EP2356397B1 - Method for simulating shooting and shooting simulator suitable for implementing the method - Google Patents

Method for simulating shooting and shooting simulator suitable for implementing the method Download PDF

Info

Publication number
EP2356397B1
EP2356397B1 EP09795475.4A EP09795475A EP2356397B1 EP 2356397 B1 EP2356397 B1 EP 2356397B1 EP 09795475 A EP09795475 A EP 09795475A EP 2356397 B1 EP2356397 B1 EP 2356397B1
Authority
EP
European Patent Office
Prior art keywords
duration
shot
impact
type
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09795475.4A
Other languages
German (de)
French (fr)
Other versions
EP2356397A1 (en
Inventor
Jérôme CÔTE-COLISSON
Pascal Viroux
Michel Fichoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GDI SIMULATION
Original Assignee
GDI SIMULATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GDI SIMULATION filed Critical GDI SIMULATION
Publication of EP2356397A1 publication Critical patent/EP2356397A1/en
Application granted granted Critical
Publication of EP2356397B1 publication Critical patent/EP2356397B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2683Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with reflection of the beam on the target back to the weapon
    • F41G3/2688Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with reflection of the beam on the target back to the weapon using target range measurement, e.g. with a laser rangefinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/265Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with means for selecting or varying the shape or the direction of the emitted beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2655Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile in which the light beam is sent from the weapon to the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2666Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with means for selecting or varying PRF or time coding of the emitted beam

