EP2347678B1 - Sitzeinrichtung mit einem Elastomer-Torsionsfederelement - Google Patents

Sitzeinrichtung mit einem Elastomer-Torsionsfederelement Download PDF

Info

Publication number
EP2347678B1
EP2347678B1 EP10013971A EP10013971A EP2347678B1 EP 2347678 B1 EP2347678 B1 EP 2347678B1 EP 10013971 A EP10013971 A EP 10013971A EP 10013971 A EP10013971 A EP 10013971A EP 2347678 B1 EP2347678 B1 EP 2347678B1
Authority
EP
European Patent Office
Prior art keywords
casing
rotation
elastomer
internal
torsion spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10013971A
Other languages
English (en)
French (fr)
Other versions
EP2347678A1 (de
Inventor
Stephan Pfeifer
Wolfgang Emmenegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stoll Giroflex AG
Original Assignee
Stoll Giroflex AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stoll Giroflex AG filed Critical Stoll Giroflex AG
Priority to EP10013971A priority Critical patent/EP2347678B1/de
Priority to BRPI1100702-8A priority patent/BRPI1100702A2/pt
Priority to US13/006,826 priority patent/US8485604B2/en
Priority to JP2011012075A priority patent/JP5749023B2/ja
Publication of EP2347678A1 publication Critical patent/EP2347678A1/de
Application granted granted Critical
Publication of EP2347678B1 publication Critical patent/EP2347678B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/44Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame
    • A47C7/441Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame with adjustable elasticity
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03261Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means
    • A47C1/03277Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with bar or leaf springs
    • A47C1/03279Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with bar or leaf springs of torsion type
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03261Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means
    • A47C1/03288Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with resilient blocks
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/02Seat parts
    • A47C7/14Seat parts of adjustable shape; elastically mounted ; adaptable to a user contour or ergonomic seating positions
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/44Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame
    • A47C7/448Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame with resilient blocks

Definitions

  • the invention relates to a seat device with a seat, with a back support and with a support for the back support and / or the seat, wherein the back support and / or the seat is pivotally mounted on the carrier, so that a pivoting movement of the back support and / or Seat is executable about an axis of rotation, and wherein the seat assembly comprises at least one elastomer torsion spring member for transmitting a force between the back support and the carrier and / or for transmitting a force between the seat and the carrier.
  • elastomer torsion spring elements which comprise an inner housing, an outer housing surrounding the inner housing and an elastomer body arranged in a space between the inner housing and the outer housing.
  • the inner housing generally has at least one contact surface on which the elastomeric body is in contact with the inner housing
  • the outer housing has at least one contact surface on which the elastomeric body is in contact with the outer housing.
  • the inner housing and / or the outer housing of the respective elastomer Torsionsfederelements is rotatably disposed about a rotation axis and a rotation of the inner housing and / or the outer housing by a rotation angle about the axis of rotation executable so that during the respective rotation, the inner housing moves relative to the outer housing and wherein a deformation of the elastomeric body is generated, so that the elastomeric body between the outer housing and the inner housing generates a restoring torque which is opposite to the rotation.
  • Such an elastomeric torsion spring element is used, for example, in devices for transmitting power between relatively movable bodies in order to generate a restoring force upon movement of a first body relative to a second body, which counteracts the respective movement.
  • the respective force transmission device for example, causes - if a first force acts on the first body and consequently moves the first body relative to the second body - the power transmission device generates a restoring force which counteracts the first force, so that the first body is in an equilibrium position can assume relative to the second body, wherein in the equilibrium position, the first force is compensated by the respective restoring force.
  • Such a device for transmitting power between a first body and a second, relative to the first body movable body can with at least one elastomer torsion spring element of the aforementioned type and with a first coupling means for coupling the first body to the outer housing of the respective elastomer torsion spring element and a second coupling means for coupling the second body to the inner housing of the respective elastomer Torsionsfederelements be realized.
  • first coupling means and the second coupling means may be formed, for example, such that the first body is coupled to the outer housing of the respective elastomer Torsionsfederelements and the second body is coupled to the inner housing of the respective elastomer torsion spring member that at Movement of the first body relative to the second body, a rotation of the inner housing and / or the outer housing is performed by a rotational angle about the axis of rotation at which rotation, the inner housing moves relative to the outer housing and thereby a deformation of the elastomeric body is generated.
  • Devices for power transmission according to the above-mentioned type are used in many technical fields in the field of mechanical engineering.
  • Seat devices are often not rigid, but usually comprise a fixedly arranged support structure and a pivotable relative to the support structure back and / or a pivotable relative to the support structure seat, for example, to allow, on the one hand, the spatial arrangement of the back and / or the seat be adapted to the respective posture of sitting on the respective seat, their body posture constantly changing, or to achieve, for example, that the same seat device to different needs of different people, for example, have a different body size or a different weight or different habits in terms preferred posture can be tuned.
  • a power transmission device of the above-mentioned type can be advantageously used to couple the back part to the support structure via the respective elastomer torsion spring element and thus to achieve that the back part acts on the back part a force acting on the back part relative to a predetermined basic position is pivotally and the respective elastomer torsion spring element at the respective pivoting movement of the back part acting on the back part restoring force or acting on the back part restoring torque generated to the back each in a stable equilibrium position hold.
  • the latter improves the seating comfort.
  • a power transmission device of the aforementioned type may be used to couple a seating of the seat assembly to the support structure via the respective elastomeric torsion spring element.
  • the EP 1486142 A1 shows a chair with an elastomer-elastomer torsion spring element 258 of the aforementioned type, which serves to generate a restoring torque, which counteracts a pivoting movement of a seat support about a rotation axis.
  • the elastomer torsion spring element 258 includes an inner housing 260 and an outer housing 264, wherein in an intermediate space between the inner housing 260 and the outer housing 264, an elastomeric body 262 is introduced.
  • the inner housing 260 has on its outer side a contact surface on which the elastomeric body 262 is in contact with the inner housing 260, and the outer housing 264 has on its inner side a contact surface on which the elastomeric body 262 with the outer housing 264 in Contact is.
  • the elastomeric body 262 is fixedly connected to the respective contact surface of the inner housing 260 and the respective contact surface of the outer housing 264, so that the elastomeric body 262 neither on the contact surface of the inner housing 260 nor on the contact surface of the outer housing 264 relative to the inner housing or to can slip the outer housing.
  • the outer housing 264 and the inner housing 260 are cylindrical and arranged coaxially with each other.
  • the outer housing 264 is held on a support structure of the chair, while the inner housing 260 rotatably seated on a shaft 250 which is rotatable about its longitudinal axis.
  • a seat 32 of the chair is coupled to the shaft 250 such that, if the seat 32 is loaded by the weight of a person, the shaft 250 is rotated about its longitudinal axis and the seat 32 is pivoted from a predetermined home position.
  • the inner housing 260 is rotated about its longitudinal direction and thereby rotated relative to the outer housing 264, with the result that the elastomer torsion spring member 258 generates a restoring torque acting on the shaft 250 and the seat 32, respectively Shaft 250 and the pivoting movement of the seat 32 counteracts and increases with increasing angle of rotation.
  • the elastomeric torsion spring member 258 the magnitude of the minimum torque acting on the shaft 250 when the seat 32 is pivoted from said home position (hereinafter referred to as "minimum restoring torque”) may be changed, for example, depending on the weight a person sitting on the chair.
  • the outer housing 264 can be rotated about its longitudinal axis by means of a arranged on the support structure of the chair rotating mechanism and thus rotated about the longitudinal axis of the shaft 250, wherein the outer housing 264 relative to the support structure of the chair and relative to the inner housing 260 and Shaft 250 is twisted.
  • the elastomer torsion spring element 258 is biased, wherein the rotational angle by which the outer housing 264 is rotated relative to the inner housing 260 when the seat 32 is in the home position, the size of the "minimum Reset torque "determined.
  • the contact surfaces of the outer housing 264 and of the inner housing 260 adjoining the elastomer body 262 are each circular, each in a sectional plane perpendicular to the shaft 250. Upon rotation of the shaft 250 about its longitudinal direction, the elastomeric body 262 is deformed so that it is loaded in each case to train.
  • the elastomer torsion spring element 258 has the disadvantage that the restoring torque, which is generated upon rotation of the shaft 250 by a certain angle of rotation shows a relatively small increase as a function of the respective angle of rotation, especially if the elastomer torsion spring element 258 not or only is slightly biased. This results in a further disadvantage that the elastomer torsion spring element 258 must be very strong biased when a large minimum restoring torque is to be adjusted, for example, to provide persons with high weight adequate seating comfort can. Furthermore, the return torque as a function of the rotational angle of the shaft 250 greatly increases nonlinear (progressive) when the shaft 250 is to be rotated, for example, by a rotation angle in the range of 0 to about 70 °.
  • a large non-linearity of the restoring torque in said rotation angle range is undesirable in view of seat-related applications because such nonlinearities are generally perceived as unpleasant by a user.
  • the available rotation angle range is reduced, which is uncomfortable.
  • the elastomeric body 262 is permanently and heavily loaded by the high bias voltage, which fatigues faster.
  • the elastomer torsion spring member 258 has a short life and must be replaced frequently.
  • Another disadvantage is that a setting the respective bias of the elastomer torsion spring 258 is tedious and time consuming, especially since the outer housing 264 has to be adjusted by a large angle relative to the inner housing 260 in order to set a certain minimum return torque.
  • This elastomeric torsion spring element is used in a device for transmitting power between a base plate and a motor movably mounted relative to the base plate.
  • This elastomer torsion spring element also has an inner housing and an outer housing surrounding the inner housing, wherein the inner housing and / or the outer housing is rotatably arranged about a rotational axis.
  • the outer surface of the inner housing and the inner surface of the outer housing have a cross section with the shape of a square in a sectional plane perpendicular to the axis of rotation. Between the inner housing and the outer housing, a gap is formed.
  • the inner housing of the elastomer torsion spring element is rotated in a "basic position" relative to the outer housing by 45 ° about the axis of rotation, so that in this case, the intermediate space consists essentially of four sub-areas, which are formed in the four corners of the outer housing and - a cross section perpendicular to the axis of rotation - have the shape of a triangle.
  • each an elastomeric body (preferably made of rubber) is used.
  • the respective elastomer body has the shape of a cylinder in the undeformed state.
  • the elastomeric bodies are each compressed prior to introduction into the respective subregions of the interspace and - in the compressed state - inserted into the respective subregion of the interspace such that each of the subregions is substantially filled by one of the elastomeric bodies and each of the elastomeric bodies one certain pressure on the outer surface of the inner housing and the inner surface of the outer housing rests, wherein the elastomeric body are firmly connected to neither the inner housing and with the outer housing.
  • the four elastomeric body of this elastomer torsion spring element are each identical, so that the inner housing of the elastomer torsion spring element is held by the elastomeric bodies in said basic position, if acting on the outer housing or the inner housing no external forces, which surrounds the inner housing relative to the outer housing could turn the axis of rotation.
  • the four elastomeric body generate a restoring torque between the inner housing and the outer housing, which counteracts the respective rotational movement and grows with increasing rotational angle.
  • This elastomer torsion spring element has several disadvantages.
  • the inner housing can be rotated about the axis of rotation by a maximum of about 30 ° relative to the outer housing, in both directions of rotation in the same mass. Twists of more than 30 ° compared to the basic position are not practicable.
  • the restoring torque of this elastomer torsion spring element increases with a large non-linearity when the inner housing is rotated by an angle of rotation (relative to the aforementioned basic position with respect to the outer housing) as a function of the angle of rotation in the range from 0 to 30 °.
  • the elastomeric body slip by more than 30 ° with respect to the inner housing or the outer housing during a rotation of the inner housing.
  • the inner housing can get into an unstable position, so that the elastomeric body are no longer able to produce a restoring torque, which can bring the inner housing with certainty back into the respective basic position relative to the outer housing.
  • Such instability is undesirable in many applications and must be prevented if necessary, for example by safety measures which block further rotation of the inner housing when the rotation of the inner housing relative to the basic position reaches a critical limit of about 30 ° relative to the basic position.
  • the publication WO 93/03653 shows a seat assembly with a backrest and a seat, which are connected by a lever which is hinged to a rear part of the seat and at its other end to a base.
  • the hinge has a common axis with a rocker for the backrest and is connected to the rocker by a resilient rubber or other elastomeric torque resistance device formed radially about the axis and acting between the lever and the rocker.
  • the present invention is therefore an object of the invention to avoid the disadvantages mentioned and to provide a seat assembly with an elastomer torsion spring element which allows a rotation of the inner housing relative to the outer housing by more than 30 ° and generates a restoring torque, which is a relatively steep rise Function of the respective angle of rotation and in the largest possible range of rotation angle shows a substantially linear course as a function of the angle of rotation.
  • the respective seating device comprises a seat, a back support, a support for the back support and / or the seat, wherein the back support and / or the seat is hinged to the support such that a pivoting movement of the back support and / or the seat about an axis of rotation is executable.
  • the respective seat device further comprises at least one elastomer torsion spring element.
  • the respective elastomer torsion spring element comprises an inner housing, an outer housing surrounding the inner housing and an elastomer body arranged in a gap between the inner housing and the outer housing.
  • the inner housing has at least one contact surface on which the elastomeric body is in contact with the inner housing
  • the outer housing has at least one contact surface on which the elastomeric body is in contact with the outer housing, wherein the elastomeric body with the Contact surface of the inner housing and the contact surface of the outer housing is firmly connected.
  • the inner housing and / or the outer housing of the respective elastomer Torsionsfederelements is arranged rotatably about the axis of rotation.
  • the carrier is coupled to the outer housing of the respective elastomer torsion spring element and the back support and / or the seat to the inner housing of the respective elastomer Torsionsfederelements such that during the respective pivotal movement of the back carrier and / or the seat, a rotation of the inner housing is performed at a rotational angle about the axis of rotation at which rotation the inner housing moves relative to the outer housing and thereby deformation of the elastomeric body is generated, so that the elastomeric body between the outer housing and the inner housing generates a restoring torque which is opposite to the rotation.
  • a second variant is the carrier with the inner housing of the respective elastomer Torsionsfederelements and the back support and / or the seat with the outer housing of the respective elastomer Torsionsfederelements coupled such that during the respective pivotal movement of the back support and / or the seat, a rotation of the outer housing is performed by a rotation angle about the axis of rotation at which rotation of the inner housing relative moved to the outer housing and thereby a deformation of the elastomeric body is generated, so that the elastomeric body between the outer housing and the inner housing generates a restoring torque, which is directed opposite to the rotation.
  • the respective contact surfaces of the inner housing and / or the outer housing are formed such that the contact surface of the inner housing has a non-circular cross section in a sectional plane perpendicular to the axis of rotation and / or the contact surface of the outer housing has a non-circular cross section in a sectional plane perpendicular to the axis of rotation.
  • the contact surface of the outer housing (a) at least partially cylindrical or (b) - each in a plane perpendicular to the axis of rotation cutting plane - rectangular, wherein at least two pairs opposite corners are rounded, or (c) contains two pairs opposite , isosceles angular segments and two pairs of opposite semicircle segments, the ends of which are respectively connected to the ends of the angle segments.
  • the elastomeric body may be made of rubber, for example,
  • This elastomer torsion spring element differs according to the invention of the above, from EP 1486142 A1 known elastomer torsion spring element essentially by that the contact surface of the inner housing in a plane perpendicular to the axis of rotation cutting plane and / or the contact surface of the outer housing in a plane perpendicular to the axis of rotation cutting plane is not circular, while in the case of EP 1486142 A1 known elastomer torsion spring element, the contact surface of the inner housing in a plane perpendicular to the axis of rotation cutting plane and / or the contact surface of the outer housing each have cross sections in the form of two concentric circles.
  • the elastomer torsion spring element in the case of the elastomer torsion spring element according to the invention, at least one of the contact surfaces of the inner housing or the outer housing is not formed rotationally symmetrical to the axis of rotation.
  • the respective elastomeric body of the inventive elastomer torsion spring element and the EP 1486142 A1 known elastomer torsion spring element deformed in different ways, when the inner housing of the respective elastomer Torsionsfederelements is rotated relative to the outer housing of the respective elastomer Torsionsfederelements about the respective axis of rotation.
  • the inventive elastomer torsion spring element Due to the cross-sectional shape of the inner housing or the inner housing, the inventive elastomer torsion spring element generates a restoring torque, which in principle (in comparison to that of EP 1486142 A1 known elastomer torsion spring element) a steeper slope as a function of the respective Has angle of rotation (in particular in the range of small rotation angle).
  • the elastomeric bodies of the respective elastomer torsion spring elements are made of the same elastomer, for example rubber.
  • the inventive elastomer torsion spring element has the advantage that the inner housing must be rotated relative to the outer housing by a smaller angle of rotation about the axis of rotation to bias the elastomeric body such that the elastomer torsion spring element generates a predetermined minimum return torque.
  • the elastomer torsion spring element according to the invention offers the advantage that the elastomer body must be stretched to a lesser extent and consequently less susceptible to wear and fatigue phenomena.
  • the respective elastomer torsion spring element of the seat device according to the invention differs from the above-mentioned, from GB 2070727 A known elastomer torsion spring element, inter alia, characterized in that the elastomeric body is firmly connected to the contact surface of the inner housing and the contact surface of the outer housing.
  • the outer housing of the respective elastomer Torsionsfederelements is connected to the carrier and the inner housing of the respective elastomer Torsionsfederelements is connected to a rotatable about the axis of rotation bearing shaft which is rotationally rigidly connected to the back support and / or the seat ,
  • the inner housing of the respective elastomer torsion spring element is connected to the carrier and the outer housing of the respective elastomer Torsionsfederelements is connected to a rotatable about the axis of rotation bearing shaft, which rotatably connected to the back carrier and / or the Seat is connected.
  • An embodiment of the respective elastomer torsion spring element of the respective seat device according to the invention is characterized in that the contact surface of the inner housing and the contact surface of the outer housing in such a way are arranged relative to each other, that during the rotation of the inner housing and / or the outer housing about the rotational axis at least in a predetermined rotation angle range, a reduction of a distance between a defined point of the inner housing and a defined point of the outer housing can be caused.
  • the elastomer body is not exclusively loaded with a rotation of the inner housing relative to the outer housing to train, but in certain areas of the elastomeric body on pressure loaded.
  • the respective deformation of the elastomer body is determined by superimposition of tensile and compressive stresses.
  • the compressive load in certain areas of the elastomeric body compensates for tensile stress in other areas of the elastomeric body.
  • the entire material of the elastomeric body is loaded non-homogeneously.
  • An embodiment of the respective elastomer Torsionsfederelements the respective seat device according to the invention is characterized in that the contact surface of the inner housing and the contact surface of the outer housing in a plane perpendicular to the axis of rotation cutting plane have a non-circular cross-section and are arranged relative to each other, that by means of the rotation of the inner housing and / or of the outer housing about the rotational axis, a pressure load in at least one region of the elastomeric body is presentedufbar.
