric alcohol and catalyst is used for transesterification and after the deposition and separation of a glycerol phase in a second stage or in further stages, the remaining amount (s) of short-chain, monohydric alcohol and catalyst for transesterification used in the same way, the two- and multi-stage operations bring the advantage of further reduction of excess alcohol and also increased yields of fatty acid ester with it.

Erfolgt die Umesterung gemäß einer Ausführungsform der Erfindung nach der zweistufigen Arbeitsweise, werden in der ersten Stufe vorzugsweise 60 % bis 90 % der insgesamt benötigten Menge an kurzkettigem Alkohol und Katalysator und in der zweiten Stufe 10 % bis 40 % der insgesamt benötigten Menge an kurzkettigem Alkohol und Katalysator eingesetzt.If the transesterification according to an embodiment of the invention according to the two-stage procedure, in the first stage preferably 60% to 90% of the total required amount of short-chain alcohol and catalyst and in the second stage 10% to 40% of the total required amount of short-chain alcohol and catalyst used.

Bei der zwei- oder mehrstufigen Arbeitsweise kann die Behandlung mit der Methansulfonsäure unmittelbar nach der zweiten oder der jeweils letzten Umesterungsstufe erfolgen, d.h. gegebenenfalls ohne den in der zweiten oder letzten Stufe entstehenden Glycerinanteil vorher abzutrennen.In the two- or multi-stage operation, the treatment with the methanesulfonic acid can take place immediately after the second or the last transesterification stage, i. if appropriate, without previously separating off the glycerol fraction formed in the second or last stage.

Die Umesterung nach dem erfindungsgemäßen Verfahren erfolgt üblicherweise bei Umgebungstemperaturen von etwa +5 bis +40 °C und Atmosphärendruck und kann prinzipiell in jedem beliebigen offenen oder geschlossenen Behälter beliebiger Größe, der vorteilhafterweise mit einer Ablassvorrichtung am Boden ausgestattet ist, ausgeführt werden. Ebenso kann das erfindungsgemäße Verfahren unter Verwendung von Rühreinrichtungen bzw. mechanischen Intensiv-Vermischern durchgeführt werden. Die entsprechenden Apparate und Ausführungen sind dem Fachmann auf dem Gebiet der Apparatetechnik bekannt, aus diesem Grunde wird an dieser Stelle nicht näher darauf eingegangen werden.The transesterification by the process according to the invention is usually carried out at ambient temperatures of about +5 to + 40 ° C and atmospheric pressure and can in principle in any open or closed container of any size, which is advantageously equipped with a discharge device on the ground, are running. Likewise, the method according to the invention can be carried out using agitators or mechanical intensive mixers. The corresponding apparatus and designs are known to those skilled in the field of apparatus engineering, for this reason will not be discussed in more detail here.

Bei Vorhandensein geeigneter Dosiervorrichtungen, eines geeigneten Reaktors sowie eines entsprechenden Überwachungssystems kann das erfindungsgemäße Verfahren auch kontinuierlich durchgeführt werden.In the presence of suitable metering devices, a suitable reactor and a corresponding monitoring system, the inventive method can also be carried out continuously.

Als Fettsäureglyceride, welche in dem erfindungsgemäßen Verfahren umgeestert werden können, eignen sich natürlich vorkommende pflanzliche und tierische Fette und Öle, wie Sojaöl, Palmöl und Palmfett, Kokosöl und Kokosfett, Sonnenblumenöl, Rapsöl, Cottonöl, Leinöl, Rizinusöl, Erdnussöl, Olivenöl, Safloröl, Nachtkerzenöl, Borretschöl, Johannisbrotsamenöl usw., sowie aus den vorgenannten Pflanzenölen und Fetten isolierte oder durch Interesterifizierung gewonnene oder synthetisch hergestellte Mono-, Di- und Triglyceride wie Triolein, Tripalmitin, Tristearin, Glycerinmonooleat und Glycerinmonostearat. Ebenfalls können im Rahmen des erfindungsgemäßen Verfahrens auch Abfallöle wie gebrauchtes Frittieröl eingesetzt werden. Bevorzugt werden im erfindungsgemäßen Verfahren Sonnenblumenöl und Rapsöl verwendet.Suitable fatty acid glycerides which can be transesterified in the process according to the invention are naturally occurring vegetable and animal fats and oils, such as soybean oil, palm oil and palm fat, coconut oil and coconut fat, sunflower oil, rapeseed oil, cottonseed oil, linseed oil, castor oil, peanut oil, olive oil, safflower oil, Evening primrose oil, borage oil, carob seed oil, etc., as well as mono-, di- and triglycerides such as triolein, tripalmitin, tristearin, glycerol monooleate and glycerol monostearate isolated from the aforementioned vegetable oils and fats or obtained by interesterification or synthetically prepared. Likewise, waste oils such as used frying oil can also be used in the context of the process according to the invention. Sunflower oil and rapeseed oil are preferably used in the process according to the invention.

