EP2347856A2 - Method for construction of a profile grinding process - Google Patents
Method for construction of a profile grinding process Download PDFInfo
- Publication number
- EP2347856A2 EP2347856A2 EP11000509A EP11000509A EP2347856A2 EP 2347856 A2 EP2347856 A2 EP 2347856A2 EP 11000509 A EP11000509 A EP 11000509A EP 11000509 A EP11000509 A EP 11000509A EP 2347856 A2 EP2347856 A2 EP 2347856A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- tool
- workpiece
- grinding wheel
- feed rate
- tooth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000010276 construction Methods 0.000 title 1
- 238000012937 correction Methods 0.000 claims description 9
- 230000001419 dependent effect Effects 0.000 claims description 8
- 238000013461 design Methods 0.000 claims description 8
- 230000003628 erosive effect Effects 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 239000002826 coolant Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B1/00—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B19/00—Single-purpose machines or devices for particular grinding operations not covered by any other main group
- B24B19/009—Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding profiled workpieces using a profiled grinding tool
Definitions
- the invention relates to a method for designing a profile grinding process.
- the design of a grinding process is generally carried out as a function of the Zeitspanvolumens, the product of the feed rate and the delivery or related to the grinding wheel width Zeitspanvolumens. For example, given a given maximum radial delivery then the choice of feed rate for the entire processing is done so that the technological limit of the Zeitspanvolumens or the related Zeitspanvolumens is not exceeded. Usually work is done with high feed rates and low delivery amounts.
- the present invention is based on the problem to develop a method for profile grinding with low peak time.
- the removal of the oversize of the workpiece and / or the geometry of the tool and / or the relative feed rate between the workpiece and the tool determines a required, related to the tool and / or the workpiece power requirements and / or the value thus determined compared with a technological limit and / or the feed amount and the relative feed rate between the tool and the workpiece in Depending on the workpiece and / or the tool geometry selected so that their mathematical product multiplied by a correction function, is less than or equal to the technological limit.
- the FIG. 1 schematically shows the profile grinding.
- a tool (10) a profile grinding wheel (10) in engagement with a workpiece (30), for example a gear (30).
- the workpiece (30) may also have a helical gearing, a worm gearing, etc.
- trapezoidal profile gaps with the method, for example in the case of a toothed rack.
- the flanks limiting the profile gaps can be offset from each other either individually and in time or can be processed simultaneously and simultaneously.
- Both the workpiece (30) and the tool (10) are rotationally driven in the illustrated embodiment.
- the axes of rotation (11, 31) are not parallel to each other and do not intersect.
- the tool (10) is further movable relative to the workpiece (30) parallel to the workpiece axis (31), cf. FIG. 2 ,
- the relative movement is at least approximately parallel to the workpiece axis (31).
- the axial feed movement with the workpiece axis (31) can include an angle of eg up to 10 degrees.
- the axial feed direction (21) of the tool (10) directed from top to bottom. It is also conceivable to move the workpiece (30) relative to the tool (10) in a feed direction.
- the workpiece (30) stops, while the rotating tool (10) moves along a tooth gap (37) oriented parallel to the workpiece axis (31) during grinding.
- the feed rate along the tooth gap (37) corresponds to the speed of the axial tool feed.
- the feed rate of the tool relative to the workpiece results, for example, from a superimposition of the axial tool feed with the angular speed of the workpiece rotation during the axial tool stroke.
- the tool (10) for example, in the FIG. 2 shown initial position in the direction of the workpiece (30) delivered.
- the feed direction (22) of the tool axis (11) is directed radially on the workpiece axis (31).
- the workpiece (30) can be delivered in the direction of the tool axis (11).
- gear (30) is pre-toothed, for example by means of a Wälzfräsvons and was then cured. It has at least on the tooth flanks (33, 34) an allowance (35) on the finished measure (44), cf. FIG. 3 ,
- the finished measure (44) of the workpiece (30) describes the geometric dimensions of the finished and ready-to-use workpiece (30).
- the illustrated gear (30) has 17 teeth (36). Each tooth (36) is bounded by two tooth flanks (33, 34). Two tooth flanks (33, 34) define a tooth gap (37). The single tooth (36) has a head (38), the two tooth flanks (33, 34) connecting the tooth base (43).
- the profile grinding wheel (10) is repeatedly dressed during its use on the grinding machine. Their outer diameter is reduced, for example, from 500 millimeters to 250 millimeters, cf. the FIGS. 4 and 5 ,
- the disc (10) shown has a cylindrical central portion (12), for example, adjoining edge regions (13, 14) on both flanks, the generatrices of which, for example, correspond to the nominal profile lines of the toothing (32) in the case of straight toothing.
- the workpiece (30) Before the rotating tool (10) is delivered, the workpiece (30) is rotated about its workpiece axis (31) so that a tooth gap (37) faces the grinding wheel (10).
- the single tooth gap (37) has the contour (45) before grinding, cf. FIG. 3 .
- the profile grinding wheel (10) contacts both tooth flanks (33, 34) adjoining the tooth space (37) simultaneously in the example of the two-flute cut.
- the tool (10) penetrates into the workpiece (30) and cuts a portion of the allowance (35) of both tooth flanks (33, 34) with a geometrically indeterminate cutting edge, cf. FIG. 3 , During this processing, the tool (10) is moved along the tooth gap (37) at a set feed rate.
- the foot (41) and / or the head regions (42) can be mitgeschliffen.
- the active surface (15) of the grinding wheel (10) is the sum of the surface of the cylindrical portion (12) and the lateral surfaces (16) of the edge regions (13, 14), which upon rotation of the tool (10) about its axis (11 ) Have contact with the gear (30).
- the processing takes place, for example, with simultaneous cooling by means of a coolant.
- this contact line generally connects the tooth head (38) to the tooth root (39, 46) on each of the two tooth flanks (33, 34).
- this contact line may be a profile line of the toothing (32).
- the toothing (32) may have a head or foot return, a height crowning, etc.
- the contact line is e.g. in each case a surface line of the edge regions (13, 14) in the case of gear teeth. These can be connected on the face side by a contact line oriented parallel to the grinding wheel axis (11). The last-mentioned section of the contact line contacts the tooth base (43) when it is ground.
- the thus-ascertained related normal-time chip volume is a performance variable of the grinding process. It has the dimension square millimeters per second. For example, it specifies the power required to remove the oversize (35).