Definitions

  • the present invention relates to a method for simulating firing with a simulation weapon towards a target, during a simulation of combat training.
  • the present invention finds a particularly advantageous, but not exclusive, application in the field of simulation for the technical and tactical training of crews in the context of field exercises in regiment or combat training center.
  • the invention also relates to a shot simulator comprising means capable of implementing the simulation method of the invention.
  • the actors of the exercise are also provided with a target device intended to equip them with a target function allowing them to play a role of target, during the simulation of the training.
  • the firing simulator types are used.
  • One of the firing simulator types is a bidirectional simulator. It comprises an optical unit equipped with a non-dangerous low power laser transceiver secured to the combat weapon and its aiming system.
  • This type of firing simulator is associated with a bidirectional target device fitted to certain combat actors.
  • This target device comprises a computer provided with an interface for programming the target, a beacon equipped with an optical detection device for receiving the laser shot from the firing simulator, and an optical retroreflector device. reflecting the laser shot at the receiver of the optical block of the firing simulator. An alarm is triggered when the detector has received a laser shot.
  • the bidirectional laser simulator equips for example missiles or weapons carried by tanks or helicopters.
  • the other type of firing simulator is a unidirectional simulator. It includes an optical unit equipped with a non-dangerous low-power laser transmitter attached to the combat weapon and its aiming system.
  • This type of firing simulator is associated with a unidirectional target device fitted to other combat actors such as infantrymen.
  • This target device comprises a computer provided with an interface for programming the target, a beacon equipped with an optical detection device for receiving the laser shot from the firing simulator and an alarm triggered when the detector has received a shot. laser.
  • the unidirectional laser simulator equips individual portable weapons worn by soldiers such as infantrymen or commandos.
  • a bidirectional firing simulator carried by a laser-emitting gun simulating the firing of an explosive ordnance will not be detected by any infantryman equipped with the unidirectional target device, located in the explosive area of the ammunition.
  • the purpose of the invention is precisely to make the result of the combat training simulation virtually coincide with the result of a real combat by overcoming the disadvantages of the techniques described above.
  • the invention uses a firing simulator capable of successively emitting laser radiation simulating a shot according to the unidirectional and bidirectional communication protocol or vice versa. This emission is made according to the type of weapon to simulate.
  • the invention thus allows all combat actors located in an impact zone of the simulated shot to detect it and to suffer or not the effects.
  • the invention relates to a shot simulation method, as defined in claim 1.
  • the invention is also characterized in that the impact perimeter is determined before the firing of the first type is performed.
  • the invention is also characterized in that the firing of the first type is bidirectional.
  • the invention is also characterized in that the firing of the second type is unidirectional.
  • each word is formed of fourteen symbols framed by a start symbol and a stop symbol.
  • each symbolic word of data is formed of eight symbols flanked by a separation bit.
  • the invention is also characterized in that the inter symbol duration is more than 1000 times greater than the short duration.
  • the invention is also characterized in that the inter-symbol duration is about 128 ⁇ s and the duration of a symbol is at least 50 ns.
  • the invention is also characterized in that the position of the additional symbols is about 320 ⁇ s, or about 448 ⁇ s or about 576 ⁇ s of the second stop symbol of the second word.
  • the invention is also characterized in that the symbol is a laser pulse.
  • the subject of the invention is also a simulator comprising means capable of implementing the simulation method of the invention.
  • the Figures 1a, 1b and 1c show a representation of a combat simulation of several combat actors on a training ground.
  • the actors in combat are composed of a tank 10, a helicopter 11 and three actors 12, 13 and 14 pedestrians such as infantrymen. All these combat actors are equipped with a simulator of firing a combat weapon as shown in figure 2 and a target device (not shown).
  • the shooter in the example of figure 1a , is the tank 10 armed with a gun 15 whose aiming system is associated with the simulator 20 of firing a shell 16.
  • the aiming system of the gun 15 is associated with the axis of a laser rangefinder 21 of the simulator 20 and is pointed towards a target materialized by the pedestrian combat actor 13 located at a horizontal distance from the tank 10.
  • the laser rangefinder 21 of the firing simulator 20 comprises a laser emitter 22, for example a laser diode, for producing low power laser pulses in the form of a light beam with a repetition frequency of a few kHz.
  • the laser rangefinder 21 also includes a laser receiver 23, such as a light-sensitive diode.
  • the firing simulator comprises a device 24 for scanning a laser beam emitted by the transmitter 22.
  • the firing simulator 20 is coupled to a control circuit 30 capable of triggering the emission of the laser beam by the transmitter 22, the activation of the scanning device 24 and the processing of the signals received by the receiver 23.
  • the firing simulator has a graphical human machine interface.
  • This interface includes various descriptive titles whose provision guides the user in entering programming information of the firing function of the firing simulator.
  • This interface 25 allows the user to configure and control the simulator 20 of tank fire 10.
  • the control circuit 30 comprises a microprocessor 31, a memory 32 of shot simulation program and a memory 33 of data interconnected by an internal bus 34.
  • actions are attributed to devices or programs, that is to say that these actions are executed by a microprocessor of this apparatus or of the apparatus comprising the program, said microprocessor then being controlled by instruction codes stored in a memory of the device.
  • instruction codes make it possible to implement the means of the apparatus and thus to carry out the action undertaken.
  • the firing program memory 32 is divided into several zones, each zone corresponding to a function or mode of operation of the program of the firing simulator.
  • a zone 35 includes instruction codes for processing the information entered on the interface 25 and activating the firing function of the firing simulator as a result of user validation of that input.
  • a zone 36 includes instruction codes for simulating a trajectory T of a ballistic behavior of the simulated munition, which is here the shell 16, depending on the type of ammunition.
  • a zone 37 includes instruction codes for activating the scanning device 24, when transmitting a firing of a first type comprising a verification message sent by the transmitter 22.
  • a zone 38 comprises instruction codes to determine an impact location and a ballistic duration based on the data received in response to the verification message.
  • a zone 39 includes instruction codes for determining an impact perimeter around the impact location depending on the type of munition to be simulated.
  • An area 40 includes instruction codes for determining a combination of laser shot transmissions according to a unidirectional communication protocol, as shown in FIGS. figures 4 and 5 , and a two-way communication protocol, as shown in Figures 6-8 . The sequence combination of laser shot transmissions is determined based on the data received in response to the verification message.
  • a zone 41 includes instruction codes to detach the axis of sight of the weapon to scan the perimeter of impact.
  • An area 42 includes instruction codes to determine the number of laser fire emissions based on the type of ammunition.
  • the control circuit 30 determines the parameters of the shot in order to simulate in time a ballistic behavior of the shell 16.
  • the parameters of the shot can be in particular the temperature of the powder, the aerological conditions, the winds, the movements of the shooter at the moment of firing and during the simulation of the trajectory T of the projectile 16 etc.
  • the control circuit 30 determines the imaginary trajectory T representative of the trajectory of the simulated shell 16.
  • This trajectory T is developed in real time from, in particular, the gun pointing parameters and the ballistic behavior of the simulated shell 16.
  • the fictitious trajectory T of the simulated shell 16 is known at each instant (ti) by tables or by calculation. The simulated trajectory T thus allows the control circuit 30 to create a relationship between a distance traveled by the munition and the time ti.
  • the circuit 30 simultaneously controls the emission of a firing of a first type simulating the shell 16 and the activation of the scanning device 44.
  • the firing of the first type comprises at this moment a bi-directional target device presence verification message on the trajectory T.
  • the activation of the scanning device 44 makes it possible to carry out a displacement of the emitted laser beam along the trajectory T so as to explore a certain field to observe the area where the pedestrian actor is. This scan represents a simulation in time of the laser shot to represent the ballistic behavior of the simulated shell 16.
  • the displacement of the laser beam along the path T made by the scanning device 44 is preferably a scanning in two dimensions, namely a scan along a horizontal axis or "bearing” and a scan along a vertical axis or "site".
  • the control circuit 30 deactivates the scanning device 24.
  • the bidirectional target device equipping the helicopter 11, located in the scanning field, detects the presence verification laser beam.
  • a reflector of this bidirectional target device re-emits the received laser beam to the simulator 20.
  • the control circuit 30 measures the time offset corresponding to the distance away from the helicopter 11 of the shooter 10. The measurement of this time shift makes it possible to determine a place of impact 17 of the simulated shell 16. This time difference corresponds to the ballistic duration.
  • the control circuit 30 determines the characteristics of the projectile to be simulated, here the shell 16. These characteristics allow the circuit 30 to define dimensions of an impact perimeter 18 surrounding the impact location 17. Characteristics may include a scatter zone of the impact points, the target altitude and a blast effect corresponding to a blast wave created by the detonation of the shell. This zone of dispersion of the points of impact can be generated by a cluster bomb or a cluster bomb.
  • the impact perimeter corresponds to the place of impact aligned with the axis of aim of the weapon to be simulated before firing. laser.
  • the circuit 30 controls the emission of the firing of the first type, this time comprising a firing message towards the helicopter 11.
  • This firing message is issued according to a communication protocol. bidirectional illustrated by the Figures 6-8 .
  • the circuit 30 controls the emission of shots of the second type. For each transmission, the circuit 30 controls the misalignment of the axis of sight of the gun to cover the entire perimeter 18 of impact.
  • the firing of the second type is issued according to a one-way communication protocol illustrated by the figures 4 and 5 .
  • This shot of the second type is reiterated during a period of neutralization of additional targets. This duration of neutralization corresponds to the time necessary for the simulator to scan the perimeter of impact.
  • the misalignment of the gun is done according to a previously defined distribution of the points of impact.
  • the helicopter not only will the helicopter be declared as touched but also all the other actors, such as the actor 12, located in the impact environment of the fired projectile.
  • the invention thus makes it possible to match the result of the simulation in combat training to reality.
  • the actors in combat are composed of the shooter tank, a second tank 9, the pedestrian actor 13 considered as the intended target and two other actors 12 and 14 pedestrians such as infantrymen.
  • a reflector of this bidirectional target device re-emits the received laser beam to the simulator 20.
  • the control circuit 30 measures the time offset corresponding to the distance of distance of the second tank 9 between the transmission of the verification message and the reception of the response to this message. The measurement of this time shift makes it possible to determine an impact location 17 of the simulated shell 16.
  • the control circuit 30 determines the dimensions of the impact perimeter 18 surrounding the impact location, depending on the characteristics of the projectile. Then, the circuit 30 controls the emission of the firing of the first type comprising a firing message towards the second tank 9. In order to simulate impact points 19 in the perimeter 18 of impact, the circuit 30 controls the emission firing of the second type by offending at each transmission the laser emission axis of the optical block (20).
  • the actors in combat are composed of the shooter tank, the pedestrian actor 13 considered as the target target and the pedestrian actor 14.
  • the simulator 20 receives no response to the presence check message during the scanning time of the trajectory T.
  • no actor in combat equipped with the bidirectional target device is in the scanning field.
  • the firing of the second type is carried out after an impact date of a ballistic fire occurring at the end of the sweep of the trajectory T.
  • This impact date coincides with the impact location 17 corresponding to the point user-targeted impact before the simulation.
  • This impact location corresponds to the position of the target target which is here the pedestrian actor 13.
  • the control circuit 30 determines the dimensions of the impact perimeter surrounding the impact location, depending on the characteristics of the projectile. Then, the circuit 30 controls the emission of shots of the second type by offending at each transmission the axis of sight of the gun.
  • the shooting of the first type with a fire message is not activated in this case. Nevertheless, the activation of the emission of the firing message has no effect on the result of the simulation because no bidirectional target device is present on the trajectory T of the projectile 16 to receive it.
  • the figure 3 shows an illustration of means implementing the method of the invention.
  • the figure 3 shows a preliminary step in which the firing function of the simulator 20 is activated according to the data entered on the graphical interface.
  • the control circuit 30 extracts from the data memory 33 attributes associated with this projectile. These attributes include, the maximum range of this projectile, the number of ammunition fired continuously.
  • the control circuit 30 calculates a distance separating the shooter from the target.
  • the control circuit 30 simulates a trajectory T of a ballistic behavior of the simulated munition.
  • the laser transmitter 22 emits a laser shot of a first type comprising a verification message simulating an ammunition of the simulation weapon.
  • This verification message comprises a set of laser pulses making it possible to search for any bidirectional targets present along the simulated trajectory T.
  • the laser shot is moved along the path T to explore a certain field to detect the possible presence of target.
  • the firing simulator 20 is in the listening phase of a signal transmitted by a reflector of a bidirectional laser target device in response to the verification message (search).
  • This listening phase is triggered by the control circuit 13 by launching a countdown counter at a step 106, the duration of which is almost equal to a duration of a laser shot.
  • This duration of a laser shot previously defined, is generally of the order of tens to hundreds of milliseconds.
  • the outcome of the listening phase can be obtained either when the countdown timer reaches zero or when the receiver 23 of the simulator receives a response.
  • the simulator 20 receives a presence signaling message from a target in response to the presence check message issued, during the duration of the listening phase.
  • the control circuit 30 stops the countdown timer and deactivates the scanning device.
  • the control circuit 30 determines the impact location of the projectile by measuring the distance of distance between the shooter and the target.
  • the control circuit 30 determines the characteristics of the projectile to be simulated in order to calculate the dimensions of the impact perimeter 18 surrounding the impact location 17.
  • the firing simulator fires the first type firing with a firing message towards the target provided with the bidirectional target device.
  • the firing simulator 20 emits firing of the second type by detaching at each transmission the laser emission axis of the simulator.
  • the control circuit 30 considers, at a step 113, that the location of impact corresponds to the point of impact. targeted by the shooter.
  • the control circuit 30 determines the dimensions of the impact perimeter 18 surrounding this location of impact, depending on the characteristics of the projectile.
  • the transmitter 22 emits firing of the second type by detaching at each transmission the laser emission axis of the simulator to cover the perimeter 18 of impact.
  • the wavelength of the laser radiation emitted by the firing function of the simulator is between 880 nanometers and 920 nanometers.
  • This laser emission comprises symbols having a duration preferably greater than or equal to approximately 50 nanoseconds. In a preferred embodiment, the duration of a symbol is substantially equal to 110 nanoseconds.
  • a symbol is a laser pulse. The transmission of laser data, via this transmission, is unidirectional and asynchronous between the shooter and its target.
  • the maximum power level of the laser pulses emitted by the shooter is determined in accordance with the eye safety standard of laser devices.
  • the transmission of the data relating to the firing carried out, from the firer to the target, is effected by modulating the laser symbol train in all or nothing.
  • This modulation is preferably a pulse code modulation type binary modulation known as the Anglo-Saxon Pulse Coded Modulation (PCM).
  • PCM Anglo-Saxon Pulse Coded Modulation
  • the inter-symbol duration is equal to approximately 128 ⁇ s with a tolerance of ⁇ 5 ⁇ s.
  • the laser data transmission is done according to the unidirectional or bidirectional communication protocol.
  • a communication protocol is a set of rules and procedures defining the type of coding, the speed used during the communication, and how to establish and terminate the connection.
  • the figures 4 and 5 show an example of a unidirectional communication protocol between a firing simulator and a unidirectional target device, according to the invention.
  • the start and stop symbols 52, 53, 55, 56 are synchronization bits.
  • the word of 14 symbols includes data relating to the identification of the gunman, the type of weapon or ammunition used or the family of the weapon used (caliber) and in some cases provides information on the sanction to display. by the target.
  • the total duration of a firing of the second type issued at a fixed period of 128 ⁇ s is 8,064 ms from the first laser symbol issued.
  • the data received by the target are transmitted to a central computer management training simulation.
  • This computer determines whether the target is destroyed, hit, or engaged by that shot based on the impact point and vulnerability criteria of that target.
  • At least one additional symbol 59 is emitted during the period 57 of silence of the firing 50 of the second type.
  • This additional symbol 59 is issued at a duration of the symbol 56 end of the second 54 word equal to an odd multiple of the half inter-symbol duration.
  • This additional symbol 59 is a laser pulse allowing the target to display a sanction of the type taken together.
  • the set-to-part symbol may be 320 ⁇ s after the stop sign 56 of the second word, 448 ⁇ s after the stop symbol 56 of the second bit word or 556 ⁇ s after the symbol 56 stopping the second word.
  • start symbols 52 of the first word and the stop word 56 of the second word as well as the additional symbol 59 are transmitted at higher energy levels than the other symbols transmitted.
  • start symbols 52 of the first word, stop 56 of the second word and the additional symbol 59 are transmitted at energy levels approximately 2 times higher than those of the other symbols transmitted.
  • the transmitter emits a firing sequence 58.
  • This sequence of shots includes identical and consecutive second type shots.
  • m is between one and six.
  • the firing simulator emits a firing sequence comprising 3 identical and consecutive shots of the second type.
  • the duration of a firing sequence is at most 50 milliseconds.
  • the emission redundancy of the 14-bit word and the firing of the second type makes it possible to avoid transmission errors in order to ensure the reliability of the information received. This redundancy allows the target receiving the transmission to control the integrity of the data received.
  • the simulation of a shot is translated by the laser emission of n sequences of successive shots. Each firing sequence is issued at the impact location of each simulated munition. The sequence of shots of fact to the rhythm of the shots of the n shots of the weapon.
  • the transmitter 21 continuously emits spatially distributed shot sequences to describe a rectangular area of lethality.
  • the spatial dimensions of this area are a function of the type of simulated munition, and are metrically constant regardless of the distance between the shooter and the target.
  • the sequences of 50 ms can not be respected any more and the firing of second type are transmitted consecutively and without interruption during all the scanning of the zone of lethal coverage.
  • the Figures 9a, 9b and 9c illustrate the interpretations made by the calculator of the target when it receives a firing sequence.
  • the target receives the high energy symbols, it can interpret the received data and declare itself to be affected as shown in figure 9a .
  • the calculator of the target interprets the data received and declares itself taken by fire.
  • the shot is interpreted as missed because it is not detected by the target.
  • the Figures 6-8 show an example of bidirectional communication protocol between a firing simulator and a bidirectional target device, according to the invention.
  • the firing simulator transmits a message 60 of shots of a firing of the first type.
  • This shot message has 84 symbols including 55 standard symbols and 29 extension symbols.
  • the symbols of the shot message 60 are transmitted successively and organized from the illustrated way to the figure 6 .
  • the message 60 of shots includes a synchronization header 61, as illustrated in FIG. figure 7 .
  • This synchronization header 61 has 9 consecutive symbols.
  • This header 61 is followed by five bytes 63. These five bytes 63 are followed by a new synchronization header 62.
  • This synchronization header 62 comprises ten consecutively transmitted symbols.
  • This synchronization header 62 is followed by two extension bytes 64.
  • the bytes representing the useful data relating to the shot are framed by periods of silence. These periods of silence correspond to bits called "0" of separation.
  • the bytes of the five standard bytes 63 may include in particular the following data: Table 1 bytes Data 1 Azimuth gap 2 Distance between the shooter and the target 3 Participant code of the shooter 4 Ammunition Type Number of shots (15 maximum) 5 Site gap
  • the bytes of the two extension bytes 64 may include in particular the following data: Table 2 bytes Data 6 Shooter Participant Code Extension to 1023 participants Shift Type Extension to 136 Types 7 Shooter Participant Code Extension to 2047 participants Shift Type Extension to 136 Types
  • the total duration of a message 60 of shots issued at a fixed period of 128 ⁇ s is 10.624 ms from the first laser symbol transmitted.
  • the transmitter emits a firing sequence.
  • This sequence of shots includes 60 identical and consecutive shots.
  • m is between 1 and 28.
  • the total duration of the emission of a firing message shot sequence is 300.928 ms for a fixed inter-symbol duration of 128 ⁇ s.
  • a single sequence of data firing including 28 firing messages 60, is triggered for each shot fired by the simulated weapon following the detection of a response to the verification message issued by a bidirectional cooperating target.
  • the number of shots in the burst is included in the information coded in the message 60 shots. In a preferred embodiment, this number of strokes is limited to 15.
  • control circuit 30 creates shot messages each having a number of shots limited to 15. The circuit 30 thus successively breaks down the simulated burst into messages 60. separate shots each with not more than 15 shots fired.
  • the firing of the first type occurs after a latency period succeeding the verification message or the firing message.
  • This latency period is a latency time without laser emission. It is greater than five milliseconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

Domaine de l'InventionField of the Invention

La présente invention a pour objet un procédé de simulation de tirs avec une arme de simulation en direction d'une cible, lors d'une simulation d'entrainement au combat. La présente invention trouve une application particulièrement avantageuse, mais non exclusive, dans le domaine de la simulation pour l'entraînement technique et tactique des équipages dans le cadre d'exercices terrain en régiment ou en centre d'entrainement au combat.The present invention relates to a method for simulating firing with a simulation weapon towards a target, during a simulation of combat training. The present invention finds a particularly advantageous, but not exclusive, application in the field of simulation for the technical and tactical training of crews in the context of field exercises in regiment or combat training center.

L'invention concerne également un simulateur de tirs comportant des moyens apte à mettre en oeuvre le procédé de simulation de l'invention.The invention also relates to a shot simulator comprising means capable of implementing the simulation method of the invention.

Etat de la techniqueState of the art

Actuellement, lors d'un entrainement technique ou tactique de combat dans le cadre des régiments ou des centres d'entraînement au combat, les acteurs de l'exercice tel que les véhicules terrestres, les aéronefs et les acteurs pédestres sont équipés d'armes de combat tel que des missiles, des roquettes ou des armes légères, associés à un simulateur de tirs. Le simulateur de tirs est destiné à simuler un tir réel de l'arme de combat par la technologie laser.Currently, during technical or tactical combat training at regiments or combat training centers, exercise actors such as land vehicles, aircraft and pedestrians are equipped with such as missiles, rockets or small arms, associated with a firing simulator. The shooting simulator is intended to simulate a real shot of the combat weapon by laser technology.

