EP2348571A1 - Actionneur thermo-élastique compact pour guide d'ondes, guide d'ondes à stabilité de phase et dispositif de multiplexage comportant un tel actionneur - Google Patents
Actionneur thermo-élastique compact pour guide d'ondes, guide d'ondes à stabilité de phase et dispositif de multiplexage comportant un tel actionneur Download PDFInfo
- Publication number
- EP2348571A1 EP2348571A1 EP10189709A EP10189709A EP2348571A1 EP 2348571 A1 EP2348571 A1 EP 2348571A1 EP 10189709 A EP10189709 A EP 10189709A EP 10189709 A EP10189709 A EP 10189709A EP 2348571 A1 EP2348571 A1 EP 2348571A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- actuator
- force
- fingers
- sides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 21
- 101150091203 Acot1 gene Proteins 0.000 claims description 5
- 102100025854 Acyl-coenzyme A thioesterase 1 Human genes 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910001374 Invar Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/30—Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability
Definitions
- the present invention relates to a compact thermoelastic actuator for a waveguide, a phase stability waveguide and a multiplexing device comprising such an actuator. It applies in particular to the compensation of the volume changes of a waveguide subjected to temperature variations and more particularly to the waveguides of the multiplexers integrated into satellite space equipment.
- OMUX In English: Output Multiplexer
- These OMUX generally comprise several channels interconnected by at least one waveguide, also called manifold, whose dimensional variations due to temperature variations induce an offset of the geometric distance between the channel connection ports of OMUX and phase shifts in the guided waves. These phase shifts cause a malfunction of the equipment and can for example cause mismatches of the OMUX channels.
- the waveguide in a material with a low thermal expansion rate CTE (in English: Coefficient of Thermal Expansion) such as titanium or an alloy of iron and nickel, for example the invar (registered trademark).
- CTE coefficient of Thermal Expansion
- space equipment is generally made of low density materials such as aluminum which has a high coefficient of thermal expansion, assemblies with low CTE waveguides cause mechanical stress during temperature variations. between structures that can cause malfunctions.
- the document US 5,428,323 discloses a method of compensating the thermal expansion of a rectangular section waveguide by applying a deformation on its two side walls of smaller width so as to provide phase stability.
- the deformation is applied by small-side orthogonal spacers fixed between the short sides of the waveguide and a low CTE holding structure disposed around the waveguide.
- the spacer pieces lengthen or shrink and pull or support orthogonally on the short sides, which forces the short sides of the waveguide to deform along an axis orthogonal to these small sides.
- this technology requires the use of a holding structure arranged around the waveguide.
- phase stability waveguide assembly in which lever mechanisms are rotated about pivots under the action of temperature variations and compensate for larger variations in waveguide size by temperature function by pulling or pressing orthogonally on the short sides of the waveguide.
- this assembly is complex, cumbersome and can hinder the positioning of the adjacent channels and the mechanical interfaces of the OMUX near the waveguide, particularly in the context of a compact configuration in which the channels are arranged in staggered rows. on both sides of the waveguide.
- the document CA 2,432,876 discloses another phase stability waveguide assembly in which the short sides of the waveguide have a curved initial length and are constrained in a lateral direction of the waveguide by a plurality of low CTE plates placed sideways side by side along the waveguide laterally on either side of each small curved side.
- the expansion or contraction of the short sides is restricted by the side plates while the long sides are free to expand or contract.
- This assembly has the disadvantage of requiring pre-bending the short side of the waveguide while laterally and symmetrically ribbing the upper and lower portions of the waveguide, thus reducing the positioning latitude of the channels relative to the guide of the waveguide. Waveform as well as the mechanical interfaces of the OMUX near the waveguide.
- the object of the invention is to provide a thermoelastic waveguide actuator for ensuring the phase stability of the waveguide and not having the disadvantages of existing devices.
- the invention relates to a thermoelastic actuator for simple waveguide to be implemented, of small size, optimized to minimize the volume occupied near the waveguide and the channels, and particularly adapted to a technology of 'OMUX with vertical structure.
- the invention relates to a compact thermoelastic waveguide actuator comprising at least two identical stress parts made of a first material having a first coefficient of thermal expansion and a holding part made of a second different material. of the first material and having a second coefficient of thermal expansion less than the first coefficient of thermal expansion, characterized in that the force pieces have a length which extends in a longitudinal direction Y between two outer and inner ends, are mounted head -beach one beside the other parallel to the Y direction and are linearly offset relative to each other, along the longitudinal axis Y, and in that the holding piece has two ends upper and lower and a middle zone located in a central region of the holding part between the two upper ends the lower and upper ends, the upper and lower ends of the holding part being respectively connected to the outer ends of each piece of force and the inner ends of each piece of force being positioned under the median zone of the holding piece.
- the linear shift of the workpieces relative to each other, along the longitudinal axis Y is equal to half their length.
- the force parts are filiform and may be, for example, longitudinal bars.
- the force parts are axially symmetrical. They may for example have an inner fork-shaped end having at least two fingers.
- the actuator comprises at least four pieces of effort mounted head to tail two by two and the fingers of the forks consecutive pieces of effort mounted in the same direction are intersecting one above the other .
- each finger has a point of attachment and the attachment points of two interlocking fingers belonging to two consecutive pieces of effort mounted in the same direction are connected together.
- the invention also relates to a phase stability waveguide having a rectangular cross-section having two long sides and two small opposite sides and having at least two external longitudinal ribs, respectively upper and lower, located symmetrically in the extension of the long sides. respectively on the two small opposite sides of the waveguide, the two ribs being off-axis with respect to a median axis of the short sides, the waveguide comprising at least one compact thermoelastic actuator, the actuator having its axis longitudinally positioned parallel to a large side of the rectangular waveguide and the inner ends of the actuator force parts located below the median zone being respectively fixed to the outer longitudinal ribs of the waveguide.
- the invention finally relates to a multiplexing device comprising at least one phase stability waveguide.
- the first example of an actuator represented on the Figures 1 and 2 and the second example of actuator shown on the Figures 3a and 3b are of elongate shape along a longitudinal axis Y and comprise an even number of identical force pieces 10a, 10b, 10c, 10d, 30a, 30b made of a first material having a first coefficient of thermal expansion CTE1 and a holding piece 11 , 31 made in a second material different from the first material and having a second coefficient of thermal expansion CTE2 lower than the first coefficient of thermal expansion CTE1.
- the first material is a thermal conductive material with a high coefficient of thermal expansion such as aluminum and the second material is a material with a low coefficient of thermal expansion. thermal expansion such as titanium or an alloy of iron and nickel such as Invar.