- FIG. 6 shows the over the grinding wheel width b and the grinding wheel diameter d plotted course of the grinding wheel profile.
- the digits along the profile give the unwound distance of the corresponding point from the origin the processing, here in Schleifusionnmitte to.
- the gearing profile on which this development is based has 27 teeth and a module of 10 millimeters.
- FIG. 7 is the required chip volume Q'w (5) and the related normal time chip volume Q'w n (6) as the power requirement over the development of the profile of FIG. 6 applied.
- the values of a toothing are shown, in which the tooth root is mitgeschliffen.
- the value of the related Zeitspanvolumens Q'w is constant along the settlement, in the exemplary embodiment, it is 16 square millimeters per second.
- the related normal-time chip volume Q'w n is constant, for example, along the end peripheral surface (17) of the grinding wheel. In this area, its value corresponds to the value of the normal time chip volume purchased.
- the relative normal-time chip volume Q'w n decreases to a minimum. For example, it rises steadily along the lateral surface (16).
- the referenced normal-time chip volume Q'w n is lower along the entire lateral surface (16) than the related time-sliced volume Q'w.
- the limit value Q'w n, Gr (4) determined for the design according to the normal-time chip volume , for example from tests , is constant for the end peripheral surface (17). Along the lateral surfaces (16), for example, it decreases linearly. In the example shown, the selection of the radial feed of the tool (10) relative to the workpiece (30) and the feed rate of the tool (10) relative to the workpiece (30) to the limit in the region of the end peripheral surface (17).
- FIG. 8 shows analogous to FIG. 7 the curve for a toothing, in which the tooth root is not mitgeschliffen.
- the maximum power requirement of the normal-time chip volume (6) Q'w n is in the area of the grinding wheel (10), the the transition of the tooth flank (33; 34) processed to the tooth head (38).
- the power value chosen for this range must be less than or equal to the limit Q'w n, Gr .
- the limiting value curve dependent on the geometry of the grinding wheel (10) is shown in FIG FIG. 8 identical to that in the FIG. 7 illustrated limit value course. How the comparison of FIGS.
- the toothing (32) can be processed quickly and accurately.
- the grains of the grinding wheel (10) wear out and the grinding wheel (10) settles with grinding dust.
- the grinding wheel (10) is dressed.
- the end peripheral surface (17) and the lateral surfaces (16) of the grinding wheel (10) are processed.
- the diameter of the grinding wheel (10) is thereby reduced.
- a dressing of the grinding wheel (10) is all the more necessary the smaller the grinding wheel (10). At the same time, the non-productive time required for dressing is reduced. These two opposing effects do not cancel, so that the bottom-to-bottom time of the workpiece is increased with increasing tool life (10).
- a new course of the related normal-time chip volumes is determined. Thereafter, starting from the maximum value of the referenced normal-time chip volume, the new feed rate and the new delivery are determined in comparison with a tool geometry and / or workpiece-dependent technological limit value of the normal-time chip removal volume.
- the feed rate or the new delivery amount is specified and the other value is designed so that from the set sizes and the geometric data of the grinding wheel (10) results in a value less than or equal to the permissible related Normalzeitspanvolumens.
- An adjustment of the feed rate and the delivery amount is conceivable.
- FIG. 9 A qualitative course of the tool geometry-dependent technological limit is shown.
- the abscissa represents the time, the ordinate the applied time span volume and the related normal time span volume.
- the time axis describes the main time of the grinding process.
- the grinding wheel (10) is dressed and thereby reduced its diameter.
- the grinding wheel diameters (18), which are constant between the dressing processes (51), are shown as horizontal lines.
- the limit value of the related time-wasting volume Q'w Gr determined according to the prior art remains constant throughout the grinding process.
- the limit value of the related normal-time chip volume Q'w n, Gr determined, for example, in tests decreases with increasing process time and / or with decreasing grinding wheel diameter.
- the usable loop energy is thus higher than in a design according to the related Zeitspanvolumen.
- the FIG. 10 represents as a product of the selected delivery and the selected feed rate, the selected time chip volume or the selected normal time chip volume. Due to the higher limit of the referenced normal time chip volume, a higher removal rate can be selected as in a design according to the related Zeitspanvolumen. For example, in the FIG. 10 at the same feed rate a larger delivery amount selected.
- the volume to be removed or abraded may be related to the active wheel surface (15).
- the thus determined related power requirement H'w has the dimension millimeters per second. This value is also determined for each point of the settlement.
- the related power requirement H'w is different for profile points which lie on different profile lines, since both the distance of the respectively contacting grinding wheel point from the axis of rotation (11) of the grinding wheel (10) to the tooth head (38) becomes smaller as well as the fictitious Normal distance (8) towards the tooth head (38) towards increases.
- the correction function k (s) takes into account, inter alia, the influences of the contact line course, the contour to be ground, the contact line length, the coolant quantity, the coolant removal, the heat dissipation, the number of grains and the pore volume.
- the functional value as a function of the diameter of the grinding wheel (10) takes into account, for example, the profile shape of the grinding wheel (10). So the value takes e.g. at a decreasing pressure angle on the pitch circle too.
- the determined power requirement is compared with a limit value.
- the limit value determined in tests is independent of the geometry of the tool (10) and of the workpiece (30). For example, it is dependent on the material combination of the tool (10) and the workpiece (30), the grain of the tool, etc.
- the selected power requirement is determined to be less than or equal to the limit value. From this, the delivery and the relative feed rate are selected.
- This product is a function of the constant limit H'w Gr , the correction factor and the dressing wheel diameter changing through the dressing.
- the value of the product is thus dependent on the total active surface of the grinding wheel (15).
- the interpretation takes place, for example, analogous to that in connection with the FIGS. 6 to 10 described interpretation after the normal time chip volume.
- the mathematical product is chosen to be smaller than or equal to the function value, a large grinding wheel (10) allows a large removal, while a small grinding wheel (10) avoids a critical setting or a grinding burn. Thus, a lower main time of processing can be achieved.
- the radial feed amount e.g. automatically determined. It is also conceivable to automatically set the relative speed for a given delivery amount. An optimization according to both parameters is also conceivable.
- the prior art is that the grinding wheel is profiled for all strokes so that the end profile can be ground. As FIG. 3 As an example, Z n (s) and thus the power requirement along the grinding wheel contour vary.