Les acteurs de l'exercice sont également munis d'un dispositif cible destiné à les équiper d'une fonction cible leur permettant de jouer un rôle de cible, lors de la simulation de l'entrainement.The actors of the exercise are also provided with a target device intended to equip them with a target function allowing them to play a role of target, during the simulation of the training.

Lors de l'entraînement, deux types de simulateurs de tirs sont utilisés. Un des types de simulateur de tirs est un simulateur bidirectionnel. Il comporte un bloc optique équipé d'un émetteur-récepteur laser basse puissance non dangereux solidaire de l'arme de combat et de son système de visée. Ce type de simulateur de tirs est associé à un dispositif cible bidirectionnel équipant certains acteurs de combat. Ce dispositif cible comporte un calculateur muni d'une interface permettant de programmer la cible, une balise équipée d'un dispositif de détection optique permettant de recevoir le tir laser émis par le simulateur de tirs, et d'un dispositif de rétro-réflecteurs optique réfléchissant le tir laser vers le récepteur du bloc optique du simulateur de tirs. Une alarme est déclenchée lorsque le détecteur a reçu un tir laser. Le simulateur laser bidirectionnel équipe par exemple des missiles ou des armes portées par des chars ou, des hélicoptères.During training, two types of shooting simulators are used. One of the firing simulator types is a bidirectional simulator. It comprises an optical unit equipped with a non-dangerous low power laser transceiver secured to the combat weapon and its aiming system. This type of firing simulator is associated with a bidirectional target device fitted to certain combat actors. This target device comprises a computer provided with an interface for programming the target, a beacon equipped with an optical detection device for receiving the laser shot from the firing simulator, and an optical retroreflector device. reflecting the laser shot at the receiver of the optical block of the firing simulator. An alarm is triggered when the detector has received a laser shot. The bidirectional laser simulator equips for example missiles or weapons carried by tanks or helicopters.

L'autre type de simulateur de tirs est un simulateur unidirectionnel. Il comporte un bloc optique équipé d'un émetteur laser basse puissance non dangereux solidaire de l'arme de combat et de son système de visée Ce type de simulateur de tirs est associé à un dispositif cible unidirectionnel équipant d'autres acteurs de combat tels que des fantassins. Ce dispositif cible comporte un calculateur muni d'une interface permettant de programmer la cible, une balise équipée d'un dispositif de détection optique permettant de recevoir le tir laser émis par le simulateur de tirs et une alarme déclenchée lorsque le détecteur a reçu un tir laser. Le simulateur laser unidirectionnel équipe des armes portatives individuelles portées par des soldats tels que des fantassins ou des commandos.The other type of firing simulator is a unidirectional simulator. It includes an optical unit equipped with a non-dangerous low-power laser transmitter attached to the combat weapon and its aiming system. This type of firing simulator is associated with a unidirectional target device fitted to other combat actors such as infantrymen. This target device comprises a computer provided with an interface for programming the target, a beacon equipped with an optical detection device for receiving the laser shot from the firing simulator and an alarm triggered when the detector has received a shot. laser. The unidirectional laser simulator equips individual portable weapons worn by soldiers such as infantrymen or commandos.

Cependant, les protocoles de communication de ces deux types de simulateur de tirs sont incompatibles. Par conséquent, les acteurs au combat équipés de dispositif cible unidirectionnel situés dans la ligne de visée du simulateur de tirs bidirectionnel ne détectent pas les tirs lasers émis par ces derniers et vis-versa. Ainsi, les dispositifs cibles unidirectionnel ou bidirectionnel ne seront touchés par aucun tir simulé respectivement par le simulateur unidirectionnel ou bidirectionnel quel que soit le type d'arme simulé, ce qui ne correspond pas à la réalité.However, the communication protocols of these two types of firing simulator are incompatible. As a result, combat actors equipped with a unidirectional target device located in the line of sight of the bidirectional firing simulator do not detect the laser shots fired by them and vice versa. Thus, unidirectional or bidirectional target devices will not be affected by any simulated firing respectively by the unidirectional or bidirectional simulator regardless of the type of weapon simulated, which does not correspond to reality.

Par exemple, un simulateur de tirs bidirectionnel porté par un canon émettant un rayonnement laser simulant le tir d'une munition explosive ne sera détecté par aucun fantassin équipé du dispositif cible unidirectionnel, situé dans la zone d'explosion de la munition.For example, a bidirectional firing simulator carried by a laser-emitting gun simulating the firing of an explosive ordnance will not be detected by any infantryman equipped with the unidirectional target device, located in the explosive area of the ammunition.

On connait également le brevet DE2262605 qui divulgue un système à impulsions laser pour entraînement de tir, le brevet EP1696198 qui divulgue un procédé et système de simulation de feu, ainsi que le brevet US4218834 qui divulgue un dispositif d'enregistrement d'exercices de tir d'arme.We also know the patent DE2262605 which discloses a laser pulse system for shooting training, the patent EP1696198 which discloses a fire simulation method and system, as well as the patent US4218834 which discloses a device for recording weapon firing exercises.

Exposé de l'inventionPresentation of the invention

L'invention a justement pour but de faire quasiment coïncider le résultat de la simulation d'entraînement au combat au résultat d'un combat réel en remédiant aux inconvénients des techniques exposées précédemment. Pour cela, l'invention met en oeuvre un simulateur de tirs apte à émettre successivement des rayonnements laser simulant un tir selon le protocole de communication unidirectionnel et bidirectionnel ou inversement. Cette émission est faîte selon le type d'arme à simuler. L'invention permet ainsi à tous les acteurs au combat situés dans une zone d'impact du tir simulé de le détecter et d'en subir ou non les effets.The purpose of the invention is precisely to make the result of the combat training simulation virtually coincide with the result of a real combat by overcoming the disadvantages of the techniques described above. For this, the invention uses a firing simulator capable of successively emitting laser radiation simulating a shot according to the unidirectional and bidirectional communication protocol or vice versa. This emission is made according to the type of weapon to simulate. The invention thus allows all combat actors located in an impact zone of the simulated shot to detect it and to suffer or not the effects.

Plus précisément, l'invention concerne un procédé de simulation de tirs, tel que défini dans la revendication 1.More specifically, the invention relates to a shot simulation method, as defined in claim 1.

Avantageusement, l'invention est aussi caractérisée en ce que

  • on réitère le tir du deuxième type périodiquement après la date d'impact pendant une durée de neutralisation de cibles annexes,
  • la durée de neutralisation de cibles annexes est déterminée en fonction d'un type de l'arme de simulation.
Advantageously, the invention is also characterized in that
  • the firing of the second type is repeated periodically after the impact date during a duration of neutralization of additional targets,
  • the duration of neutralization of additional targets is determined according to a type of the simulation weapon.

Avantageusement, l'invention est aussi caractérisée en ce que le périmètre d'impact est déterminé avant que le tir de premier type soit effectué.Advantageously, the invention is also characterized in that the impact perimeter is determined before the firing of the first type is performed.

Avantageusement, l'invention est aussi caractérisée en ce que

  • pendant la réitération on dépointe l'arme de simulation, de sorte à couvrir tous le périmètre d'impact.
Advantageously, the invention is also characterized in that
  • during the reiteration, the simulation weapon is placed in order to cover all the impact perimeter.

Avantageusement, l'invention est aussi caractérisée en ce que

  • la durée de neutralisation correspond au temps nécessaire pour balayer le périmètre d'impact.
Advantageously, the invention is also characterized in that
  • the duration of neutralization corresponds to the time necessary to scan the perimeter of impact.

Avantageusement, l'invention est aussi caractérisée en ce que

  • le message de vérification comporte une phase de recherche avec un balayage en deux dimensions, à savoir un balayage horizontal et un balayage vertical.
Advantageously, the invention is also characterized in that
  • the verification message comprises a search phase with a two-dimensional scan, namely a horizontal scan and a vertical scan.

Avantageusement, l'invention est aussi caractérisée en ce que

  • le tir de deuxième type se produit après une durée de latence succédant au message de vérification ou au message de tir.
Advantageously, the invention is also characterized in that
  • firing of second type occurs after a latency period succeeding the verification message or the firing message.

Avantageusement, l'invention est aussi caractérisée en ce que

  • le dispositif cible émet en réponse au message de vérification un message de présence,
  • si le message de présence n'est pas reçu par l'arme de simulation,
  • on effectue le tir d'un deuxième type après une date d'impact d'un tir balistique se produisant après une durée balistique,
  • le tir du deuxième type étant dirigé sur un lieu d'impact correspondant.
Advantageously, the invention is also characterized in that
  • the target device transmits in response to the verification message a presence message,
  • if the presence message is not received by the simulation weapon,
  • a second type is fired after an impact date of a ballistic fire occurring after a ballistic duration,
  • the firing of the second type being directed to a corresponding impact location.

Avantageusement, l'invention est aussi caractérisée en ce que le tir de premier type est bidirectionnel.Advantageously, the invention is also characterized in that the firing of the first type is bidirectional.

Avantageusement, l'invention est aussi caractérisée en ce que le tir de deuxième type est unidirectionnel.Advantageously, the invention is also characterized in that the firing of the second type is unidirectional.

Avantageusement, l'invention est aussi caractérisée en ce que

  • le tir de deuxième type comporte une émission, à deux reprises contiguës dans le temps, d'un mot symbolique de données suivi d'une période de silence dont la durée est égale à la durée des deux mots contigus,
  • chaque mot étant formé de symboles de durée courte séparé les uns des autres par une durée inter symbole plus longue que la durée courte.
Advantageously, the invention is also characterized in that
  • the firing of the second type comprises a transmission, twice contiguous in time, of a symbolic word of data followed by a period of silence whose duration is equal to the duration of the two contiguous words,
  • each word being formed of symbols of short duration separated from each other by inter symbol duration longer than the short duration.

Avantageusement, l'invention est aussi caractérisée en ce que

  • on émet pendant la période de silence un ou plusieurs symboles supplémentaires à des dates séparées de la fin du deuxième mot par une durée égale à un multiple impair de la demi-durée inter symboles.
Advantageously, the invention is also characterized in that
  • one or more additional symbols are emitted during the period of silence at dates separated from the end of the second word by a duration equal to an odd multiple of the half intersymbol duration.

Avantageusement, l'invention est aussi caractérisée en ce que chaque mot est formé de quatorze symboles encadrés par un symbole de départ et un symbole d'arrêt.Advantageously, the invention is also characterized in that each word is formed of fourteen symbols framed by a start symbol and a stop symbol.

Avantageusement, l'invention est aussi caractérisée en ce que

  • le premier symbole du premier mot, le symbole supplémentaire et le dernier symbole du deuxième mot sont émis avec des niveaux d'énergie supérieure à ceux des autres symboles,
Advantageously, the invention is also characterized in that
  • the first symbol of the first word, the additional symbol and the last symbol of the second word are emitted with energy levels higher than those of the other symbols,

Avantageusement, l'invention est aussi caractérisée en ce que

  • le message de tirs comporte une émission à deux reprises dans le temps, d'un mot symbolique de synchronisation,
  • ces deux mots symboliques de synchronisation sont séparés par des mots symboliques de données relatives au tir simulé,
  • ces deux mots symboliques sont suivis de mots symboliques d'extension de données relatives au tir simulé,
  • chaque mot étant formé de symboles de durée courte séparé les uns des autres par une durée inter symbole plus longue que la durée courte.
Advantageously, the invention is also characterized in that
  • the message of fire includes a transmission twice in time, a symbolic word of synchronization,
  • these two symbolic words of synchronization are separated by symbolic words of data relating to the simulated shooting,
  • these two symbolic words are followed by symbolic words extension of data relating to simulated fire,
  • each word being formed of symbols of short duration separated from each other by inter symbol duration longer than the short duration.