- the stresses 10a to 10d, 30a, 30b and the retaining piece 11, 31 are of elongated shape along a longitudinal axis Y and may have, as on the Figures 1 and 2 , Axial symmetry with respect to the longitudinal axis Y.
- the stresses are filamentary and may for example be substantially straight bars, of small width and thin as on the Figures 3a and 3b or have a forked end with two fingers as on the Figures 1 and 2 or have any other shape with axial symmetry with respect to the Y axis, elongate in the Y direction and preferably narrow in the X and Z directions orthogonal to the Y direction.
- the length and the thickness of the effort pieces may have values vary widely depending on the application. By way of non-limiting example, the workpieces may be a few millimeters thick and several centimeters in length, or different values of a factor of ten and even beyond.
- the stresses 10a, 10b or 10c, 10d or 30a, 30b are mounted head to tail next to each other in the same plane XY and so that two pieces of force mounted vis-à-vis are linearly offset from one another along the longitudinal axis Y by a distance of approximately half their length.
- Each piece of force has an inner end 12, 13, 32 disposed in a central zone 14, 34 of the actuator 15, 35 and an outer end 16, 36, the inner ends 12, 13, 32 and outer 16, 36 being provided with fixing points.
- the holding piece 11, 31 has two opposite ends, respectively upper 20, 37 and lower 21, 38 and a median zone situated between the two upper and lower ends, the median zone of the holding piece 11, 31 corresponding to the central zone 14, 34 of the actuator 15, 35.
- the holding piece is mounted on an upper face of the force pieces so that the median zone 14, 34 of the retaining piece 11, 31 covers at least partially the inner ends 12, 13, 32 of the force parts and that its two opposite ends 20, 21, 37, 38 are fixed to the attachment points of the outer ends 16, 36 pieces of effort.
- the holding piece 11, 31 has a small thickness relative to its length, the length and the thickness of the holding piece being of the same order of magnitude as those of the force pieces, and may for example have an asymmetrical shape substantially planar which comprises a median zone 14, 34 of width equal to or greater than the width of the workpieces provided with lateral recesses 39, 40 arranged in the thickness of the holding piece, facing the attachment points of the ends 12, 13, 32 of the stresses, as shown on the Figures 3a and 3b .
- the retaining piece may have a symmetrical shape that includes a central zone comprising a central recess 22 so as to allow access to the fastening points of the actuator located at the ends of the fingers of the force parts as shown on the Figures 1 and 2 .
- the holding piece 11, 31 may have any other shape, elongate in the longitudinal direction Y, having a central zone at least partially covering the inner ends of the force parts and two opposite ends fixed to the attachment points of the outer ends of the parts. effort.
- the figure 4 represents a cross-sectional view of an assembly of the compact thermoelastic actuator of the figure 2 on a waveguide 41 rectangular section at room temperature.
- the rectangular waveguide 41 has in cross section, two small sides 43a, 43b and two long sides 44 opposite two by two.
- the waveguide also comprises two external longitudinal ribs 42a, 42b arranged symmetrically respectively on each of the short sides 43a, 43b, in the extension of the long sides 44.
- the two external ribs 42a, 42b are parallel to each other, extend over approximately half the width of the short sides 43a, 43b and are off-axis with respect to the median axis of the short sides.
- the ribs 42a, 42b are preferably cut in the mass, and therefore integral with the waveguide 41.
- the sides 43a, 43b of the waveguide 41 have a wall finer than the long sides 44 so that it is more flexible and can be deformed under the action of tensile or compressive forces.
- the median zone 14 of the actuator 15 is fixed on one of the long sides 44 of the rectangular waveguide 41 and simultaneously with the two longitudinal ribs 42a, 42b situated respectively on the two opposite small sides 43a, 43b of the guide of FIG. 41.
- the fixing can be achieved for example by means of fixing screws 45 mounted in threaded holes arranged, at the attachment points, in the inner ends 12, 13 of the effort pieces 10a to 10d and passing through one or the other longitudinal ribs 42a, 42b.
- the lower faces of the inner ends 12, 13 of the force parts 10a to 10d are in contact with the long side 44 and the ribs 42a, 42b of the waveguide 41, the upper faces of the inner ends 12, 13 of the parts of FIG. 10a to 10d are arranged under the median zone of the holding part 11.
- the geometry of the actuator 15 being axially symmetrical and the workpieces 10a to 10d being mounted head to tail, the fingers 17, 18 of the parts 10a and 10c effort oriented in the same direction are connected to the same rib 42b, the fingers 17, 18 of 10b and 10d force parts oriented in an opposite direction are symmetrically connected to the opposite rib 42a.
- the Figures 5a and 5b represent two views, respectively in section and in perspective, of the assembly of the figure 4 when the temperature rises.
- the waveguide and the ribs made in The same high-CTE material such as for example aluminum, expands or contracts which results in a phase shift of the electric waves propagating in the waveguide.
- the stress parts made of a material with a high CTE, preferably an electrical conductor, which may be identical to or different from the material used for the waveguide, are connected to the ribs of the waveguide by means of the connecting screws. and are therefore subject to the same temperature variations as the waveguide. These pieces of effort will therefore also expand or contract.
- the holding piece made of a low CTE material such as invar, for example will expand much more weakly than the workpieces, keep a length very close to its initial length and maintain an almost constant distance between the parts. outer ends 16 of the stress pieces.
- the large difference between the coefficients of thermal expansion CTE1 and CTE2 thus makes it possible to generate a relative movement between the parts of force fixed on the upper rib and the parts of force fixed on the lower rib.
- the expansions or contractions of the effort pieces will thus result in cross-displacements of the fingers 17, 18 of the forks located at the inner ends of the workpieces 10a to 10b.
- the fingers will move symmetrically relative to each other, arching and apply compression or traction forces on the ribs of the waveguide through the connecting screws.
- the traction or compression forces on the ribs will result in a rotation of the ribs on themselves and cause deformation of the short sides of the waveguide.
- the geometry of the actuator 15 being axially symmetrical, the fingers 17, 18 being symmetrically intercrossed relative to each other and respectively connected in three different attachment points to the two opposite ribs 42a, 42b, the forces are applied simultaneously and symmetrically on the two ribs 42a, 42b.
- the displacement of the force parts is proportional to both the temperature, the length of the parts of effort between the two outer ends in the longitudinal direction, and the coefficient of expansion of the workpieces.
- the outer ends 16 of the force parts and the ends 20, 21 of the holding part are connected only to each other and to no other part.