- the grinding wheel (10) can be profiled and / or positioned for some or each stroke in such a way that the related maximum power requirement is reduced or constant over the development of the grinding wheel contour.
- the selected related efficiency should be less than the limit.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Auslegung eines Profilschleifprozesses.The invention relates to a method for designing a profile grinding process.
Die Auslegung eines Schleifprozesses, die Wahl einer Vorschubgeschwindigkeit und einer Zustellung, erfolgt im Allgemeinen in Abhängigkeit des Zeitspanvolumens, dem Produkt aus der Vorschubgeschwindigkeit und der Zustellung oder des auf die Schleifscheibenbreite bezogenen Zeitspanvolumens. Beispielsweise bei vorgegebener maximaler radialer Zustellung erfolgt dann die Wahl der Vorschubgeschwindigkeit für die gesamte Bearbeitung so, dass der technologische Grenzwert des Zeitspanvolumens beziehungsweise des bezogenen Zeitspanvolumens nicht überschritten wird. Meist wird mit hohen Vorschubgeschwindigkeiten und geringen Zustellbeträgen gearbeitet.The design of a grinding process, the selection of a feed rate and a delivery, is generally carried out as a function of the Zeitspanvolumens, the product of the feed rate and the delivery or related to the grinding wheel width Zeitspanvolumens. For example, given a given maximum radial delivery then the choice of feed rate for the entire processing is done so that the technological limit of the Zeitspanvolumens or the related Zeitspanvolumens is not exceeded. Mostly work is done with high feed rates and low delivery amounts.
Der vorliegenden Erfindung liegt die Problemstellung zugrunde, ein Verfahren zum Profilschleifen mit geringer Hauptzeit zu entwickeln.The present invention is based on the problem to develop a method for profile grinding with low peak time.
Diese Problemstellung wird mit den Merkmalen des Hauptanspruches gelöst. Dazu wird aus dem Abtrag des Aufmaßes des Werkstücks und/oder der Geometrie des Werkzeugs und/oder der relativen Vorschubgeschwindigkeit zwischen dem Werkstück und dem Werkzeug ein erforderlicher, auf das Werkzeug und/oder das Werkstück bezogener Leistungsbedarf ermittelt und/oder der so ermittelte Wert mit einem technologischen Grenzwert verglichen und/oder der Zustellbetrag und die relative Vorschubgeschwindigkeit zwischen dem Werkzeug und dem Werkstück in Abhängigkeit der Werkstück- und/oder der Werkzeuggeometrie so gewählt, dass ihr mathematisches Produkt, multipliziert mit einer Korrekturfunktion, kleiner oder gleich dem technologischen Grenzwert ist.This problem is solved with the features of the main claim. For this purpose, the removal of the oversize of the workpiece and / or the geometry of the tool and / or the relative feed rate between the workpiece and the tool determines a required, related to the tool and / or the workpiece power requirements and / or the value thus determined compared with a technological limit and / or the feed amount and the relative feed rate between the tool and the workpiece in Depending on the workpiece and / or the tool geometry selected so that their mathematical product multiplied by a correction function, is less than or equal to the technological limit.
Weitere Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung schematisch dargestellter Ausführungsformen.
- Figur 1:
- Profilschleifen;
- Figur 2:
- Bewegungsrichtungen des Werkstücks und des Werkzeugs;
- Figur 3:
- Zahnlücke mit Werkzeug;
- Figur 4:
- Werkzeug mit großem Durchmesser im Eingriff;
- Figur 5:
- Werkzeug mit kleinem Durchmesser im Eingriff;
- Figur 6:
- Schleifscheibenkontur;
- Figur 7:
- Bezogenes Normalzeitspanvolumen und bezogenes Zeitspanvolumen über der Abwicklung der Schleifscheibenkontur bei Zahnfuß- und Zahnflankenbearbeitung;
- Figur 8:
- Bezogenes Normalzeitspanvolumen und bezogenes Zeitspanvolumen über der Abwicklung der Schleifscheibenkontur bei Zahnflankenbearbeitung;
- Figur 9:
- Grenzwerte des bezogenen Zeitspanvolumens und des bezogenen Normalzeitspanvolumens über der Zeit;
- Figur 10:
- Auswahl des Produkts aus dem Normalenabstand bzw. der radialen Zustellung und der Vorschubgeschwindigkeit.
- FIG. 1:
- Profile grinding;
- FIG. 2:
- Movement directions of the workpiece and the tool;
- FIG. 3:
- Tooth space with tool;
- FIG. 4:
- Large diameter tool engaged;
- FIG. 5:
- Small diameter tool engaged;
- FIG. 6:
- Grinding wheel contour;
- FIG. 7:
- Referenced normal time chip volume and related time span volume on the execution of the grinding wheel contour in Zahnfuß- and tooth flank processing;
- FIG. 8:
- Referenced normal time chip volume and related time span volume over the execution of the grinding wheel contour in tooth flank processing;
- FIG. 9:
- Limit values of the related time span volume and the reference normal time span volume over time;
- FIG. 10:
- Selection of the product from the normal distance or the radial infeed and the feed rate.
Die
Sowohl das Werkstück (30) als auch das Werkzeug (10) sind im dargestellten Ausführungsbeispiel rotatorisch antreibbar. Die Rotationsachsen (11, 31) sind nicht parallel zueinander und schneiden sich nicht.Both the workpiece (30) and the tool (10) are rotationally driven in the illustrated embodiment. The axes of rotation (11, 31) are not parallel to each other and do not intersect.
Im Ausführungsbeispiel ist das Werkzeug (10) weiterhin relativ zum Werkstück (30) parallel zur Werkstückachse (31) bewegbar, vgl.
Bei der Bearbeitung einer Gradverzahnung steht beispielsweise das Werkstück (30) still, während das rotierende Werkzeug (10) sich beim Schleifen entlang einer parallel zur Werkstückachse (31) orientierten Zahnlücke (37) bewegt. Die Vorschubgeschwindigkeit entlang der Zahnlücke (37) entspricht hierbei der Geschwindigkeit des axialen Werkzeugvorschubs.For example, when machining a gearing, the workpiece (30) stops, while the rotating tool (10) moves along a tooth gap (37) oriented parallel to the workpiece axis (31) during grinding. The feed rate along the tooth gap (37) corresponds to the speed of the axial tool feed.