Avantageusement, l'invention est aussi caractérisée en ce que

  • le premier mot de synchronisation est formé de neuf symboles, le deuxième mot de synchronisation est formé de dix symboles.
Advantageously, the invention is also characterized in that
  • the first synchronization word is formed of nine symbols, the second synchronization word is formed of ten symbols.

Avantageusement, l'invention est aussi caractérisée en ce que chaque mot symbolique de données est formé de huit symboles encadrés par un bit de séparation.Advantageously, the invention is also characterized in that each symbolic word of data is formed of eight symbols flanked by a separation bit.

Avantageusement, l'invention est aussi caractérisée en ce que la durée inter symbole est plus de 1 000 fois supérieure à la durée courte.Advantageously, the invention is also characterized in that the inter symbol duration is more than 1000 times greater than the short duration.

Avantageusement, l'invention est aussi caractérisée en ce que la durée inter symboles est d'environ 128 µs et la durée d'un symbole est d'au minimum de 50 ns.Advantageously, the invention is also characterized in that the inter-symbol duration is about 128 μs and the duration of a symbol is at least 50 ns.

Avantageusement, l'invention est aussi caractérisée en ce que la position des symboles supplémentaires est à environ 320µs, ou à environ 448µs ou à environ 576µs du deuxième symbole d'arrêt du deuxième mot.Advantageously, the invention is also characterized in that the position of the additional symbols is about 320 μs, or about 448 μs or about 576 μs of the second stop symbol of the second word.

Avantageusement, l'invention est aussi caractérisée en ce que le symbole est une impulsion laser.Advantageously, the invention is also characterized in that the symbol is a laser pulse.

L'invention a également pour objet un simulateur comportant des moyens aptes à mettre en oeuvre le procédé de simulation de l'invention.The subject of the invention is also a simulator comprising means capable of implementing the simulation method of the invention.

Brève description des dessinsBrief description of the drawings

L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Celles-ci sont présentées à titre indicatif et nullement limitatif de l'invention.

  • Les figures 1a, 1b et 1c schématisent une représentation d'une simulation de tirs, lors d'un entrainement au combat, selon l'invention.
  • La figure 2 montre une représentation schématique de l'implantation des composants du simulateur de tir, selon l'invention.
  • La figure 3 montre une illustration de moyens mettant en oeuvre le procédé de l'invention.
  • Les figures 4 et 5 montrent un exemple de protocole de communication unidirectionnel entre un simulateur de tirs et un dispositif cible unidirectionnel, selon l'invention.
  • Les figures 6, 7 et 8 montrent un exemple de protocole de communication bidirectionnel entre un simulateur de tirs et un dispositif cible bidirectionnel, selon l'invention.
  • Les figures 9a, 9b et 9c illustrent le résultat de l'interprétation d'un dispositif cible unidirectionnel, lors de la réception de données émis selon le protocole de communication unidirectionnel.
The invention will be better understood on reading the description which follows and on examining the figures which accompany it. These are presented as an indication and in no way limitative of the invention.
  • The Figures 1a, 1b and 1c schematize a representation of a simulation of shots, during a training in combat, according to the invention.
  • The figure 2 shows a schematic representation of the implementation of the components of the firing simulator, according to the invention.
  • The figure 3 shows an illustration of means implementing the method of the invention.
  • The figures 4 and 5 show an example of a unidirectional communication protocol between a firing simulator and a unidirectional target device, according to the invention.
  • The Figures 6, 7 and 8 show an example of a protocol of bidirectional communication between a firing simulator and a bidirectional target device, according to the invention.
  • The Figures 9a, 9b and 9c illustrate the result of interpreting a unidirectional target device when receiving data transmitted according to the unidirectional communication protocol.

Description détaillée de modes de réalisation de l'inventionDETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Les figures 1a, 1b et 1c montrent une représentation d'une simulation de combat de plusieurs acteurs de combat sur un terrain d'entrainement. Dans l'exemple de la figure 1a, les acteurs au combat sont composés d'un char 10, d'un hélicoptère 11 et de trois acteurs 12, 13 et 14 pédestres tels que des fantassins. Tous ces acteurs de combat sont munis d'un simulateur 20 de tirs d'une arme de combat tel que représenté à la figure 2 et d'un dispositif cible (non représenté).The Figures 1a, 1b and 1c show a representation of a combat simulation of several combat actors on a training ground. In the example of the figure 1a , the actors in combat are composed of a tank 10, a helicopter 11 and three actors 12, 13 and 14 pedestrians such as infantrymen. All these combat actors are equipped with a simulator of firing a combat weapon as shown in figure 2 and a target device (not shown).

Le tireur, dans l'exemple de la figure 1a, est le char 10 armé d'un canon 15 dont le système de visée est associé au simulateur 20 de tirs d'un obus 16. Le système de visée du canon 15 est associé à l'axe d'un télémètre laser 21 du simulateur de tirs 20 et est pointé en direction d'une cible matérialisée par l'acteur 13 de combat pédestre situé à une distance horizontale du char 10.The shooter, in the example of figure 1a , is the tank 10 armed with a gun 15 whose aiming system is associated with the simulator 20 of firing a shell 16. The aiming system of the gun 15 is associated with the axis of a laser rangefinder 21 of the simulator 20 and is pointed towards a target materialized by the pedestrian combat actor 13 located at a horizontal distance from the tank 10.

Comme représenté à la figure 2, le télémètre laser 21 du simulateur 20 de tirs comporte un émetteur laser 22, par exemple une diode laser, pour produire des impulsions laser de faible puissance sous forme d'un faisceau lumineux avec une fréquence de répétition de quelques kHz. Le télémètre laser 21 comporte également un récepteur laser 23, telle qu'une diode photosensible. Le simulateur 20 de tirs comporte un dispositif 24 de balayage d'un faisceau laser émis par l'émetteur 22.As represented in figure 2 , the laser rangefinder 21 of the firing simulator 20 comprises a laser emitter 22, for example a laser diode, for producing low power laser pulses in the form of a light beam with a repetition frequency of a few kHz. The laser rangefinder 21 also includes a laser receiver 23, such as a light-sensitive diode. The firing simulator comprises a device 24 for scanning a laser beam emitted by the transmitter 22.

Le simulateur 20 de tirs est couplé à un circuit 30 de commande apte à assurer le déclenchement de l'émission du faisceau laser par l'émetteur 22, l'activation du dispositif 24 de balayage et le traitement des signaux reçus par le récepteur 23.The firing simulator 20 is coupled to a control circuit 30 capable of triggering the emission of the laser beam by the transmitter 22, the activation of the scanning device 24 and the processing of the signals received by the receiver 23.

Le simulateur 20 de tirs comporte une interface 25 graphique homme machine. Cette interface 25 comporte diverses intitulées descriptifs dont la disposition permet de guider l'utilisateur dans la saisie d'informations de programmation de la fonction de tirs du simulateur 20 de tirs. Cette interface 25 permet à l'utilisateur de configurer et de commander le simulateur 20 de tirs du char 10.The firing simulator has a graphical human machine interface. This interface includes various descriptive titles whose provision guides the user in entering programming information of the firing function of the firing simulator. This interface 25 allows the user to configure and control the simulator 20 of tank fire 10.

Le circuit 30 de commande comporte un microprocesseur 31, une mémoire 32 de programme de simulation de tirs et une mémoire 33 de données interconnectés par un bus 34 interne.The control circuit 30 comprises a microprocessor 31, a memory 32 of shot simulation program and a memory 33 of data interconnected by an internal bus 34.

Dans la description on prête des actions à des appareils ou à des programmes, cela signifie que ces actions sont exécutées par un microprocesseur de cet appareil ou de l'appareil comportant le programme, ledit microprocesseur étant alors commandé par des codes instructions enregistrés dans une mémoire de l'appareil. Ces codes instructions permettent de mettre en oeuvre les moyens de l'appareil et donc de réaliser l'action entreprise.In the description, actions are attributed to devices or programs, that is to say that these actions are executed by a microprocessor of this apparatus or of the apparatus comprising the program, said microprocessor then being controlled by instruction codes stored in a memory of the device. These instruction codes make it possible to implement the means of the apparatus and thus to carry out the action undertaken.

La mémoire 32 de programme de tirs est divisée en plusieurs zones, chaque zone correspondant à une fonction ou à un mode de fonctionnement du programme du simulateur 20 de tirs. Une zone 35 comporte des codes instructions pour traiter les informations saisies sur l'interface 25 et activer la fonction tir du simulateur 20 de tirs en conséquence d'une validation par l'utilisateur de cette saisie.The firing program memory 32 is divided into several zones, each zone corresponding to a function or mode of operation of the program of the firing simulator. A zone 35 includes instruction codes for processing the information entered on the interface 25 and activating the firing function of the firing simulator as a result of user validation of that input.

Une zone 36 comporte des codes instructions pour simuler une trajectoire T d'un comportement balistique de la munition simulée, qui est ici l'obus 16, en fonction du type de munition. Une zone 37 comporte des codes instructions pour activer le dispositif 24 de balayage, lors de l'émission d'un tir d'un premier type comportant un message de vérification émis par l'émetteur 22. Une zone 38 comporte des codes instructions pour déterminer un lieu d'impact et une durée balistique en fonction des données reçues en réponse au message de vérification.A zone 36 includes instruction codes for simulating a trajectory T of a ballistic behavior of the simulated munition, which is here the shell 16, depending on the type of ammunition. A zone 37 includes instruction codes for activating the scanning device 24, when transmitting a firing of a first type comprising a verification message sent by the transmitter 22. A zone 38 comprises instruction codes to determine an impact location and a ballistic duration based on the data received in response to the verification message.

Une zone 39 comporte des codes instructions pour déterminer un périmètre d'impact autour du lieu d'impact en fonction du type de munition à simuler. Une zone 40 comporte des codes instructions pour déterminer une combinaison d'enchaînement d'émissions de tirs laser selon un protocole de communication unidirectionnel, tel que représenté aux figures 4 et 5, et un protocole de communication bidirectionnel, tel que représenté aux figures 6-8. La combinaison d'enchaînement des émissions de tirs laser est déterminée en fonction des données reçues en réponse au message de vérification. Une zone 41 comporte des codes instructions pour dépointer l'axe de visée de l'arme pour balayer le périmètre d'impact. Une zone 42 comporte des codes instructions pour déterminer le nombre des émissions de tirs laser en fonction du type de munition.A zone 39 includes instruction codes for determining an impact perimeter around the impact location depending on the type of munition to be simulated. An area 40 includes instruction codes for determining a combination of laser shot transmissions according to a unidirectional communication protocol, as shown in FIGS. figures 4 and 5 , and a two-way communication protocol, as shown in Figures 6-8 . The sequence combination of laser shot transmissions is determined based on the data received in response to the verification message. A zone 41 includes instruction codes to detach the axis of sight of the weapon to scan the perimeter of impact. An area 42 includes instruction codes to determine the number of laser fire emissions based on the type of ammunition.