  • Tensile and pressure are distributed within the elastomer body in such a way that the elastomer body is loaded non-homogeneously and the respective compressive stresses at least partially compensate for the respective tensile stresses.
  • This embodiment makes it possible to generate a restoring torque between the outer housing and the inner housing, which shows a particularly steep rise as a function of the respective rotation angle and in a particularly large rotation angle range a substantially linear course as a function of the rotation angle.
  • the contact surface of the inner housing and the contact surface of the outer housing are formed such that the respective rotation of the inner housing and / or the outer housing about the rotation axis by a rotation angle in a predetermined rotation angle range with the respective Angle causes linearly increasing restoring torque. Since the contact surface of the inner housing or the contact surface of the outer housing are not rotationally symmetrical to the axis of rotation, the dependence of the restoring torque on the angle of rotation is substantially determined by the position that occupies the inner housing relative to the outer housing when the inner housing is in a predetermined basic position.
  • the basic position of the inner housing relative to the outer housing can be chosen such that the restoring moment shows a linear course as a function of the angle of rotation in the respectively predetermined rotation angle range.
  • the contact surface of the inner housing and / or the contact surface of the outer housing - each in a plane perpendicular to the axis of rotation cutting plane - polygonal or at least partially rectilinear.
  • Such a configuration of the contact surfaces of the inner housing and the outer housing allows an application-specific, non-homogeneous deformation of the elastomer body as a function of the respective angle of rotation.
  • the contact surface of the outer housing is at least partially cylindrical.
  • the elastomer body is loaded non-homogeneously relative to the outer housing during a rotation of the inner housing.
  • Such an embodiment of the inner surface of the outer housing also allows an application-specific, non-homogeneous loading of the elastomeric body as a function of the respective angle of rotation.
  • the contact surface of the outer housing contains two pairwise opposite, isosceles angular segments and two pairwise opposite semicircular segments whose ends are respectively connected to the ends of the rectangular angle segments. Based on measurement series has been found that the elastomer torsion spring element having a contact surface of the outer housing formed in this way has a characteristic curve in which the course of the restoring torque in relation to the rotation angle is linear.
  • the contact surface of the inner housing-in each case in a sectional plane perpendicular to the axis of rotation-is rectangular.
  • Such a configuration of the contact surface of the inner housing proves to be particularly advantageous, as a result, certain areas of the elastomeric body are loaded with a rotation of the inner housing relative to the outer housing with compressive forces, which compensate for tensile forces in the elastomeric body.
  • the restoring torque generated by the elastomer torsion spring element as a function of the rotational angle in a particularly large rotational angle range shows a linear course with a particularly steep rise.
  • the contact surface of the inner housing - in a plane perpendicular to the axis of rotation cutting plane - be square.
  • an inner cross section of the respective outer housing and an outer cross section of the respective inner housing of the elastomer Torsionsfederelements are formed so that the ratio of the surface area of the inner cross section of the respective outer housing to the surface area of the outer cross section of the respective inner housing is greater than 7/3.
  • the restoring torque generated by the respective elastomer torsion spring element shows a linear course as a function of the rotation angle in a particularly large rotation angle range.
  • the elastomeric body has one or more holes passing through the elastomeric body, the respective hole extending along the axis of rotation. This measure has several advantages. If the respective elastomeric body is produced, for example, by vulcanization, then it is particularly advantageous to form the respective holes already prior to vulcanization in the respective materials, which-as a result of the vulcanization-form the elastomeric body.
  • the formation of the respective holes has the effect that the respective elastomer body immediately after vulcanization has little or no elastic stresses in the interior, so that the respective elastomer torsion spring element is ready for use immediately after vulcanization, without any post-treatment Elastomer body is required. If, however, the elastomeric body is manufactured without the holes mentioned, then the elastomeric body can have relatively large elastic stresses in the interior immediately after vulcanization, even if no torque is applied between the outer housing and the inner housing.
  • this elastomer torsion spring element can be optimized by appropriate post-treatments, which lead to a reduction of the respective stresses in the interior of the elastomer body, for example, by squeezing the respective elastomer Body in certain directions.
  • These after-treatments are complex and thus undesirable.
  • these post-treatments can be avoided if the respective elastomeric body is provided with one or more holes prior to vulcanization.
  • Such an elastomeric body (provided with one or more holes) has little or no elastic immediately after vulcanization Internal stresses on, allows - without the aftertreatments mentioned above - a rotation of the inner housing relative to the outer housing over a relatively large rotation angle range and thus makes it possible to generate relatively large restoring torques.
  • the elastomeric body of the respective elastomer torsion spring element has one or more holes passing through the elastomeric body, this has the effect of changing the shape and size of a cross section of the respective hole when the inner housing is about one outer diameter relative to the outer housing certain rotation angle is rotated and the respective elastomer body is deformed. This effect can be exploited to substantially reduce wear of the elastomeric body, which can be expected at relatively large angles of rotation when the inner housing is rotated relative to the outer housing, and thus to extend the life of the respective elastomer body.
  • the elastomer body of the respective elastomer torsion spring element of a seat device according to the invention is also subjected to pressure in certain areas of the elastomer body when the inner housing is rotated relative to the outer housing by a certain angle of rotation.
  • This load on pressure in certain regions of the elastomeric body has the effect that the elastomeric body expands locally in the regions which are subjected to pressure in the direction of the axis of rotation of the elastomer torsion spring element by a certain distance, which is the greater the larger the angle of rotation.
  • This expansion of the elastomeric body causes, for example, that the elastomeric body on its surface (in the areas of the elastomeric body, which are connected neither to the contact surface of the outer housing nor with the contact surface of the inner housing) deformations in the form of local elevations or wrinkles forms, which are the greater, the greater the angle of rotation. For example, at large angles of rotation, adjacent areas of the surface may come into contact with each other due to the deformations, creating friction between these areas of the surface. Such deformations can, for example because of the said friction, accelerate wear of the elastomeric body and thus reduce the life of the elastomeric body, especially if the inner housing is rotated relative to the outer housing often and possibly at a high speed by relatively large rotation angle.
  • the elastomeric body of the respective elastomeric torsion spring member has one or more holes passing through the elastomeric body.
  • the respective holes may preferably be arranged in the elastomer body such that the cross-sectional area of the respective hole decreases in each case as the angle of rotation increases. This reduction of the cross-sectional area of the respective hole has the consequence that the elastomer body with increasing rotational angle in the regions of the elastomeric body, which are loaded under pressure, less in the direction of the axis of rotation of the respective elastomer Torsionsfederelements expanded, so that the surface of the elastomeric body is less deformed.
  • the expansion of the elastomeric body in the direction of the axis of rotation is thus at least partially compensated by the reduction of the cross-sectional area of the respective holes.
  • the holes thus improve the load capacity of the elastomeric body and allow relatively large restoring torques to be generated without destroying the elastomeric body.
  • the respective holes may have a round cross section or a cross section of any other shape.
  • a further development of the aforementioned embodiments of the elastomer torsion spring element comprises a holding element which is designed to (i) hold the inner housing in a predetermined basic position relative to the outer housing, in which basic position the elastomeric body has a predetermined elastic deformation and between the outer housing and generating a restoring torque equal to a predetermined minimum value to the inner housing, and (ii) releasing rotation of the inner housing relative to the outer housing by a rotational angle about the rotational axis in a rotational direction in which the restoring torque increases with increasing rotational angle.
  • the inner housing if it is in the normal position, only rotated in one direction of rotation about the axis of rotation and thus be rotated relative to the outer housing;
  • the retaining element blocks rotation in the other direction of rotation when the inner housing is in the basic position.
  • the elastomer body always has an elastic deformation, so that the elastomer torsion spring element generates a restoring torque when the inner housing rotates relative to the outer housing, whose size is always greater than zero.
  • the restoring torque generated by the elastomeric body is received by the retaining element.
  • the elastomer body between the outer housing and the inner housing generates a restoring torque, which steadily increases with increasing angle of rotation, starting at the minimum value.
  • This minimum value thus defines the minimum restoring torque that can be generated with the elastomer torsion spring element.
  • the minimum value is determined by the magnitude of the elastic stress (hereinafter also referred to as "preload of the elastomeric body") which the elastomeric body has when the inner housing is in the home position relative to the outer housing. This minimum value can be set as needed.
  • This variant of the elastomer torsion spring element can advantageously be used in devices for force transmission between two bodies, if during a relative movement between the two bodies a restoring torque is to be generated which is always greater than or equal to a minimum value (greater than 0).
  • the bias of the elastomeric body can for example be realized such that the respective elastomer torsion spring element is first made so that the respective elastomeric body is firmly connected to the contact surfaces of the respective inner housing and the contact surfaces of the respective outer housing such that the elastomeric Body is initially undeformed and thus has no mechanical stresses when the inner housing is in a starting position relative to the outer housing.
  • the inner housing and / or the outer housing is rotated about the rotational axis in a predetermined direction of rotation by a rotational angle until the rotational angle relative to the starting position has a predetermined value (hereinafter "angular offset relative to the starting position "called”) reached, so that the elastomeric body is deformed and has a predetermined mechanical stress.
  • the holding element can be installed such that a further rotation of the inner housing or the outer housing in the predetermined direction of rotation possible, however, a corresponding rotation in the opposite direction but blocked as soon as the respective angle of rotation is equal to the starting position equal to said "angular offset".
  • the elastomer torsion spring element according to the invention has the advantage that the "angular offset" can be chosen to be relatively small in order to ensure that the restoring torque assumes a certain minimum value (for example compared to FIG EP 1486142 A1 known elastomer torsion spring element). This is gentle on the elastomeric body and thus conducive to a long life of the elastomeric body.
  • the holding element may be a rod in a simple embodiment, which is arranged on an end face of the inner housing and perpendicular to the axis of rotation and is further firmly connected to the inner housing.
  • a mechanical stop for the rod may be attached to the outer housing, which is arranged such that the rod abuts against the stop during rotation of the inner housing in a certain direction of rotation, so that further rotation in the same direction of rotation is blocked. A rotation of the inner housing in the opposite direction of rotation is released.
  • the position of the stop determines in this case the basic position of the inner housing relative to the outer housing.
  • the mechanical stop or the outer housing takes on the bias of the elastomeric body, respectively, when the inner housing is in the normal position.
  • the inner housing may be held in the predetermined basic position relative to the outer housing of the holding element, for example, such that the restoring torque increases linearly with increasing rotational angle at the respective released from the holding element rotation of the inner housing relative to the outer housing.
  • the holding element comprises at least one clamping element, which has a first portion which is in a fixed engagement with the inner housing, and a second portion which - when the inner housing is in the predetermined basic position relative to the outer housing - Strikes against a portion of the outer housing and releases a rotation of the inner housing and the outer housing in relation to each other about the axis of rotation in that direction of rotation, in which the restoring torque increases.
  • the holding element may also comprise at least one clamping element which has a first portion which is in a fixed engagement with the outer housing, and has a second portion which - when the inner housing in the predetermined basic position relative to the outer housing abuts against a portion of the inner housing and releases a rotation of the inner housing and the outer housing in relation to each other about the axis of rotation in the rotational direction in which the restoring torque increases.
  • the clamping element can be used in each case as "tool” in the abovementioned variants in order-by means of a rotary movement of the clamping element about the axis of rotation of the elastomer torsion spring element-to rotate the inner housing relative to the outer housing, thereby compressing the elastomer body with that mechanical stress (pretension ), which is maintained by means of the retaining element, when the inner housing by means of the retaining element in the basic position relative is held to the outer housing.
  • the inner housing and / or outer housing have a non-circular cross section, either the outer housing or the inner housing can serve as a mechanical stop for the respective clamping element, wherein the When the outer housing or the inner housing rotates about the axis of rotation, the clamping element in each case follows a circular path around the axis of rotation. In order to achieve a predetermined bias, the clamping element must be brought only in a suitable position relative to the outer housing or the inner housing.
  • the inner housing comprises a recess, wherein the first portion of the clamping element is rotationally rigidly inserted into this recess in the inner housing and the second portion of the clamping element - when the inner housing is in the predetermined basic position relative to the outer housing - against a portion of the outer casing strikes.
  • the latter section of the outer housing can be arranged, for example, on an outer side of the outer housing.
  • the use of the clamping elements has several advantages.
  • the respective clamping element can be produced inexpensively with a low use of material.
  • the assembly of the clamping element on the inner housing and on the outer housing of the elastomer torsion spring element can be made very easily and in a short time.
  • no components must be firmly connected to the inner housing or the outer housing.
  • several elastomer torsion spring elements can be parallel by respectively associated clamping elements pretensioning in one step, whereby the assembly time is further shortened.
  • the inner housing and the outer housing are arranged to each other such that the elastomeric body at a predetermined orientation of the outer housing relative to the inner housing has a bias.
  • a plurality of elastomer torsion spring elements can be arranged parallel to one another, for example plugged onto a bearing shaft. The elastomer torsion spring elements can be biased to different degrees, wherein the respective outer housing can still be aligned with each other.
  • the respective seat device may comprise a plurality of the respective elastomer torsion spring element, wherein the respective elastomer torsion spring elements are arranged side by side such that the inner housing and / or the outer housing of the respective elastomer torsion spring elements are arranged rotatably about the same axis of rotation.
  • the entirety of all elastomer torsion spring elements produce a restoring torque resulting from the superposition of those restoring torques generated by the individual elastomer torsion spring elements (coupled respectively to the first and second bodies).
  • the seat device can be modular.
  • the entirety of all elastomer torsion spring elements can for example form an assembly, which can be transported or assembled as a whole. This simplifies the manufacture and maintenance of the seat assembly.
  • the entirety of all elastomer torsion spring elements can be preassembled, for example, in an assembly and then combined with other components.
  • the inner housings of the respective elastomer torsion spring elements can be rigidly connected to one another and / or the outer housings of the respective elastomer torsion spring elements can be rigidly connected to one another.
  • the respective inner housing can be set, for example, on a common bearing shaft and fixed thereto.
  • the elastomer torsion spring elements of the respective assembly may optionally have different characteristics.
  • the various elastomer torsion spring elements may differ in the course of the return torque as a function of the angle of rotation.
  • different elastomer torsion spring elements may comprise elastomeric bodies which may be differently biased different elastomer torsion spring provide different sized reset torques when the inner housing of the respective Torsionsfederelements is in the basic position relative to the outer housing. Therefore, by a combination of different elastomer torsion spring elements having different characteristics, power transmission devices having different characteristics can be manufactured as needed or, e.g., in a simple, inexpensive manner. by replacing individual elastomer torsion spring elements, suitably modified.
  • FIG. 1 shows an exemplary embodiment of a seat device in the form of a chair 1.
  • the chair 1 is designed as an office swivel chair and mounted on a support column 2, via which the chair 1 is height adjustable and rotatable by 360 °.
  • a support 42 is mounted, which is arranged substantially horizontally.
  • the carrier 42 serves as a housing for accommodating mechanical elements, which will be described later.
  • a back support 44 is pivotally connected via a bearing shaft 26, at the other end of the back support 44, a back part 3 is connected, which serves to receive a substantially vertically arranged backrest 4.
  • the back part 3 can be displaceable at the connection to the back support 44.
  • the backrest 4 can be adjustable in height.
  • the carrier 42 includes a seat support, not shown in the figure, on which a substantially horizontally arranged seat 5 is mounted.
  • the seat carrier may also be pivotally hinged to the carrier 42.
  • the pivotable articulation of the back support 44 and the seat support on the support 42 it is possible that a person sitting on the chair 1 person with the backrest 4 can lean back and at the same time the seat support and thus also the seat 5 can be pivoted synchronously.
  • an elastomeric torsion spring member (not shown) disposed in the bracket 42 applies restoring torque between the bracket 42 and the back support 44, the return torque being directed in a direction opposite to the pivoting direction when the back bracket 44 is pivoted relative to the bracket 42 ,
  • FIG. 2 shows a schematic side view of the elastomer Torsionsfederelements 10, which is executed in a first embodiment, wherein according to this view, a rotation axis 6 is perpendicular to the plane of the drawing.
  • the elastomer torsion spring element 10 includes an inner housing 12 and an outer housing 14. In an intermediate space between the inner housing 12 and the outer housing 14, an elastomeric body 16 is arranged.
  • the inner housing 12 has on its outer side a contact surface 12a, at which the elastomeric body 16 is in contact with the inner housing. Furthermore, the outer housing 14 has on its inner side a contact surface 14a on which the elastomeric body 16 is in contact with the outer housing 14.
  • the contact surface 12a of the inner housing 12 and the contact surface 14a of the outer housing 14 enclose the axis of rotation 6 in each case in an annular manner. Accordingly, in the present example, the elastomeric body 16 forms a closed ring surrounding the axis of rotation 6.
  • the elastomeric body 16 is made of an elastomer, i. a solid and elastically deformable material.
  • the elastomeric body 16 is formed so as to be fixedly connected to the contact surface 12a of the inner case 12 and the contact surface 14a of the outer case 14, i. upon movement of the inner housing 12 relative to the outer housing 14 (eg, upon rotation of the inner housing 12 or the outer housing 14 about the axis of rotation 6), there is no displacement of the surfaces of the elastomeric body 16 adjacent the contact surfaces 12a and 14a relative to the contact surfaces 12a and 12b 14a instead.
  • the elastomeric body 16 may, for example, be connected in a material-locking or form-fitting manner to the contact surfaces 12a or 14a with the inner housing 12 and the outer housing 14.
  • a particularly suitable for the production of the elastomeric body 16 elastomer is for example rubber, which is not only an elastically deformable and high-strength material, but also in a simple manner with the contact surfaces 12a and 14a can be firmly connected, for example by means of vulcanization.
  • the inner housing 12 and the outer housing 14 are made of a solid material, such as steel.
  • pressure loads occur which compensate for tensile loads therein.
  • the elastomeric body 16 is advantageously loaded non-homogeneously.
  • the inner casing 12 is shown in a "non-rotated" state (solid line) and a “twisted state” (dashed line), and the inner casing 12 is rotated around the rotation axis 6 in the twisted state by a rotational angle ⁇ clockwise compared to the untwisted state is while the position of the outer housing 14 remains unchanged. It is assumed that the elastomeric body 16 is not biased in the case of the untwisted state, ie has no mechanical stresses. In the untwisted state, in each case the distances from the upper right corner or the lower left corner of the inner housing 12 to respectively defined points on the inner side of the outer housing 14 are shown by arrows x1 and yl.
  • the distances from the upper right corner and the lower left corner of the inner housing 12 to respectively defined points on the inner side of the outer housing 14 are indicated by arrows x2 and y2, respectively.
  • the distance x2 is less than x1 and the distance y2 is less than y1.
  • the elastomeric body 16 is compressed when the inner housing 12 is rotated about the rotation axis 6 and thereby rotated relative to the outer housing 14. From these respective compressions result the above-mentioned pressure loads.