Bei der Bearbeitung einer unkorrigierten Schrägverzahnung ergibt sich die Vorschubgeschwindigkeit des Werkzeugs relativ zum Werkstück beispielsweise aus einer Überlagerung des axialen Werkzeugvorschubs mit der Winkelgeschwindigkeit der Werkstückrotation während des axialen Werkzeughubs.When machining an uncorrected helical toothing, the feed rate of the tool relative to the workpiece results, for example, from a superimposition of the axial tool feed with the angular speed of the workpiece rotation during the axial tool stroke.
Um das Werkzeug (10) in Eingriff mit dem Werkstück (30) zu bringen, wird das Werkzeug (10) z.B. aus der in der
Das in der
Das dargestellte Zahnrad (30) hat 17 Zähne (36). Jeder Zahn (36) ist von zwei Zahnflanken (33, 34) begrenzt. Zwei Zahnflanken (33, 34) begrenzen eine Zahnlücke (37). Der einzelne Zahn (36) hat einen Kopf (38), die beiden Zahnflanken (33, 34) verbindet der Zahngrund (43).The illustrated gear (30) has 17 teeth (36). Each tooth (36) is bounded by two tooth flanks (33, 34). Two tooth flanks (33, 34) define a tooth gap (37). The single tooth (36) has a head (38), the two tooth flanks (33, 34) connecting the tooth base (43).
Die Profilschleifscheibe (10) wird während ihres Einsatzes auf der Schleifmaschine wiederholt abgerichtet. Ihr Außendurchmesser wird dabei beispielsweise von 500 Millimeter auf 250 Millimeter verkleinert, vgl. die
Bevor das rotierende Werkzeug (10) zugestellt wird, wird das Werkstück (30) so um seine Werkstückachse (31) gedreht, dass eine Zahnlücke (37) zur Schleifscheibe (10) zeigt. Die einzelne Zahnlücke (37) hat die Kontur (45) vor dem Schleifen, vgl.
Während des Schleifens kontaktiert die Schleifscheibe (10) das Zahnrad (30) entlang einer Linie. Diese Kontaktlinie verbindet beim Zweiflankenschliff in der Regel auf jeder der beiden Zahnflanken (33, 34) den Zahnkopf (38) mit dem Zahnfuß (39, 46). Beispielsweise kann diese Kontaktlinie eine Profillinie der Verzahnung (32) sein. Die Verzahnung (32) kann eine Kopf- oder Fußrücknahme, eine Höhenballigkeit, etc. aufweisen. Schleifscheibenseitig ist die Kontaktlinie z.B. bei Gradverzahnungen jeweils eine Mantellinie der Randbereiche (13, 14). Diese können stirnseitig durch eine parallel zur Schleifscheibenachse (11) orientierten Kontaktlinie verbunden sein. Der letztgenannte Abschnitt der Kontaktlinie kontaktiert den Zahngrund (43), wenn dieser mitgeschliffen wird.During grinding, the grinding wheel (10) contacts the gear (30) along a line. In the case of two-flank grinding, this contact line generally connects the tooth head (38) to the tooth root (39, 46) on each of the two tooth flanks (33, 34). For example, this contact line may be a profile line of the toothing (32). The toothing (32) may have a head or foot return, a height crowning, etc. Grinding wheel side, the contact line is e.g. in each case a surface line of the edge regions (13, 14) in the case of gear teeth. These can be connected on the face side by a contact line oriented parallel to the grinding wheel axis (11). The last-mentioned section of the contact line contacts the tooth base (43) when it is ground.
Um den Betrag der Zustellung und die Vorschubgeschwindigkeit zu ermitteln, wird zunächst aus den geometrischen Daten der Ist- und der Soll-Verzahnung und den geometrischen Daten der aktiven Fläche (15) der Schleifscheibe (10) ein Leistungsbedarf ermittelt. Aus dem Vergleich des Ist- und des Sollprofils der einzelnen Zahnflanke (33, 34), des Zahnkopfs (38) und des Zahngrunds (43) ergibt sich für jeden Punkt der aktiven Fläche (15) der Schleifscheibe (10) ein in Normalenrichtung (7) orientierter Abtrag. Der Abtrag pro Hub ist ein Teilbetrag eines fiktiven Normalenabstands (8), vgl.
In dieser Gleichung ist
- Q'wn(s):
- bezogenes Normalzeitspanvolumen [mm2/s],
- Zn(s):
- Abtrag Zn(s) in Normalenrichtung [mm],
- v:
- Vorschubgeschwindigkeit [mm/s]
In this equation is
- Q'w n (s):
- referenced standard time chip volume [mm 2 / s],
- Z n (s):
- Removal Z n (s) in normal direction [mm],
- v:
- Feed rate [mm / s]
Es ist das Produkt aus dem Abtrag Zn(s)der Schleifscheibe in der jeweiligen Normalenrichtung (7) in Millimetern am Profilpunkt s und der Vorschubgeschwindigkeit v entlang der Zahnlücke (37) in Millimeter pro Sekunde. Q'wn berücksichtigt die Vorschubgeschwindigkeit v, die Profilform des Werkzeugs (10) und die normal zur Flankenlinie gemessenen unterschiedlichen Aufmaße (35) der Zahnflanken (33, 34).It is the product of the removal Z n (s) of the grinding wheel in the respective normal direction (7) in millimeters at the profile point s and the feed rate v along the tooth gap (37) in millimeters per second. Q'w n takes into account the feed rate v, the profile shape of the tool (10) and the different oversizes (35) of the tooth flanks (33, 34) measured normal to the flank line.
Dieser Wert wird für jeden Profilpunkt s der aktiven Flächen (15) der Schleifscheibe (10) ermittelt. Das so ermittelte bezogene Normalzeitspanvolumen ist eine Leistungsgröße des Schleifprozesses. Sie hat die Dimension Quadratmillimeter pro Sekunde. Beispielsweise gibt sie die zum Abtrag des Aufmaßes (35) erforderliche Leistung an.This value is determined for each profile point s of the active surfaces (15) of the grinding wheel (10). The thus-ascertained related normal-time chip volume is a performance variable of the grinding process. It has the dimension square millimeters per second. For example, it specifies the power required to remove the oversize (35).