Lors de la simulation du tir de l'obus 16, l'axe de visée du char 10 et l'axe du télémètre 21 sont pointés dans la direction dans laquelle se trouve la cible qui est ici l'acteur pédestre 13. Dans un premier temps, le circuit 30 de commande détermine les paramètres du tir afin de simuler dans le temps un comportement balistique de l'obus 16. Les paramètres du tir peuvent être notamment la température de la poudre, les conditions aérologiques, les vents, les mouvements du tireur à l'instant de la mise de feu et durant la simulation de la trajectoire T du projectile 16 etc.During simulation of the firing of the shell 16, the axis of view of the tank 10 and the axis of the rangefinder 21 are pointed in the direction in which the target is located, which is here the pedestrian actor 13. In a first time, the control circuit 30 determines the parameters of the shot in order to simulate in time a ballistic behavior of the shell 16. The parameters of the shot can be in particular the temperature of the powder, the aerological conditions, the winds, the movements of the shooter at the moment of firing and during the simulation of the trajectory T of the projectile 16 etc.

Puis, le circuit 30 de commande détermine la trajectoire T fictive représentative de la trajectoire de l'obus 16 simulé. Cette trajectoire T est élaborée en temps réel à partir notamment des paramètres de pointage du canon et du comportement balistique de l'obus 16 simulé. La trajectoire T fictive de l'obus 16 simulé est connue à chaque instant (ti) par des tables ou par calcul. La trajectoire T simulée permet ainsi au circuit 30 de commande de créer une relation entre une distance parcourue par la munition et le temps ti.Then, the control circuit 30 determines the imaginary trajectory T representative of the trajectory of the simulated shell 16. This trajectory T is developed in real time from, in particular, the gun pointing parameters and the ballistic behavior of the simulated shell 16. The fictitious trajectory T of the simulated shell 16 is known at each instant (ti) by tables or by calculation. The simulated trajectory T thus allows the control circuit 30 to create a relationship between a distance traveled by the munition and the time ti.

Dans un second temps, le circuit 30 commande simultanément l'émission d'un tir d'un premier type simulant l'obus 16 et l'activation du dispositif 44 de balayage. Le tir du premier type comporte à cet instant un message de vérification de présence de dispositif cible bidirectionnel sur la trajectoire T. L'activation du dispositif 44 de balayage permet de réaliser un déplacement du faisceau laser émis, selon la trajectoire T de manière à explorer un certain champ pour observer la zone ou se situe l'acteur 13 pédestre. Ce balayage représente une simulation dans le temps du tir laser pour représenter le comportement balistique de l'obus 16 simulé.In a second step, the circuit 30 simultaneously controls the emission of a firing of a first type simulating the shell 16 and the activation of the scanning device 44. The firing of the first type comprises at this moment a bi-directional target device presence verification message on the trajectory T. The activation of the scanning device 44 makes it possible to carry out a displacement of the emitted laser beam along the trajectory T so as to explore a certain field to observe the area where the pedestrian actor is. This scan represents a simulation in time of the laser shot to represent the ballistic behavior of the simulated shell 16.

Le déplacement du faisceau laser selon la trajectoire T réalisé par le dispositif 44 de balayage est de préférence un balayage en deux dimensions, à savoir un balayage suivant un axe horizontal ou "gisement" et un balayage suivant un axe vertical ou "site".The displacement of the laser beam along the path T made by the scanning device 44 is preferably a scanning in two dimensions, namely a scan along a horizontal axis or "bearing" and a scan along a vertical axis or "site".

Dès que le récepteur 23 reçoit un message de présence en réponse au message de vérification correspondant au faisceau laser émis lors du balayage, le circuit 30 de commande désactive le dispositif 24 de balayage.As soon as the receiver 23 receives a presence message in response to the verification message corresponding to the laser beam emitted during the scanning, the control circuit 30 deactivates the scanning device 24.

Dans l'exemple de la figure 1, le dispositif cible bidirectionnel équipant l'hélicoptère 11, se situant dans le champ de balayage, détecte le faisceau laser de vérification de présence. Un réflecteur de ce dispositif cible bidirectionnel réémet le faisceau laser reçu vers le simulateur 20. Le circuit 30 de commande mesure le décalage temporel correspondant à la distance d'éloignement de l'hélicoptère 11 du tireur 10. La mesure de ce décalage temporel permet de déterminer un lieu d'impact 17 de l'obus 16 simulé. Ce décalage temporel correspond à la durée balistique.In the example of the figure 1 , the bidirectional target device equipping the helicopter 11, located in the scanning field, detects the presence verification laser beam. A reflector of this bidirectional target device re-emits the received laser beam to the simulator 20. The control circuit 30 measures the time offset corresponding to the distance away from the helicopter 11 of the shooter 10. The measurement of this time shift makes it possible to determine a place of impact 17 of the simulated shell 16. This time difference corresponds to the ballistic duration.

Le circuit 30 de commande détermine les caractéristiques du projectile à simuler, ici l'obus 16. Ces caractéristiques permettent au circuit 30 de définir des dimensions d'un périmètre 18 d'impact entourant le lieu 17 d'impact. Les caractéristiques peuvent être notamment une zone de dispersion des points d'impact, l'altitude de la cible et un effet de souffle correspondant à une onde de souffle créée par la détonation de l'obus. Cette zone de dispersion des points d'impact peut être générée par une bombe à fragmentation ou une bombe à sous-munitions.The control circuit 30 determines the characteristics of the projectile to be simulated, here the shell 16. These characteristics allow the circuit 30 to define dimensions of an impact perimeter 18 surrounding the impact location 17. Characteristics may include a scatter zone of the impact points, the target altitude and a blast effect corresponding to a blast wave created by the detonation of the shell. This zone of dispersion of the points of impact can be generated by a cluster bomb or a cluster bomb.

Lorsque l'arme à simuler est une arme légère, portée par les acteurs pédestre, tel qu'une mitrailleuse, le périmètre d'impact correspond au lieu d'impact aligné à l'axe de visée de l'arme à simuler avant le tir laser.When the weapon to be simulated is a light weapon, carried by the pedestrian actors, such as a machine gun, the impact perimeter corresponds to the place of impact aligned with the axis of aim of the weapon to be simulated before firing. laser.

Après avoir déterminé le périmètre 18 d'impact, le circuit 30 commande l'émission du tir de premier type comportant cette fois-ci un message de tirs en direction de l'hélicoptère 11. Ce message de tirs est émis selon un protocole de communication bidirectionnel illustré par les figures 6-8.After having determined the impact perimeter 18, the circuit 30 controls the emission of the firing of the first type, this time comprising a firing message towards the helicopter 11. This firing message is issued according to a communication protocol. bidirectional illustrated by the Figures 6-8 .

Afin de simuler des points 19 d'impacts dans le périmètre 18 d'impact, le circuit 30 commande l'émission de tirs de deuxième type. Pour chaque émission, le circuit 30 commande le dépointage de l'axe de visée du canon afin de couvrir tout le périmètre 18 d'impact. Le tir de deuxième type est émis selon un protocole de communication unidirectionnel illustré par les figures 4 et 5. Ce tir de deuxième type est réitéré pendant une durée de neutralisation de cibles annexes. Cette durée de neutralisation correspond au temps nécessaire au simulateur pour balayer le périmètre d'impact. Le dépointage du canon est fait selon une répartition des points d'impacts préalablement définie.In order to simulate impact points in the impact perimeter, the circuit 30 controls the emission of shots of the second type. For each transmission, the circuit 30 controls the misalignment of the axis of sight of the gun to cover the entire perimeter 18 of impact. The firing of the second type is issued according to a one-way communication protocol illustrated by the figures 4 and 5 . This shot of the second type is reiterated during a period of neutralization of additional targets. This duration of neutralization corresponds to the time necessary for the simulator to scan the perimeter of impact. The misalignment of the gun is done according to a previously defined distribution of the points of impact.

Ainsi, avec l'invention, non seulement l'hélicoptère sera déclaré comme touché mais également tous les autres acteurs, tels que l'acteur pédestre 12, situés dans l'environnement d'impact du projectile tiré. L'invention permet ainsi de faire concorder le résultat de la simulation en entraînement de combat à la réalité.Thus, with the invention, not only will the helicopter be declared as touched but also all the other actors, such as the actor 12, located in the impact environment of the fired projectile. The invention thus makes it possible to match the result of the simulation in combat training to reality.

Dans l'exemple de la figure 1b, les acteurs au combat sont composés du char 10 tireur, d'un deuxième char 9, de l'acteur pédestre 13 considéré comme la cible visée et de deux autres acteurs 12 et 14 pédestres tels que des fantassins.In the example of the figure 1b , the actors in combat are composed of the shooter tank, a second tank 9, the pedestrian actor 13 considered as the intended target and two other actors 12 and 14 pedestrians such as infantrymen.

Le dispositif cible bidirectionnel équipant le deuxième char 9, se situant dans le champ de balayage, détecte le faisceau laser de vérification de présence. Un réflecteur de ce dispositif cible bidirectionnel réémet le faisceau laser reçu vers le simulateur 20. Le circuit 30 de commande mesure le décalage temporel correspondant à la distance d'éloignement du deuxième char 9 entre l'émission du message de vérification et la réception de la réponse à ce message. La mesure de ce décalage temporel permet de déterminer un lieu d'impact 17 de l'obus 16 simulé.The bidirectional target device equipping the second tank 9, located in the scanning field, detects the presence verification laser beam. A reflector of this bidirectional target device re-emits the received laser beam to the simulator 20. The control circuit 30 measures the time offset corresponding to the distance of distance of the second tank 9 between the transmission of the verification message and the reception of the response to this message. The measurement of this time shift makes it possible to determine an impact location 17 of the simulated shell 16.

Le circuit 30 de commande détermine les dimensions du périmètre 18 d'impact entourant le lieu 17 d'impact, en fonction des caractéristiques du projectile. Puis, le circuit 30 commande l'émission du tir de premier type comportant un message de tirs en direction du deuxième char 9. Afin de simuler des points 19 d'impacts dans le périmètre 18 d'impact, le circuit 30 commande l'émission de tirs de deuxième type en dépointant à chaque émission l'axe d'émission laser du bloc optique (20).The control circuit 30 determines the dimensions of the impact perimeter 18 surrounding the impact location, depending on the characteristics of the projectile. Then, the circuit 30 controls the emission of the firing of the first type comprising a firing message towards the second tank 9. In order to simulate impact points 19 in the perimeter 18 of impact, the circuit 30 controls the emission firing of the second type by offending at each transmission the laser emission axis of the optical block (20).

Dans l'exemple de la figure 1c, les acteurs au combat sont composés du char 10 tireur, de l'acteur pédestre 13 considéré comme la cible visée et de l'acteur pédestre 14. Dans l'exemple de la figure 1c, le simulateur 20 ne reçoit pas de réponse au message de vérification de présence pendant la durée de balayage de la trajectoire T. Autrement dit, aucun acteur au combat équipé du dispositif cible bidirectionnel ne se situe dans le champ de balayage. Dans ce cas, on effectue le tir de deuxième type après une date d'impact d'un tir balistique se produisant à la fin du balayage de la trajectoire T. Cette date d'impact coïncide avec le lieu 17 d'impact correspondant au point d'impact visé par l'utilisateur avant la simulation. Ce lieu 17 d'impact correspond à la position de la cible visée qui est ici l'acteur pédestre 13. Le circuit 30 de commande détermine les dimensions du périmètre 18 d'impact entourant le lieu 17 d'impact, en fonction des caractéristiques du projectile. Puis, le circuit 30 commande l'émission de tirs de deuxième type en dépointant à chaque émission l'axe de visée du canon.In the example of the figure 1c , the actors in combat are composed of the shooter tank, the pedestrian actor 13 considered as the target target and the pedestrian actor 14. In the example of the figure 1c , the simulator 20 receives no response to the presence check message during the scanning time of the trajectory T. In other words, no actor in combat equipped with the bidirectional target device is in the scanning field. In this case, the firing of the second type is carried out after an impact date of a ballistic fire occurring at the end of the sweep of the trajectory T. This impact date coincides with the impact location 17 corresponding to the point user-targeted impact before the simulation. This impact location corresponds to the position of the target target which is here the pedestrian actor 13. The control circuit 30 determines the dimensions of the impact perimeter surrounding the impact location, depending on the characteristics of the projectile. Then, the circuit 30 controls the emission of shots of the second type by offending at each transmission the axis of sight of the gun.