Die pflanzlichen Öle und Fette können raffiniert oder unraffiniert eingesetzt werden und können neben Schleimstoffen, Trübstoffen und anderen Verunreinigungen freie Fettsäuren bis zu einem Anteil von 20 Gew.-% und darüber hinaus enthalten. Gemäß einer weiteren Ausführungsform der Erfindung werden entwässerte, entsäuerte und entschleimte Fettsäureglyceride als Ausgangsstoffe für das erfindungsgemäße Verfahren eingesetzt. Die Verwendung dieser führt zu einer vereinfachten Kontrolle des Verfahrens und bringt zudem erhöhte Ausbeuten mit sich.The vegetable oils and fats can be used in a refined or unrefined manner and can contain, in addition to mucilages, turbid substances and other impurities, free fatty acids up to a proportion of 20% by weight and beyond. According to a further embodiment of the invention, dehydrated, deacidified and degummed fatty acid glycerides are used as starting materials for the process according to the invention. The use of these leads to a simplified control of the process and also brings increased yields with it.

Als kurzkettige, einwertige Alkohole werden solche mit 1 bis 5 Kohlenstoffatomen eingesetzt. Bevorzugt sind diese ausgewählt aus Methanol, Ethanol, Propanol, Isopropanol, Butanol, Isobutanol, 3-Methyl-1-butanol und Neopentylalkohol, sowie Mischungen dieser. Besonders bevorzugt sind Methanol und Ethanol, am meisten bevorzugt ist Methanol.As short-chain, monohydric alcohols, those having 1 to 5 carbon atoms are used. These are preferably selected from methanol, ethanol, propanol, isopropanol, butanol, isobutanol, 3-methyl-1-butanol and neopentyl alcohol, and mixtures thereof. Especially preferred are methanol and ethanol, most preferred is methanol.

Im Rahmen des erfindungsgemäßen Verfahrens kommen als basische Katalysatoren zur Umesterung Alkali- oder Erdalkalimetallverbindungen in Form der Oxide, Hydroxide, Hydride, Carbonate, Acetate oder Alkoholate der kurzkettigen Alkohole mit 1 bis 5 Kohlenstoffatomen, bevorzugt Natriumhydroxid, Kaliumhydroxid, Natrium- und Kaliumalkoholate der kurzkettigen einwertigen Alkohole mit 1 bis 5 Kohlenstoffatomen in Frage. Besonders bevorzugt sind die basischen Katalysatoren ausgewählt aus KOH, NaOH, Natrium- und Kaliummethylat. Insbesondere bevorzugt sind Kalium- und Natriummethylat.In the context of the process according to the invention, alkali metal or alkaline earth metal compounds in the form of the oxides, hydroxides, hydrides, carbonates, acetates or alcoholates of the short-chain alcohols having 1 to 5 carbon atoms, preferably sodium hydroxide, potassium hydroxide, sodium and potassium alkoxides of the short-chain monohydric compounds, are used as basic catalysts for transesterification Alcohols having 1 to 5 carbon atoms in question. The basic catalysts are particularly preferably selected from KOH, NaOH, sodium and potassium methylate. Particularly preferred are potassium and sodium methylate.