- FIGS. 6a , 6b and 6c represent perspective views of a rectangular waveguide equipped with several compact thermoelastic actuators according to the invention.
- the waveguide comprises two upper and lower outer longitudinal ribs 42a and 42b respectively fixed or cut in the mass, on its upper and lower walls corresponding, in cross section, to the two small opposite sides 43a, 43b of the rectangular section of the waveguide.
- the two upper and lower ribs are off-axis with respect to the median axis of the upper and lower walls and extend symmetrically in the extension of a sidewall of the corresponding waveguide, in cross section, to a long side 44 of the rectangular section.
- the actuators are distributed at regular intervals along the rectangular waveguide, against the same sidewall, and comprise parts of force 10a to 10d fixed, by their median zone, parallel to a sidewall of the waveguide on both upper and lower veins.
- the waveguide comprises several upper and lower ribs arranged in staggered rows and inlet ports 60 on its two sides and the actuators 15 are arranged in staggered rows on both sides of the waveguide on either side of each of the input ports 60.
- the Figures 7 and 8 represent respectively, in perspective and in cross section, two examples of multiplexers, also called OMUX, comprising microwave filters 62 each having an output connected to an access 60 of a common rectangular waveguide 41.
- the accesses 60 of the rectangular waveguide are arranged at regular intervals on its two sides of larger size corresponding to the long sides 44 of the rectangular section.
- the filters 62 are arranged parallel to each other and are fixed vertically on a common support 63.
- the waveguide is disposed horizontally between two rows of filters connected to the accesses on its two sides.
- the thermoelastic actuators 15 are visible on the cross section of the figure 8 . This figure shows that when the microwave filters 62 are arranged vertically, the space available between the filters for the thermoelastic actuators 15 is very limited.
- the actuator of the invention extends essentially in a longitudinal direction Y and is very compact in the other directions, which makes it possible to easily insert it between two consecutive filters, its longitudinal axis Y being placed parallel to the vertical
Landscapes
- Non-Reversible Transmitting Devices (AREA)
- Waveguides (AREA)
Abstract
Description
- La présente invention concerne un actionneur thermo-élastique compact pour guide d'ondes, un guide d'ondes à stabilité de phase et un dispositif de multiplexage comportant un tel actionneur. Elle s'applique notamment à la compensation des changements de volume d'un guide d'ondes soumis à des variations de températures et plus particulièrement aux guides d'ondes des multiplexeurs intégrés dans des équipements spatiaux pour satellites.
- Les multiplexeurs ou démultiplexeurs appelés aussi OMUX (en anglais : Output Multiplexer) intégrés notamment dans des équipements spatiaux sont soumis à des variations de températures importantes. Ces OMUX comportent généralement plusieurs canaux reliés entre eux par au moins un guide d'ondes, appelé aussi manifold, dont les variations dimensionnelles dues aux variations de températures induisent un décalage de la distance géométrique entre les ports de connexion aux canaux de l'OMUX et des déphasages dans les ondes guidées. Ces déphasages entraînent un dysfonctionnement de l'équipement et peuvent par exemple provoquer des désadaptations des canaux des OMUX.
- Pour résoudre ce problème, il est connu de réaliser le guide d'ondes dans un matériau à faible taux d'expansion thermique CTE (en anglais : Coefficient of Thermal Expansion) tel que le titane ou un alliage de fer et de nickel comme par exemple l'invar (marque déposée). Cependant, les équipements spatiaux étant généralement réalisés dans des matériaux de faible densité tels que l'aluminium qui comporte un fort coefficient de dilatation thermique, les assemblages avec des guides d'ondes à faible CTE provoquent, lors des variations de température, des contraintes mécaniques importantes entre les structures qui peuvent engendrer des dysfonctionnements.
- Le document
US 5 428 323 décrit une méthode de compensation de la dilatation thermique d'un guide d'ondes à section rectangulaire en appliquant une déformation sur ses deux parois latérales de plus faible largeur de façon à assurer une stabilité de phase. La déformation est appliquée par des pièces d'écartement orthogonales aux petits côtés et fixées entre les petits côtés du guide d'ondes et une structure de maintien de faible CTE disposée autour du guide d'ondes. Lors d'une variation de température, les pièces d'écartements s'allongent ou se rétrécissent et viennent tirer ou appuyer orthogonalement sur les petits côtés, ce qui contraint les petits côtés du guide d'ondes à se déformer selon un axe orthogonal à ces petits côtés. Cependant cette technologie nécessite l'utilisation d'une structure de maintien disposée autour du guide d'ondes. - Le document
EP 1 909 355 décrit un autre assemblage de guide d'onde à stabilité de phase dans lequel des mécanismes à leviers sont actionnés en rotation autour de pivots sous l'action de variations de température et permettent de compenser de plus grandes variations de dimension du guide d'onde en fonction de la température en venant tirer ou appuyer orthogonalement sur les petits côtés du guide d'ondes. Cependant cet assemblage est complexe, encombrant et peut gêner le positionnement des canaux adjacents et des interfaces mécaniques de l'OMUX à proximité du guide d'ondes, particulièrement dans le cadre d'une configuration compacte en épi selon laquelle les canaux sont disposés en quinconce de part et d'autre du guide d'onde. - Le document
CA 2 432 876 décrit un autre assemblage de guide d'onde à stabilité de phase dans lequel les petits côtés du guide d'ondes ont une longueur initiale courbée et sont contraints selon une direction latérale du guide d'ondes par une pluralité de plaques à faible CTE placées côte à côte le long du guide d'ondes latéralement de part et d'autre de chaque petit côté courbé. L'expansion ou la contraction des petits côtés est restreint par les plaques latérales alors que les grands côtés sont libres de se dilater ou de se contracter. Cet assemblage présente l'inconvénient de nécessiter de pré-courber le petit côté du guide d'ondes tout en nervurant latéralement et symétriquement les parties hautes et basses du guide d'ondes, diminuant ainsi la latitude de positionnement des canaux par rapport au guide d'ondes ainsi que les interfaces mécaniques de l'OMUX à proximité du guide d'ondes. - Le but de l'invention est de réaliser un actionneur thermo-élastique pour guide d'ondes permettant d'assurer la stabilité de phase du guide d'ondes et ne comportant pas les inconvénients des dispositifs existants. Notamment, l'invention concerne un actionneur thermo-élastique pour guide d'ondes simple à mettre en oeuvre, de faible encombrement, optimisé pour minimiser le volume occupé à proximité du guide d'ondes et des canaux, et particulièrement adapté à une technologie d'OMUX à structure verticale.