Die
In der
Der zur Auslegung nach dem Normalzeitspanvolumen herangezogene z.B. aus Versuchen ermittelte Grenzwert Q'wn,Gr (4) ist für die Stirn-Umfangsfläche (17) konstant. Entlang der Mantelflächen (16) sinkt er beispielsweise linear ab. Im dargestellten Beispiel erfolgt die Wahl der radialen Zustellung des Werkzeugs (10) relativ zum Werkstück (30) und die Vorschubgeschwindigkeit des Werkzeugs (10) relativ zum Werkstück (30) nach dem Grenzwert im Bereich der Stirn-Umfangsfläche (17).The limit value Q'w n, Gr (4) determined for the design according to the normal-time chip volume , for example from tests , is constant for the end peripheral surface (17). Along the lateral surfaces (16), for example, it decreases linearly. In the example shown, the selection of the radial feed of the tool (10) relative to the workpiece (30) and the feed rate of the tool (10) relative to the workpiece (30) to the limit in the region of the end peripheral surface (17).
Die
Maßgeblich für die Auslegung ist der Maximalwert des bezogenen Normalzeitspanvolumens Q'wn(s). Hieraus ergeben sich mit dem in Abhängigkeit der Werkzeuggeometrie ermittelten technologischen Grenzwert Q'wn,Gr (4) des bezogenen Normalzeitspanvolumens die Einstellparameter des Schleifprozesses. Durch den großen Schleifabtrag ergibt sich eine geringere Hauptzeit der Bearbeitung. Hierbei sind auch unterschiedliche Profilformen und unterschiedliche Krümmungen der Verzahnungen berücksichtigt.Decisive for the design is the maximum value of the related normal-time chip volume Q'w n (s). This results in the setting parameters of the grinding process with the technological limit value Q'w n, Gr (4) of the related normal-time chip volume determined as a function of the tool geometry. Due to the large Schleifabtrag results in a lower peak processing time. In this case, different profile shapes and different curvatures of the teeth are taken into account.
Nach dem Schleifen der die Zahnlücke (37) begrenzenden Zahnflanken (33, 34) wird das Werkzeug (10) entgegen der Zustellrichtung (22) aus der Zahnlücke (37) herausgefahren. Das Werkstück (30) wird um seine Rotationsachse (31) um eine Teilung gedreht, so dass nun die nächste Zahnlücke (37) zur Schleifscheibe (10) zeigt. Die Bearbeitung dieser Zahnlücke (37) erfolgt, wie oben beschrieben. Mittels dieses diskontinuierlichen Profilschleifverfahrens kann die Verzahnung (32) schnell und genau bearbeitet werden.After the grinding of the tooth gap (37) limiting tooth flanks (33, 34), the tool (10) against the feed direction (22) is moved out of the tooth gap (37). The workpiece (30) is rotated about its axis of rotation (31) by one pitch, so that now shows the next tooth gap (37) to the grinding wheel (10). The processing of this tooth gap (37) takes place, as described above. By means of this discontinuous profile grinding method, the toothing (32) can be processed quickly and accurately.
Während des Schleifens nutzen sich die Körner der Schleifscheibe (10) ab und die Schleifscheibe (10) setzt sich mit Schleifstaub zu. Beispielsweise nach vorgegebenen Intervallen, aufgrund des Anstiegs des Motorstroms, etc., wird die Schleifscheibe (10) abgerichtet. Hierbei werden die Stirn-Umfangsfläche (17) und die Mantelflächen (16) der Schleifscheibe (10) bearbeitet. Der Durchmesser der Schleifscheibe (10) wird hierdurch vermindert.During grinding, the grains of the grinding wheel (10) wear out and the grinding wheel (10) settles with grinding dust. For example, after predetermined intervals, due to the increase of the motor current, etc., the grinding wheel (10) is dressed. Here, the end peripheral surface (17) and the lateral surfaces (16) of the grinding wheel (10) are processed. The diameter of the grinding wheel (10) is thereby reduced.
Ein Abrichten der Schleifscheibe (10) ist umso häufiger erforderlich, je kleiner die Schleifscheibe (10) ist. Gleichzeitig verkürzt sich die für das Abrichten erforderliche Nebenzeit. Diese beiden gegenläufigen Effekte heben sich nicht auf, so dass die Boden-zu-Boden-Zeit des Werkstücks mit zunehmender Standzeit des Werkzeugs (10) vergrößert wird.A dressing of the grinding wheel (10) is all the more necessary the smaller the grinding wheel (10). At the same time, the non-productive time required for dressing is reduced. These two opposing effects do not cancel, so that the bottom-to-bottom time of the workpiece is increased with increasing tool life (10).
Nach dem Abrichten wird ausgehend von der neuen Schleifscheibengeometrie ein neuer Verlauf der bezogenen Normalzeitspanvolumina ermittelt. Danach wird, ausgehend vom Maximalwert des bezogenen Normalzeitspanvolumens, im Vergleich mit einem werkzeuggeometrie- und/oder werkstückabhängigen technologischen Grenzwert des bezogenen Normalzeitspanvolumens die neue Vorschubgeschwindigkeit und die neue Zustellung ermittelt. Hierbei wird beispielsweise entweder die Vorschubgeschwindigkeit oder der neue Zustellbetrag vorgegeben und der jeweils andere Wert so ausgelegt, dass sich aus den Einstellgrößen und den geometrischen Daten der Schleifscheibe (10) ein Wert kleiner oder gleich des zulässigen bezogenen Normalzeitspanvolumens ergibt. Auch eine Einstellung der Vorschubgeschwindigkeit und des Zustellbetrags ist denkbar.After dressing, based on the new grinding wheel geometry, a new course of the related normal-time chip volumes is determined. Thereafter, starting from the maximum value of the referenced normal-time chip volume, the new feed rate and the new delivery are determined in comparison with a tool geometry and / or workpiece-dependent technological limit value of the normal-time chip removal volume. In this case, for example, either the feed rate or the new delivery amount is specified and the other value is designed so that from the set sizes and the geometric data of the grinding wheel (10) results in a value less than or equal to the permissible related Normalzeitspanvolumens. An adjustment of the feed rate and the delivery amount is conceivable.