L'émission du tir de premier type comportant un message de tirs n'est, dans ce cas, pas activée. Néanmoins, l'activation de l'émission du message de tirs n'a aucune incidence sur le résultat de la simulation car aucun dispositif cible bidirectionnel n'est présent sur la trajectoire T du projectile 16 pour le recevoir.The shooting of the first type with a fire message is not activated in this case. Nevertheless, the activation of the emission of the firing message has no effect on the result of the simulation because no bidirectional target device is present on the trajectory T of the projectile 16 to receive it.

La figure 3 montre une illustration de moyens mettant en oeuvre le procédé de l'invention. La figure 3 montre une étape 100 préliminaire dans laquelle la fonction tir du simulateur 20 est activée selon les données saisies sur l'interface 25 graphique. A une étape 101, en fonction du type de projectile à simuler, le circuit 30 de commande extrait de la mémoire 33 de données des attributs associées à ce projectile. Ces attributs sont notamment, la portée maximale de ce projectile, le nombre de munitions tirés en rafale. A une étape 102, le circuit 30 de commande calcule une distance séparant le tireur de la cible. A une étape 103, le circuit 30 de commande simule une trajectoire T d'un comportement balistique de la munition simulée.The figure 3 shows an illustration of means implementing the method of the invention. The figure 3 shows a preliminary step in which the firing function of the simulator 20 is activated according to the data entered on the graphical interface. At a step 101, depending on the type of projectile to be simulated, the control circuit 30 extracts from the data memory 33 attributes associated with this projectile. These attributes include, the maximum range of this projectile, the number of ammunition fired continuously. At a step 102, the control circuit 30 calculates a distance separating the shooter from the target. At a step 103, the control circuit 30 simulates a trajectory T of a ballistic behavior of the simulated munition.

A une étape 104, l'émetteur 22 laser émet un tir laser d'un premier type comportant un message de vérification simulant une munition de l'arme de simulation. Ce message de vérification comporte un ensemble d'impulsions laser permettant de rechercher les éventuelles cibles bidirectionnelles présentes le long de la trajectoire T simulée. Le tir laser est déplacé selon la trajectoire T de manière à explorer un certain champ pour détecter la présence éventuelle de cible.At a step 104, the laser transmitter 22 emits a laser shot of a first type comprising a verification message simulating an ammunition of the simulation weapon. This verification message comprises a set of laser pulses making it possible to search for any bidirectional targets present along the simulated trajectory T. The laser shot is moved along the path T to explore a certain field to detect the possible presence of target.

A une étape 105, le simulateur 20 de tirs est en phase d'écoute d'un signal transmis par un réflecteur d'un dispositif cible laser bidirectionnel en réponse au message de vérification (recherche). Cette phase d'écoute est déclenchée par le circuit 13 de commande en lançant un compteur à rebours, à une étape 106, dont la durée est quasi égale à une durée d'un tir laser. Cette durée d'un tir laser, préalablement définie, est en général de l'ordre de dizaines à centaines de millisecondes. L'issue de la phase d'écoute peut être obtenue soit lorsque le compteur à rebours arrive à zéro soit lorsque le récepteur 23 du simulateur reçoit une réponse.In a step 105, the firing simulator 20 is in the listening phase of a signal transmitted by a reflector of a bidirectional laser target device in response to the verification message (search). This listening phase is triggered by the control circuit 13 by launching a countdown counter at a step 106, the duration of which is almost equal to a duration of a laser shot. This duration of a laser shot, previously defined, is generally of the order of tens to hundreds of milliseconds. The outcome of the listening phase can be obtained either when the countdown timer reaches zero or when the receiver 23 of the simulator receives a response.

A une étape 107, le simulateur 20 reçoit un message de signalisation de présence d'une cible en réponse au message de vérification de présence émis, pendant la durée de la phase d'écoute. A une étape 108, le circuit 30 de commande stoppe le compteur à rebours et désactive le dispositif de balayage. A une étape 109, le circuit 30 de commande détermine le lieu d'impact du projectile en mesurant la distance d'éloignement entre le tireur et la cible.At a step 107, the simulator 20 receives a presence signaling message from a target in response to the presence check message issued, during the duration of the listening phase. In a step 108, the control circuit 30 stops the countdown timer and deactivates the scanning device. In a step 109, the control circuit 30 determines the impact location of the projectile by measuring the distance of distance between the shooter and the target.

A une étape 110, le circuit 30 de commande détermine les caractéristiques du projectile à simuler afin de calculer les dimensions du périmètre 18 d'impact entourant le lieu 17 d'impact. A une étape 111, le simulateur 20 de tirs émet le tir de premier type comportant un message de tirs en direction de la cible munie du dispositif cible bidirectionnel. A une étape 112, afin de simuler des points 19 d'impacts dans le périmètre 18 d'impact le simulateur 20 de tirs émet des tirs de deuxième type en dépointant à chaque émission l'axe d'émission laser du simulateur.At a step 110, the control circuit 30 determines the characteristics of the projectile to be simulated in order to calculate the dimensions of the impact perimeter 18 surrounding the impact location 17. At a step 111, the firing simulator fires the first type firing with a firing message towards the target provided with the bidirectional target device. At a step 112, in order to simulate impact points in the impact perimeter 18, the firing simulator 20 emits firing of the second type by detaching at each transmission the laser emission axis of the simulator.

Si le compteur à rebours arrive à zéro et que le récepteur 23 n'a pas reçu de message de signalisation de présence, le circuit 30 de commande considère, à une étape 113, que le lieu 17 d'impact correspond au point d'impact visé par le tireur.If the countdown timer reaches zero and the receiver 23 has not received a presence signaling message, the control circuit 30 considers, at a step 113, that the location of impact corresponds to the point of impact. targeted by the shooter.

A une étape 114, le circuit 30 de commande détermine les dimensions du périmètre 18 d'impact entourant ce lieu 17 d'impact, en fonction des caractéristiques du projectile. A une étape 115, l'émetteur 22 émet des tirs de deuxième type en dépointant à chaque émission l'axe d'émission laser du simulateur afin de couvrir le périmètre 18 d'impact.At a step 114, the control circuit 30 determines the dimensions of the impact perimeter 18 surrounding this location of impact, depending on the characteristics of the projectile. At a step 115, the transmitter 22 emits firing of the second type by detaching at each transmission the laser emission axis of the simulator to cover the perimeter 18 of impact.

Dans un mode de réalisation préféré, la longueur d'onde du rayonnement laser émis par la fonction tir du simulateur est comprise entre 880 nanomètres et 920 nanomètres. Cette émission laser comporte des symboles ayant une durée de préférence supérieure ou égale à environ 50 nanosecondes. Dans un mode de réalisation préféré, la durée d'un symbole est sensiblement égale à 110 nanosecondes. Un symbole est une impulsion laser. La transmission de données laser, via cette émission, se fait de manière unidirectionnelle et asynchrone entre le tireur et sa cible.In a preferred embodiment, the wavelength of the laser radiation emitted by the firing function of the simulator is between 880 nanometers and 920 nanometers. This laser emission comprises symbols having a duration preferably greater than or equal to approximately 50 nanoseconds. In a preferred embodiment, the duration of a symbol is substantially equal to 110 nanoseconds. A symbol is a laser pulse. The transmission of laser data, via this transmission, is unidirectional and asynchronous between the shooter and its target.

Le niveau de puissance maximum des impulsions laser émises par le tireur est déterminé conformément à la norme de sécurité oculaire des appareils laser.The maximum power level of the laser pulses emitted by the shooter is determined in accordance with the eye safety standard of laser devices.

La transmission des données relatives au tir effectué, du tireur vers la cible, s'effectue en modulant en tout ou rien le train de symboles laser. Cette modulation est de préférence une modulation binaire de type modulation par impulsions et codage connu sous le terme anglo-saxon de Pulse Coded Modulation (PCM). Dans un mode de réalisation préféré, la durée inter-symbole est égale à environ 128 µs avec une tolérance de ± 5 µs.The transmission of the data relating to the firing carried out, from the firer to the target, is effected by modulating the laser symbol train in all or nothing. This modulation is preferably a pulse code modulation type binary modulation known as the Anglo-Saxon Pulse Coded Modulation (PCM). In a preferred embodiment, the inter-symbol duration is equal to approximately 128 μs with a tolerance of ± 5 μs.

Avec cette modulation :

  • «1» sera codé par la présence d'une impulsion laser
  • «0» sera codé par l'absence d'une impulsion laser.
With this modulation:
  • "1" will be encoded by the presence of a laser pulse
  • "0" will be encoded by the absence of a laser pulse.

La transmission de données laser est faite selon le protocole de communication unidirectionnel ou bidirectionnel. Un protocole de communication est un ensemble de règles et de procédures définissant le type de codage, la vitesse utilisé pendant la communication, ainsi que la façon d'établir et de terminer la connexion.The laser data transmission is done according to the unidirectional or bidirectional communication protocol. A communication protocol is a set of rules and procedures defining the type of coding, the speed used during the communication, and how to establish and terminate the connection.

Les figures 4 et 5 montrent un exemple de protocole de communication unidirectionnel entre un simulateur de tirs et un dispositif cible unidirectionnel, selon l'invention.The figures 4 and 5 show an example of a unidirectional communication protocol between a firing simulator and a unidirectional target device, according to the invention.

En mode de transmission de données, selon le protocole de communication unidirectionnel, le simulateur de tirs émet un tir 50 de deuxième type. Ce tir 50 de deuxième type comporte 63 bits successifs organisés de la manière suivante :

  • un premier 51 mot de 14 symboles de données encadrés d'un symbole 52 de départ et d'un symbole 53 d'arrêt,)
  • un second 54 mot de 14 symboles de données identique et contigu au premier 51 mot et encadré d'un symbole 55 de départ et d'un symbole 56 d'arrêt, et
  • d'une période 57 de silence dont la durée est égale à la durée des deux mots contigus. Cette période de silence est formée de 31 bits consécutifs forcés à 0, soit 32 durées inter-symbole consécutives de 128 µs.
In data transmission mode, according to the unidirectional communication protocol, the firing simulator issues a firing 50 of second type. This shot 50 of the second type comprises 63 successive bits organized as follows:
  • a first word of 14 data symbols framed by a start symbol 52 and a stop symbol 53)
  • a second 54 word of 14 data symbols identical and contiguous to the first word and flanked by a start symbol 55 and a stop symbol 56, and
  • a period of silence whose duration is equal to the duration of the two contiguous words. This silence period consists of 31 consecutive bits forced to 0, ie 32 consecutive inter-symbol durations of 128 μs.

Les symboles de départ et d'arrêt 52, 53, 55, 56 sont des bits de synchronisation.The start and stop symbols 52, 53, 55, 56 are synchronization bits.

Le mot de 14 symboles comporte notamment des données relatives à l'identification du tireur, au type d'arme ou de munition utilisé ou à la famille de l'arme utilisée (calibre) et fournit dans certains cas une information sur la sanction à afficher par la cible.The word of 14 symbols includes data relating to the identification of the gunman, the type of weapon or ammunition used or the family of the weapon used (caliber) and in some cases provides information on the sanction to display. by the target.