  • the elastomer body 6 After a rotation of the inner housing 12 by the rotational angle ⁇ about the axis of rotation 6, the elastomer body 6 is deformed and generates between the outer housing 14 and the inner housing 12, a restoring torque D, which is opposite to the rotation and increases with the rotation angle ⁇ .
  • the contact surface 12a of the inner housing 12 adjoining the elastomeric body 16 is square-shaped.
  • the inner housing 12 is formed as a square sleeve (square), which has a parallel to the axis of rotation 6 extending, continuous channel 12.1 with a square cross-section. This has the advantage that a square bearing shaft (not shown) formed with the same dimensions can be accommodated radially in a form-fitting manner in the channel 12.1 of the inner housing 12.
  • an outer housing cam 18 is formed, which for engagement with a (in Fig. 2 not shown) blocking element, which in the following in connection with the Figures 5 and 9 is still explained, can serve.
  • the adjacent to the elastomer body 16 contact surface 14a of the outer housing 14 has a contour which is to be regarded as a combination of a rectangle and a circle. More specifically, the contour of the outer housing 14 is composed of two pairs equal isosceles angular segments, which in the present example form an angle of 90 °, and of two pairs opposite semicircular segments, the ends of which are respectively connected to the ends of said angle segments.
  • FIG. 3A 11 is a graph showing each of the above-mentioned characteristic curve K1 (restoring torque D in relation to the rotational angle ⁇ ) of the elastomer torsion spring member in the embodiment of the present invention and a characteristic curve K2 of a conventional elastomer torsion spring member (as shown in FIG EP 1486142 A1 known), wherein the curves K1 and K2 have each been determined for elastomer torsion spring elements in which the respective elastomers consist of the same material (rubber), so that the elastomer torsion spring elements associated with the curves K1 and K2 essentially only with respect to the forms the respective inner housing and the shapes of the respective outer housing differ.
  • the curves K1 and K2 show first that the return torque D increases with increasing rotation angle ⁇ .
  • the maximum angle of rotation is 70 ° in this example.
  • the characteristic curve K1 of the elastomer torsion spring element was determined on the basis of measurement series, which correspond to the in FIG. 2 shown elastomer torsion spring element (lemon shape) were performed. In Fig.
  • FIG. 3A the cross-sections of those elastomer torsion spring elements are shown below said diagram, for which said curves K1 and K2 were determined:
  • the two solid lines 14a and 12a give (in this order) the contour of the contact surface of the outer housing or the contour of the contact surface the inner casing of the elastomeric torsion spring member to which the characteristic K1 is associated;
  • the two dashed lines 14a and 12a indicate (in this order) the contour of the contact surface of the outer housing or the contour of the contact surface of the inner housing of the elastomer Torsionsfederelements, which the characteristic K2 is assigned.
  • Fig. 3A the respective cross sections of the two elastomer torsion spring elements shown superimposed.
  • the characteristic curve K1 of the elastomer torsion spring element according to the embodiment of the present invention advantageously extends linearly in almost all rotation angle ranges.
  • the characteristic curve K2 of the conventional elastomer torsion spring element is non-linearly (progressively) increasing particularly in the initial rotation angle range.
  • the characteristic curve K1 of the elastomer torsion spring element according to the embodiment of the present invention has a greater steepness than the characteristic curve K2 of the conventional elastomer torsion spring element.
  • a larger restoring torque D acts.
  • the elastomer material is less deformed compared to the elastomer material of the conventional elastomer torsion spring element at a same restoring torque D.
  • the elastomer material is thus less loaded and therefore less fatigued. This results in a longer life.
  • Fig. 3B shows measured values representing the course of the return torque D as a function of the rotation angle ⁇ for six different embodiments of the elastomer torsion spring element according to the invention.
  • the curves for the course of the return torque D corresponding to the various embodiments are numbered (1-6), respectively.
  • All embodiments have in common that the outer housing 14 of the respective elastomer Torsionsfederelements 10 has a square profile, wherein the cross section of the contact surface 14a of the respective outer housing 14 is a square with the side length 60 mm (relative to a sectional surface perpendicular to the axis of rotation 6).
  • the various embodiments differ in that the cross section of the contact surface 12a of the inner housing 12 for the various embodiments have different shapes and different sizes.
  • the cross section of the contact surface 12a of the inner case 12 is a circle of diameter 10mm and 20mm, respectively (in that order).
  • the cross section of the contact surface 12a of the inner case 12 is a square having side lengths of 20mm, 25mm, 30mm and 40mm, respectively (in that order).
  • the respective elastomeric body 16 consists of the same material (rubber).
  • a comparison of the curves 1-6 shows that the restoring torque D increases more in the range "small" rotation angle with the rotation angle ⁇ , the larger in the case of the curves 1 and 2 of the respective diameter and in the case of the curves 3-6 the respective side length the cross section of the contact surface 12a of the inner housing 12 is. Furthermore, it can be seen that a square profile of the inner housing 12 results in a steeper increase in the return torque D as a function of the angle of rotation ⁇ leads as a round profile of the inner housing 12 with a correspondingly large diameter. Furthermore, it can be seen that the curves 1-5 are linear in the range 0-70 °, while the curve 6 shows a progressive increase above 40 °.
  • the inner cross section of the respective outer housing 14 is in the present case a planar, perpendicular to the axis of rotation 6 arranged surface with an outer edge, which is bounded by the contact surface 14a.
  • the outer cross-section of the respective inner housing 12 is a flat surface, arranged perpendicular to the axis of rotation 6, with an outer edge, which is delimited by the contact surface 12a.
  • the restoring torque D generated by the elastomer torsion spring member increases progressively as a function of the rotational angle ⁇ (as in FIG Fig. 6 in Fig. 3B indicates), wherein the restoring torque D increases the more progressive as a function of the rotational angle ⁇ , the smaller the ratio Fa / Fi.
  • Fig. 3C shows a side view of an elastomer torsion spring element 10, which is different from the elastomer torsion spring element 10 according to Fig. 2 exclusively differs in that the elastomeric body 16 of the elastomer torsion spring element 10 according to Fig. 3C includes four holes 17 each extending along the rotation axis 6 so as to be continuous through the elastomeric body 16.
  • each of the four holes 17 is placed near one of four edges 13.1, 13.2, 13.3 and 13.4 of the inner housing 12.
  • the edges 13.1, 13.2, 13.3 and 13.4 are formed on the contact surface 12a of the inner housing 12 and each arranged parallel to the axis of rotation 6.
  • the dashed line in 6.1 marked with Fig. 3C marks a plane in which both the axis of rotation 6 and the edges 13.1 and 13.3 extend. Accordingly, the dashed line marked 6.2 marks in Fig. 3C a plane in which both the axis of rotation 6 and the edges 13.2 and 13.4 extend.
  • the Fig. 3C shows the elastomer torsion spring member 10 in a state in which the elastomeric body 16 has no mechanical stress and thus generates no restoring torque between the inner housing 12 and the outer housing 14.
  • the arrow designated by ⁇ , originating from the edge 13.1, marks the course of a path traveled by the edge 13.1 when the inner housing 12 is rotated by an angle of rotation ⁇ (in FIG Fig.
  • Layers 6.1 and 6.2 subdivide the elastomeric body 16 into four different regions, wherein in each case at least a portion of each of these four regions is subjected to pressure when the inner housing 12 is rotated about the rotational angle ⁇ about the axis of rotation 6 and rotated relative to the outer housing 14 ,
  • FIG. 4 shows that in FIG. 2 shown elastomer torsion spring element 10 in a first embodiment of the present invention with a holding member 19 in a perspective view.
  • the holding element 19 serves to hold the inner housing 12 and the outer housing 14 in a "basic position" relative to each other, in which the elastomeric body 16 has a mechanical stress (preload) and thus between the inner housing 12 and the outer housing 14, a restoring torque D. which is different from zero.
  • the inner housing is opposite to the "unrotated" position (without pretension) according to Fig. 2 by a rotational angle ⁇ (hereinafter referred to as "biasing angle”) rotated, with respect to Fig. 2 clockwise and in terms of Fig.
  • biasing angle rotational angle
  • the holding element 19 contains in this example two clamping elements 20, which are each plugged onto one of the end faces of the elastomer torsion spring element 10.
  • the tensioning element 20 is a substantially flat plate which is punched out in the center region such that two opposing flanges 22 remain. These flanges 22 are each 90 ° inwards (in the plane of the figure in).
  • the flanges 22, which are designed such that their outer regions are positively connected to the inner surface of the inner housing 12 are connected by a first distance in the inner housing 12. Then, the clamping element 20 and thus radially positively connected to the inner housing 12, with a fixed outer housing 14, counterclockwise rotated by a certain angle (for example, 20 °) in relation to the outer housing 14.
  • the clamping element 20 is pressed with its flanges 22 completely into the channel 12.1 of the inner housing 12, wherein at the same time the tabs 24 ', 24''occupy a positive connection with the outer surface of the outer housing 14.
  • the tensioning element 20 maintains the prestressing. More precisely, the pretension angle ⁇ can no longer be undershot, since the tabs 24 ', 24 "abut against the outer surface of the outer housing 14.
  • a maximum angle of rotation between the inner housing 12 and the outer housing 14 (for example 70 °) can not be exceeded.
  • namely the tab 24 'abuts against the outer housing cam 18, whereby a further rotation is advantageously prevented.
  • FIG. 5 shows three elastomer torsion spring elements 10'-10 ''', each with frontally mounted clamping elements, as detailed in FIG. 4 shown.
  • the bearing shaft 26 is also plugged radially into an inner housing of a base-elastomer Torsionsfederelements 28 in a form-fitting manner.
  • This arrangement forms a power transmission device 30 for a (in Fig. 5 not shown, but in Fig.
  • force system 30 serves in principle for applying a restoring torque to a back support or a seat of the chair in the event that the back support or the seat is pivoted relative to a support for the back support or the seat.
  • the power system 30 is connected to the substantially rigid support (not shown) of the chair via the outer housing of the base elastomer torsion spring element 28.
  • the bearing shaft 26 is rotatably connected at its axial end portions with the back support. If a person sitting on the chair leans back with the back part, the back support and any seat support that may be hinged in sync with it are swiveled.
  • the bearing shaft 26 Since the back carrier rotatably connected to the bearing shaft 26, the bearing shaft 26 is rotated (in this example, the counterclockwise rotation takes place). This rotation is always counteracted by at least one restoring torque, which is caused by the base elastomer Torsionsfederelements 28.
  • FIG. 5 further blocking elements 32'-32 '''shown, which on a parallel to the bearing shaft 26 extending shaft are articulated.
  • the blocking elements 32'-32 ''' can be controlled via locking cams 34'-34''', which are mounted radially on a camshaft 36.
  • the blocking elements 32'-32 '''are each pivoted separately from one another discretely into two different positions.
  • the bearing shaft 26 would rotate counterclockwise and the elastomer torsion spring elements 10'-10 '''as a whole would follow the rotation of the bearing shaft 26.
  • the total restoring torque D provided by the power system 30 in this example is identical to the restoring torque caused solely by the base elastomer torsion spring member 28. Accordingly, the elastomer torsion spring elements 10'-10 '''do not contribute to the restoring torque D provided by the power system 30.
  • the elastomer torsion spring elements 10'-10 '" are dimensioned differently. This has the consequence that they can each cause different restoring torques.
  • a total of eight different restoring torques can be selected.
  • restoring torques are switchable, each corresponding to the individual weight of a person sitting on the chair.
  • a suitable coupling or decoupling of the respective elastomer torsion spring elements 10'-10 '''and the respective locking elements 32'-32''' a person with, for example, a weight of 45 kg experience an ergonomically adjusted restoring force, as well a person weighing for example 120 kg can experience an ergonomically adjusted restoring force.
  • Due to the eight different steps described above, people with a weight of between 45 kg and 120 kg, for example, can be ergonomically optimally supported. As a result, the seating comfort is greatly increased.
  • FIG. 6 shows an elastomer torsion spring element 10 in a second embodiment.
  • the inner housing (not shown) and the outer housing 14 are biased in relation to each other by a clamping element 38.
  • a clamping element 38 for a more detailed description of this elastomer torsion spring is on the Figures 7A-7C directed.
  • Figures 7A-7C each show a force system 30 in different views, which, similar to that in FIG. 5 illustrated example, also three elastomer torsion spring elements 10'-10 '''contains. These three elastomer torsion spring elements 10'-10 '''are each in the in FIG. 6 illustrated embodiment executed.
  • the power system 30 further includes a base elastomer torsion spring member 28 and a shaft 26.
  • tension members 38'-38 "" are included, different from those in FIG the FIGS. 4 and 5 differ shown clamping elements 20.
  • the clamping elements 38 '- 38'''shown are plate-like elements whose inner areas are punched rectangular.
  • the bearing shaft 26 and the inner housing of the base elastomer Torsionsfederelements 28 are connected to each other in a radially form-fitting manner. Subsequently, a first clamping element 38 'attached via its punched onto the bearing shaft 26, so that between the bearing shaft 26 and the clamping element 38' is a radially positive connection is made. Subsequently, a first elastomer torsion spring element 10 'is placed on the bearing shaft 26. Following this step, a further clamping element 38 "is placed, and so on.
  • the elastomer torsion spring elements 10'-10 '''either individually or simultaneously biased by, for example, their outer housing, with radially fixed bearing shaft 26, are rotated clockwise about the longitudinal direction of the bearing shaft 26. This rotation takes place up to a rotation angle at which pins 40 ', 40 "can be inserted through the respective bores of the bulges 39'-39"'''''''' Force transmission to turn the outer housing finished.
  • the individual elastomer torsion spring elements remain 10'-10 '''in this Position, since the respective outer surfaces of the outer housing now abut against a peripheral portion of the pins 40 ', 40 ". Thus, it is no longer possible that the respective outer housing is rotated back to the initial state.
  • Figures 8A-8C each show an elastomer torsion spring element 10 in the second exemplary embodiment, in which the inner housing 12 and the outer housing 14 are rotated in relation to each other in sequence of the figures by an increasing angle of rotation ⁇ against each other.
  • the inner housing 12 and the outer housing 14 are arranged rotated in relation to each other at a rotational angle of -40 ° counterclockwise.
  • the elastomer torsion spring member 10 is shown rotated in a clockwise rotated state.
  • the advantage of the rotational offset by -40 ° between the inner housing 12 and outer housing 14 in comparison to the untwisted initial state ( Fig. 8A ) is that a further turning over between the inner housing 12 and the outer housing 14 in a clockwise direction relative to each other (see Figs. 8B-8C ) takes place in a rotational angle range in which the characteristic curve of the restoring torque as a function of the rotational angle ⁇ is linear over a large angular range and has a particularly large pitch as a function of the rotational angle.
  • FIG. 9 shows that in Figures 7A-7C illustrated power system 30, which in a support 42 of a chair (in Fig. 9 not shown) is installed.
  • the base-elastomer torsion spring element 28 is connected via its outer housing fixed to the carrier 42.
  • the bearing shaft (not shown) may be rotatably coupled through an opening of the carrier 42 with a portion of a back carrier 44.
  • the back support 44 in turn serves to receive a back part 3 according to Fig. 1 (in Fig. 9 not shown), with which a substantially vertically extending backrest 4 according Fig. 1 connected is.
  • the backrest 4 is thus pivotable against the introduced by the power system 30 restoring torque.
  • a seat support for a seat 5 according Fig. 1 be connected to the back support 44 and / or the backrest, so that the seat 5 is pivotable in synchronism with the backrest 4.
  • the bearing shaft 26 is rotated as soon as a person sitting on the chair reclines. At the in FIG. 9 As shown, the bearing shaft would turn clockwise when reclining the person.
  • the individual elastomer torsion spring elements 10'-10 follow this turn.
  • the individual locking elements 32'-32 "', each actuated by individual arranged on the camshaft 36 locking cams 34'-34'', are switched so that they with the respective outer housing cam 18'-18 '''of the elastomer torsion spring elements 10'-10''' is coupled with any outer housing cam 18 '- 18''' of an elastomeric torsion spring member 10 ', 10 "or 10''' made, this coupled elastomer torsion spring element 10 ', 10''or10''' would its respective restoring torque, in addition to the restoring torque of
  • the elastomer torsion spring elements 10 ', 10 "or 10'” are advantageously designed and arranged such that, switched individually, they have a return torque which is linear relative to the rotational angle, which corresponds to the torsional spring element 28 Weight of a person sitting on the chair is adjusted, put on the back support.
  • FIGS. 10A-10E show different views of a tensioning device 46 for biasing in the Figures 7A-7C shown elastomer torsion spring elements 10'-10 '''with the intermediate and frontally mounted clamping elements 38'-38''''.
  • the tensioning device 46 is shown in a full view, viewed from different directions.
  • the tensioning device 46 is shown in a detail view, viewed from different directions. The tensioning device 46 is used for simple and rapid pretensioning of the individual elastomer torsion spring elements 10'-10 '''with only a few steps.
  • the tensioning device 46 includes fixing means 48 ', 48 "connecting the support shaft 26 (in FIG 10A-10E not shown) fixedly clamped at their axial ends.
  • fixing means 48 ', 48 "connecting the support shaft 26 (in FIG 10A-10E not shown) fixedly clamped at their axial ends.
  • These clamping elements 38 '- 38'''are each connected in a radially form-fitting manner with the bearing shaft.
  • the tensioning device 46 further includes a rod 50 which is connected perpendicularly between two lever arms of a lever 52.
  • the lever arms are pivoted about jig bearings 54 ', 54 ".
  • the lever 52 can be deflected at its lower end by a drive 56 back and forth. In a deflection of the lower portion of the lever 52 in a direction from the plane of the figure Fig. 10A out, the rod 50 is deflected towards the elastomeric torsion spring elements 10'-10 ''', as indicated by an arrow A.
  • a further surface region of the rod 50 engages with the outer surface of the outer housing of a second elastomer Torsionsfederelements 10 '' in engagement.
  • the previously engaged outer surface of the outer housing of the first elastomer torsion spring element 10 ''' is pivoted or rotated.
  • a portion of the outer surface of the outer housing of a third elastomer Torsionsfederelements 10 ' is engaged.
  • Figure 10E shows the tensioner 46 in a view axially of the tensioner bearings 54 ', 54 ".
  • the rotational offsets may be, for example, 20 °, 25 ° and 40 ° for the elastomer torsion spring elements 10'-10 '".
  • the individual elastomer torsion spring elements 10'-10 '" are thus also biased to different degrees.
  • the elastomer torsion spring element 10 '''more biased than the elastomer torsion spring element 10'' which in turn is biased more than the elastomer torsion spring element 10'.
  • the respective bias of the individual elastomer torsion spring elements 10'-10 '''by the pins 40', 40 '' is maintained.
  • clamping device 46 and the method described by way of example show that the power system 30 described above can be made very quickly and with only a few simple steps, even with differently biased elastomer torsion spring 10'-10 "'.