In der
Der nach dem Stand der Technik bestimmte Grenzwert des bezogenen Zeitspanvolumens Q'wGr bleibt während des gesamten Schleifprozesses konstant. Der z.B. in Versuchen ermittelte Grenzwert des bezogenen Normalzeitspanvolumens Q'wn,Gr sinkt mit zunehmender Prozesszeit und/oder mit abnehmendem Schleifscheibendurchmesser. Wie das Diagramm weiter zeigt, kann beispielsweise bis zum Zeitpunkt des zweiten Abrichtens mit einem genutzten Normalzeitspanvolumen gearbeitet werden, das deutlich höher liegt als der Grenzwert des bezogenen Zeitspanvolumens. Die nutzbare Schleifenergie ist somit höher als bei einer Auslegung nach dem bezogenen Zeitspanvolumen.The limit value of the related time-wasting volume Q'w Gr determined according to the prior art remains constant throughout the grinding process. The limit value of the related normal-time chip volume Q'w n, Gr determined, for example, in tests decreases with increasing process time and / or with decreasing grinding wheel diameter. As the diagram further shows, it is possible, for example, to work with a used normal-time chip volume until the time of the second dressing, which is significantly higher than the limit of the relative chip removal volume. The usable loop energy is thus higher than in a design according to the related Zeitspanvolumen.
Die
Bei den in den
Anstatt auf die aktive Schleifscheibenbreite kann das abzutragende oder abgetragene Volumen auf die aktive Schleifscheibenoberfläche (15) bezogen sein. Der so ermittelte bezogene Leistungsbedarf H'w hat die Dimension Millimeter pro Sekunde. Auch dieser Wert wird für jeden Punkt der Abwicklung ermittelt.Instead of the active wheel width, the volume to be removed or abraded may be related to the active wheel surface (15). The thus determined related power requirement H'w has the dimension millimeters per second. This value is also determined for each point of the settlement.
Der bezogene Leistungsbedarf H'w ist für Profilpunkte, die auf unterschiedlichen Profillinien liegen, unterschiedlich groß, da sowohl der Abstand des jeweils kontaktierenden Schleifscheibenpunktes von der Drehachse (11) der Schleifscheibe (10) zum Zahnkopf (38) hin kleiner wird als auch der fiktive Normalenabstand (8) zum Zahnkopf (38) hin zunimmt.The related power requirement H'w is different for profile points which lie on different profile lines, since both the distance of the respectively contacting grinding wheel point from the axis of rotation (11) of the grinding wheel (10) to the tooth head (38) becomes smaller as well as the fictitious Normal distance (8) towards the tooth head (38) towards increases.
Der bezogene Leistungsbedarf H'w ergibt sich zu
wobei die Variablen bedeuten:
- H'w:
- bezogener Leistungsbedarf [mm/s]
- k(s):
- Korrekturfunktion, dimensionslos
- s:
- Bogenlänge der Abwicklung [mm]
- v:
- Vorschubgeschwindigkeit in Lückenrichtung [mm/s]
- Z (s) :
- Abtrag, z.B. pro Hub [mm]
- N(Dsls(s)):
- Funktionswert in Abhängigkeit der Bogenlänge der Abwicklung s [mm].
where the variables mean:
- H'W:
- related power requirement [mm / s]
- k (s):
- Correction function, dimensionless
- s:
- Arc length of the processing [mm]
- v:
- Feed rate in gap direction [mm / s]
- Z (s):
- Removal, eg per stroke [mm]
- N (D sls (s)):
- Function value depending on the arc length of the settlement s [mm].
Die Korrekturfunktion k(s) berücksichtigt hierbei unter anderem die Einflüsse des Kontaktlinienverlaufs, der zu schleifenden Kontur, der Berührlinienlänge, der Kühlmittelmenge, der Kühlmittelabfuhr, der Wärmeableitung, der Kornanzahl und des Porenvolumens.The correction function k (s) takes into account, inter alia, the influences of the contact line course, the contour to be ground, the contact line length, the coolant quantity, the coolant removal, the heat dissipation, the number of grains and the pore volume.
Der Funktionswert in Abhängigkeit des Durchmessers der Schleifscheibe (10) berücksichtigt beispielsweise die Profilform der Schleifscheibe (10). So nimmt der Wert z.B. bei einem abnehmenden Eingriffswinkel am Teilkreis zu.The functional value as a function of the diameter of the grinding wheel (10) takes into account, for example, the profile shape of the grinding wheel (10). So the value takes e.g. at a decreasing pressure angle on the pitch circle too.
Der ermittelte Leistungsbedarf wird mit einem Grenzwert verglichen. Dieser z.B. in Versuchen ermittelte Grenzwert ist unabhängig von der Geometrie des Werkzeugs (10) und des Werkstücks (30). Beispielsweise ist er jedoch abhängig von der Werkstoffpaarung des Werkzeugs (10) und des Werkstücks (30), von der Körnung des Werkzeugs, etc.The determined power requirement is compared with a limit value. This e.g. The limit value determined in tests is independent of the geometry of the tool (10) and of the workpiece (30). For example, it is dependent on the material combination of the tool (10) and the workpiece (30), the grain of the tool, etc.
Zur Wahl der Einstellparameter des Schleifverfahrens wird der gewählte bezogene Leistungsbedarf kleiner oder gleich dem Grenzwert bestimmt. Hieraus werden dann die Zustellung und die relative Vorschubgeschwindigkeit gewählt.To select the adjustment parameters of the grinding process, the selected power requirement is determined to be less than or equal to the limit value. From this, the delivery and the relative feed rate are selected.
Das Produkt aus dem Abtrag und der relativen Vorschubgeschwindigkeit ergibt sich zu
mit
- v:
- Vorschubgeschwindigkeit in Lückenrichtung [mm/s]
- Zn(s):
- Abtrag des Werkzeugs am Werkstück in Normalenrichtung [mm]
- H'wGr:
- Grenzwert des bezogenen Leistungsbedarfs [mm/s)
- N(Dsls(s)):
- Funktionswert in Abhängigkeit der Bogenlänge der Abwicklung s [mm].
- k(s):
- Korrekturfunktion, dimensionslos
With
- v:
- Feed rate in gap direction [mm / s]
- Z n (s):
- Removal of the tool on the workpiece in normal direction [mm]
- H'w Gr :
- Limit value of the required power requirement [mm / s]
- N (D sls (s)):
- Function value depending on the arc length of the settlement s [mm].