- Pour cela, l'invention concerne un actionneur thermo-élastique compact pour guide d'ondes comportant au moins deux pièces d'effort identiques réalisées dans un premier matériau présentant un premier coefficient de dilatation thermique et une pièce de maintien réalisée dans un deuxième matériau différent du premier matériau et présentant un second coefficient de dilatation thermique inférieur au premier coefficient de dilatation thermique, caractérisé en ce que les pièces d'effort ont une longueur qui s'étend selon une direction longitudinale Y entre deux extrémités externe et interne, sont montées tête-bêche l'une à côté de l'autre parallèlement à la direction Y et sont décalées linéairement l'une par rapport à l'autre, le long de l'axe longitudinal Y, et en ce que la pièce de maintien comporte deux extrémités supérieure et inférieure et une zone médiane située dans une région centrale de la pièce de maintien entre les deux extrémités supérieure et inférieure, les extrémités supérieure et inférieure de la pièce de maintien étant respectivement reliées aux extrémités externes de chaque pièce d'effort et les extrémités internes de chaque pièce d'effort étant positionnées sous la zone médiane de la pièce de maintien.
- Avantageusement, le décalage linéaire des pièces d'effort l'une par rapport à l'autre, le long de l'axe longitudinal Y, est égal à la moitié de leur longueur.
- Avantageusement, les pièces d'effort sont filiformes et peuvent être par exemple, des barres longitudinales.
- Préférentiellement, les pièces d'effort sont symétriques axialement. Elles peuvent par exemple, comporter une extrémité interne en forme de fourche comportant au moins deux doigts.
- Dans un mode de réalisation particulier, l'actionneur comporte au moins quatre pièces d'effort montées tête-bêche deux à deux et les doigts des fourches des pièces d'effort consécutives montées dans un même sens sont entrecroisés les uns au-dessus des autres.
- Avantageusement, chaque doigt comporte un point de fixation et les points de fixation de deux doigts entrecroisés appartenant à deux pièces d'effort consécutives montées dans un même sens sont reliés ensembles.
- L'invention concerne aussi un guide d'ondes à stabilité de phase comportant une section transversale rectangulaire ayant deux grands côtés et deux petits côtés opposés et comportant au moins deux nervures longitudinales externes, respectivement supérieure et inférieure, situées symétriquement dans le prolongement des grands côtés, respectivement sur les deux petits côtés opposés du guide d'ondes, les deux nervures étant désaxées par rapport à un axe médian des petits côtés, le guide d'onde comportant au moins un actionneur thermo-élastique compact, l'actionneur ayant son axe longitudinal positionné parallèlement à un grand côté du guide d'ondes rectangulaire et les extrémités internes des pièces d'effort de l'actionneur situées sous la zone médiane étant respectivement fixées sur les nervures longitudinales externes du guide d'ondes.
- L'invention concerne enfin un dispositif de multiplexage comportant au moins un guide d'ondes à stabilité de phase.
- D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :
-
figures 1 et 2 : deux schémas, respectivement en perspective et en vue éclatée, d'un premier exemple d'actionneur thermo-élastique compact pour guide d'ondes, selon l'invention ; -
figures 3a et 3b : deux vues en perspective et de dessous d'un deuxième exemple d'actionneur thermo-élastique compact pour guide d'ondes, selon l'invention ; -
figure 4 : une vue en coupe transversale d'un guide d'ondes à section rectangulaire à température ambiante équipé de l'actionneur thermo-élastique compact de lafigure 2 , selon l'invention ; -
figures 5a et 5b : deux vues, respectivement en coupe et en perspective, du guide d'ondes de lafigure 4 lorsque la température croît, selon l'invention ; -
figures 6a ,6b ,6c : des vues en perspective d'un guide d'ondes rectangulaire équipé de plusieurs actionneurs thermo-élastiques compacts, 6a, 6b : les actionneurs sont tous répartis contre un même côté du guide - 6c : le guide d'ondes comporte plusieurs nervures en quinconce et les actionneurs sont positionnés en quinconce contre deux côtés du guide d'ondes, selon l'invention ; -
figures 7 et 8 : deux vues, respectivement en perspective et en coupe transversale, de deux exemples de multiplexeurs avec des canaux de topologie verticale, selon l'invention. - Le premier exemple d'actionneur représenté sur les
figures 1 et 2 et le deuxième exemple d'actionneur représenté sur lesfigures 3a et 3b sont de formes allongées selon un axe longitudinal Y et comportent un nombre pair de pièces d'effort identiques 10a, 10b, 10c, 10d, 30a, 30b réalisées dans un premier matériau présentant un premier coefficient de dilatation thermique CTE1 et une pièce de maintien 11, 31 réalisée dans un deuxième matériau différent du premier matériau et présentant un second coefficient de dilatation thermique CTE2 inférieur au premier coefficient de dilatation thermique CTE1. Par exemple le premier matériau est un matériau conducteur thermique à fort coefficient de dilatation thermique tel que l'aluminium et le deuxième matériau est un matériau à faible coefficient de dilatation thermique tel que le titane ou un alliage de fer et de nickel comme par exemple l'Invar. Les pièces d'effort 10a à 10d, 30a, 30b et la pièce de maintien 11, 31 sont de forme allongée selon un axe longitudinal Y et peuvent présenter, comme sur lesfigures 1 et 2 , une symétrie axiale par rapport à l'axe longitudinal Y. Les pièces d'effort sont filiformes et peuvent par exemple être des barres sensiblement droites, de faible largeur et de faible épaisseur comme sur lesfigures 3a et 3b ou présenter une extrémité en forme de fourche à deux doigts comme sur lesfigures 1 et 2 ou présenter toute autre forme à symétrie axiale par rapport à l'axe Y, allongée selon la direction Y et préférentiellement étroite dans les directions X et Z orthogonales à la direction Y. La longueur et l'épaisseur des pièces d'effort peuvent avoir des valeurs très variables selon les applications. A titre d'exemple non limitatif, les pièces d'effort peuvent avoir quelques millimètres d'épaisseur et plusieurs centimètres de longueur, ou des valeurs différentes d'un facteur dix et même au-delà. - Les pièces d'effort 10a, 10b ou 10c, 10d ou 30a, 30b sont montées tête-bêche les unes à côté des autres dans un même plan XY et de façon que deux pièces d'effort montées en vis-à-vis en sens inverse soient décalées linéairement l'une par rapport à l'autre, le long de l'axe longitudinal Y, d'une distance approximativement égale à la moitié de leur longueur. Chaque pièce d'effort comporte une extrémité interne 12, 13, 32 disposée dans une zone médiane 14, 34 de l'actionneur 15, 35 et une extrémité externe 16, 36, les extrémités interne 12, 13, 32 et externe 16, 36 étant munies de points de fixation. Dans le cas de l'exemple, représenté sur les