Gemäß einer allgemeinen Ausführungsform der Erfindung wird der basische Katalysator bei der Umesterung der Fettsäureglyceride in einer Menge von 0,1 bis 5 Gew.-%, bevorzugt in einer Menge von 0,5 bis 1,5 Gew.-%, bezogen auf die Masse des eingesetzten Fettsäureglycerids, verwendet. Der niedere, einwertige Alkohol wird in einem Überschuss von 0,1 mol bis 2,0 mol, bezogen auf je 1 mol an Glycerin gebundener Fettsäure hinzugegeben. Gegebenenfalls wird Wasser in einer Menge von 0,5 bis 20 Gew.-% bezogen auf die Reaktionsmischung bei der Umesterung der Fettsäureglyceride eingesetzt.According to a general embodiment of the invention, the basic catalyst in the transesterification of fatty acid glycerides in an amount of 0.1 to 5 wt .-%, preferably in an amount of 0.5 to 1.5 wt .-%, based on the mass of the fatty acid glyceride used. The lower, monohydric alcohol is added in an excess of 0.1 mol to 2.0 mol, based on 1 mol of glycerol-bound fatty acid. If appropriate, water is used in an amount of from 0.5 to 20% by weight, based on the reaction mixture, of the transesterification of the fatty acid glycerides.

Gemäß einer allgemeinen Ausführungsform der Erfindung wird der basische Katalysator in Form einer wässrigen oder alkoholischen Lösung dem Fettsäureglycerid hinzugegeben. Nach erfolgter ein- oder mehrstufiger Umesterung des Fettsäureglycerids kann der dadurch entstandenen Reaktionsmischung ein gewisser Anteil an Wasser, der im Bereich von 0,5 bis 20 Gew.-% bezogen auf die Gesamtmasse liegt, hinzugegeben werden. Die Zugabe des Wassers kann dabei isoliert oder in Verbindung mit der Methansulfonsäure erfolgen.According to a general embodiment of the invention, the basic catalyst in the form of an aqueous or alcoholic solution is added to the fatty acid glyceride. After the single or multistage transesterification of the fatty acid glyceride, the reaction mixture formed thereby can be added with a certain amount of water, which is in the range from 0.5 to 20% by weight, based on the total mass. The addition of the water can be isolated or carried out in conjunction with the methanesulfonic acid.

Bei der Behandlung des Fettsäureesters bzw. Fettsäureestergemisches mit der Methansulfonsäure in Schritt (b) wird die Methansulfonsäure in Form einer 50 bis 99 %i-gen, bevorzugt in Form einer 60 bis 80 %igen, besonders bevorzugt in Form einer 70 %igen wässrigen Lösung hinzugegeben. Durch diese Behandlung des erhaltenen Esters mit der Methansulfonsäure werden im Vergleich zu aus dem Stand der Technik bekannten Verfahren, in denen Schwefelsäure zur Neutralisation/Behandlung verwendet wurde, um bis zu 4 % höhere Ausbeuten an Fettsäureestern erhalten, was den wirtschaftlichen Vorteil des erfindungsgemäßen Verfahrens belegt.In the treatment of the fatty acid ester or fatty acid ester mixture with the methanesulfonic acid in step (b), the methanesulfonic acid is in the form of a 50 to 99%, preferably in the form of a 60 to 80%, particularly preferably in the form of a 70% aqueous solution added. By treating the resulting ester with the methanesulfonic acid by comparison with processes known from the prior art in which sulfuric acid was used for neutralization / treatment, up to 4% higher yields of fatty acid esters are obtained, which proves the economic advantage of the process according to the invention ,

Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung von Methansulfonsäure bei der Herstellung von Fettsäurealkylestern oder deren Gemischen unter Einsatz von basischen Katalysatoren bei der Umesterung von Fettsäureglyceriden, wobei die in dem gebildeten Reaktionsprodukt enthaltenen basischen Katalysatoren nach erfolgter Abtrennung einer Fettsäureesterphase neutralisiert werden.Another object of the present invention relates to the use of methanesulfonic acid in the production of fatty acid alkyl esters or mixtures thereof using basic catalysts in the transesterification of fatty acid glycerides, wherein the basic catalysts contained in the reaction product formed are neutralized after separation of a fatty acid ester phase.

Die Erfindung wird durch die folgenden Beispiele und Vergleichsbeispiele näher erläutert:

  • Die nachfolgend dargestellten Beispiele und Vergleichsbeispiele zeigen die Herstellung von Fettsäuremethylestem (FAME) mit anschließender Neutralisation des Katalysators. Bei der Herstellung der Fettsäurealkylester werden vier verschiedene Katalysatoren (NaOH, KOH, Na-Methylat und K-Methylat) als alkalische Katalysatoren verwendet. Die Neutralisation erfolgte in den Vergleichsbeispielen unter Einsatz von Schwefelsäure und in den Beispielen unter Einsatz von Methansulfonsäure. Die Beispiele wurden auf der Grundlage von Modellversuchen industrieller Verfahren durchgeführt, bei denen ein Produkt mit einem Mindestmethylestergehalt von 96,5 %, welches unter die Norm EN 14214 fällt, erhalten wurde.
The invention is further illustrated by the following examples and comparative examples:
  • The following examples and comparative examples show the preparation of fatty acid methyl esters (FAME) with subsequent neutralization of the catalyst. In the preparation of the fatty acid alkyl esters, four different catalysts (NaOH, KOH, Na-methylate and K-methylate) are used as alkaline catalysts. The neutralization was carried out in the comparative examples using sulfuric acid and in the examples using methanesulfonic acid. The examples were carried out on the basis of model experiments of industrial processes in which a product with a minimum methyl ester content of 96.5%, which falls under the EN 14214 standard, was obtained.

Verwendete Ausrüstungen und MaterialienUsed equipment and materials

Die Prozessbedingungen wurden auf der Grundlage der Kenntnis von industriellen Biodiesel-Herstellungsverfahren ausgewählt. Für die Versuche wurde ein zweistufiges Verfahren der Katalysatormischung praktiziert. Figur 1 zeigt ein Blockschaltbild des Verfahrens zur Herstellung des Rapsölmethylesters (RME).The process conditions were selected based on the knowledge of industrial biodiesel manufacturing processes. For the experiments, a two-stage process of the catalyst mixture was practiced. FIG. 1 shows a block diagram of the process for the production of rapeseed oil methyl ester (RME).

Die Umesterungsversuche wurden in einem Sulfierkolben mit Rührer, Thermometer, Rückflusskühler bzw. Liebigkühler und Bodenauslauf durchgeführt. Für jede Umesterung wurde eine Katalysatormischung vorbereitet.The transesterification experiments were carried out in a sulphonation flask with stirrer, thermometer, reflux condenser or Liebig condenser and bottom outlet. For each transesterification, a catalyst mixture was prepared.

Als Fettsäureglycerid wurde Rapsöl (Vollraffinat) aus dem Einzelhandel verwendet. Die Katalysatoren NaOH, KOH, Natriummethylat und Kaliummethylat, das Lösungsmittel Methanol sowie die Schwefelsäure für die Neutralisation wurden aus dem Laborfachhandel bezogen.As fatty acid glyceride, rapeseed oil (Vollraffinat) was used from retail. The catalysts NaOH, KOH, sodium methylate and potassium methylate, the solvent methanol and the sulfuric acid for the neutralization were purchased from the laboratory retailer.

VersuchsdurchführungExperimental Procedure

Die Beispiele und Vergleichsbeispiele wurden unter den in Tabelle 1 dargestellten Parametern durchgeführt. Die Analysedaten der bei den vier Umesterungen erhaltenen Produkte sind in Tabelle 2 dargestellt.The examples and comparative examples were carried out under the parameters shown in Table 1. The analysis data of the products obtained in the four transesterifications are shown in Table 2.

Wie aus den in Tabelle 2 dargestellten Daten hervorgeht, führt die Verwendung von Methansulfonsäure zur Neutralisation der basischen Katalysatoren zu deutlich erhöhten Ausbeuten an Fettsäureestern. Diese liegen bei der Verwendung von KOH bzw. NaOH im Bereich von 2,29 bis 3,7 %, bei der Verwendung von Natrium- bzw. Kaliummethylat im Bereich von 0,2 %, was jedoch aufgrund der hohen Durchsätze einen erheblichen wirtschaftlichen Vorteil bedeutet.

Figure imgb0001
Figure imgb0002
As can be seen from the data presented in Table 2, the use of methanesulfonic acid to neutralize the basic catalysts leads to significantly increased yields of fatty acid esters. These are with the use of KOH or NaOH in the range of 2.29 to 3.7%, with the use of sodium or potassium in the range of 0.2%, which means a significant economic advantage due to the high throughputs ,
Figure imgb0001
Figure imgb0002

Claims (13)