- k (s):
- Correction function, dimensionless
Dieses Produkt ist eine Funktion des konstanten Grenzwertes H'wGr, des Korrekturfaktors und des sich durch das Abrichten verändernden Schleifscheibendurchmessers. Der Wert des Produkts ist damit abhängig von der gesamten aktiven Schleifscheibenoberfläche (15). Die Auslegung erfolgt beispielsweise analog zu der im Zusammenhang mit den
Wird nach jedem Abrichten das mathematische Produkt kleiner oder gleich dem Funktionswert gewählt, wird bei großer Schleifscheibe (10) ein großer Abtrag ermöglicht, während bei einer kleinen Schleifscheibe (10) eine kritische Einstellung oder ein Schleifbrand vermieden wird. Somit kann eine geringere Hauptzeit der Bearbeitung erreicht werden.If, after each dressing, the mathematical product is chosen to be smaller than or equal to the function value, a large grinding wheel (10) allows a large removal, while a small grinding wheel (10) avoids a critical setting or a grinding burn. Thus, a lower main time of processing can be achieved.
Beispielsweise nach Vorgabe der Relativgeschwindigkeit zwischen dem Werkzeug (10) und dem Werkstück (30) wird der radiale Zustellbetrag z.B. automatisiert ermittelt. Es ist auch denkbar, bei einem vorgegebenen Zustellbetrag die Relativgeschwindigkeit automatisiert festzulegen. Auch eine Optimierung nach beiden Parametern ist denkbar.For example, after specifying the relative velocity between the tool (10) and the workpiece (30), the radial feed amount, e.g. automatically determined. It is also conceivable to automatically set the relative speed for a given delivery amount. An optimization according to both parameters is also conceivable.
Stand der Technik ist, dass die Schleifscheibe für alle Hübe so profiliert wird, dass das Endprofil geschliffen werden kann. Wie
Die Schleifscheibe (10) kann aber beispielsweise für einige oder jeden Hub so profiliert und/oder positioniert werden, dass der bezogene maximale Leistungsbedarf über die Abwicklung der Schleifscheibenkontur reduziert bzw. konstant ist. Die gewählte bezogene Leistungsfähigkeit sollte kleiner sein als der Grenzwert.However, for example, the grinding wheel (10) can be profiled and / or positioned for some or each stroke in such a way that the related maximum power requirement is reduced or constant over the development of the grinding wheel contour. The selected related efficiency should be less than the limit.
- 44
- technologischer Grenzwert Q'WnGr des bezogenen Zeitspanvolumens;technological limit value Q ' WnGr of the purchased time span volume ;
- 55
- bezogenes Zeitspanvolumen Q'wrelated time-wast volume Q'w
- 66
- bezogenes Normalzeitspanvolumen Q'wn referenced normal-time chip volume Q'w n
- 77
- Normalenrichtungnormal direction
- 88th
- Normalenabstandnormal distance
- 1010
- Werkzeug, Profilschleifscheibe, DoppelkegelscheibeTool, profile grinding wheel, double cone pulley
- 1111
- Rotationsachse, WerkzeugachseRotation axis, tool axis
- 1212
- zentraler Abschnittcentral section
- 1313
- Randbereichborder area
- 1414
- Randbereichborder area
- 1515
- aktive Flächeactive area
- 1616
- Mantelflächenlateral surfaces
- 1717
- Stirn-UmfangsflächeEnd peripheral surface
- 1818
- Schleifscheibendurchmesser dGrinding wheel diameter d
- 2121
- axiale Vorschubrichtungaxial feed direction
- 2222
- Zustellrichtunginfeed
- 3030
- Werkstück, ZahnradWorkpiece, gear
- 3131
- Rotationsachse, WerkstückachseRotation axis, workpiece axis
- 3232
- Verzahnunggearing
- 3333
- Zahnflanke, rechte FlankeTooth flank, right flank
- 3434
- Zahnflanke, linke FlankeTooth flank, left flank
- 3535
- Aufmaßoversize
- 3636
- Zähneteeth
- 3737
- Zahnlückegap
- 3838
- Kopfhead
- 3939
- Zahnfüßetooth roots
- 4141
- Fußbereichfooter
- 4242
- Kopfbereichhead area
- 4343
- Zahngrundtooth root
- 4444
- Fertigmaßfinished size
- 4545
- Kontur vor dem SchleifenContour before grinding
- 4646
- Zahnfüßetooth roots
- 5151
- Abrichtvorgängedressing operations
- bb
- SchleifscheibenbreiteGrinding wheel width
- dd
- SchleifscheibendurchmesserGrinding wheel diameter
- Q'wQ'w
- bezogenes Zeitspanvolumenrelated time span volume
- Q'w,gewQ'w, gew
- gewähltes Q'wchosen Q'w
- Q'wn Q'w n
- bezogenes Normalzeitspanvolumenreferenced standard time chip volume
- Q'wn,gew Q'w n, gew
- gewähltes Q'wn chosen Q'w n
- Q'wnGr Q'w nGr
- technologischer Grenzwert des bezogenen Normalzeitspanvolumenstechnological limit value of the related standard time chip volume
- ss
- Bogenlänge, AbwicklungBow length, handling
- Vgew V gew
- gewählte Vorschubgeschwindigkeitselected feed rate
- Zgew Z gew
- gewählte Zustellungchosen delivery
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010005935.8A DE102010005935B4 (en) | 2010-01-26 | 2010-01-26 | Method for designing a profile grinding process |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2347856A2 true EP2347856A2 (en) | 2011-07-27 |
EP2347856A3 EP2347856A3 (en) | 2015-05-06 |
EP2347856B1 EP2347856B1 (en) | 2018-08-29 |
Family
ID=44010109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11000509.7A Active EP2347856B1 (en) | 2010-01-26 | 2011-01-22 | Method for construction of a profile grinding process |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2347856B1 (en) |
DE (1) | DE102010005935B4 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016091504A1 (en) | 2014-12-12 | 2016-06-16 | Zf Friedrichshafen Ag | Method for determining a load limit of a grinding process to be set up, and grinding tool |
CN111090930A (en) * | 2019-11-28 | 2020-05-01 | 内蒙古民族大学 | Solidworks-based chip cutting geometric model construction method |
WO2021074016A1 (en) * | 2019-10-17 | 2021-04-22 | KAPP NILES GmbH & Co. KG | Method for grinding the toothing or the profile of a workpiece |
WO2022028871A1 (en) * | 2020-08-01 | 2022-02-10 | KAPP NILES GmbH & Co. KG | Method for dressing a grinding tool |
CN114951839A (en) * | 2022-06-28 | 2022-08-30 | 湖南中大创远数控装备有限公司 | Grinding method for spiral bevel gear |
DE102024100637A1 (en) | 2023-02-23 | 2024-08-29 | Liebherr-Verzahntechnik Gmbh | Method for producing a toothed workpiece |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017212168B4 (en) * | 2017-07-17 | 2019-08-29 | ModuleWorks GmbH | Method for grinding dental prostheses or dentures with a multi-axis processing machine |