figures 1 et 2 , où les pièces d'effort ont des extrémités internes en forme de fourche à deux doigts 17, 18, les doigts 17, 18 des fourches appartenant à des différentes pièces d'effort consécutives montées dans le même sens 10a, 10c ou en sens inverse 10b, 10d, s'entrecroisent les uns au-dessus des autres dans la zone médiane 14 de l'actionneur 15. Dans ce cas, les deux doigts entrecroisés les plus internes appartenant à deux pièces d'effort montées dans un même sens 10a, 10c sont reliés ensembles en leur point de fixation et il en est de même pour les deux pièces d'effort montées en sens inverse 10b, 10d. La pièce de maintien 11, 31 comporte deux extrémités opposées respectivement supérieure 20, 37 et inférieure 21, 38 et une zone médiane située entre les deux extrémités supérieure et inférieure, la zone médiane de la pièce de maintien 11, 31 correspondant à la zone médiane 14, 34 de l'actionneur 15, 35. La pièce de maintien est montée sur une face supérieure des pièces d'effort de façon que la zone médiane 14, 34 de la pièce de maintien 11, 31 recouvre au moins partiellement les extrémités internes 12, 13, 32 des pièces d'effort et que ses deux extrémités opposées 20, 21, 37, 38 soient fixées aux points de fixation des extrémités externes 16, 36 des pièces d'effort. La pièce de maintien 11, 31 a une faible épaisseur par rapport à sa longueur, la longueur et l'épaisseur de la pièce de maintien étant du même ordre de grandeur que celles des pièces d'effort, et peut par exemple avoir une forme dissymétrique sensiblement plane qui comporte une zone médiane 14, 34 de largeur égale ou supérieure à la largeur des pièces d'effort munie d'évidements latéraux 39, 40 aménagés dans l'épaisseur de la pièce de maintien, en regard des points de fixation des extrémités internes 12, 13, 32 des pièces d'effort, comme représenté sur lesfigures 3a et 3b . Alternativement et préférentiellement, la pièce de maintien peut avoir une forme symétrique qui comporte une zone médiane comportant un évidement central 22 de manière à permettre un accès à des points de fixation de l'actionneur situés aux extrémités des doigts des pièces d'effort comme représenté sur lesfigures 1 et 2 . La pièce de maintien 11, 31 peut avoir toute autre forme, allongée selon la direction longitudinale Y, comportant une zone médiane recouvrant au moins partiellement les extrémités internes des pièces d'effort et deux extrémités opposées fixées aux points de fixation des extrémités externes des pièces d'effort. - La
figure 4 représente une vue en coupe transversale d'un assemblage de l'actionneur thermo-élastique compact de lafigure 2 sur un guide d'ondes 41 à section rectangulaire à température ambiante. Le guide d'ondes rectangulaire 41 comporte en section transversale, deux petits côtés 43a, 43b et deux grands côtés 44 opposés deux à deux. Le guide d'ondes comporte également deux nervures 42a, 42b longitudinales externes disposées symétriquement respectivement sur chacun des petits côtés 43a, 43b, dans le prolongement des grands côtés 44. Les deux nervures externes 42a, 42b sont parallèles entre elles, s'étendent sur approximativement la moitié de la largeur des petits côtés 43a, 43b et sont désaxées par rapport à l'axe médian des petits côtés. Les nervures 42a, 42b sont préférentiellement taillées dans la masse, et donc solidaires du guide d'ondes 41. Les petits côtés 43a, 43b du guide d'ondes 41 ont une paroi plus fine que les grands côtés 44 de façon à ce qu'elle soit plus flexible et puisse se déformer sous l'action de forces de traction ou de compression. - La zone médiane 14 de l'actionneur 15 est fixée sur l'un des grands côtés 44 du guide d'ondes rectangulaire 41 et simultanément aux deux nervures longitudinales 42a, 42b situées respectivement sur les deux petits côtés opposés 43a, 43b du guide d'ondes 41. La fixation peut être réalisée par exemple au moyen de vis 45 de fixation montées dans des trous taraudés aménagés, aux points de fixation, dans les extrémités internes 12 , 13 des pièces d'effort 10a à 10d et traversant l'une ou l'autre des nervures longitudinales 42a, 42b. Les faces inférieures des extrémités internes 12 , 13 des pièces d'effort 10a à 10d sont au contact du grand côté 44 et des nervures 42a, 42b du guide d'ondes 41, les faces supérieures des extrémités internes 12 , 13 des pièces d'effort 10a à 10d sont disposées sous la zone médiane de la pièce de maintien 11. La géométrie de l'actionneur 15 étant symétrique axialement et les pièces d'effort 10a à 10d étant montées tête-bêche, les doigts 17, 18 des pièces d'effort 10a et 10c orientées dans un même sens sont reliés à une même nervure 42b, les doigts 17, 18 des pièces d'effort 10b et 10d orientées dans un sens opposé sont reliés symétriquement à la nervure opposée 42a. Dans l'exemple de l'actionneur symétrique représenté sur les
figures 1, 2 et4 , quatre pièces d'effort 10a à 10d comportant chacune deux doigts 17, 18 sont montées tête-bêche deux à deux, deux des pièces d'effort 10a, 10c étant orientées dans un même sens dans lequel les doigts sont fixés sur la nervure inférieure 42b du guide d'ondes 41, deux autres pièces d'effort étant orientées dans un même sens inverse dans lequel les doigts sont fixés sur la nervure supérieure 42a du guide d'ondes 41. Les deux doigts entrecroisés les plus internes appartenant à deux pièces d'effort montées dans un même sens sont reliés ensembles, les deux doigts les plus externes ne sont pas entrecroisés et sont fixés uniquement à une nervure. Les quatre doigts orientés dans un même sens sont donc respectivement reliés à une même nervure en trois points de fixation différents. - Les