  1. A process for preparing fatty acid esters and/or fatty acid ester mixtures of short-chain monohydric alcohols having 1 to 5 carbon atoms, comprising
    (a) the transesterification of fatty acid glycerides with short-chain monohydric alcohols having 1 to 5 carbon atoms in the presence of at least one basic catalyst to form a reaction mixture which comprises the fatty acid ester and/or the fatty acid ester mixture, and
    (b) the treatment of at least a portion of the reaction mixture formed in the transesterification in step (a) with methanesulfonic acid,
    wherein, in step (a), on completion of transesterification and before performance of step (b), the residence time of the reaction mixture is selected such that a phase separation into a fatty acid ester phase and a glycerol phase takes place and the fatty acid ester phase is formed, removed and treated with methanesulfonic acid in step (b).
  2. The process according to claim 1, wherein the transesterification in step (a) is performed in more than one stage.
  3. The process according to claim 2, wherein the transesterification in step (a) is performed in two stages.
  4. The process according to claim 3, wherein 60% to 90% of the total amount of alcohol and catalyst used is used in the first stage, and 10% to 40% of the total amount of alcohol and catalyst used is used in the second stage.
  5. The process according to any one of claims 1 to 4, wherein the fatty acid glycerides used are naturally occurring vegetable and animal fats and oils selected from soybean oil, palm oil, palm kernel oil, coconut oil, sunflower oil, rapeseed oil, linseed oil, castor oil, peanut oil, olive oil, evening primrose oil and carob seed oil, and mixtures thereof.
  6. The process according to any one of claims 1 to 5, wherein the short-chain monohydric alcohol used is methanol or ethanol.
  7. The process according to any one of claims 1 to 6, wherein the basic catalysts used are basic alkali metal or alkaline earth metal compounds selected from sodium hydroxide, potassium hydroxide, sodium and potassium alkoxides of the short-chain monohydric alcohols having 1 to 5 carbon atoms or mixtures thereof.
  8. The process according to any one of claims 1 to 7, wherein the basic catalyst is used in an amount of 0.5 to 5% by weight, based on the mass of the fatty acid glyceride used.
  9. The process according to any one of claims 1 to 8, wherein the amount of methanesulfonic acid in step (b) is such that it is at least equivalent to the amounts of basic catalyst used in step (a).
  10. The process according to any one of claims 1 to 9, wherein the methanesulfonic acid is used in the form of a 50 to 99% aqueous acid for the treatment in step (b).
  11. The process according to any one of claims 1 to 10, wherein performance of process step (b) is preceded by removal of the excess alcohol from step (a).
  12. The process according to any one of claims 1 to 11, which is performed as a continuous process.
  13. The use of methanesulfonic acid in the preparation of fatty acid alkyl esters or mixtures thereof using basic catalysts in the transesterification of fatty acid glycerides, wherein the basic catalysts present in the reaction product formed on completion of removal of a fatty acid ester phase are neutralized.
EP09756298.7A 2008-11-17 2009-11-16 Use of methanesulfonic acid for producing fatty acid esters Active EP2358851B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL09756298T PL2358851T5 (en) 2008-11-17 2009-11-16 Use of methanesulfonic acid for producing fatty acid esters
EP09756298.7A EP2358851B2 (en) 2008-11-17 2009-11-16 Use of methanesulfonic acid for producing fatty acid esters

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08169225 2008-11-17
PCT/EP2009/065230 WO2010055158A1 (en) 2008-11-17 2009-11-16 Use of methanesulfonic acid for producing fatty acid esters
EP09756298.7A EP2358851B2 (en) 2008-11-17 2009-11-16 Use of methanesulfonic acid for producing fatty acid esters

Publications (3)

Publication Number Publication Date
EP2358851A1 EP2358851A1 (en) 2011-08-24
EP2358851B1 EP2358851B1 (en) 2014-03-12
EP2358851B2 true EP2358851B2 (en) 2018-01-10

Family

ID=41716465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09756298.7A Active EP2358851B2 (en) 2008-11-17 2009-11-16 Use of methanesulfonic acid for producing fatty acid esters

Country Status (9)