La durée totale d'un tir de deuxième type émis à une période fixe de 128µs est de 8,064 ms à compter du premier symbole laser émis.The total duration of a firing of the second type issued at a fixed period of 128μs is 8,064 ms from the first laser symbol issued.

Dans l'état de la technique, pour déterminer si une cible est prise à partie, les données reçues par la cible sont transmis à un ordinateur central de gestion de la simulation d'entraînement. Cet ordinateur détermine si la cible est détruite, touchée ou engagée par ce tir en fonction du point d'impact et des critères de vulnérabilité de cette cible.In the state of the art, to determine if a target is taken part, the data received by the target are transmitted to a central computer management training simulation. This computer determines whether the target is destroyed, hit, or engaged by that shot based on the impact point and vulnerability criteria of that target.

Dans l'invention, pour permettre à un calculateur de la cible de déterminer automatiquement sa sanction, au moins un symbole 59 supplémentaire est émis pendant la période 57 de silence du tir 50 de deuxième type. Ce symbole 59 supplémentaire est émis à une durée du symbole 56 fin du second 54 mot égale à un multiple impair de la demi durée inter-symbole. Ce symbole 59 supplémentaire est une impulsion laser permettant à la cible d'afficher une sanction de type prise à partie. Lorsque la cible reçoit le symbole 59 supplémentaire, celle-ci peut en conclure automatiquement qu'elle n'est pas détruite par ce tir mais uniquement présente dans la zone de tir sans en subir les effets. Avec l'invention, il n'est ainsi plus nécessaire de transmettre les données à un ordinateur central pour déterminer la sanction à appliquer à la cible.In the invention, to allow a calculator of the target to automatically determine its sanction, at least one additional symbol 59 is emitted during the period 57 of silence of the firing 50 of the second type. This additional symbol 59 is issued at a duration of the symbol 56 end of the second 54 word equal to an odd multiple of the half inter-symbol duration. This additional symbol 59 is a laser pulse allowing the target to display a sanction of the type taken together. When the target receives the additional symbol 59, it can automatically conclude that it is not destroyed by this shot but only present in the firing zone without suffering the effects. With the invention, it is thus no longer necessary to transmit the data to a central computer to determine the penalty to be applied to the target.

Dans un mode de réalisation préféré, le symbole de prise à partie peut se situer à 320µs après le symbole 56 d'arrêt du second mot, à 448µs après le symbole 56 d'arrêt du second mot à bit ou à 556µs après le symbole 56 d'arrêt du second mot.In a preferred embodiment, the set-to-part symbol may be 320 μs after the stop sign 56 of the second word, 448 μs after the stop symbol 56 of the second bit word or 556 μs after the symbol 56 stopping the second word.

Dans l'invention, les symboles de départ 52 du premier mot et d'arrêt 56 du second mot ainsi que le symbole 59 supplémentaire sont émis à des niveaux d'énergie supérieurs aux autres symboles émis. Dans un exemple préféré, les symboles de départ 52 du premier mot, d'arrêt 56 du second mot et le symbole 59 supplémentaire sont émis à des niveaux d'énergie environ 2 fois supérieurs à ceux des autres symboles émis.In the invention, the start symbols 52 of the first word and the stop word 56 of the second word as well as the additional symbol 59 are transmitted at higher energy levels than the other symbols transmitted. In a preferred example, the start symbols 52 of the first word, stop 56 of the second word and the additional symbol 59 are transmitted at energy levels approximately 2 times higher than those of the other symbols transmitted.

Pour représenter la simulation d'une munition tirée, l'émetteur émet une séquence 58 de tir. Cette séquence 58 de tirs comporte m tirs de deuxième type identiques et consécutifs. Dans un mode de réalisation préférée m est compris entre un et six. Dans l'exemple de la figure 5, pour simuler le tir d'une seule munition, le simulateur 20 de tirs émet une séquence de tirs comportant 3 tirs de deuxième type identiques et consécutifs. Dans un exemple préféré, la durée d'une séquence de tirs est au maximum de 50 millisecondes.To represent the simulation of a fired ammunition, the transmitter emits a firing sequence 58. This sequence of shots includes identical and consecutive second type shots. In a preferred embodiment m is between one and six. In the example of the figure 5 , to simulate the firing of a single ammunition, the firing simulator emits a firing sequence comprising 3 identical and consecutive shots of the second type. In a preferred example, the duration of a firing sequence is at most 50 milliseconds.

La redondance d'émission du mot de 14 bits et du tir de deuxième type permet d'éviter des erreurs de transmission afin d'assurer la fiabilité des informations reçues. Cette redondance permet à la cible recevant la transmission de contrôler l'intégrité des données reçues.The emission redundancy of the 14-bit word and the firing of the second type makes it possible to avoid transmission errors in order to ensure the reliability of the information received. This redundancy allows the target receiving the transmission to control the integrity of the data received.

Lorsque, le type d'arme est une arme à rafale de « n » coups, n étant un entier positif, la simulation d'un tir se traduit par l'émission laser de n séquences de tirs successifs. Chaque séquence de tirs est émise à l'endroit de l'impact de chaque munition simulée. L'enchainement des séquences de tirs de fait au rythme des tirs des n coups de l'arme.When, the type of weapon is a burst weapon of "n" shots, n being a positive integer, the simulation of a shot is translated by the laser emission of n sequences of successive shots. Each firing sequence is issued at the impact location of each simulated munition. The sequence of shots of fact to the rhythm of the shots of the n shots of the weapon.

Pour simuler les points d'impacts d'une arme explosive et sa zone de létalité, l'émetteur 21 émet de manière continue des séquences de tirs répartis spatialement pour décrire une zone rectangulaire de létalité. Les dimensions spatiales de cette zone sont fonction du type de munition simulé, et sont métriquement constantes indépendamment de la distance entre le tireur et la cible. Pour ce type de transmission de données, les séquences de 50 ms peuvent ne plus être respectées et les tirs de deuxième type sont transmis consécutivement et sans interruption durant tout le balayage de la zone de couverture létale.To simulate the points of impact of an explosive weapon and its lethal zone, the transmitter 21 continuously emits spatially distributed shot sequences to describe a rectangular area of lethality. The spatial dimensions of this area are a function of the type of simulated munition, and are metrically constant regardless of the distance between the shooter and the target. For this type of data transmission, the sequences of 50 ms can not be respected any more and the firing of second type are transmitted consecutively and without interruption during all the scanning of the zone of lethal coverage.

Les figures 9a, 9b et 9c, illustrent les interprétations faîtes par le calculateur de la cible lorsqu'il reçoit une séquence de tir. Lorsque la cible reçoit les symboles de haute énergie, il peut interpréter les données reçues et se déclarer touché comme le montre la figure 9a. Lorsque la cible reçoit un symbole de haute énergie à une durée du symbole 56 d'arrêt du second 54 mot égale à un multiple impair de la demi-durée inter-symbole alors, comme le montre la figure 9b, le calculateur de la cible interprète les données reçues et se déclare prise à partie par le tir. Dans l'exemple de la figure 9c, le tir est interprété comme manqué car il n'est pas détecté par la cible.The Figures 9a, 9b and 9c , illustrate the interpretations made by the calculator of the target when it receives a firing sequence. When the target receives the high energy symbols, it can interpret the received data and declare itself to be affected as shown in figure 9a . When the target receives a high energy symbol with a duration of the stop symbol 56 of the second word equal to an odd multiple of the intersymbol half time then, as shown in FIG. figure 9b , the calculator of the target interprets the data received and declares itself taken by fire. In the example of the Figure 9c , the shot is interpreted as missed because it is not detected by the target.

Les figures 6-8 montrent un exemple de protocole de communication bidirectionnel entre un simulateur de tirs et un dispositif cible bidirectionnel, selon l'invention.The Figures 6-8 show an example of bidirectional communication protocol between a firing simulator and a bidirectional target device, according to the invention.

En mode de transmission de données, selon le protocole de communication bidirectionnel, le simulateur de tirs émet un message 60 de tirs d'un tir de premier type. Ce message 60 de tirs comporte 84 symboles dont 55 symboles standards et 29 symboles d'extension. Les symboles du message 60 de tirs sont transmis de manière successive et organisés de la manière illustrée à la figure 6.In data transmission mode, according to the bidirectional communication protocol, the firing simulator transmits a message 60 of shots of a firing of the first type. This shot message has 84 symbols including 55 standard symbols and 29 extension symbols. The symbols of the shot message 60 are transmitted successively and organized from the illustrated way to the figure 6 .

Le message 60 de tirs comporte un entête 61 de synchronisation, comme illustré à la figure 7. Cet entête 61 de synchronisation comporte 9 symboles consécutifs. Cet entête 61 est suivi de cinq octets 63. Ces cinq octets 63 sont suivis d'un nouvel entête de synchronisation 62. Cet entête de synchronisation 62 comporte dix symboles émis consécutivement. Cet entête de synchronisation 62 est suivi de deux octets 64 d'extension. Les octets représentant les données utiles relatives au tir sont encadrés par des périodes 65 de silence. Ces périodes 65 de silence correspondent à des bits appelés "0" de séparation.The message 60 of shots includes a synchronization header 61, as illustrated in FIG. figure 7 . This synchronization header 61 has 9 consecutive symbols. This header 61 is followed by five bytes 63. These five bytes 63 are followed by a new synchronization header 62. This synchronization header 62 comprises ten consecutively transmitted symbols. This synchronization header 62 is followed by two extension bytes 64. The bytes representing the useful data relating to the shot are framed by periods of silence. These periods of silence correspond to bits called "0" of separation.

Ces deux entêtes 61 et 62 de synchronisation qui encadrent les cinq octets de données permettent à la cible de reconnaître les cinq octets de la partie standard et les deux octets complémentaires constituant l'extension.These two synchronization headers 61 and 62 which surround the five bytes of data allow the target to recognize the five bytes of the standard part and the two complementary bytes constituting the extension.

Dans un mode de réalisation préféré, les octets des cinq octets 63 standard peuvent comporter notamment les données suivantes : Tableau 1 octets Données 1 Ecart azimut 2 Distance entre le tireur et la cible 3 Un Code participant du tireur 4 Un Type de munition Nombre de tirs (15 maximum) 5 Ecart site In a preferred embodiment, the bytes of the five standard bytes 63 may include in particular the following data: Table 1 bytes Data 1 Azimuth gap 2 Distance between the shooter and the target 3 Participant code of the shooter 4 Ammunition Type Number of shots (15 maximum) 5 Site gap

Dans un mode de réalisation préféré, les octets des deux octets 64 d'extension peuvent comporter notamment les données suivantes : Tableau 2 octets Données 6 Extension du Code participant du tireur à 1023 participants Extension du Type de munition à 136 types 7 Extension du Code participant du tireur à 2047 participants Extension du Type de munition à 136 types In a preferred embodiment, the bytes of the two extension bytes 64 may include in particular the following data: Table 2 bytes Data 6 Shooter Participant Code Extension to 1023 participants Shift Type Extension to 136 Types 7 Shooter Participant Code Extension to 2047 participants Shift Type Extension to 136 Types

La durée totale d'un message 60 de tirs émis à une période fixe de 128µs est de 10,624 ms à compter du premier symbole laser émis.The total duration of a message 60 of shots issued at a fixed period of 128 μs is 10.624 ms from the first laser symbol transmitted.