figures 5a et 5b représentent deux vues, respectivement en coupe et en perspective, de l'assemblage de lafigure 4 lorsque la température croît. Lorsque la température varie, le guide d'ondes et les nervures réalisés dans un même matériau à fort CTE, tel que par exemple l'aluminium, se dilatent ou se contractent se qui se traduit par un déphasage des ondes électriques se propageant dans le guide d'ondes. Les pièces d'effort réalisées dans un matériau à fort CTE, de préférence conducteur électrique, pouvant être identique ou différent du matériau utilisé pour le guide d'ondes, sont reliées aux nervures du guide d'ondes par l'intermédiaire des vis de liaison et sont donc soumises aux mêmes variations de température que le guide d'ondes. Ces pièces d'effort vont donc également se dilater ou se contracter. Cependant la pièce de maintien réalisée dans un matériau à faible CTE tel que l'invar par exemple, va se dilater beaucoup plus faiblement que les pièces d'effort, garder une longueur très proche de sa longueur initiale et maintenir une distance quasiment constante entre les extrémités externes 16 des pièces d'effort. L'écart important entre les coefficients de dilatation thermique CTE1 et CTE2 permet donc d'engendrer un mouvement relatif entre les pièces d'effort fixées sur la nervure supérieure et les pièces d'effort fixées sur la nervure inférieure. Les dilatations ou les contractions des pièces d'effort vont donc se traduire par des déplacements croisés des doigts 17, 18 des fourches situées aux extrémités internes des pièces d'effort 10a à 10b. Les doigts vont se mouvoir symétriquement les uns par rapport aux autres, se cambrer et appliquer des efforts de compression ou de traction sur les nervures du guide d'ondes par l'intermédiaire des vis de liaison. Les efforts de traction ou de compression sur les nervures vont se traduire par un mouvement de rotation des nervures sur elles-mêmes et entraîner une déformation des petits côtés du guide d'ondes. La géométrie de l'actionneur 15 étant symétrique axialement, les doigts 17, 18 étant entrecroisés symétriquement les uns par rapport aux autres et reliés respectivement en trois points de fixation différents aux deux nervures opposées 42a, 42b, les efforts sont appliqués simultanément et symétriquement sur les deux nervures 42a, 42b. Le déplacement des pièces d'effort est proportionnel à la fois à la température, à la longueur des pièces d'effort entre les deux extrémités externes dans la direction longitudinale, et au coefficient de dilatation des pièces d'effort. Les extrémités externes 16 des pièces d'effort et les extrémités 20, 21 de la pièce de maintien sont reliées uniquement entre elles et à aucune autre pièce. L'utilisation de quatre pièces d'effort permet de mieux répartir les efforts sur les nervures et d'améliorer la transmission du mouvement de compression ou de traction, mais il est également possible de n'utiliser que deux pièces d'effort plus massives comme représenté sur lesfigures 3a et 3b ou un nombre pair de pièces d'effort supérieur à quatre. Alternativement, il est également possible d'utiliser un nombre impair de pièces d'effort. - Les
figures 6a ,6b et6c représentent des vues en perspective d'un guide d'ondes rectangulaire équipé de plusieurs actionneurs thermo-élastiques compacts selon l'invention. - Sur les
figures 6a et6b , le guide d'ondes comporte deux nervures longitudinales externes supérieure 42a et inférieure 42b respectivement fixées, ou taillées dans la masse, sur ses parois supérieure et inférieure correspondant, en coupe transversale, aux deux petits côtés opposés 43a, 43b de la section rectangulaire du guide d'ondes. Les deux nervures supérieure et inférieure sont désaxées par rapport à l'axe médian des parois supérieure et inférieure et s'étendent symétriquement dans le prolongement d'un flanc du guide d'onde correspondant, en coupe transversale, à un grand côté 44 de la section rectangulaire. Les actionneurs sont répartis à intervalles réguliers le long du guide d'ondes rectangulaire, contre un même flanc, et comportent des pièces d'effort 10a à 10d fixées, par leur zone médiane, parallèlement à un flanc du guide d'ondes sur les deux nervures supérieure et inférieure. Sur lafigure 6c , le guide d'ondes comporte plusieurs nervures supérieures et inférieures disposées en quinconce et des accès d'entrée 60 sur ses deux flancs et les actionneurs 15 sont disposés en quinconce sur les deux flancs du guide d'ondes de part et d'autre de chacun des accès d'entrée 60. - Les
figures 7 et 8 représentent respectivement, en perspective et en coupe transversale, deux exemples de multiplexeurs, appelés aussi OMUX, comportant des filtres hyperfréquences 62 ayant chacun une sortie reliée à un accès 60 d'un guide d'ondes rectangulaire 41 commun. Les accès 60 du guide d'ondes rectangulaire sont aménagés à intervalles réguliers sur ses deux flancs de plus grande dimension correspondant aux grands côtés 44 de la section rectangulaire. Les filtres 62 sont disposés parallèlement les uns aux autres et sont fixés verticalement sur un support commun 63. Le guide d'ondes est disposé horizontalement entre deux rangées de filtres reliés aux accès sur ses deux flancs. Les actionneurs thermo-élastiques 15 sont visibles sur la coupe transversale de lafigure 8 . Cette figure montre que lorsque les filtres hyperfréquences 62 sont disposés verticalement, l'espace disponible entre les filtres pour les actionneurs thermo-élastiques 15 est très restreinte. L'actionneur de l'invention s'étend essentiellement selon une direction longitudinale Y et est très compact dans les autres directions ce qui permet de pouvoir l'insérer aisément entre deux filtres consécutifs, son axe longitudinal Y étant placé parallèlement à l'axe vertical des canaux des filtres. - Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
Claims (13)
- Actionneur thermo-élastique compact pour guide d'ondes comportant au moins deux pièces d'effort identiques (10a, 10b, 10c, 10d, 30a, 30b) réalisées dans un premier matériau présentant un premier coefficient de dilatation thermique CTE1 et une pièce de maintien (11, 31) réalisée dans un deuxième matériau différent du premier matériau et présentant un second coefficient de dilatation thermique CTE2 inférieur au premier coefficient de dilatation thermique CTE1, caractérisé en ce que les pièces d'effort (10a, 10b,10c, 10d, 30a, 30b) ont une longueur qui s'étend selon un axe longitudinal Y entre deux extrémités externe (16,36) et interne (12, 13, 32), sont montées tête-bêche l'une à côté de l'autre parallèlement à l'axe Y et sont décalées linéairement l'une par rapport à l'autre, le long de l'axe longitudinal Y, et en ce que la pièce de maintien comporte deux extrémités supérieure et inférieure et une zone médiane située entre les deux extrémités supérieure et inférieure, les extrémités supérieure et inférieure de la pièce de maintien (11, 31) étant respectivement reliées aux extrémités externes (16, 36) de chaque pièce d'effort (10a, 10b, 10c, 10d, 30a, 30b) et les extrémités internes (12, 13, 32) de chaque pièce d'effort étant positionnées sous la zone médiane (14, 34) de la pièce de maintien (11, 31).