Country Link
US (1) US8692008B2 (en)
EP (1) EP2358851B2 (en)
CN (1) CN102257108B (en)
BR (1) BRPI0921034B1 (en)
ES (1) ES2457097T5 (en)
MY (1) MY161118A (en)
PL (1) PL2358851T5 (en)
PT (1) PT2358851E (en)
WO (1) WO2010055158A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055969A1 (en) * 2010-12-23 2012-06-28 Süd-Chemie AG Process for the purification of organic liquids
FR3002936B1 (en) 2013-03-06 2015-03-06 Arkema France USE OF SULFONIC ACID FOR THE RECOVERY OF GLYCEROL RESULTING FROM TRIGLYCERIDE TRANS-ESTERIFICATION REACTION
EP3114196A1 (en) 2014-03-04 2017-01-11 Basf Se Method for degumming and esterification of an oil
WO2016028845A1 (en) * 2014-08-19 2016-02-25 Archer Daniels Midland Company Synthesis of non-ionic surfactants from 5-hydroxymethyl-2-furfural, furan-2,5-dimethanol and bis-2,5-dihydroxymethyltetrahydrofurans
WO2018015191A1 (en) 2016-07-18 2018-01-25 Basf Se Low corrosion alkane sulfonic acids for condensation reactions
BR112021006249A2 (en) 2018-10-10 2021-07-06 Basf Se method for producing fatty acid alkyl ester

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2360844A (en) 1941-11-26 1944-10-24 Du Pont Preparation of detergents
EP0127104A1 (en) 1983-05-30 1984-12-05 Henkel Kommanditgesellschaft auf Aktien Process for the preparation of fatty-acid esters of short chain aliphatic alcohols from free fatty-acid-containing fats and/or oils
EP0184740A2 (en) 1984-12-08 1986-06-18 Henkel Kommanditgesellschaft auf Aktien Process for the preparation of methyl esters of fatty acids
WO1993009212A1 (en) 1991-11-06 1993-05-13 Theodor Wimmer Process for preparing fatty acid esters of short-chain monohydric alcohols
WO2002038529A1 (en) 2000-11-08 2002-05-16 Energea Umwelttechnologie Gmbh Method for the production of fatty acid esters of lower alcohols
WO2008036287A1 (en) 2006-09-19 2008-03-27 Best Energies, Inc. Biodiesel processes in the presence of free fatty acids and biodiesel producer compositions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276204A (en) * 1988-11-09 1994-01-04 Henkel Kommanditgesellschaft Auf Aktien Fatty alcohol mixtures and ethoxylates thereof showing improved low-temperature behavior
FI95367C (en) * 1994-09-07 1996-01-25 Raision Tehtaat Oy Ab Method for preparing a synthetic ester from vegetable oil
ITMI20032129A1 (en) 2003-11-05 2005-05-06 Acs Dobfar Spa PROCEDURE FOR FRAGMENTING DNA OF FUNGINE, BACTERIAL OR YEAST CELLS FOR THE INACTIVATION OF RESIDUAL ANTIBIOTICS IN FERMENTATION BIOMASS
ITMI20040579A1 (en) * 2004-03-25 2004-06-25 Zambon Spa GABAPENTINA PREPARATION PROCESS
WO2005123890A1 (en) * 2004-06-22 2005-12-29 Akzo Nobel N.V. Branched biodiesels
BRPI0500333A (en) * 2005-02-02 2006-09-12 Univ Rio De Janeiro catalytic process for fatty acid esterification
BRPI0503631B1 (en) 2005-08-19 2015-07-21 Petróleo Brasileiro S A Petrobras Process for the production of biodiesel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2360844A (en) 1941-11-26 1944-10-24 Du Pont Preparation of detergents
EP0127104A1 (en) 1983-05-30 1984-12-05 Henkel Kommanditgesellschaft auf Aktien Process for the preparation of fatty-acid esters of short chain aliphatic alcohols from free fatty-acid-containing fats and/or oils
EP0184740A2 (en) 1984-12-08 1986-06-18 Henkel Kommanditgesellschaft auf Aktien Process for the preparation of methyl esters of fatty acids
WO1993009212A1 (en) 1991-11-06 1993-05-13 Theodor Wimmer Process for preparing fatty acid esters of short-chain monohydric alcohols
WO2002038529A1 (en) 2000-11-08 2002-05-16 Energea Umwelttechnologie Gmbh Method for the production of fatty acid esters of lower alcohols
WO2008036287A1 (en) 2006-09-19 2008-03-27 Best Energies, Inc. Biodiesel processes in the presence of free fatty acids and biodiesel producer compositions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Römpp Chemielexikon", 31 August 2006, article HELMUT SITZMANN: "Neutralisation"
"Römpp Chemielexikon", 31 December 2007, article ULRICH ENGELHARDT: "Fettkennzahlen"
"Römpp Chemielexikon", 31 March 2002, article "Neutralisationszahl"