Landscapes

  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Springs (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Chairs Characterized By Structure (AREA)

Description

  • Die Erfindung bezieht sich auf eine Sitzeinrichtung mit einem Sitz, mit einem Rückenträger und mit einem Träger für den Rückenträger und/oder den Sitz, wobei der Rückenträger und/oder der Sitz am Träger schwenkbar angeordnet ist, sodass eine Schwenkbewegung des Rückenträgers und/oder des Sitzes um eine Drehachse ausführbar ist, und wobei die Sitzeinrichtung mindestens ein Elastomer-Torsionsfederelement zur Übertragung einer Kraft zwischen dem Rückenträger und dem Träger und/oder zur Übertragung einer Kraft zwischen dem Sitz und dem Träger umfasst.
  • Es sind beispielsweise Elastomer-Torsionsfederelemente bekannt, welche ein Innengehäuse, ein das Innengehäuse umgebendes Aussengehäuse und einen in einem Zwischenraum zwischen dem Innengehäuse und dem Aussengehäuse angeordneten Elastomer-Körper umfassen. Dabei weist das Innengehäuse in der Regel mindestens eine Kontaktfläche auf, an welcher der Elastomer-Körper mit dem Innengehäuse in Kontakt ist, während das Aussengehäuse mindestens eine Kontaktfläche aufweist, an welcher der Elastomer-Körper mit dem Aussengehäuse in Kontakt ist. Weiterhin ist das Innengehäuse und/oder das Aussengehäuse des jeweiligen Elastomer-Torsionsfederelements um eine Drehachse drehbar angeordnet und eine Drehung des Innengehäuses und/oder des Aussengehäuses um einen Drehwinkel um die Drehachse derart ausführbar, dass bei der jeweiligen Drehung das Innengehäuse relativ zum Aussengehäuse bewegt und dabei eine Deformation des Elastomer-Körpers erzeugt wird, sodass der Elastomer-Körper zwischen dem Aussengehäuse und dem Innengehäuse ein Rückstelldrehmoment erzeugt, welches der Drehung entgegengerichtet ist.
  • Ein derartiges Elastomer-Torsionsfederelement wird beispielsweise in Vorrichtungen zur Kraftübertragung zwischen relativ zueinander bewegbaren Körpern verwendet, um bei einer Bewegung eines ersten Körpers relativ zu einem zweiten Körper eine Rückstellkraft zu erzeugen, welche der jeweiligen Bewegung entgegenwirkt. Die jeweilige Vorrichtung zur Kraftübertragung bewirkt beispielsweise, dass - falls eine erste Kraft auf den ersten Körper wirkt und demzufolge den ersten Körper relativ zum zweiten Körper bewegt - die Vorrichtung zur Kraftübertragung eine Rückstellkraft erzeugt, welche der ersten Kraft entgegenwirkt, sodass der erste Körper eine Gleichgewichtslage relativ zum zweiten Körper annehmen kann, wobei in der Gleichgewichtslage die erste Kraft durch die jeweilige Rückstellkraft kompensiert ist.
  • Eine derartige Vorrichtung zur Kraftübertragung zwischen einem ersten Körper und einem zweiten, relativ zum ersten Körper bewegbaren Körper kann mit mindestens einem Elastomer-Torsionsfederelement der vorstehend genannten Art und mit einem ersten Kopplungsmittel zum Koppeln des ersten Körpers an das Aussengehäuse des jeweiligen Elastomer-Torsionsfederelements und einem zweiten Kopplungsmittel zum Koppeln des zweiten Körpers an das Innengehäuse des jeweiligen Elastomer-Torsionsfederelements realisiert werden. Zu diesem Zweck können das erste Kopplungsmittel und das zweite Kopplungsmittel beispielsweise derart ausgebildet sein, dass der erste Körper derart an das Aussengehäuse des jeweiligen Elastomer-Torsionsfederelements koppelbar ist und der zweite Körper derart an das Innengehäuse des jeweiligen Elastomer-Torsionsfederelements koppelbar ist, dass bei einer Bewegung des ersten Körpers relativ zum zweiten Körper eine Drehung des Innengehäuses und/oder des Aussengehäuses um einen Drehwinkel um die Drehachse ausgeführt wird, bei welcher Drehung das Innengehäuse relativ zum Aussengehäuse bewegt und dabei eine Deformation des Elastomer-Körpers erzeugt wird. Dabei erzeugt der Elastomer-Körper des jeweiligen Elastomer-Torsionsfederelements zwischen dem jeweiligen Aussengehäuse und dem jeweiligen Innengehäuse ein Rückstelldrehmoment, welches der Drehung des Innengehäuses bzw. des Aussengehäuses entgegengerichtet ist. Das von dem jeweiligen Elastomer-Torsionsfederelement erzeugte Rückstelldrehmoment entspricht dabei einer Rückstellkraft, welche der jeweiligen Bewegung des ersten Körpers relativ zum zweiten Körper entgegenwirkt.
  • Vorrichtungen zur Kraftübertragung gemäss der vorstehend genannten Art werden auf vielen technischen Gebieten im Bereich des Maschinenbaus angewendet.
  • Ein Anwendungsgebiet derartiger Vorrichtungen zur Kraftübertragung sind u.a. Sitzeinrichtungen, beispielsweise Stühle.
  • Sitzeinrichtungen sind häufig nicht starr ausgebildet, sondern umfassen meist eine ortsfest angeordnete Tragstruktur und einen relativ zu der Tragstruktur schwenkbaren Rückenteil und/oder einen relativ zu der Tragstruktur schwenkbaren Sitz, um beispielsweise zu ermöglichen, dass einerseits die räumliche Anordnung des Rückenteils und/oder des Sitzes an die jeweilige Körperhaltung einer auf der jeweiligen Sitzeinrichtung sitzenden, ihre Körperhaltung ständig ändernde Person angepasst werden kann, oder um beispielsweise zu erreichen, dass dieselbe Sitzeinrichtung auf unterschiedliche Bedürfnisse verschiedener Personen, welche beispielsweise eine unterschiedliche Körpergrösse oder ein unterschiedliches Gewicht aufweisen oder unterschiedliche Gewohnheiten hinsichtlich ihrer bevorzugten Körperhaltung haben können, abgestimmt werden kann. In diesem Fall kann eine Vorrichtung zur Kraftübertragung der vorstehend genannten Art vorteilhaft verwendet werden, um den Rückenteil über das jeweilige Elastomer-Torsionsfederelement an die Tragstruktur zu koppeln und damit zu erreichen, dass der Rückenteil bei Einwirkung einer auf den Rückenteil wirkenden Kraft relativ zu einer vorbestimmten Grundstellung schwenkbar ist und das jeweilige Elastomer-Torsionsfederelement bei der jeweiligen Schwenkbewegung des Rückenteils eine auf den Rückenteil wirkende Rückstellkraft bzw. ein auf den Rückenteil wirkendes Rückstelldrehmoment erzeugt, um den Rückenteil jeweils in einer stabilen Gleichgewichtslage zu halten. Letzteres verbessert den Sitzkomfort. Entsprechend kann eine Vorrichtung zur Kraftübertragung der vorstehend genannten Art verwendet werden, um einen Sitz der Sitzeinrichtung über das jeweilige Elastomer-Torsionsfederelement an die Tragstruktur zu koppeln.
  • Die EP 1486142 A1 zeigt einen Stuhl mit einer Elastomer-Elastomer-Torsionsfederelement 258 der vorstehend genannten Art, welches dazu dient, ein Rückstelldrehmoment zu erzeugen, welches einer Schwenkbewegung eines Sitzträgers um eine Drehachse entgegenwirkt. Das Elastomer-Torsionsfederelement 258 enthält ein Innengehäuse 260 und ein Aussengehäuse 264, wobei in einem Zwischenraum zwischen dem Innengehäuse 260 und dem Aussengehäuse 264 ein Elastomer-Körper 262 eingebracht ist. Das Innengehäuse 260 weist auf seiner Aussenseite eine Kontaktfläche auf, an welcher der Elastomer-Körper 262 mit dem Innengehäuse 260 in Kontakt ist, und das Aussengehäuse 264 weist auf seiner Innenseite eine Kontaktfläche auf, an welcher der Elastomer-Körper 262 mit dem Aussengehäuse 264 in Kontakt ist. Dabei ist der Elastomer-Körper 262 mit der jeweiligen Kontaktfläche des Innengehäuses 260 und der jeweiligen Kontaktfläche des Aussengehäuses 264 fest verbunden, sodass der Elastomer-Körper 262 weder an der Kontaktfläche des Innengehäuses 260 noch an der Kontaktfläche des Aussengehäuses 264 relativ zu dem Innengehäuse oder zu dem Aussengehäuse verrutschen kann.
  • Das Aussengehäuse 264 und das Innengehäuse 260 sind zylindrisch ausgebildet und koaxial zueinander angeordnet. Das Aussengehäuse 264 ist an einer Tragstruktur des Stuhls gehalten, während das Innengehäuse 260 drehfest auf einer Welle 250 sitzt, welche um ihre Längsachse drehbar ist. Ein Sitz 32 des Stuhls ist derart an die Welle 250 gekoppelt, dass, falls der Sitz 32 durch das Gewicht einer Person belastet wird, die Welle 250 um ihre Längsachse gedreht und der Sitz 32 aus einer vorgegebenen Grundstellung geschwenkt wird. Infolge der Drehung der Welle 250 wird das Innengehäuse 260 um ihre Längsrichtung gedreht und dabei relativ zum Aussengehäuse 264 verdreht, mit der Folge, dass das Elastomer-Torsionsfederelement 258 ein auf die Welle 250 bzw. den Sitz 32 wirkendes Rückstelldrehmoment erzeugt, welches der Drehbewegung der Welle 250 bzw. der Schwenkbewegung des Sitzes 32 entgegenwirkt und mit wachsendem Drehwinkel grösser wird. Im Falle des Elastomer-Torsionsfederelements 258 kann die Grösse des minimalen Drehmoments, welches auf die Welle 250 wirkt, wenn der Sitz 32 aus der genannten Grundstellung geschwenkt wird (im Folgenden "Mindest-Rückstelldrehmoment"' genannt), verändert werden, beispielsweise abhängig vom Gewicht einer auf dem Stuhl sitzenden Person. Zu diesem Zweck kann das Aussengehäuse 264 mit Hilfe eines an der Tragstruktur des Stuhls angeordneten Drehmechanismus um seine Längsachse gedreht werden und somit um die Längsachse der Welle 250 gedreht werden, wobei das Aussengehäuse 264 relativ zur Tragstruktur des Stuhls und relativ zum Innengehäuse 260 bzw. zur Welle 250 verdreht wird. Mittels der Verdrehung der des Aussengehäuses 264 relativ zum Innengehäuse 260 wird das Elastomer-Torsionsfederelement 258 vorgespannt, wobei der Drehwinkel, um den das Aussengehäuse 264 relativ zum Innengehäuse 260 verdreht ist, wenn sich der Sitz 32 in der Grundstellung befindet, die Grösse des "Mindest-Rückstelldrehmoments" bestimmt.
  • Wegen der zylindrischen Form des Aussengehäuses 264 und des Innengehäuses 260 sind die jeweils an den Elastomer-Körper 262 angrenzenden Kontaktflächen des Aussengehäuses 264 und des Innengehäuses 260 - jeweils in einer zur Welle 250 senkrechten Schnittebene - jeweils kreisförmig. Bei einer Drehung der Welle 250 um ihre Längsrichtung wird der Elastomer-Körper 262 derart deformiert, dass es jeweils auf Zug belastet wird.
  • Das Elastomer-Torsionsfederelement 258 hat den Nachteil, dass das Rückstelldrehmoment, welches bei einer Drehung der Welle 250 um einen bestimmten Drehwinkel erzeugt wird, einen relativ geringen Anstieg als Funktion des jeweiligen Drehwinkels zeigt, insbesondere dann, wenn das Elastomer-Torsionsfederelement 258 nicht oder nur geringfügig vorgespannt ist. Daraus resultiert als weiterer Nachteil, dass die Elastomer-Torsionsfederelement 258 sehr stark vorgespannt werden muss, wenn ein grosses Mindest-Rückstelldrehmoment eingestellt werden soll, um z.B. Personen mit hohem Gewicht einen angemessenen Sitzkomfort bieten zu können. Weiterhin nimmt das Rückstelldrehmoment als Funktion des Drehwinkels der Welle 250 stark nichtlinear (progressiv) zu, wenn die Welle 250 beispielsweise um einen Drehwinkel im Bereich von 0 bis ca. 70° gedreht werden soll. Eine grosse Nichtlinearität des Rückstelldrehmoments in dem genannten Drehwinkelbereich ist im Hinblick auf Anwendungen im Zusammenhang mit Sitzeinrichtungen unerwünscht, da derartige Nichtlinearitäten von einem Benutzer in der Regel als unangenehm empfunden werden. Somit wird der zur Verfügung stehende Drehwinkelbereich verkleinert, was unkomfortabel ist. Zudem wird der Elastomer-Körper 262 durch die hohe Vorspannung dauerhaft und stark belastet, wodurch er schneller ermüdet. Hierdurch hat das Elastomer-Torsionsfederelement 258 eine geringe Lebensdauer und muss häufig ausgetauscht werden. Ein weiterer Nachteil besteht darin, dass eine Einstellung der jeweiligen Vorspannung des Elastomer-Torsionsfederelements 258 mühsam und zeitaufwendig ist, zumal das Aussengehäuse 264 um einen grossen Winkel relativ zum Innengehäuse 260 verstellt werden muss, um ein bestimmtes Mindest-Rückstelldrehmoment einzustellen.
  • Aus GB 2070727 A ist ein weiteres Elastomer-Torsionsfederelement der oben genannten Art bekannt. Dieses Elastomer-Torsionsfederelement wird in einer Vorrichtung zur Kraftübertragung zwischen einer Basisplatte und einem relativ zu der Basisplatte bewegbar gelagerten Motor verwendet. Dieses Elastomer-Torsionsfederelement weist ebenfalls ein Innengehäuse und ein das Innengehäuse umgebendes Aussengehäuse auf, wobei das Innengehäuse und/oder des Aussengehäuse um eine Drehachse drehbar angeordnet ist. Die Aussenfläche des Innengehäuses und die Innenfläche des Aussengehäuses weisen in einer zur Drehachse senkrechten Schnittebene einen Querschnitt mit der Form eines Quadrats auf. Zwischen dem Innengehäuse und dem Aussengehäuse ist ein Zwischenraum ausgebildet. Das Innengehäuse des Elastomer-Torsionsfederelements ist in einer "Grundstellung" relativ zum Aussengehäuse um 45° um die Drehachse verdreht, sodass sich in diesem Fall der Zwischenraum im Wesentlichen aus vier Teilbereichen zusammensetzt, welche im Bereich der vier Ecken des Aussengehäuses ausgebildet sind und - in einem Querschnitt senkrecht zur Drehachse - die Form eines Dreiecks aufweisen. In jeden dieser vier Teilbereiche ist jeweils ein Elastomer-Körper (vorzugsweise aus Gummi) eingesetzt. Der jeweilige Elastomer-Körper hat im undeformierten Zustand die Form eines Zylinders. Die Elastomerkörper werden vor dem Einbringen in die jeweiligen Teilbereiche des Zwischenraums jeweils komprimiert und - im komprimierten Zustand - in den jeweiligen Teilbereich des Zwischenraums derart eingesetzt, dass jeder der Teilbereiche im Wesentlichen von einem der Elastomer-Körper ausgefüllt ist und jeder der Elastomer-Körper mit einem gewissen Druck an der Aussenfläche des Innengehäuses und der Innenfläche des Aussengehäuses anliegt, wobei die Elastomer-Körper weder mit dem Innengehäuse und noch mit dem Aussengehäuse fest verbunden sind. Die vier Elastomer-Körper dieses Elastomer-Torsionsfederelements sind jeweils identisch, sodass das Innengehäuse des Elastomer-Torsionsfederelements von den Elastomerkörpern in der genannten Grundstellung gehalten wird, sofern auf das Aussengehäuse bzw. das Innengehäuse keine äusseren Kräfte wirken, welche das Innengehäuse relativ zum Aussengehäuse um die Drehachse drehen könnten. Wird allerdings das Innengehäuse relativ zum Aussengehäuse um die Drehachse gedreht, so erzeugen die vier Elastomer-Körper ein Rückstelldrehmoment zwischen dem Innengehäuse und dem Aussengehäuse, welches der jeweiligen Drehbewegung entgegenwirkt und mit wachsendem Drehwinkel wächst. Dieses Elastomer-Torsionsfederelement hat verschiedene Nachteile. Das Innengehäuse kann um die Drehachse maximal um ca. 30° relativ zum Aussengehäuse verdreht werden, und zwar in beide Drehrichtungen in gleichem Masse. Verdrehungen um mehr als 30° im Vergleich zur Grundstellung sind nicht praktikabel. Zum einen wächst das Rückstelldrehmoment dieses Elastomer-Torsionsfederelement bei einer Verdrehung des Innengehäuses um einen Drehwinkel (relativ zu der genannten Grundstellung bezüglich des Aussengehäuses) als Funktion des Drehwinkels im Bereich von 0 bis 30° mit einer grossen Nichtlinearität an. Weiterhin besteht die Gefahr, dass die Elastomer-Körper bei einer Verdrehung des Innengehäuses um mehr als 30° gegenüber dem Innengehäuse bzw. dem Aussengehäuse verrutschen. Dabei kann das Innengehäuse in eine instabile Lage geraten, sodass die Elastomer-Körper nicht mehr in der Lage sind, ein Rückstelldrehmoment zu erzeugen, welches das Innengehäuse mit Sicherheit wieder in die jeweilige Grundstellung relativ zum Aussengehäuse bringen kann. Eine derartige Instabilität ist in vielen Anwendungen unerwünscht und muss gegebenenfalls verhindert werden, beispielsweise durch Sicherheitsmassnahmen, welche eine weitere Verdrehung des Innengehäuses blockieren, wenn die Verdrehung des Innengehäuses gegenüber der Grundstellung eine kritische Grenze von ca. 30° gegenüber der Grundstellung erreicht.
  • Die Druckschrift WO 93/03653 zeigt eine Sitzeinrichtung mit einer Rückenlehne und einem Sitz, welche über einen Hebel verbunden sind, welcher an einem rückwärtigen Teil des Sitzes und an seinem anderen Ende an einer Basis angelenkt ist. Das Gelenk weist eine gemeinsame Achse mit einer Schwinge für die Rückenlehne auf und ist mit der Schwinge durch eine elastische Drehmoment-Widerstandsvorrichtung aus Gummi oder anderem Elastomer verbunden, welches radial um die Achse ausgebildet ist und zwischen Hebel und Schwinge wirkt.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, die genannten Nachteile zu vermeiden und eine Sitzeinrichtung mit einem Elastomer-Torsionsfederelement zu schaffen, welches eine Verdrehung des Innengehäuses gegenüber dem Aussengehäuse um mehr als 30° ermöglicht und ein Rückstelldrehmoment erzeugt, welches einen relativ steilen Anstieg als Funktion des jeweiligen Drehwinkels und in einem möglichst grossen Drehwinkelbereich einen im Wesentlichen linearen Verlauf als Funktion des Drehwinkels zeigt.