CN109968204B (en) * | 2019-03-21 | 2021-05-14 | 华南理工大学 | Numerical control grinding shape error self-adaptive compensation method for mutual abrasion of grinding wheel workpieces |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4014142A (en) * | 1974-01-16 | 1977-03-29 | Norton Company | Method and apparatus for grinding at a constant metal removal rate |
DE3637758A1 (en) * | 1986-11-05 | 1988-05-19 | Salje Ernst | METHOD AND DEVICE FOR DEEP GRINDING |
DE4119871C1 (en) * | 1991-06-17 | 1992-05-14 | Kapp & Co Werkzeugmaschinenfabrik, 8630 Coburg, De | |
US8277279B2 (en) * | 2007-12-14 | 2012-10-02 | Rolls-Royce Corporation | Method for processing a work-piece |
-
2010
- 2010-01-26 DE DE102010005935.8A patent/DE102010005935B4/en not_active Expired - Fee Related
-
2011
- 2011-01-22 EP EP11000509.7A patent/EP2347856B1/en active Active
Non-Patent Citations (1)
Title |
---|
None |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016091504A1 (en) | 2014-12-12 | 2016-06-16 | Zf Friedrichshafen Ag | Method for determining a load limit of a grinding process to be set up, and grinding tool |
DE102014225697A1 (en) | 2014-12-12 | 2016-06-16 | Zf Friedrichshafen Ag | Method for determining a load limit of a grinding process to be set up and grinding tool |
WO2021074016A1 (en) * | 2019-10-17 | 2021-04-22 | KAPP NILES GmbH & Co. KG | Method for grinding the toothing or the profile of a workpiece |
CN114555270A (en) * | 2019-10-17 | 2022-05-27 | 卡帕耐尔斯有限两合公司 | Method for grinding a tooth profile or contour of a workpiece |
CN114555270B (en) * | 2019-10-17 | 2024-10-01 | 卡帕耐尔斯有限两合公司 | Method for grinding tooth form or contour of workpiece |
CN111090930A (en) * | 2019-11-28 | 2020-05-01 | 内蒙古民族大学 | Solidworks-based chip cutting geometric model construction method |
CN111090930B (en) * | 2019-11-28 | 2023-07-21 | 内蒙古民族大学 | Solidworks-based geometric model construction method for cutting scraps |
WO2022028871A1 (en) * | 2020-08-01 | 2022-02-10 | KAPP NILES GmbH & Co. KG | Method for dressing a grinding tool |
CN114951839A (en) * | 2022-06-28 | 2022-08-30 | 湖南中大创远数控装备有限公司 | Grinding method for spiral bevel gear |
DE102024100637A1 (en) | 2023-02-23 | 2024-08-29 | Liebherr-Verzahntechnik Gmbh | Method for producing a toothed workpiece |
Also Published As
Publication number | Publication date |
---|---|
EP2347856B1 (en) | 2018-08-29 |
EP2347856A3 (en) | 2015-05-06 |
DE102010005935B4 (en) | 2016-05-04 |
DE102010005935A1 (en) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2347856B1 (en) | Method for construction of a profile grinding process | |
EP3242175B1 (en) | Method for cogging a workpiece | |
EP2946865B1 (en) | Method for determining the position of involute gearing in gear teeth | |
EP2367656B2 (en) | Machine tool and method for producing gearing | |
EP0633820B1 (en) | Method and device for grinding grooved external surfaces of a workpiece | |
EP1987920B1 (en) | Grinding machine for grinding a gear wheel | |
EP3050660B1 (en) | Method for gear cutting a piece by means of a diagonal generating method | |
DE102007040894B4 (en) | Tool and method for discontinuous profile grinding | |
EP3556501B2 (en) | Method for grinding a cogged workpiece and grinding machine with a controller for grinding a cogged workpiece | |
EP3139227B1 (en) | Method for the production of a workpiece with desired toothing geometry | |
EP2093020B1 (en) | Device and method for producing prototypes and small series of cogwheels | |
EP3139226B1 (en) | Method for aligning a tool | |
EP2823924A2 (en) | Double dressing unit | |
DE102018102271A1 (en) | Gear cutter processing apparatus, gear cutter processing method, tool profile simulation apparatus and tool profile simulation method | |
EP3345707B1 (en) | Method for automatically determining geometrical dimensions of a tool in a gear cutting machine | |
EP3325203B1 (en) | Method for honing gears | |
EP0519118B1 (en) | Method and apparatus for avoiding thermal overstress on toothed gears and similar workpieces during grinding (overheating when grinding) | |
DE112014001579T5 (en) | gear cutting | |
EP3584025A1 (en) | Method for topological grinding of a cogged workpiece and grinding machine with a controller for topological grinding of a cogged workpiece | |
EP2919937B1 (en) | Method for determining the flank face contour of a skiving tool | |
DE10230148C5 (en) | Method for machining gears produced by hobbing | |
EP3242176B1 (en) | Method for cogging a workpiece | |
EP2370227A1 (en) | Device and forming of working gears using a conical hob | |
EP3141327B1 (en) | Method of dressing a multi-thread grinding worm | |
EP2801431A1 (en) | Method of machining a saw blade and saw blade grinding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KLINGELNBERG GMBH |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B24B 1/00 20060101AFI20150401BHEP Ipc: B24B 19/00 20060101ALI20150401BHEP |
|
17P | Request for examination filed |
Effective date: 20151022 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180606 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1034576 Country of ref document: AT Kind code of ref document: T Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011014647 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180829 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181130 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181229 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181129 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181129 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ALDO ROEMPLER PATENTANWALT, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011014647 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190122 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181229 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011014647 Country of ref document: DE Representative=s name: JANKE SCHOLL PATENTANWAELTE PARTG MBB, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240122 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 14 Ref country code: CH Payment date: 20240202 Year of fee payment: 14 Ref country code: GB Payment date: 20240119 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240129 Year of fee payment: 14 Ref country code: FR Payment date: 20240124 Year of fee payment: 14 |