- Actionneur selon la revendication 1, caractérisé en ce que le décalage linéaire des pièces d'effort (10a, 10b, 10c, 10d, 30a, 30b) l'une par rapport à l'autre, le long de l'axe longitudinal Y, est égal à la moitié de leur longueur.
- Actionneur selon la revendication 1, caractérisé en ce que les pièces d'effort (10a, 10b, 10c, 10d, 30a, 30b) sont filiformes.
- Actionneur selon la revendication 1, caractérisé en ce que les pièces d'effort (30a, 30b) sont des barres longitudinales.
- Actionneur selon la revendication 1, caractérisé en ce que les pièces d'effort (10a, 10b, 10c, 10d) sont symétriques axialement.
- Actionneur selon la revendication 5, caractérisé en ce que les pièces d'effort (10a, 10b, 10c, 10d) comportent une extrémité interne (12, 13) en forme de fourche comportant au moins deux doigts (17, 98).
- Actionneur selon la revendication 6 caractérisé en ce qu'il comporte au moins quatre pièces d'effort (10a, 10b, 10c, 10d) montées tête-bêche deux à deux et en ce que les doigts (17, 18) des fourches des pièces d'effort consécutives montées dans un même sens (10a, 10c ou 10b, 10d) sont entrecroisés les uns au-dessus des autres.
- Actionneur selon la revendication 7, caractérisé en ce que chaque doigt (17, 18) comporte un point de fixation et en ce que les points de fixation de deux doigts entrecroisés appartenant à deux pièces d'effort consécutives (10a, 10c ou 10b, 10d) montées dans un même sens sont reliés ensembles.
- Guide d'ondes à stabilité de phase comportant une section transversale rectangulaire ayant deux grands côtés (44) et deux petits côtés opposés (43a, 43b) et comportant au moins deux nervures longitudinales externes, respectivement supérieure (42a) et inférieure (42b), situées symétriquement dans le prolongement des grands côtés (44), respectivement sur les deux petits côtés opposés (43a, 43b) du guide d'ondes (41), caractérisé en ce qu'il comporte au moins un actionneur thermo-élastique compact (15, 35) selon l'une des revendications précédentes, l'actionneur (15, 35) ayant son axe longitudinal Y positionné parallèlement à un grand côté (44) du guide d'ondes rectangulaire (41) et les extrémités internes (12, 13, 32) des pièces d'effort de l'actionneur situées sous la zone médiane (14, 34) étant respectivement fixées sur les nervures longitudinales externes (42a, 42b) du guide d'ondes (41).
- Guide d'ondes à stabilité de phase selon la revendication 9, caractérisé en ce qu'il comporte plusieurs actionneurs thermo-élastiques compacts (15, 35) placés contre un même grand côté (44) du guide d'ondes (41).
- Guide d'ondes à stabilité de phase selon la revendication 9, caractérisé en ce qu'il comporte plusieurs nervures longitudinales externes supérieures et inférieures disposées symétriquement et en quinconce sur les deux petits côtés opposés (43a, 43b) du guide d'ondes (41) et en ce qu'il comporte plusieurs actionneurs thermo-élastiques compacts (15, 35), les actionneurs thermo-élastiques étant placés en quinconce contre chacun des grands côtés (44) du guide d'ondes (41).
- Guide d'ondes à stabilité de phase selon la revendication 9, caractérisé en ce que l'actionneur (15, 35) comporte au moins deux pièces d'effort (10a, 10c) montées tête-bêche, chaque pièce d'effort comportant une extrémité interne (12, 13) en forme de fourche comportant au moins deux doigts (17, 18) et en ce que les deux doigts (17, 18) d'une même fourche sont fixés à la même nervure respectivement inférieure (42b) et supérieure (42a).
- Dispositif de multiplexage caractérisé en ce qu'il comporte au moins un guide d'ondes (41) à stabilité de phase selon l'une des revendications 9 à 12.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0906278A FR2954597B1 (fr) | 2009-12-23 | 2009-12-23 | Actionneur thermo-elastique compact pour guide d'ondes, guide d'ondes a stabilite de phase et dispositif de multiplexage comportant un tel actionneur. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2348571A1 true EP2348571A1 (fr) | 2011-07-27 |
EP2348571B1 EP2348571B1 (fr) | 2014-06-25 |
Family
ID=42664771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10189709.8A Active EP2348571B1 (fr) | 2009-12-23 | 2010-11-02 | Actionneur thermo-élastique compact pour guide d'ondes, guide d'ondes à stabilité de phase et dispositif de multiplexage comportant un tel actionneur |
Country Status (8)
Country | Link |
---|---|
US (1) | US8604894B2 (fr) |
EP (1) | EP2348571B1 (fr) |
JP (1) | JP5716246B2 (fr) |
CN (1) | CN102185171B (fr) |
CA (1) | CA2725016C (fr) |
ES (1) | ES2493716T3 (fr) |
FR (1) | FR2954597B1 (fr) |
RU (1) | RU2576589C2 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8899038B2 (en) | 2011-09-01 | 2014-12-02 | The Johns Hopkins University | Release actuator employing components with different coefficients of thermal expansion |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057772A (en) * | 1976-10-18 | 1977-11-08 | Hughes Aircraft Company | Thermally compensated microwave resonator |
DE4319886C1 (de) * | 1993-06-16 | 1994-07-28 | Ant Nachrichtentech | Anordnung zum Kompensieren temperaturabhängiger Volumenänderungen eines Hohlleiters |
CA2432876A1 (fr) | 2002-06-20 | 2003-12-20 | R. Glenn Thomson | Guide d'ondes a stabilite de phase |
DE10349533A1 (de) * | 2003-10-22 | 2005-06-09 | Tesat-Spacecom Gmbh & Co.Kg | Hohlleiter mit Temperaturkompensation |
EP1909355A2 (fr) | 2006-10-05 | 2008-04-09 | Com Dev International Limited | Ensemble de compensation de l'expansion thermique |
EP2006951A1 (fr) * | 2007-06-22 | 2008-12-24 | Thales | Dispositif mécanique de compensation en température pour guide d'onde à stabilité de phase |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1406671A1 (ru) * | 1986-07-09 | 1988-06-30 | Харьковский Институт Радиоэлектроники Им.Акад.М.К.Янгеля | Переменный волноводный аттенюатор |
RU1766200C (ru) * | 1990-04-09 | 1995-10-20 | Якуб Светлана Михайловна | Эластичный поглощающий материал |
US6455340B1 (en) * | 2001-12-21 | 2002-09-24 | Xerox Corporation | Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff |
FR2854279B1 (fr) * | 2003-04-25 | 2005-07-08 | Cit Alcatel | Dispositif a cavite resonnante a conversion de variation dimensionnelle transversale, induite par une variation de temperature, en variation dimensionnelle longitudinale |
-
2009