  • Die genannte Aufgabe wird durch eine Sitzeinrichtung mit den Merkmalen des Patentanspruchs 1 gelöst oder alternativ durch eine Sitzeinrichtung mit den Merkmalen des Patentanspruchs 2 gelöst.
  • Die jeweilige erfindungsgemässe Sitzeinrichtung umfasst einen Sitz, einen Rückenträger, einen Träger für den Rückenträger und/oder den Sitz, wobei der Rückenträger und/oder der Sitz am Träger derart schwenkbar angelenkt ist, dass eine Schwenkbewegung des Rückenträgers und/oder des Sitzes um eine Drehachse ausführbar ist. Die jeweilige Sitzeinrichtung umfasst weiterhin mindestens ein Elastomer-Torsionsfederelement.
  • Das jeweilige Elastomer-Torsionsfederelement umfasst ein Innengehäuse, ein das Innengehäuse umgebendes Aussengehäuse und einen in einem Zwischenraum zwischen dem Innengehäuse und dem Aussengehäuse angeordneten Elastomer-Körper. Das Innengehäuse weist mindestens eine Kontaktfläche auf, an welcher der Elastomer-Körper mit dem Innengehäuse in Kontakt ist, und das Aussengehäuse weist mindestens eine Kontaktfläche auf, an welcher der Elastomer-Körper mit dem Aussengehäuse in Kontakt ist, wobei der Elastomer-Körper mit der Kontaktfläche des Innengehäuses und der Kontaktfläche des Aussengehäuses fest verbunden ist. Weiterhin ist das Innengehäuse und/oder das Aussengehäuse des jeweiligen Elastomer-Torsionsfederelements um die Drehachse drehbar angeordnet.
  • Gemäss einer ersten Variante ist der Träger mit dem Aussengehäuse des jeweiligen Elastomer-Torsionsfederelements und der Rückenträger und/oder der Sitz mit dem Innengehäuse des jeweiligen Elastomer-Torsionsfederelements derart gekoppelt, dass bei der jeweiligen Schwenkbewegung des Rückenträgers und/oder des Sitzes eine Drehung des Innengehäuses um einen Drehwinkel um die Drehachse ausgeführt wird, bei welcher Drehung das Innengehäuses relativ zum Aussengehäuse bewegt und dabei eine Deformation des Elastomer-Körpers erzeugt wird, sodass der Elastomer-Körper zwischen dem Aussengehäuse und dem Innengehäuse ein Rückstelldrehmoment erzeugt, welches der Drehung entgegengerichtet ist.
  • In einer zweiten Variante (d.h. in einer Alternative zu der vorstehend genannten ersten Variante) ist der Träger mit dem Innengehäuse des jeweiligen Elastomer-Torsionsfederelements und der Rückenträger und/oder der Sitz mit dem Aussengehäuse des jeweiligen Elastomer-Torsionsfederelements derart gekoppelt, dass bei der jeweiligen Schwenkbewegung des Rückenträgers und/oder des Sitzes eine Drehung des Aussengehäuses um einen Drehwinkel um die Drehachse ausgeführt wird, bei welcher Drehung das Innengehäuses relativ zum Aussengehäuse bewegt und dabei eine Deformation des Elastomer-Körpers erzeugt wird, sodass der Elastomer-Körper zwischen dem Aussengehäuse und dem Innengehäuse ein Rückstelldrehmoment erzeugt, welches der Drehung entgegengerichtet ist.
  • Die jeweiligen Kontaktflächen des Innengehäuses und/oder des Aussengehäuses sind derart ausgebildet, dass die Kontaktfläche des Innengehäuses in einer zur Drehachse senkrechten Schnittebene einen nicht kreisförmigen Querschnitt aufweist und/oder die Kontaktfläche des Aussengehäuses in einer zur Drehachse senkrechten Schnittebene einen nicht kreisförmigen Querschnitt aufweist.
  • Gemäss der Erfindung ist die Kontaktfläche des Aussengehäuses: (a) zumindest abschnittsweise zylindrisch ausgebildet oder (b) - jeweils in einer zur Drehachse senkrechten Schnittebene - rechteckig ausgebildet, wobei zumindest zwei paarweise gegenüberliegende Ecken abgerundet sind, oder (c) enthält sie zwei paarweise gegenüberliegende, gleichschenklige Winkelsegmente und zwei paarweise gegenüberliegende Halbkreissegmente, deren Enden jeweils mit den Enden der Winkelsegmente verbunden sind.
  • Der Elastomer-Körper kann beispielsweise aus Gummi gefertigt sein,
  • Dieses Elastomer-Torsionsfederelement unterscheidet sich gemäss der Erfindung von dem oben genannten, aus EP 1486142 A1 bekannten Elastomer-Torsionsfederelement im Wesentlichen dadurch, dass die Kontaktfläche des Innengehäuses in einer zur Drehachse senkrechten Schnittebene und/oder die Kontaktfläche des Aussengehäuses in einer zur Drehachse senkrechten Schnittebene nicht kreisförmig ist, während im Falle des aus EP 1486142 A1 bekannten Elastomer-Torsionsfederelements die Kontaktfläche des Innengehäuses in einer zur Drehachse senkrechten Schnittebene und/oder die Kontaktfläche des Aussengehäuses jeweils Querschnitte in Form von zwei konzentrischen Kreisen aufweisen. Im Falle des aus EP 1486142 A1 bekannten Elastomer-Torsionsfederelements sind die Kontaktflächen des Innengehäuses und des Aussengehäuses folglich rotationssymmetrisch zur Drehachse des Elastomer-Torsionsfederelements ausgebildet. Dies hat u.a. zur Folge, dass der Elastomer-Körper dieses Elastomer-Torsionsfederelements bei einer Drehung des Innengehäuses relativ zum Aussengehäuse ausschliesslich auf Zug belastet und derart deformiert wird, dass die räumliche Verteilung der mechanischen Spannung im Elastomer-Körper jeweils rotationssymmetrisch zur Drehachse des Elastomer-Torsionsfederelements ist. Im Unterschied hierzu ist im Falle des erfindungsgemässen Elastomer-Torsionsfederelements zumindest eine der Kontaktflächen des Innengehäuses bzw. des Aussengehäuses nicht rotationssymmetrisch zur Drehachse ausgebildet. Als Resultat dieses Unterschieds werden die jeweiligen Elastomer-Körper des erfindungsgemässen Elastomer-Torsionsfederelements und des aus EP 1486142 A1 bekannten Elastomer-Torsionsfederelements auf unterschiedliche Weise deformiert, wenn das Innengehäuse des jeweiligen Elastomer-Torsionsfederelements relativ zum Aussengehäuse des jeweiligen Elastomer-Torsionsfederelements um die jeweilige Drehachse gedreht wird. Bedingt durch die Querschnittsform des Innengehäuses bzw. des Innengehäuses erzeugt das erfindungsgemässe Elastomer-Torsionsfederelement ein Rückstelldrehmoment, welches grundsätzlich (im Vergleich zu dem aus EP 1486142 A1 bekannten Elastomer-Torsionsfederelement) einen steileren Anstieg als Funktion des jeweiligen Drehwinkels aufweist (insbesondere im Bereich kleiner Drehwinkel). Bei diesem Vergleich ist vorausgesetzt, dass die Elastomer-Körper der jeweiligen Elastomer-Torsionsfederelemente aus demselben Elastomer, beispielsweise Gummi, gefertigt sind. Demnach hat das erfindungsgemässe Elastomer-Torsionsfederelement den Vorteil, dass das Innengehäuse relativ zum Aussengehäuse um einen kleineren Drehwinkel um die Drehachse gedreht werden muss, um den Elastomer-Körper derart vorzuspannen, dass das Elastomer-Torsionsfederelement ein vorgegebenes Mindest-Rückstelldrehmoment erzeugt. Auf diese Weise bietet das erfindungsgemässe Elastomer-Torsionsfederelement den Vorteil, dass der Elastomer-Körper in geringerem Masse gedehnt werden muss und folglich weniger anfällig für Verschleiss- und Ermüdungserscheinungen ist.
  • Das jeweilige Elastomer-Torsionsfederelement der erfindungsgemässen Sitzeinrichtung unterscheidet sich von dem oben genannten, aus GB 2070727 A bekannten Elastomer-Torsionsfederelement u.a, dadurch, dass der Elastomer-Körper mit der Kontaktfläche des Innengehäuses und der Kontaktfläche des Aussengehäuses fest verbunden ist. Daraus resultiert der Vorteil, dass sich der Elastomer-Körper im Bereich der genannten Kontaktflächen weder gegenüber der Kontaktfläche des Innengehäuses noch gegenüber der Kontaktfläche des Aussengehäuses verschieben kann, selbst wenn das Innengehäuse relativ zum Aussengehäuse um die Drehachse gedreht und der Elastomer-Körper dabei deformiert wird. Dadurch, dass der Elastomer-Körper mit dem Innengehäuse und dem Aussengehäuse fest verbunden ist, ist es im Falle des erfindungsgemässen Elastomer-Torsionsfederelements möglich, den Elastomer-Körper derart in den Zwischenraum zwischen dem Innengehäuse und dem Aussengehäuse einzubringen, dass der Elastomer-Körper (zumindest in einer bestimmten Stellung des Innengehäuses relativ zum Aussengehäuse) nicht vorgespannt und insbesondere nicht komprimiert ist. Daraus resultiert - insbesondere im Vergleich mit dem aus GB 2070727 A bekannten Elastomer-Torsionsfederelement - dass das Innengehäuse (ausgehend aus einer bestimmten Grundstellung relativ zu dem Aussengehäuse) über einen Drehwinkelbereich von mehr als 30°, z.B. um Drehwinkel im Bereich von 0° - 80°, relativ zu dem Aussengehäuse verdreht werden kann, ohne den Elastomer-Körper zu beschädigen. Weiterhin kann der Elastomer-Körper derart ausgebildet werden, dass das erfindungsgemässe Elastomer-Torsionsfederelement bei einer Verdrehung des Innengehäuses relativ zum Aussengehäuse ein Rückstelldrehmoment erzeugt, welches für Drehwinkel im Bereich von beispielsweise 0° - 80° einen im Wesentlichen linearen Verlauf als Funktion des Drehwinkels zeigt.
  • In einer Weiterentwicklung der vorstehend genannten ersten Variante ist das Aussengehäuse des jeweiligen Elastomer-Torsionsfederelements mit dem Träger verbunden und das Innengehäuse des jeweiligen Elastomer-Torsionsfederelements ist mit einer um die Drehachse drehbaren Lagerwelle verbunden, welche drehstarr mit dem Rückenträger und/oder dem Sitz verbunden ist.
  • Alternativ ist - in einer Weiterentwicklung der vorstehend genannten zweiten Variante - das Innengehäuse des jeweiligen Elastomer-Torsionsfederelements mit dem Träger verbunden und das Aussengehäuse des jeweiligen Elastomer-Torsionsfederelements ist mit einer um die Drehachse drehbaren Lagerwelle verbunden, welche drehstarr mit dem Rückenträger und/oder dem Sitz verbunden ist.
  • Eine Ausführungsform des jeweiligen Elastomer-Torsionsfederelements der jeweiligen erfindungsgemässen Sitzeinrichtung ist dadurch charakterisiert, dass die Kontaktfläche des Innengehäuses und die Kontaktfläche des Aussengehäuses derart relativ zueinander angeordnet sind, dass bei der Drehung des Innengehäuses und/oder des Aussengehäuses um die Drehachse zumindest in einem vorbestimmten Drehwinkelbereich eine Reduktion einer Distanz zwischen einem definierten Punkt des Innengehäuses und einem definierten Punkt des Aussengehäuses hervorrufbar ist. In diesem Fall wird - wegen der erwähnten Reduktion der Distanz zwischen den jeweiligen Punkten des Innengehäuses und des Aussengehäuses - der Elastomer-Körper bei einer Drehung des Innengehäuses relativ zum Aussengehäuse nicht ausschliesslich auf Zug belastet, sondern in bestimmten Bereichen des Elastomer-Körpers auch auf Druck belastet. Demgemäss wird die jeweilige Deformation des Elastomer-Körpers durch Überlagerungen von Zug- und Druckspannungen bestimmt. Die Druckbelastung in bestimmten Bereichen des Elastomer-Körpers kompensiert eine Zugbelastung in anderen Bereichen des Elastomer-Körpers. Hierdurch wird das gesamte Material des Elastomer-Körpers nicht-homogen belastet. Diese Ausführungsform ermöglicht es, ein Rückstelldrehmoment zwischen dem Aussengehäuse und dem Innengehäuse zu erzeugen, welches einen besonders steilen Anstieg als Funktion des jeweiligen Drehwinkels und in einem besonders grossen Drehwinkelbereich einen im Wesentlichen linearen Verlauf als Funktion des Drehwinkels zeigt.
  • Eine Ausführungsform des jeweiligen Elastomer-Torsionsfederelements der jeweiligen erfindungsgemässen Sitzeinrichtung ist dadurch charakterisiert, dass die Kontaktfläche des Innengehäuses und die Kontaktfläche des Aussengehäuses in einer zur Drehachse senkrechten Schnittebene einen nicht kreisförmigen Querschnitt aufweisen und derart relativ zueinander angeordnet sind, dass mittels der Drehung des Innengehäuses und/oder des Aussengehäuses um die Drehachse eine Druckbelastung in zumindest einem Bereich des Elastomer-Körpers hervorrufbar ist. Im Falle dieser Ausführungsform wird der Elastomer-Körper bei einer Drehung des Innengehäuses und/oder des Aussengehäuses um die Drehachse zumindest in einem bestimmten Drehwinkelbereich derart deformiert, dass der Elastomer-Körper in bestimmten Bereichen auf Zug und anderen Bereichen auf Druck belastet wird. Zug und Druck sind dabei innerhalb des Elastomer-Körpers derart verteilt, dass der Elastomer-Körper nicht-homogen belastet wird und die jeweiligen Druckspannungen die jeweiligen Zugspannungen zumindest teilweise kompensieren. Diese Ausführungsform ermöglicht es, ein Rückstelldrehmoment zwischen dem Aussengehäuse und dem Innengehäuse zu erzeugen, welches einen besonders steilen Anstieg als Funktion des jeweiligen Drehwinkels und in einem besonders grossen Drehwinkelbereich einen im Wesentlichen linearen Verlauf als Funktion des Drehwinkels zeigt.
  • Bei einer Ausführungsform des jeweiligen Elastomer-Torsionsfederelements der jeweiligen erfindungsgemässen Sitzeinrichtung sind die Kontaktfläche des Innengehäuses und die Kontaktfläche des Aussengehäuses derart ausgebildet, dass die jeweilige Drehung des Innengehäuses und/oder des Aussengehäuses um die Drehachse um einen Drehwinkel in einem vorbestimmten Drehwinkelbereich ein mit dem jeweiligen Drehwinkel linear ansteigendes Rückstelldrehmoment hervorruft. Da die Kontaktfläche des Innengehäuses bzw. die Kontaktfläche des Aussengehäuses nicht rotationssymmetrisch zur Drehachse sind, wird die Abhängigkeit des Rückstelldrehmoments vom Drehwinkel wesentlich bestimmt von der Lage, die das Innengehäuse relativ zum Aussengehäuse einnimmt, wenn sich das Innengehäuse in einer vorgegebenen Grundstellung befindet. Die Grundstellung des Innengehäuses relativ zum Aussengehäuse kann derart gewählt werden, dass das Rückstellmoment als Funktion des Drehwinkels in dem jeweils vorbestimmten Drehwinkelbereich einen linearen Verlauf zeigt.
  • Bei einer Ausführungsform des jeweiligen Elastomer-Torsionsfederelements der jeweiligen erfindungsgemässen Sitzeinrichtung sind die Kontaktfläche des Innengehäuses und/oder die Kontaktfläche des Aussengehäuses - jeweils in einer zur Drehachse senkrechten Schnittebene - polygonal oder zumindest abschnittsweise geradlinig ausgebildet. Eine solche Ausgestaltung der Kontaktflächen des Innengehäuses und des Aussengehäuses erlaubt eine anwendungsspezifische, nicht-homogene Deformation des Elastomer-Körpers in Abhängigkeit von dem jeweiligen Drehwinkel.
  • Bei der jeweiligen erfindungsgemässen Sitzeinrichtung ist die Kontaktfläche des Aussengehäuses zumindest abschnittsweise zylindrisch ausgebildet. Hierdurch wird der Elastomer-Körper bei einer Drehung des Innengehäuses relativ zum Aussengehäuse nicht-homogen belastet.
  • Bei der jeweiligen erfindungsgemässen Sitzeinrichtung ist die Kontaktfläche des Aussengehäuses - jeweils in einer zur Drehachse senkrechten Schnittebene - rechteckig ausgebildet, wobei zumindest zwei paarweise gegenüberliegende Ecken abgerundet sind. Eine solche Ausgestaltung der Innenfläche des Aussengehäuses erlaubt ebenfalls eine anwendungsspezifische, nicht-homogene Belastung des Elastomer-Körpers in Abhängigkeit von dem jeweiligen Drehwinkel.
  • Bei der jeweiligen erfindungsgemässen Sitzeinrichtung enthält die Kontaktfläche des Aussengehäuses zwei paarweise gegenüberliegende, gleichschenklige Winkelsegmente und zwei paarweise gegenüberliegende Halbkreissegmente, deren Enden jeweils mit den Enden der Rechteck-Winkelsegmente verbunden sind. Anhand von Messreihen hat sich herausgestellt, dass das Elastomer-Torsionsfederelement mit einer derart ausgebildeten Kontaktfläche des Aussengehäuses eine Kennlinie aufweist, bei welcher der Verlauf des Rückstelldrehmoments in Relation zum Drehwinkel linear ist.
  • Bei einer Ausführungsform des jeweiligen Elastomer-Torsionsfederelements der jeweiligen erfindungsgemässen Sitzeinrichtung ist die Kontaktfläche des Innengehäuses - jeweils in einer zur Drehachse senkrechten Schnittebene - rechteckig ausgebildet. Eine solche Ausgestaltung der Kontaktfläche des Innengehäuses erweist sich als besonders vorteilhaft, da hierdurch bestimmte Bereiche des Elastomer-Körpers bei einer Drehung des Innengehäuses relativ zum Aussengehäuse mit Druckkräften belastet werden, welche Zugkräfte in dem Elastomer-Körper kompensieren. Durch diese nicht-homogene Belastung des Elastomer-Körpers zeigt das von dem Elastomer-Torsionsfederelement erzeugte Rückstelldrehmoment als Funktion Drehwinkels in einem besonders grossen Drehwinkelbereich einen linearen Verlauf mit einem besonders steilen Anstieg. Beispielsweise kann die Kontaktfläche des Innengehäuses - in einer zur Drehachse senkrechten Schnittebene - quadratisch ausgebildet sein.