Also Published As

Publication number Publication date
BRPI0921034A2 (en) 2015-12-29
CN102257108A (en) 2011-11-23
MY161118A (en) 2017-04-14
CN102257108B (en) 2014-04-09
WO2010055158A1 (en) 2010-05-20
ES2457097T5 (en) 2018-04-16
BRPI0921034B1 (en) 2019-11-19
PL2358851T3 (en) 2014-08-29
EP2358851A1 (en) 2011-08-24
US8692008B2 (en) 2014-04-08
PL2358851T5 (en) 2018-09-28
US20110245521A1 (en) 2011-10-06
ES2457097T3 (en) 2014-04-24
PT2358851E (en) 2014-04-02
EP2358851B1 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
DE60209028T2 (en) METHOD FOR THE TREATMENT OF FATS AND PLANT OILS
EP0658183B1 (en) Process for preparing fatty acid esters of short-chain monohydric alcohols
DE60023710T2 (en) A one-phase process for the preparation of fatty acid methyl esters from mixtures of triglycerides and fatty acids
AT399336B (en) METHOD FOR PRODUCING FATTY ACID ALKYL ESTERS
AT502218B1 (en) PROCESS FOR PREPARING CARBONIC ACID ALKYL ESTERS
DE10043644A1 (en) Production of biomethanol and bioethanol diesel comprises continuous re-esterification, removing glycerin after dosing the catalyst-alkanol mixture with removal of methanol in the biodiesel, and washing with phosphoric acid and water
EP2358851B2 (en) Use of methanesulfonic acid for producing fatty acid esters
DE3444893A1 (en) METHOD FOR PRODUCING FATTY ACID METHYL ESTERS
EP1183225A1 (en) Method for producing fatty acid esters of monovalent alkyl alcohols and use of the same
EP0127104A1 (en) Process for the preparation of fatty-acid esters of short chain aliphatic alcohols from free fatty-acid-containing fats and/or oils
DE112004001460T5 (en) Non-catalytic process for producing biodiesel fuel that does not produce by-product
WO2008080391A2 (en) Method for the production of biodiesel from used oils and used fats
EP2548937A1 (en) Alkali and earth alkali metal glycerates for drying and deacidification of fatty acid esters
DE19908978B4 (en) Process for the preparation of fatty acid methyl esters from triglycerides and fatty acids
EP2464715B1 (en) Method for manufacturing biodiesel by acid transesterification, and use of sulphonic acid as a catalyst in the manufacture of biodiesel
EP1870446A1 (en) Method for transesterification of triglycerides
AT397966B (en) Process for the preparation of fatty acid esters of lower monohydric alcohols
EP2298727B1 (en) Method for producing esters of short-chains alcohols from triglyceride-rich oils
EP1092703B1 (en) Process for the preparation of methyl esters of fatty acids
AT510636B1 (en) PROCESS FOR PREPARING FATTY ACID PRESENTS OF LOW ALCOHOLS
DE102008052795B4 (en) Process for the preparation of fatty acid esters of mono- or polyhydric alcohols using special hydroxy-functional quaternary ammonium compounds as catalysts
DE102014113197A1 (en) Process and plant for the production of fatty alcohols
EP1308498B1 (en) Method for the production of fatty acid esters from non-deacidified fats and oils
EP1409622A1 (en) Transesterification of fats
DE19956599A1 (en) Process for the production of deacidified triglycerides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131001

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 656331

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140326

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009008988

Country of ref document: DE

Effective date: 20140417

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2457097

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140424

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140612

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140712

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009008988

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E021201

Country of ref document: HU

26 Opposition filed

Opponent name: EVONIK DEGUSSA GMBH

Effective date: 20141211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009008988

Country of ref document: DE

Effective date: 20141211

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141116

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20161114

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20161130

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20180110

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502009008988

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20171211

Year of fee payment: 9

Ref country code: TR

Payment date: 20171027

Year of fee payment: 9

Ref country code: CZ

Payment date: 20171114

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2457097

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20180416

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20181210

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201118

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 656331

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20221124

Year of fee payment: 14

Ref country code: IT

Payment date: 20221122

Year of fee payment: 14

Ref country code: GB

Payment date: 20221122

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221021

Year of fee payment: 14

Ref country code: BE

Payment date: 20221124

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231218

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20231026

Year of fee payment: 15

Ref country code: FR

Payment date: 20231123

Year of fee payment: 15

Ref country code: DE

Payment date: 20231127

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231020

Year of fee payment: 15