Pour représenter la simulation d'une munition tirée, l'émetteur émet une séquence de tir. Cette séquence de tirs comporte m tirs de message 60 de tirs identiques et consécutifs. Dans un mode de réalisation préférée m est compris entre 1 et 28. La durée totale de l'émission d'une séquence de tirs de message de tirs est de 300,928 ms pour une durée inter-symbole fixe de 128µsTo represent the simulation of a fired ammunition, the transmitter emits a firing sequence. This sequence of shots includes 60 identical and consecutive shots. In a preferred embodiment m is between 1 and 28. The total duration of the emission of a firing message shot sequence is 300.928 ms for a fixed inter-symbol duration of 128 μs.

Une seule séquence de tirs de transmission de données, comprenant 28 messages 60 de tirs, est déclenchée pour chaque coup tiré par l'arme simulée suite à la détection d'une réponse au message de vérification émis par une cible coopérante bidirectionnel.A single sequence of data firing, including 28 firing messages 60, is triggered for each shot fired by the simulated weapon following the detection of a response to the verification message issued by a bidirectional cooperating target.

Dans le cas d'une transmission de données relative à une rafale tirée, le nombre de coups dans la rafale est inclus dans les informations codées dans le message 60 de tirs. Dans un mode de réalisation préféré, ce nombre de coups est limité à 15.In the case of data transmission relating to a fired burst, the number of shots in the burst is included in the information coded in the message 60 shots. In a preferred embodiment, this number of strokes is limited to 15.

Dans le cas, dune simulation d'une rafale avec un nombre de coups illimité, le circuit 30 de commande crée des messages de tirs comportant chacun un nombre de coups limité à 15. Le circuit 30 décompose ainsi successivement la rafale simulée en des messages 60 de tirs distincts comportant chacun au plus 15 coups tirés.In the case of simulating a burst with an unlimited number of shots, the control circuit 30 creates shot messages each having a number of shots limited to 15. The circuit 30 thus successively breaks down the simulated burst into messages 60. separate shots each with not more than 15 shots fired.

Afin d'éviter des entrelacements entre le tir de deuxième type et le message de tir, le tir de premier type se produit après une période de latence succédant au message de vérification ou au message de tir. Cette période de latence est un temps de latence sans émission laser. Elle est supérieure à cinq millisecondes.In order to avoid interleaving between the firing of the second type and the firing message, the firing of the first type occurs after a latency period succeeding the verification message or the firing message. This latency period is a latency time without laser emission. It is greater than five milliseconds.

Claims (20)

  1. Method for simulating shooting of a projectile with a simulation weapon (10), wherein:
    - the simulation weapon is aimed in the direction (13) of a target equipped with a target device,
    - an imaginary trajectory representative of the trajectory of a simulated projectile is determined,
    - a shot of a first type is emitted in accordance with a bidirectional communication protocol, including a target presence verification message, with the simulation weapon, at the same time as the activation of a device for scanning said shot of a first type depending on the imaginary trajectory of the simulated projectile,
    - a shot (104) of a first type is then taken, including a shot message (111) to the target, with the simulation weapon,
    - a shot (112, 115) of a second type is taken, in accordance with a unidirectional communication protocol, after a date of impact (17) and within a perimeter of impact (18) of a ballistic shot occurring after a ballistic duration (D), the ballistic duration (D) and the perimeter of impact (18) being determined depending on the characteristics of the projectile, so as to simulate at least one point of impact.
  2. Method according to Claim 1, characterized in that
    - the shot of the second type is reiterated periodically after the date of impact for an adjacent target neutralization duration,
    - the adjacent target neutralization duration is determined depending on a type of the simulation weapon.
  3. Method according to Claim 2, characterized in that the perimeter of impact is determined before the shot of a first type is taken.
  4. Method according to either of Claims 2 and 3, characterized in that,
    - during the reiteration, the simulation weapon is aimed off (41) so as to cover the entire perimeter of impact.
  5. Method according to one of Claims 2 to 4, characterized in that
    - the neutralization duration corresponds to the time necessary to scan the perimeter of impact.
  6. Method according to one of Claims 1 to 5, characterized in that
    - the verification message includes a searching phase with two-dimensional scanning (37), namely horizontal scanning and vertical scanning.
  7. Method according to one of Claims 1 to 6, characterized in that
    - the shot of a second type occurs after a latency duration following the verification message or the shot message.
  8. Method according to one of Claims 1 to 7, characterized in that
    - the target device emits (107), in response to the verification message, a presence message,
    - if the presence message is not received by the simulation weapon,
    - the shot of a second type is taken (115) after a date of impact of a ballistic shot occurring after a ballistic duration,
    - the shot of the second type being directed to a corresponding site (113) of impact.
  9. Method according to one of Claims 1 to 8, characterized in that
    - the shot of a second type includes emitting, at two contiguous instants in time, a symbolic data word (51, 54) followed by a period (57) of silence the duration of which is equal to the duration of the two contiguous words,
    - each word being formed of symbols of a short duration separated from one another by an inter-symbol duration longer than the short duration.
  10. Method according to Claim 9, characterized in that,
    - during the period of silence, one or more additional symbols (59) are emitted at dates separated from the end of the second word by a duration equal to an odd multiple of the inter-symbol half-period.
  11. Method according to either of Claims 9 and 10, characterized in that each word is formed of fourteen symbols framed by a start symbol (52, 55) and a stop symbol (53, 56).
  12. Method according to Claim 11, characterized in that:
    - the first symbol (52) of the first word, the additional symbol (59) and the last symbol (56) of the second word are emitted with energy levels higher than those of the other symbols.
  13. Method according to one of Claims 1 to 8, characterized in that
    - the shot message includes emitting, at two instants in time, a symbolic synchronization word (61, 62),
    - these two symbolic synchronization words are separated by symbolic data words (63), said data relating to the simulated shot,
    - these two symbolic words are followed by symbolic data extension words (64), said data relating to the simulated shot,
    - each word being formed of symbols of a short duration separated from one another by an inter-symbol duration longer than the short duration.
  14. Method according to Claim 13, characterized in that:
    - the first synchronization word is formed of nine symbols, and the second synchronization word is formed of ten symbols.
  15. Method according to one of Claims 9 to 13, characterized in that each symbolic data word is formed of eight symbols framed by a separating bit.
  16. Method according to one of Claims 9 to 15, characterized in that the inter-symbol duration is more than 1000 times greater than the short duration.
  17. Method according to one of Claims 9 to 16, characterized in that the inter-symbol duration is around 128 µs and the duration of a symbol is at least 50 ns.
  18. Method according to Claim 17, characterized in that the additional symbols are positioned at around 320 µs, or at around 448 µs or at around 576 µs from the second stop symbol of the second word.
  19. Method according to one of Claims 9 to 18, characterized in that the symbol is a laser pulse.
  20. Simulator including means that are configured to implement the shooting simulation method according to one of the preceding claims.
EP09795475.4A 2008-11-24 2009-11-20 Method for simulating shooting and shooting simulator suitable for implementing the method Active EP2356397B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857956A FR2938961B1 (en) 2008-11-24 2008-11-24 TIRS SIMULATION METHOD AND TIRS SIMULATOR SUITABLE FOR CARRYING OUT THE METHOD
PCT/FR2009/052233 WO2010058135A1 (en) 2008-11-24 2009-11-20 Method for simulating shooting and shooting simulator suitable for implementing the method

Publications (2)

Publication Number Publication Date
EP2356397A1 EP2356397A1 (en) 2011-08-17
EP2356397B1 true EP2356397B1 (en) 2018-01-10

Family

ID=40791645

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09795475.4A Active EP2356397B1 (en) 2008-11-24 2009-11-20 Method for simulating shooting and shooting simulator suitable for implementing the method

Country Status (3)

Country Link
EP (1) EP2356397B1 (en)
FR (1) FR2938961B1 (en)
WO (1) WO2010058135A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002856A1 (en) * 2010-06-30 2012-01-05 Saab Ab Wireless target system
ES2829820T3 (en) 2011-12-13 2021-06-02 Saab Ab A simulator of shooting and gun targets and procedures thereof
CN107339908A (en) * 2017-06-26 2017-11-10 北京盈想东方科技股份有限公司 A kind of nachinegun fire dot laser simulator
CN110441125B (en) * 2019-07-15 2020-11-13 武汉大学 Device and method for simulating ballistic impact and monitoring in real time by using linear pulse laser
FR3110226A1 (en) 2020-05-18 2021-11-19 Gdi Simulation Video combat shooting simulator and associated shooting simulation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE392644B (en) * 1973-11-19 1977-04-04 Saab Scania Ab PROCEDURE AND DEVICE FOR CARRYING OUT A QUANTITATIVE SUMMARY CONTROL OF FIRE PREPARATIONS, TEMPLE FOLLOWING IN APPLICATION EXERCISES WITH SIMULATED FIRE DEPARTMENT AGAINST A FLYING FIRE TARGET AT AN AIRCRAFT STRAP
SE418909B (en) * 1978-03-02 1981-06-29 Saab Scania Ab KIT AND PLANT TO MODEL MODULATED OPTICAL RADIATION TRANSFER INFORMATION FOR FORMAL
SE425819B (en) * 1978-03-02 1982-11-08 Saab Scania Ab PROCEDURE KIT AND DEVICE SHOOTING DEVICE
SE412959B (en) * 1978-03-02 1980-03-24 Saab Scania Ab SET TO DETERMINE THE DOCTOR FOR A NUMBER OF FOREMAL AND SYSTEM FOR EXECUTING THE SET
JP2000218037A (en) * 1999-02-02 2000-08-08 Sega Enterp Ltd Indicated position detection method and device for video screen
EP1696198B1 (en) * 2005-02-28 2014-07-16 Saab Ab Method and system for fire simulation

Also Published As

Publication number Publication date
WO2010058135A1 (en) 2010-05-27
EP2356397A1 (en) 2011-08-17
FR2938961A1 (en) 2010-05-28
FR2938961B1 (en) 2017-08-11

Similar Documents

Publication Publication Date Title
EP2356397B1 (en) Method for simulating shooting and shooting simulator suitable for implementing the method
US10309751B2 (en) Small arms shooting simulation system
JP2004069296A (en) Network-linked laser target type firearm training system
KR20030005234A (en) Precision gunnery simulator system and method
US20060166171A1 (en) Explosives simulation apparatus
JP2002228397A (en) Method and apparatus for simulating exploding launcher
AU2010284328A1 (en) Training device for grenade launchers
EP2791612B1 (en) A weapon firing and target simulator and methods thereof
EP2326909B1 (en) Method for simulating gunshots in an urban area
EP1737146B1 (en) A system and a method for transmission of information
KR100527338B1 (en) Simulated Engagement System and Method Against Tank
RU2296287C1 (en) Target seeker of self-aiming war component
EP2643830A2 (en) Method for simulating shots out of direct sight and shot simulator for implementing said method
US7147472B1 (en) Laser aim scoring system
EP2817581A1 (en) Combat firing simulator for weapons combining absolute operation and relative operation on the ground
EP2120000B1 (en) Discrimination method for shooting simulation
KR20020007677A (en) Training system for antiaircraft fire
Rapanotti et al. Developing Vehicle Survivability on a Virtual Battlefield
Mosbrooker Eyesafe laser application in military and law enforcement training
Rapanotti et al. ModSAF-based development of operational requirements for light armored vehicles
KR101492418B1 (en) MCC signal decoding method by Time BIN revision
Rapanotti et al. ModSAF-based development of DAS for light armoured vehicles
CN115930689A (en) Automatic target-scoring system and method based on shell-throwing port detection technology
US20060134582A1 (en) Simulation of tracer fire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160906

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170614

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

INTC Intention to grant announced (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GDI SIMULATION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20171116

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962871

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009050368

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 962871

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009050368

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009050368

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181120

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091120

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 15