  • Hinsichtlich der Form und der Grösse des Aussengehäuses und des Innengehäuses des jeweiligen Elastomer-Torsionsfederelements ist es vorteilhaft, wenn ein Innenquerschnitt des jeweiligen Aussengehäuses und ein Aussenquerschnitt des jeweiligen Innengehäuses des Elastomer-Torsionsfederelements so ausgebildet sind, dass das Verhältnis des Flächeninhalts des Innenquerschnitts des jeweiligen Aussengehäuses zum Flächeninhalt des Aussenquerschnitts des jeweiligen Innengehäuses grösser als 7/3 ist. In diesem Fall ist gewährleistet, dass das von dem jeweiligen Elastomer-Torsionsfederelement erzeugte Rückstelldrehmoment als Funktion des Drehwinkels in einem besonders grossen Drehwinkelbereich einen linearen Verlauf zeigt. Unter den genannten Voraussetzungen ist beispielsweise für den Fall, dass der Elastomer-Körper des jeweiligen Elastomer-Torsionsfederelements aus Gummi gefertigt ist, ein linearer Verlauf des Rückstelldrehmoments als Funktion des Drehwinkels über einen Drehwinkelbereich von mindestens 70° realisierbar.
  • Im Falle der jeweiligen Elastomer-Torsionsfederelemente ist es vorteilhaft, wenn der Elastomer-Körper ein oder mehrere durch den Elastomer-Körper durchgehende Löcher aufweist, wobei sich das jeweilige Loch entlang der Drehachse erstreckt. Diese Massnahme ist mit mehreren Vorteilen verbunden. Wird der jeweilige Elastomer-Körper beispielsweise mittels Vulkanisieren hergestellt, so ist es insbesondere vorteilhaft, die jeweiligen Löcher bereits vor dem Vulkanisieren in den jeweiligen Werkstoffen auszubilden, welche - als Ergebnis des Vulkanisierens - den Elastomer-Körper bilden. In diesem Fall hat die Ausbildung der jeweiligen Löcher den Effekt, dass der jeweilige Elastomer-Körper unmittelbar nach dem Vulkanisieren keine oder nur geringe elastische Spannungen im Innern aufweist, sodass das jeweilige Elastomer-Torsionsfederelement unmittelbar nach dem Vulkanisieren einsatzbereit ist, ohne dass eine Nachbehandlung des Elastomer-Körpers erforderlich ist. Wird der Elastomer-Körper allerdings jeweils ohne die genannten Löcher hergestellt, so kann der Elastomer-Körper unmittelbar nach dem Vulkanisieren relativ grosse elastische Spannungen im Innern aufweisen, selbst wenn zwischen dem Aussengehäuse und dem Innengehäuse kein Drehmoment angelegt ist. Diese elastischen Spannungen können dazu führen, dass das jeweilige Elastomer-Torsionsfederelement unmittelbar nach dem Vulkanisieren nicht den jeweils erwünschten Verlauf des Rückstelldrehmoment als Funktion des Drehwinkels zeigt; In der Regel kann in diesem Fall das Innengehäuse relativ zu dem Aussengehäuse nur um einen relativ kleinen Drehwinkel verdreht werden, sodass mit dem jeweiligen Elastomer-Torsionsfederelement unmittelbar nach dem Vulkanisieren nur ein relativ kleines Rückstelldrehmoment erzeugbar wäre. Falls der Elastomer-Körper des jeweiligen Elastomer-Torsionsfederelement nach dem Vulkanisieren - wie vorstehend beschrieben - relativ grosse elastische Spannungen im Innern aufweist, dann kann dieses Elastomer-Torsionsfederelement in der Regel durch geeignete Nachbehandlungen, welche zu einer Reduktion der jeweiligen Spannungen im Innern des Elastomer-Körper führen, optimiert werden, beispielsweise durch Zusammenquetschen des jeweiligen Elastomer-Körpers in bestimmte Richtungen. Diese Nachbehandlungen sind aufwändig und somit unerwünscht. Diese Nachbehandlungen können allerdings vermieden werden, wenn der jeweilige Elastomer-Körper - wie erwähnt - vor dem Vulkanisieren mit einem oder mehreren Löchern versehen wird: Ein derartiger (mit einem oder mehreren Löchern versehener) Elastomer-Körper weist unmittelbar nach dem Vulkanisieren keine oder geringe elastische Spannungen im Innern auf, ermöglicht - ohne die vorstehend genannten Nachbehandlungen - eine Verdrehung des Innengehäuses relativ zum Aussengehäuse über einen relativ grossen Drehwinkelbereich und ermöglicht es somit, relativ grosse Rückstelldrehmomente zu erzeugen.
  • Falls der Elastomer-Körper des jeweiligen Elastomer-Torsionsfederelement ein oder mehrere durch den Elastomer-Körper durchgehende Löcher aufweist, so hat dies den Effekt, dass sich die Form und die Grösse eines Querschnitts des jeweiligen Lochs verändert, wenn dass Innengehäuse relativ zum Aussengehäuse um einen bestimmten Drehwinkel verdreht wird und der jeweilige Elastomer-Körper dabei deformiert wird. Dieser Effekt kann ausgenutzt werden, um einen Verschleiss des Elastomer-Körper, welcher bei Verdrehungen des Innengehäuses relativ zum Aussengehäuse bei relativ grossen Drehwinkel erwartet werden kann, weitgehend zu reduzieren und somit die Lebensdauer des jeweiligen Elastomer-Körpers zu verlängern. Wie bereits erwähnt, wird der Elastomer-Körper des jeweiligen Elastomer-Torsionsfederelement einer Sitzeinrichtung gemäss der Erfindung in bestimmten Bereichen des Elastomer-Körpers auch auf Druck belastet, wenn das Innengehäuse relativ zum Aussengehäuse um einen bestimmten Drehwinkel verdreht wird. Diese Belastung auf Druck in bestimmten Bereichen des Elastomer-Körpers hat den Effekt, dass der Elastomer-Körper lokal in den Bereichen, welche auf Druck belastet werden, in Richtung der Drehachse des Elastomer-Torsionsfederelements um eine bestimmte Distanz expandiert, welcher umso grösser ist, je grösser der Drehwinkel ist. Diese Expansion des Elastomer-Körpers bewirkt beispielsweise, dass der Elastomer-Körper an seiner Oberfläche (in den Bereichen des Elastomer-Körpers, welche weder mit der Kontaktfläche des Aussengehäuses noch mit der Kontaktfläche des Innengehäuses verbunden sind) Deformationen in Form von lokalen Erhebungen oder Falten ausbildet, welche umso grösser sind, je grösser der Drehwinkel ist. Bei grossen Drehwinkeln können beispielsweise benachbarte Bereiche der Oberfläche aufgrund der Deformationen miteinander in Kontakt geraten, sodass Reibung zwischen diesen Bereichen der Oberfläche entsteht. Derartige Deformationen können, beispielsweise wegen der genannten Reibung, einen Verschleiss des Elastomer-Körpers beschleunigen und somit die Lebensdauer des Elastomer-Körpers reduzieren, insbesondere dann, wenn das Innengehäuse relativ zum Aussengehäuse häufig und gegebenenfalls mit einer grossen Geschwindigkeit um relativ grosse Drehwinkel verdreht wird. Ein Verschleiss der vorstehend genannten Art kann wirkungsvoll verhindert werden, falls der Elastomer-Körper des jeweiligen Elastomer-Torsionsfederelements ein oder mehrere durch den Elastomer-Körper durchgehende Löcher aufweist. Die jeweiligen Löcher können im Elastomer-Körper bevorzugt so angeordnet sein, dass sich die Querschnittsfläche des jeweiligen Lochs mit wachsendem Drehwinkel jeweils verkleinert. Diese Verkleinerung der Querschnittsfläche des jeweiligen Lochs hat zur Folge, dass der Elastomer-Körper mit wachsendem Drehwinkel in den Bereichen des Elastomer-Körpers, welche auf Druck belastet werden, weniger stark in Richtung der Drehachse des jeweiligen Elastomer-Torsionsfederelements expandiert, sodass die Oberfläche des Elastomer-Körpers weniger stark deformiert wird. Die Expansion des Elastomer-Körpers in Richtung der Drehachse wird demnach durch die Verkleinerung der Querschnittsfläche der jeweiligen Löcher zumindest teilweise kompensiert. Die Löcher verbessern somit die Belastbarkeit des Elastomer-Körpers und ermöglichen eine Erzeugung relativ grosser Rückstelldrehmomente, ohne den Elastomer-Körper zu zerstören. Die jeweiligen Löcher können einen runden Querschnitt oder einen Querschnitt mit einer beliebigen anderen Form haben.
  • Eine Weiterentwicklung der vorstehend genannten Ausführungsformen des Elastomer-Torsionsfederelements umfasst ein Halteelement, welches dazu ausgelegt ist, (i) das Innengehäuse in einer vorgegebenen Grundstellung relativ zum Aussengehäuse zu halten, in welcher Grundstellung der Elastomer-Körper eine vorgegebene elastische Verformung aufweist und zwischen dem Aussengehäuse und dem Innengehäuse ein Rückstelldrehmoment erzeugt, welches gleich einem vorgegebenen Mindest-Wert ist, und (ii) eine Drehung des Innengehäuses relativ zum Aussengehäuse um einen Drehwinkel um die Drehachse in eine Drehrichtung freizugeben, in welcher das Rückstelldrehmoment mit wachsendem Drehwinkel zunimmt.
  • Bei dieser Variante kann das Innengehäuse, falls es sich in der Grundstellung befindet, nur in einer Drehrichtung um die Drehachse gedreht und somit relativ zum Aussengehäuse verdreht werden; Das Halteelement blockiert eine Drehung in die andere Drehrichtung, wenn sich das Innengehäuse in der Grundstellung befindet, Im vorliegenden Fall weist der Elastomer-Körper immer eine elastische Deformation auf, sodass das Elastomer-Torsionsfederelement bei einer Drehung des Innengehäuses relativ zum Aussengehäuse ein Rückstelldrehmoment erzeugt, dessen Grösse immer grösser Null ist. Wenn sich das Innengehäuse in der Grundstellung befindet, dann wird das von dem Elastomer-Körper erzeugte Rückstelldrehmoment von dem Halteelement aufgenommen. Wird das Innengehäuse, ausgehend von der Grundstellung, relativ zum Aussengehäuse verdreht, dann erzeugt der Elastomer-Körper zwischen dem Aussengehäuse und dem Innengehäuse ein Rückstelldrehmoment, welches mit wachsendem Drehwinkel stetig anwächst, und zwar beginnend bei dem genannten Mindest-Wert. Dieser Mindest-Wert definiert somit das minimale Rückstelldrehmoment, welches mit dem Elastomer-Torsionsfederelement erzeugbar ist. Der Mindest-Wert wird bestimmt durch die Grösse der elastischen Spannung (im Folgenden auch "Vorspannung des Elastomer-Körpers" genannt), welche der Elastomer-Körper aufweist, wenn sich das Innengehäuse relativ zum Aussengehäuse in der Grundstellung befindet. Dieser Mindest-Wert kann je nach Bedarf eingestellt werden. Diese Variante des Elastomer-Torsionsfederelements kann vorteilhaft eingesetzt werden in Vorrichtungen zur Kraftübertragung zwischen zwei Körpern, wenn bei einer Relativbewegung zwischen den beiden Körpern ein Rückstelldrehmoment erzeugt werden soll, welches stets grösser oder gleich einem Mindestwert (grösser 0) ist.
  • Die Vorspannung des Elastomer-Körpers kann beispielsweise derart realisiert werden, dass das jeweilige Elastomer-Torsionsfederelement zunächst so gefertigt wird, dass der jeweilige Elastomer-Körper derart mit den Kontaktflächen des jeweiligen Innengehäuses und den Kontaktflächen des jeweiligen Aussengehäuses fest verbunden wird, dass der Elastomer-Körper zunächst undeformiert ist und somit keine mechanischen Spannungen aufweist, wenn sich das Innengehäuse in einer Ausgangsstellung relativ zum Aussengehäuse befindet. Anschliessend wird das Innengehäuse und/oder das Aussengehäuse um die Drehachse in eine vorbestimmte Drehrichtung um einen Drehwinkel gedreht, bis der Drehwinkel gegenüber der Ausgangsstellung einen vorbestimmten Wert (im Folgenden "Winkelversatz relativ zur Ausgangstellung" genannt") erreicht, so dass der Elastomer-Körper deformiert wird und eine vorgegebene mechanische Spannung aufweist. Anschliessend kann das Halteelement derart installiert werden, dass eine weitere Drehung des Innengehäuses bzw. des Aussengehäuses in die vorbestimmte Drehrichtung möglich, eine entsprechende Drehung in die entgegengesetzte Richtung aber blockiert wird, sobald der jeweilige Drehwinkel relativ zur Ausgangstellung gleich dem genannten "Winkelversatz" ist.
  • Das erfindungsgemässe Elastomer-Torsionsfederelement hat den Vorteil, dass der "Winkelversatz" relativ klein gewählt werden kann, um zu erreichen, dass das Rückstelldrehmoment einen bestimmten Mindest-Wert annimmt (beispielsweise im Vergleich zu dem aus EP 1486142 A1 bekannten Elastomer-Torsionsfederelement). Das ist schonend für den Elastomer-Körper und somit förderlich für eine lange Lebensdauer des Elastomer-Körpers.
  • Das Halteelement kann in einer einfachen Ausgestaltung ein Stab sein, welcher an einer Stirnseite des Innengehäuses und senkrecht zur Drehachse angeordnet ist und weiterhin mit dem Innengehäuse fest verbunden ist. Ferner kann an dem Aussengehäuse ein mechanischer Anschlag für den Stab angebracht sein, welcher derart angeordnet ist, dass der Stab bei einer Drehung des Innengehäuses in einer bestimmten Drehrichtung an den Anschlag stösst, sodass eine weitere Drehung in dieselbe Drehrichtung blockiert wird. Eine Drehung des Innengehäuses in die entgegengesetzte Drehrichtung ist dabei freigegeben. Die Position des Anschlags bestimmt in diesem Fall die Grundstellung des Innengehäuses relativ zum Aussengehäuse. Der mechanische Anschlag bzw. das Aussengehäuse nimmt jeweils die Vorspannung des Elastomer-Körpers auf, wenn sich das Innengehäuse in der Grundstellung befindet.
  • Das Innengehäuse kann in der vorgegebenen Grundstellung relativ zum Aussengehäuse von dem Halteelement beispielsweise derart gehalten sein, dass das Rückstelldrehmoment bei der jeweiligen vom Halteelement freigegebenen Drehung des Innengehäuses relativ zum Aussengehäuse linear mit wachsendem Drehwinkel zunimmt.
  • In einer Variante der vorstehend genannten Ausführungsform umfasst das Halteelement zumindest ein Spannelement, welches einen ersten Abschnitt aufweist, der mit dem Innengehäuse in einem festen Eingriff steht, und einen zweiten Abschnitt aufweist, der - wenn sich das Innengehäuse in der vorgegebenen Grundstellung relativ zum Aussengehäuse befindet - gegen einen Abschnitt des Aussengehäuses anschlägt und eine Drehung des Innengehäuses und des Aussengehäuses in Relation zueinander um die Drehachse in diejenige Drehrichtung freigibt, in welche das Rückstelldrehmoment zunimmt. In einer Alternative zu dieser Variante kann das Halteelement auch zumindest ein Spannelement umfassen, welches einen ersten Abschnitt aufweist, der mit dem Aussengehäuse in einem festen Eingriff steht, und einen zweiten Abschnitt aufweist, der - wenn sich das Innengehäuse in der vorgegebenen Grundstellung relativ zum Aussengehäuse befindet - gegen einen Abschnitt des Innengehäuses anschlägt und eine Drehung des Innengehäuses und des Aussengehäuses in Relation zueinander um die Drehachse in diejenige Drehrichtung freigibt, in welche das Rückstelldrehmoment zunimmt. Das Spannelement kann in den vorstehend genannten Varianten jeweils als "Werkzeug" verwendet werden, um - mittels einer Drehbewegung des Spannelements um die Drehachse des Elastomer-Torsionsfederelements - das Innengehäuse relativ zum Aussengehäuse zu drehen und dabei den Elastomer-Körper mit derjenigen mechanischen Spannung (Vorspannung) zu versehen, welche mittels des Halteelements aufrechterhalten wird, wenn das Innengehäuse mithilfe des Halteelements in der Grundstellung relativ zum Aussengehäuse gehalten wird. Dieses Elastomer-Torsionsfederelement hat den Vorteil, dass das Halteelement mit einfachen Mitteln realisierbar ist: Da erfindungsgemäss das Innengehäuse und/oder dass Aussengehäuse einen nicht kreisförmigen Querschnitt haben, kann entweder das Aussengehäuse oder das Innengehäuse als mechanischer Anschlag für das jeweilige Spannelement dienen, wobei das Spannelement bei einer Drehung des Aussengehäuses bzw. des Innengehäuses um die Drehachse jeweils einer Kreisbahn um die Drehachse folgt. Um eine vorgegebene Vorspannung zu erzielen, muss das Spannelement lediglich in eine geeignete Position relativ zum Aussengehäuse oder zum Innengehäuse gebracht werden.
  • In einer Variante des Elastomer-Torsionsfederelements umfasst das Innengehäuse eine Ausnehmung, wobei der erste Abschnitt des Spannelements drehstarr in diese Ausnehmung im Innengehäuse gesteckt ist und der zweite Abschnitt des Spannelements - wenn sich das Innengehäuse in der vorgegebenen Grundstellung relativ zum Aussengehäuse befindet - gegen einen Abschnitt des Aussengehäuses anschlägt. Letzterer Abschnitt des Aussengehäuses kann beispielsweise auf einer äusseren Seite des Aussengehäuses angeordnet sein. Hierdurch wird der Winkel zwischen dem Innengehäuse und dem Aussengehäuse in Relation zueinander um einen vorbestimmten "Winkelversatz" versetzt gehalten.
  • Die Verwendung der Spannelemente hat mehrere Vorteile. Das jeweilige Spannelement ist mit einem geringen Materialeinsatz kostengünstig herstellbar. Auch lässt sich die Montage des Spannelements am Innengehäuse und am Aussengehäuse des Elastomer-Torsionsfederelements sehr einfach und in kurzer Zeit vornehmen. Zudem müssen keine Bauteile fest mit dem Innengehäuse oder dem Aussengehäuse verbunden werden. Vorteilhafterweise lassen sich mehrere Elastomer-Torsionsfederelemente durch jeweils zugehörige Spannelemente parallel in einem Arbeitsschritt vorspannen, wodurch die Montagezeit weiter verkürzt wird.