- 2009-12-23 FR FR0906278A patent/FR2954597B1/fr not_active Expired - Fee Related
-
2010
- 2010-11-02 EP EP10189709.8A patent/EP2348571B1/fr active Active
- 2010-11-02 ES ES10189709.8T patent/ES2493716T3/es active Active
- 2010-12-07 CA CA2725016A patent/CA2725016C/fr active Active
- 2010-12-10 CN CN201010624496.1A patent/CN102185171B/zh active Active
- 2010-12-15 US US12/969,029 patent/US8604894B2/en active Active
- 2010-12-20 JP JP2010283251A patent/JP5716246B2/ja active Active
- 2010-12-22 RU RU2010152695/08A patent/RU2576589C2/ru not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057772A (en) * | 1976-10-18 | 1977-11-08 | Hughes Aircraft Company | Thermally compensated microwave resonator |
DE4319886C1 (de) * | 1993-06-16 | 1994-07-28 | Ant Nachrichtentech | Anordnung zum Kompensieren temperaturabhängiger Volumenänderungen eines Hohlleiters |
US5428323A (en) | 1993-06-16 | 1995-06-27 | Ant Nachrichtentechnik Gmbh | Device for compensating for temperature-dependent volume changes in a waveguide |
CA2432876A1 (fr) | 2002-06-20 | 2003-12-20 | R. Glenn Thomson | Guide d'ondes a stabilite de phase |
DE10349533A1 (de) * | 2003-10-22 | 2005-06-09 | Tesat-Spacecom Gmbh & Co.Kg | Hohlleiter mit Temperaturkompensation |
EP1909355A2 (fr) | 2006-10-05 | 2008-04-09 | Com Dev International Limited | Ensemble de compensation de l'expansion thermique |
EP2006951A1 (fr) * | 2007-06-22 | 2008-12-24 | Thales | Dispositif mécanique de compensation en température pour guide d'onde à stabilité de phase |
Also Published As
Publication number | Publication date |
---|---|
CA2725016A1 (fr) | 2011-06-23 |
FR2954597B1 (fr) | 2015-01-02 |
US20110148551A1 (en) | 2011-06-23 |
CN102185171B (zh) | 2014-12-03 |
US8604894B2 (en) | 2013-12-10 |
JP2011135578A (ja) | 2011-07-07 |
ES2493716T3 (es) | 2014-09-12 |
RU2010152695A (ru) | 2012-06-27 |
FR2954597A1 (fr) | 2011-06-24 |
EP2348571B1 (fr) | 2014-06-25 |
CN102185171A (zh) | 2011-09-14 |
JP5716246B2 (ja) | 2015-05-13 |
RU2576589C2 (ru) | 2016-03-10 |
CA2725016C (fr) | 2017-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3460547B1 (fr) | Dispositif de couplage optique pour un circuit photonique | |
EP2510574B1 (fr) | Dispositif de transition hyperfréquence entre une ligne à micro-ruban et un guide d'onde rectangulaire | |
EP2296180A1 (fr) | Procédé de stabilisation de nanofils en germanium obtenus par condensation | |
EP2441099B1 (fr) | Micro-structure pour générateur thermoélectrique à effet seebeck et procédé de fabrication d'une telle micro-structure | |
EP3001230B1 (fr) | Coupleur optique intégré sur un substrat et comprenant trois elements | |
EP0392417B1 (fr) | Filtre à résonateur diélectrique | |
EP2898568B1 (fr) | Absorbant electromagnetique | |
FR2993713A1 (fr) | Composants micro-electroniques, aptes a laisser circuler un signal radiofrequence ou hyperfrequence selon une seule direction | |
EP2348571B1 (fr) | Actionneur thermo-élastique compact pour guide d'ondes, guide d'ondes à stabilité de phase et dispositif de multiplexage comportant un tel actionneur | |
EP2953203B1 (fr) | Dispositif de transmission d'energie d'un milieu a un autre | |
EP3136499A1 (fr) | Système diviseur/combineur pour onde hyperféquence | |
EP0328948B1 (fr) | Filtre à résonateur diélectrique | |
FR3095082A1 (fr) | Dispositif à guide d’ondes de section ovale et procédé de fabrication dudit dispositif | |
EP2325939B1 (fr) | Dispositif de multiplexage de canaux hyperfréquence thermiquement optimisé | |
EP1598683B1 (fr) | Procédé de réalisation d'un composant optoélectronique comprenant un guide d'onde courbé avec des flancs inclinés rentrants | |
EP2475488B1 (fr) | Procede d'assemblage pour brasage | |
FR2860349A1 (fr) | Dispositif de connexion pour panneaux conducteurs d'electricite | |
EP2597655B1 (fr) | Procédé de réalisation d'un dispositif comportant plusieurs blocs magnétiques aimantés selon des directions différentes | |
CA2753795A1 (fr) | Filtre hyperfrequence a resonateur dielectrique | |
EP3900104B1 (fr) | Coupleur hyperfrequence bidirectionnel comprenant deux guides d'onde paralleles, a double nervure | |
WO2008006953A1 (fr) | Element actif de machine electromagnetique, procede de fabrication d'un tel element actif, et machine electromagnetique comportant un tel element actif | |
EP3468037A1 (fr) | Resonateur piezo-electrique de petite taille | |
FR2697948A1 (fr) | Dispositif formant une admittance de surface capacitive artificielle, application à la réalisation de cavités bidimensionnelles, de résonateurs et d'antennes. | |
FR2769768A1 (fr) | Actionneur amplifie a materiaux piezoelectriques ou electrostrictifs | |
FR2934257A1 (fr) | Structure micromecanique et procede de fabrication d'une telle structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20120112 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01P 1/30 20060101AFI20131127BHEP Ipc: H01P 3/12 20060101ALN20131127BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140114 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01P 1/30 20060101AFI20140102BHEP Ipc: H01P 3/12 20060101ALN20140102BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 675176 Country of ref document: AT Kind code of ref document: T Effective date: 20140715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010016947 Country of ref document: DE Effective date: 20140814 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2493716 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140926 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140925 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 675176 Country of ref document: AT Kind code of ref document: T Effective date: 20140625 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140625 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141025 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010016947 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141130 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141102 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101102 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140625 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231212 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231024 Year of fee payment: 14 Ref country code: DE Payment date: 20231017 Year of fee payment: 14 |