  • Vorzugsweise werden das Innengehäuse und das Aussengehäuse derart zueinander angeordnet, dass der Elastomer-Körper bei einer vorbestimmten Ausrichtung des Aussengehäuses relativ zum Innengehäuse eine Vorspannung aufweist. Es können auch mehrere Elastomer-Torsionsfederelemente parallel zueinander, beispielsweise auf eine Lagerwelle aufgesteckt, angeordnet werden. Die Elastomer-Torsionsfederelemente können dabei unterschiedlich stark vorgespannt sind, wobei die jeweiligen Aussengehäuse dennoch zueinander fluchtend ausgerichtet sein können.
  • Die jeweilige erfindungsgemässe Sitzeinrichtung kann eine Mehrzahl des jeweiligen Elastomer-Torsionsfederelements umfassen, wobei die jeweiligen Elastomer-Torsionsfederelemente derart nebeneinander angeordnet sind, dass die Innengehäuse und/oder die Aussengehäuses der jeweiligen Elastomer-Torsionsfederelemente um dieselbe Drehachse drehbar angeordnet sind. In diesem Fall erzeugt die Gesamtheit aller Elastomer-Torsionsfederelemente ein Rückstelldrehmoment, welches sich aus der Überlagerung derjenigen Rückstelldrehmomente ergibt, welche von den einzelnen (jeweils an den ersten und den zweiten Körper gekoppelten) Elastomer-Torsionsfederelementen erzeugt werden.
  • Die Sitzeinrichtung kann modular aufgebaut sein. Die Gesamtheit aller Elastomer-Torsionsfederelemente können beispielsweise eine Baugruppe bilden, die jeweils als Ganzes transportiert oder montiert werden kann. Dies vereinfacht die Herstellung und die Wartung der Sitzeinrichtung. Die Gesamtheit aller Elastomer-Torsionsfederelemente kann beispielsweise in einer Baugruppe vormontiert werden und anschliessend zusammen mit anderen Bauteilen kombiniert werden.
  • Üm mehrere Elastomer-Torsionsfederelemente zu einer Baugruppe zu kombinieren, können beispielsweise die Innengehäuse der jeweiligen Elastomer-Torsionsfederelemente starr miteinander verbunden werden und/oder die Aussengehäuse der jeweiligen Elastomer-Torsionsfederelemente starr miteinander verbunden werden. Zu diesem Zweck können die jeweiligen Innengehäuse beispielsweise auf eine gemeinsame Lagerwelle gesetzt und an dieser fixiert werden.
  • Die Elastomer-Torsionsfederelemente der jeweiligen Baugruppe können gegebenenfalls unterschiedliche Charakteristiken aufweisen: Die verschiedenen Elastomer-Torsionsfederelemente können sich beispielsweise hinsichtlich des Verlaufs des Rückstelldrehmoments als Funktion des Drehwinkels unterscheiden, Verschiedene Elastomer-Torsionsfederelemente können beispielsweise Elastomer-Körper umfassen, welche unterschiedlich vorgespannt sein können, sodass verschiedene Elastomer-Torsionsfederelemente unterschiedlich grosse Rückstelldrehmomente bereitstellen, wenn sich das Innengehäuse des jeweiligen Torsionsfederelements in der Grundstellung relativ zum Aussengehäuse befindet. Durch eine Kombination verschiedener Elastomer-Torsionsfederelemente mit unterschiedlichen Charakteristiken können deshalb auf eine einfache, kostengünstige Weise Vorrichtungen zur Kraftübertragung mit unterschiedlichen Eigenschaften je nach Bedarf hergestellt oder, z.B. durch Austausch einzelner Elastomer-Torsionsfederelemente, geeignet modifiziert werden.
  • Weitere Einzelheiten der Erfindung und insbesondere beispielhafte Ausführungsformen der erfindungsgemässen Sitzeinrichtung werden im Folgenden anhand der beigefügten Zeichnungen erläutert. Es zeigen:
  • Fig. 1
    eine Ausführungsform einer erfindungsgemässen Sitzeinrichtung in Form eines Stuhls;
    Fig. 2
    eine schematische Seitenansicht eines Elastomer-Torsionsfederelements in einer ersten beispielhaften Ausführungsform;
    Fig. 3A
    ein Diagramm mit zwei Kennlinienverläufen von Rückstelldrehmomenten als Funktion des Drehwinkels für ein Elastomer-Torsionsfederelement in einer beispielhaften Ausführungsform der Erfindung (Kurve K1) und ein herkömmliches Elastomer-Torsionsfederelement (Kurve K2);
    Fig. 3B
    ein Diagramm mit Kennlinienverläufen von Rückstelldrehmomenten als Funktion des Drehwinkels für verschiedene Ausführungsformen von Elastomer-Torsionsfederelementen gemäss der Erfindung;
    Fig. 3C
    eine schematische Seitenansicht einer weiteren Ausführungsform eines Elastomer-Torsionsfederelements gemäss der Erfindung;
    Fig. 4
    das Elastomer-Torsionsfederelement in der ersten beispielhaften Ausführungsform, welches durch ein Halteelement vorgespannt ist;
    Fig. 5
    eine beispielhafte Verwendung von vier Elastomer-Torsionsfederelementen in der ersten beispielhaften Ausführungsform, welche in einem Kraftsystem eines Stuhls eingebaut sind;
    Fig. 6
    ein Elastomer-Torsionsfederelement in einer zweiten beispielhaften Ausführungsform, welches durch ein Halteelement vorgespannt ist;
    Fig. 7A-7C
    eine weitere beispielhafte Verwendung von drei Elastomer-Torsionsfederelementen in der zweiten beispielhaften Ausführungsform, welche jeweils durch ein Halteelement vorgespannt sind und welche in ein Kraftsystem eines Stuhls eingebaut sind;
    Fig. 8A-8C
    ein Elastomer-Torsionsfederelement in der zweiten beispielhaften Ausführungsform, mit verschiedenen Stellungen des Innengehäuses relativ zum Aussengehäuse, wobei das Innengehäuse und das Aussengehäuse in Relation zueinander um unterschiedliche Drehwinkel verdreht sind;
    Fig. 9
    die Elastomer-Torsionsfederelemente in der zweiten beispielhaften Ausführungsform, welche zu einem Kraftsystem zusammengesetzt sind, welches in einen Träger eines Stuhls montiert ist; und
    Fig. 10A-10E
    eine Spannvorrichtung zum Herstellen des in Fig. 7A-7C dargestellten Kraftsystems.
  • In den jeweiligen Figuren und im folgenden Text werden für jeweils identische Objekte jeweils identische Bezugszeichen verwendet.
  • Figur 1 zeigt eine beispielhafte Ausführungsform einer Sitzeinrichtung in Form eines Stuhls 1. Der Stuhl 1 ist als ein Bürodrehstuhl ausgebildet und auf einer Tragsäule 2 gelagert, über welche der Stuhl 1 höhenverstellbar und um 360° drehbar ist. Am oberen Ende der Tragsäule 2 ist ein Träger 42 montiert, welcher im Wesentlichen waagerecht angeordnet ist. Der Träger 42 dient als Gehäuse zum Unterbringen von mechanischen Elementen, welche später beschrieben werden. An dem Träger 42 ist ein Rückenträger 44 über eine Lagerwelle 26 schwenkbar angelenkt, Am anderen Ende des Rückenträgers 44 ist ein Rückenteil 3 verbunden, welches zur Aufnahme einer im Wesentlichen senkrecht angeordneten Rückenlehne 4 dient. Das Rückenteil 3 kann an der Verbindung zum Rückenträger 44 verschiebbar sein. Ebenfalls kann die Rückenlehne 4 in ihrer Höhe verstellbar sein.
  • Der Träger 42 enthält einen in der Figur nicht gezeigten Sitzträger, auf welchem ein im Wesentlichen waagerecht angeordneter Sitz 5 angebracht ist. Der Sitzträger kann ebenfalls schwenkbar an dem Träger 42 angelenkt sein. Durch die schwenkbare Anlenkung des Rückenträgers 44 und des Sitzträgers am Träger 42 ist es möglicht, dass sich eine auf dem Stuhl 1 sitzende Person mit der Rückenlehne 4 zurücklehnen kann und zugleich synchron dazu der Sitzträger und somit auch der Sitz 5 geschwenkt werden können. Hierzu legt ein im Träger 42 angeordnetes Elastomer-Torsionsfederelement (nicht gezeigt) ein Rückstelldrehmoment zwischen dem Träger 42 und dem Rückenträger 44 an, wobei das Rückstelldrehmoment in eine Richtung gerichtet ist, welche der Schwenkrichtung beim Schwenken des Rückenträgers 44 in Relation zum Träger 42 entgegengesetzt ist.
  • Figur 2 zeigt eine schematische Seitenansicht des Elastomer-Torsionsfederelements 10, welches in einer ersten Ausführungsform ausgeführt ist, wobei gemäss dieser Ansicht eine Drehachse 6 senkrecht zur Zeichenebene steht. Das Elastomer-Torsionsfederelement 10 enthält ein Innengehäuse 12 und ein Aussengehäuse 14. In einem Zwischenraum zwischen dem Innengehäuse 12 und dem Aussengehäuse 14 ist ein Elastomer-Körper 16 angeordnet.
  • Das Innengehäuse 12 weist auf seiner Aussenseite eine Kontaktfläche 12a auf, an welcher der Elastomer-Körper 16 mit dem Innengehäuse in Kontakt ist. Weiterhin weist das Aussengehäuse 14 auf seiner Innenseite eine Kontaktfläche 14a auf, an welcher der Elastomer-Körper 16 mit dem Aussengehäuse 14 in Kontakt ist. Die Kontaktfläche 12a des Innengehäuses 12 und die Kontaktfläche 14a des Aussengehäuses 14 umschliessen die Drehachse 6 jeweils ringförmig. Entsprechend bildet der Elastomer-Körper 16 im vorliegenden Beispiel einen die Drehachse 6 umgebenden, geschlossenen Ring.
  • Der Elastomer-Körper 16 besteht aus einem Elastomer, d.h. einem festen und elastisch verformbaren Material. Der Elastomer-Körper 16 ist derart ausgebildet, dass er mit der Kontaktfläche 12a des Innengehäuses 12 und der Kontaktfläche 14a des Aussengehäuses 14 fest verbunden ist, d.h. bei einer Bewegung des Innengehäuses 12 relativ zum Aussengehäuse 14 (z.B. bei einer Drehung des Innengehäuses 12 oder des Aussengehäuses 14 um die Drehachse 6) findet keine Verschiebung der an die Kontaktflächen 12a und 14a angrenzenden Flächen des Elastomer-Körpers 16 relativ zu den Kontaktflächen 12a und 14a statt. Der Elastomer-Körper 16 kann beispielsweise materialschlüssig oder formschlüssig an den Kontaktflächen 12a bzw. 14a mit dem Innengehäuse 12 und dem Aussengehäuse 14 verbunden sein.
  • Ein für die Herstellung des Elastomer-Körpers 16 besonders gut geeignetes Elastomer ist beispielsweise Gummi, welches nicht nur ein elastisch verformbarer und hochfester Werkstoff ist, sondern auch auf einfache Weise mit den Kontaktflächen 12a und 14a fest verbunden werden kann, beispielsweise mittels Vulkanisieren.
  • Das Innengehäuse 12 und das Aussengehäuse 14 sind aus einem festen Material, beispielsweise Stahl, erstellt. Die jeweils an den Elastomer-Körper16 angrenzenden Kontaktflächen 12a und 14a des Innengehäuses 12 bzw. des Aussengehäuses 14 weichen - in einer zur Drehachse 6 senkrechten Schnittebene - zumindest abschnittsweise von einer Kreisform ab. Durch diese besondere Form treten in einigen Bereichen des Elastomer-Körpers 16, beim Drehen des Innengehäuses 12 um die Drehachse 6 in Relation zum Aussengehäuse 14, Druckbelastungen auf, welche Zugbelastungen darin kompensieren. Somit wird der Elastomer-Körper 16 vorteilhafterweise nicht-homogen belastet.
  • In der Figur 2 ist das Innengehäuse 12 in einem "unverdrehten" Zustand (durchgezogene Linie) und in einem "verdrehten Zustand" (gestrichelte Linie) gezeigt, wobei das Innengehäuse 12 im verdrehten Zustand im Vergleich zum unverdrehten Zustand um einen Drehwinkel ϕ im Uhrzeigersinn um die Drehachse 6 gedreht ist, während die Lage des Aussengehäuses 14 dabei unverändert bleibt. Es wird angenommen, dass der Elastomer-Körper 16 im Falle des unverdrehten Zustands nicht vorgespannt ist, d.h. keine mechanischen Spannungen aufweist. In dem unverdrehten Zustand sind jeweils die Distanzen von der oberen rechten Ecke bzw. der unteren linken Ecke des Innengehäuses 12 zu jeweils definierten Punkten an der Innenseite des Aussengehäuses 14 mit Pfeilen x1 bzw. yl gezeigt. In dem verdrehten Zustand sind jeweils die Distanzen von der oberen rechten Ecke bzw. der unteren linken Ecke des Innengehäuses 12 zu jeweils definierten Punkten an der Innenseite des Aussengehäuses 14 mit Pfeilen x2 bzw. y2 gekennzeichnet. Wie in der Figur 2 zu erkennen, ist die Distanz x2 geringer als x1 und ist die Distanz y2 geringer als y1. In diesen Bereichen wird somit der Elastomer-Körper 16 komprimiert, wenn das Innengehäuse 12 um die Drehachse 6 gedreht und dabei relativ zum Aussengehäuse 14 gedreht wird. Aus diesen jeweiligen Komprimierungen resultieren die oben genannten Druckbelastungen.
  • Nach einer Drehung des Innengehäuses 12 um den Drehwinkel ϕ um die Drehachse 6 ist der Elastomer-Körper 6 deformiert und erzeugt zwischen dem Aussengehäuse 14 und dem Innengehäuse 12 ein Rückstelldrehmoment D, welches der Drehung entgegengerichtet ist und mit dem Drehwinkel ϕ anwächst.
  • Die Tatsache, dass die Distanzen x2-x1 und y2-y2 bei einer Drehung des Innengehäuses 12 um den Drehwinkel ϕ reduziert werden, ist eine Folge davon, dass der Querschnitt der Kontaktfläche 12a bzw. der Kontaktfläche 14a (in einer Schnittfläche senkrecht zur Drehachse 6) nicht kreisförmig ist. Die geometrische Abweichung der genannten Querschnitte der Kontaktflächen 12a bzw. 14a von einer Kreisform hat zur Folge, dass bei einer Drehung des Innengehäuses 12 um den Drehwinkel ϕ eine räumliche Verteilung der mechanischen Spannung im Elastomer-Körper 6 resultiert, welche nicht rotationssymmetrisch zur Drehachse 6 ist, im Gegensatz zur räumlichen Verteilung der mechanischen Spannungen in einem Elastomer-Torsionsfederelement gemäss EP 1486142 A1 , welche jeweils rotationssymmetrisch zur Drehachse 6 ist. Diese Unterschiede hinsichtlich der Spannungsverteilungen führen zu deutlichen Unterschieden hinsichtlich der Abhängigkeiten des Rückstelldrehmoments D als Funktion des Drehwinkels ϕ. Insbesondere führen diese Unterschiede dazu, dass das erfindungsgemässe Elastomer-Torsionsfederelement einen wesentlich grösseren Anstieg des Rückstelldrehmoments D als Funktion des Drehwinkels ϕ zeigt als das Elastomer-Torsionsfederelement gemäss EP 1486142 A1 (was im Folgenden noch näher erläutert wird).
  • In der in Figur 2 dargestellten Ausführungsform ist die an den Elastomer-Körper 16 angrenzende Kontaktfläche 12a des Innengehäuses 12 quadratisch geformt. Hierbei ist das Innengehäuse 12 als eine quadratische Hülse (Vierkant) ausgebildet, welche einen parallel zur Drehachse 6 verlaufenden, durchgehenden Kanal 12.1 mit quadratischem Querschnitt aufweist. Dies hat den Vorteil, dass eine mit gleichen Dimensionen ausgebildete quadratische Lagerwelle (nicht gezeigt) radial formschlüssig in dem Kanal 12.1 des Innengehäuses 12 aufgenommen werden kann.
  • Wie in der Figur 2 zu erkennen, liegt zwischen dem Innengehäuse 12 und dem Aussengehäuse 14 im unverdrehten Zustand des Innengehäuses 12 (durchgezogene Linie) ein Drehversatz vor. Genauer gesagt, sind die Aussenflächen des Innengehäuses 12 und die (linear verlaufenden) Aussenflächen des Aussengehäuses 14 nicht parallel zueinander ausgerichtet (Drehversatz). Die Grösse dieses Drehversatzes ist ein weiterer Parameter, welcher einen Einfluss auf den Verlauf des Rückstelldrehmoments D als Funktion des Drehwinkels ϕ hat.
  • An der Aussenfläche des Aussengehäuses 14 ist ein Aussengehäuse-Nocken 18 angeformt, welcher zur Ineingriffnahme mit einem (in Fig. 2 nicht gezeigten) Sperrelement, welches im Folgenden im Zusammenhang mit den Figuren 5 und 9 noch erläutert wird, dienen kann.
  • Die an den Elastomer-Körper 16 angrenzende Kontaktfläche 14a des Aussengehäuses 14 hat eine Kontur, welche als eine Kombination aus einem Rechteck und einem Kreis anzusehen ist. Genauer gesagt, ist die Kontur des Aussengehäuses 14 zusammengesetzt aus zwei paarweise gegenüberliegenden gleichschenkligen Winkelsegmenten, welche im vorliegenden Beispiel einen Winkel von 90° einschliessen, und aus zwei paarweise gegenüberliegenden Halbkreissegmenten, deren Enden jeweils mit den Enden der genannten Winkelsegmente verbunden sind. Es wurde anhand von mehreren durchgeführten Messreihen herausgefunden, dass diese "zitronenförmig" anmutende Kontur des Aussengehäuses 14, in Kombination mit der quadratischen Kontur des Innengehäuses 12, besonders vorteilhaft ist, um ein Elastomer-Torsionsfederelement 10 zu schaffen, dessen Kennlinie des Rückstelldrehmoments D in Relation zum Drehwinkel ϕ in nahezu allen Bereichen des Drehwinkels ϕ linear verläuft.
  • Figur 3A zeigt ein Diagramm, in welchem jeweils der oben genannte Kennlinienverlauf K1 (Rückstelldrehmoment D in Relation zum Drehwinkel ϕ) des Elastomer-Torsionsfederelements in der Ausführungsform der vorliegenden Erfindung und ein Kennlinienverlauf K2 eines herkömmlichen Elastomer-Torsionsfederelements (wie aus EP 1486142 A1 bekannt) eingetragen sind, wobei die Kurven K1 und K2 jeweils für Elastomer-Torsionsfederelemente bestimmt wurden, bei welchen die jeweiligen Elastomere aus demselben Material (Gummi) bestehen, sodass sich die den Kurven K1 und K2 zugeordneten Elastomer-Torsionsfederelemente im Wesentlichen nur hinsichtlich der Formen der jeweiligen Innengehäuse und der Formen der jeweiligen Aussengehäuse unterscheiden. Die Verläufe K1 und K2 zeigen zunächst, dass sich das Rückstelldrehmoment D bei steigendem Drehwinkel ϕ erhöht. Der maximale Drehwinkel beträgt in diesem Beispiel 70°. Der Kennlinienverlauf K1 des Elastomer-Torsionsfederelements wurde anhand von Messreihen ermittelt, welche mit dem in Figur 2 dargestellten Elastomer-Torsionsfederelement (Zitronenform) durchgeführt wurden. In Fig. 3A sind unterhalb des genannten Diagramms die Querschnitte derjenigen Elastomer-Torsionsfederelemente dargestellt, für welche die genannten Kurven K1 und K2 bestimmt wurden: Die beiden durchgezogenen Linien 14a bzw. 12a geben (in dieser Reihenfolge) die Kontur der Kontaktfläche des Aussengehäuses bzw. die Kontur der Kontaktfläche des Innengehäuses des Elastomer-Torsionsfederelements an, welchem die Kennlinie K1 zugeordnet ist; die beiden gestrichelten Linien 14a bzw. 12a geben (in dieser Reihenfolge) die Kontur der Kontaktfläche des Aussengehäuses bzw. die Kontur der Kontaktfläche des Innengehäuses des Elastomer-Torsionsfederelements an, welchem die Kennlinie K2 zugeordnet ist. Um einen Vergleich zwischen den Querschnittsformen und den Abmessungen der beiden Elastomer-Torsionsfederelemente zu ermöglichen, sind in Fig. 3A die jeweiligen Querschnitte der beiden Elastomer-Torsionsfederelemente aufeinandergelegt dargestellt.
  • Wie dem Diagramm zu entnehmen ist, verläuft der Kennlinienverlauf K1 des Elastomer-Torsionsfederelements gemäss der Ausführungsform der vorliegenden Erfindung vorteilhafterweise in nahezu allen Drehwinkelbereichen linear. Im Gegensatz dazu ist der Kennlinienverlauf K2 des herkömmlichen Elastomer-Torsionsfederelements insbesondere im anfänglichen Drehwinkelbereich nicht-linear (progressiv) ansteigend. Dem Diagramm ist ebenfalls zu entnehmen, dass der Kennlinienverlauf K1 des Elastomer-Torsionsfederelements gemäss der Ausführungsform der vorliegenden Erfindung im Vergleich zum Kennlinienverlauf K2 des herkömmlichen Elastomer-Torsionsfederelements eine grössere Steilheit hat. Somit wirkt schon bei geringen Drehwinkeln ϕ ein grösseres Rückstelldrehmoment D. Hierdurch wird das Elastomer-Material im Vergleich zu dem Elastomer-Material des herkömmlichen Elastomer-Torsionsfederelements bei einem gleichen Rückstelldrehmoment D weniger deformiert. Vorteilhafterweise wird das Elastomer-Material somit geringer belastet und ermüdet daher weniger. Daraus resultiert eine längere Lebensdauer.
  • Es ist bekannt, dass Elastomer-Torsionsfederelemente nur bis zu einem bestimmten maximalen Drehwinkel verdreht werden können. Ein weiteres Drehen über diesen maximalen Drehwinkel hinweg würde zu starken Nicht-Linearitäten und schliesslich zu einem Zerreissen des Elastomer-Materials führen. Bei den Messreihen zum Auftragen der Kennlinienverläufe K1 und K2 wurden die zu vergleichenden Elastomer-Torsionsfederelemente bis zu einem Drehwinkel ϕ von maximal 70° verdreht.
  • Fig. 3B zeigt Messwerte, welche den Verlauf des Rückstelldrehmoments D als Funktion des Drehwinkels ϕ für sechs verschiedene Ausführungsformen des Elastomer-Torsionsfederelements gemäss der Erfindung darstellen. Die den verschiedenen Ausführungsformen entsprechenden Kurven für den Verlauf des Rückstelldrehmoments D sind jeweils nummeriert (1-6). Allen Ausführungsformen ist gemeinsam, dass das Aussengehäuse 14 des jeweiligen Elastomer-Torsionsfederelements 10 ein quadratisches Profil aufweist, wobei der Querschnitt der Kontaktfläche 14a des jeweiligen Aussengehäuses 14 ein Quadrat mit der Seitenlänge 60 mm ist (bezogen auf eine Schnittfläche senkrecht zur Drehachse 6). Die verschiedenen Ausführungsformen unterscheiden sich dadurch, dass der Querschnitt der Kontaktfläche 12a des Innengehäuses 12 für die verschiedenen Ausführungsformen unterschiedliche Formen und unterschiedliche Grössen aufweisen. Im Falle der Kurven 1 und 2 ist der Querschnitt der Kontaktfläche 12a des Innengehäuses 12 ein Kreis mit dem Durchmesser 10mm bzw. 20mm (in dieser Reihenfolge). Im Falle der Kurven 3-6 ist der Querschnitt der Kontaktfläche 12a des Innengehäuses 12 ein Quadrat mit der Seitenlänge 20mm bzw. 25mm bzw. 30mm bzw. 40mm (in dieser Reihenfolge). Im Falle der Kurven 3-6 ist vorausgesetzt, dass die Kontaktflächen 12a des Innengehäuses 12 parallel zu entsprechenden Kontaktflächen 14a des Aussengehäuses 14 angeordnet sind, falls der Drehwinkel ϕ=0 und das Rückstelldrehmoment D=0 beträgt. In allen Fällen ist vorausgesetzt, dass der jeweilige Elastomer-Körper 16 aus demselben Material (Gummi) besteht. Ein Vergleich der Kurven 1-6 zeigt, dass das Rückstelldrehmoment D im Bereich "kleiner" Drehwinkel umso stärker mit dem Drehwinkel ϕ anwächst, je grösser im Fall der Kurven 1 und 2 der jeweilige Durchmesser und im Falle der Kurven 3-6 die jeweilige Seitenlänge des Querschnitts der Kontaktfläche 12a des Innengehäuses 12 ist. Weiterhin zeigt sich, dass ein quadratisches Profil des Innengehäuses 12 zu einem steileren Anstieg des Rückstelldrehmoments D als Funktion des Drehwinkels ϕ führt als ein rundes Profil des Innengehäuses 12 mit einem entsprechend grossen Durchmesser. Weiterhin zeigt sich, dass die Kurven 1-5 im Bereich 0-70° linear verlaufen, während die Kurve 6 oberhalb 40° einen progressiven Anstieg zeigt. Falls im Hinblick auf eine bestimmte Anwendung ein Interesse daran besteht, dass das Rückstelldrehmoment D als Funktion des Drehwinkels ϕ über einen möglichst grossen Drehwinkelbereich (z.B. 0-70°) einen linearen Verlauf zeigt, dann ist es vorteilhaft, wenn die Querschnittsfläche des Innengehäuses 12 im Verhältnis zur Querschnittsfläche des Aussengehäuses 14 einen bestimmten Wert nicht überschreitet.
  • Eine detaillierte Analyse der in Fig. 3B dargestellten Verläufe des Rückstelldrehmoments D als Funktion des Drehwinkels ϕ für verschiedene Elastomer-Torsionsfederelemente, welche sich hinsichtlich der Form ihres Querschnitts senkrecht zur Drehachse 6 unterscheiden, zeigt nämlich, dass für die Elastomer-Torsionsfederelemente gemäss der Erfindung einerseits der Flächeninhalt Fa eines Innenquerschnitts des Aussengehäuses 14 und der Flächeninhalt Fi eines Aussenquerschnitts des Innengehäuses 12 Parameter sind, welche bestimmen, über welchen Bereich des Drehwinkels ϕ das Rückstelldrehmoment D als Funktion des Drehwinkel ϕ einen linearen Verlauf zeigen. Der Innenquerschnitt des jeweiligen Aussengehäuses 14 ist im vorliegenden Fall eine ebene, senkrecht zur Drehachse 6 angeordnete Fläche mit einem äusseren Rand, welcher durch die Kontaktfläche 14a begrenzt ist. Entsprechend ist der Aussenquerschnitt des jeweiligen Innengehäuses 12 eine ebene, senkrecht zur Drehachse 6 angeordnete Fläche mit einem äusseren Rand, welcher durch die Kontaktfläche 12a begrenzt ist.
  • Eine Analyse der in Fig. 3B dargestellten Messwerte führt zu dem Ergebnis, dass die den jeweiligen Messwerten entsprechenden Elastomer-Torsionsfederelemente im Drehwinkelbereich 0≤ ϕ ≤70° jeweils einen linearen Verlauf des Rückstelldrehmoments D als Funktion des Drehwinkels ϕ zeigen, sofern für das Verhältnis des Flächeninhalts Fa zum Flächeninhalt Fi die folgende Bedingung B1 gilt: Fa / Fi 7 / 3
    Figure imgb0001
  • Falls die Abmessungen des jeweiligen Elastomer-Torsionsfederelements derart gewählt sind, dass Fa / Fi < 7/3, so nimmt das von dem Elastomer-Torsionsfederelement erzeugte Rückstelldrehmoment D progressiv als Funktion des Drehwinkels ϕ zu (wie Fig. 6 in Fig. 3B andeutet), wobei das Rückstelldrehmoment D umso progressiver als Funktion des Drehwinkels ϕ zunimmt, je kleiner das Verhältnis Fa / Fi ist.
  • Wie bereits erwähnt, beziehen sich die in Fig. 3A dargestellten Messdaten jeweils auf Elastomer-Torsionsfederelemente, deren Aussengehäuse 14 jeweils einen Innenquerschnitt mit einer quadratischen Form aufweist. Experimente zeigen allerdings, dass die Bedingung B1 auf andere erfindungsgemässe Elastomer-Torsionsfederelemente analog anwendbar ist, selbst wenn das Aussengehäuse des jeweilige Elastomer-Torsionsfederelements derart geformt ist, dass der Innenquerschnitt des jeweiligen Elastomer-Torsionsfederelements keine quadratische Form aufweist: Beispielsweise zeigen die in Fig. 2 und 4-8 dargestellten Elastomer- Torsionsfederelemente im Drehwinkelbereich 0≤ ϕ ≤70° jeweils einen linearen Verlauf des Rückstelldrehmoments D als Funktion des Drehwinkels ϕ, sofern das Verhältnis des Flächeninhalts Fa eines Innenquerschnitts des jeweiligen Aussengehäuses zum Flächeninhalt Fi eines Aussenquerschnitts des jeweiligen Innengehäuses gemäss der Bedingung B1 jeweils grösser als 7/3 ist. Letzteres wurde insbesondere für Elastomer-Körper 16 aus Gummi experimentell verifiziert.
  • Fig. 3C zeigt eine Seitenansicht eines Elastomer-Torsionsfederelements 10, welches sich von dem Elastomer-Torsionsfederelements 10 gemäss Fig. 2 ausschliesslich dadurch unterscheidet, dass der Elastomer-Körper 16 des Elastomer-Torsionsfederelements 10 gemäss Fig. 3C vier Löcher 17 umfasst, welche sich jeweils entlang der Drehachse 6 derart erstrecken, dass sie durch den Elastomer-Körper 16 durchgehend sind. Im vorliegenden Beispiel ist jedes der vier Löcher 17 in der Nähe einer von vier Kanten 13.1, 13.2, 13.3 und 13.4 des Innengehäuses 12 platziert. Wie Fig. 3C andeutet, sind die Kanten 13.1, 13.2, 13.3 und 13.4 auf der Kontaktfläche 12a des Innengehäuses 12 ausgebildet und jeweils parallel zur Drehachse 6 angeordnet. Die mit 6.1 gekennzeichnete gestrichelte Linie in Fig. 3C markiert eine Ebene, in welcher sowohl die Drehachse 6 als auch die Kanten 13.1 und 13.3 verlaufen. Entsprechend markiert die mit 6.2 gekennzeichnete gestrichelte Linie in Fig. 3C eine Ebene, in welcher sowohl die Drehachse 6 als auch die Kanten 13.2 und 13.4 verlaufen. Die Fig. 3C zeigt das Elastomer-Torsionsfederelements 10 in einem Zustand, in welchem der Elastomer-Körper 16 keine mechanische Spannung aufweist und somit zwischen dem Innengehäuse 12 und dem Aussengehäuse 14 kein Rückstelldrehmoment erzeugt. Der mit ϕ bezeichnete, von der Kante 13.1 ausgehende Pfeil kennzeichnet den Verlauf eines Weges, den die Kante 13.1 zurücklegt, wenn das Innengehäuse 12 um einen Drehwinkel ϕ (in Fig. 3C im Uhrzeigersinn) um die Drehachse 6 gedreht und relativ zum Aussengehäuse 14 verdreht wird, um ein Rückstelldrehmoment zwischen dem Innengehäuse 12 und dem Aussengehäuse 14 zu erzeugen. Die Ebenen 6.1 und 6.2 unterteilen den Elastomer-Körper 16 in vier verschiedene Bereiche, wobei jeweils zumindest ein Teilbereich jedes dieser vier Bereiche auf Druck belastet wird, wenn das Innengehäuse 12 um den Drehwinkel ϕ um die Drehachse 6 gedreht und relativ zum Aussengehäuse 14 verdreht wird.
  • Wenn das Innengehäuse 12 um die Drehachse 6 gedreht und relativ zum Aussengehäuse 14 verdreht wird, dann wird der Elastomer-Körper 16 deformiert, wobei die Querschnittsfläche des jeweiligen Lochs 17 kontinuierlich mit wachsendem Drehwinkel ϕ reduziert wird. Wie bereits erwähnt, hat diese Veränderung der Form der Löcher 17 den Effekt, dass eine Expansion des Elastomer-Körpers 16, die aufgrund der vorstehend genannten Druckbelastung entlang der Drehachse 16 erzeugt wird, zumindest teilweise kompensiert wird. Dadurch wird verhindert, dass der Elastomer-Körper 16 beschädigt wird oder verschleisst, wenn das Innengehäuse 12 relativ zum Aussengehäuse 14 um einen relativ grossen Drehwinkel ϕ verdreht wird.
  • Figur 4 zeigt das in Figur 2 dargestellte Elastomer-Torsionsfederelement 10 in einer ersten Ausführungsform der vorliegenden Erfindung mit einem Halteelement 19 in einer Perspektivdarstellung. Das Halteelement 19 dient dazu, das Innengehäuse 12 und das Aussengehäuse 14 in einer "Grundstellung" relativ zueinander zu halten, in welcher der Elastomer-Körper 16 eine mechanische Spannung (Vorspannung) aufweist und somit zwischen dem Innengehäuse 12 und dem Aussengehäuse 14 ein Rückstelldrehmoment D erzeugt, welches von Null verschieden list. In dieser "Grundstellung" ist das Innengehäuse gegenüber der "unverdrehten" Stellung (ohne Vorspannung) gemäss Fig. 2 um einen Drehwinkel Δϕ (im Folgenden "Vorspannwinkel" genannt) verdreht, und zwar in Bezug auf Fig. 2 im Uhrzeigersinn und in Bezug auf Fig. 4 im Gegenuhrzeigersinn. Das Halteelement 19 enthält in diesem Beispiel zwei Spannelemente 20, welche jeweils auf einer der Stirnseiten des Elastomer-Torsionsfederelements 10 aufgesteckt sind. Das Spannelement 20 ist eine im Wesentlichen ebene Platte, welche im Mittenbereich derart ausgestanzt ist, dass zwei gegenüberliegende Flansche 22 zurückbleiben. Diese Flansche 22 sind jeweils um 90° nach innen (in die Figurenebene hinein) gebogen. An einem Aussenbereich des Spannelements 20 sind Laschen 24', 24'' ausgebildet, welche ebenfalls um 90° nach innen gebogen sind.
  • Zur Montage des Spannelements 20 an das Elastomer-Torsionsfederelement 10 werden die Flansche 22, welche derart ausgebildet sind, dass deren Aussenbereiche formschlüssig mit der Innenfläche des Innengehäuses 12 verbindbar sind, um eine erste Distanz in das Innengehäuse 12 gesteckt. Dann werden das Spannelement 20 und das damit radial formschlüssig verbundene Innengehäuse 12, bei fixiertem Aussengehäuse 14, entgegen dem Uhrzeigersinn um einen bestimmten Winkel (beispielsweise 20°) in Relation zu dem Aussengehäuse 14 verdreht.
  • Anschliessend wird das Spannelement 20 mit seinen Flanschen 22 vollständig in den Kanal 12.1 des Innengehäuses 12 gedrückt, wobei gleichzeitig die Laschen 24', 24'' eine formschlüssige Verbindung mit der Aussenfläche des Aussengehäuses 14 einnehmen. Derart montiert, hält das Spannelement 20 die Vorspannung bei. Genauer gesagt, lässt sich der Vorspannwinkel Δϕ nicht mehr unterschreiten, da die Laschen 24', 24'' an die Aussenfläche des Aussengehäuses 14 anschlagen. Es ist jedoch eine Erhöhung des Drehversatzes (ebenfalls entgegen dem Uhrzeigersinn) zwischen dem Innengehäuse 12 und Aussengehäuse 14 möglich. Bei einer Erhöhung dieses Drehversatzes schleifen die Innenbereiche der Laschen 24', 24'' entlang der Aussenfläche des Aussengehäuses oder werden davon abgehoben. Um eine Zerstörung des Elastomer-Torsionsfederelements 10 zu vermeiden, kann in diesem Beispiel ein maximaler Drehwinkel zwischen dem Innengehäuse 12 und Aussengehäuse 14 (beispielsweise 70°) nicht überschritten werden. Bei dem maximalen Drehwinkel ϕ stösst nämlich die Lasche 24' gegen den Aussengehäuse-Nocken 18 an, wodurch eine weitere Umdrehung vorteilhafterweise verhindert wird.
  • Figur 5 zeigt drei Elastomer-Torsionsfederelemente 10'-10''' mit jeweils stirnseitig aufgesetzten Spannelementen, wie detailliert in Figur 4 gezeigt. Diese Elastomer-Torsionsfederelemente 10'-10''' sind über ihr Innengehäuse auf eine Lagerwelle 26 aufgesteckt. Die Lagerwelle 26 und die jeweiligen Bereiche der Innengehäuse der jeweiligen Elastomer-Torsionsfederelemente 10'-10''' sind derart dimensioniert, dass eine radial formschlüssige Verbindung hergestellt ist. Die Lagerwelle 26 ist ebenfalls in ein Innengehäuse eines Basis-Elastomer-Torsionsfederelements 28 radial formschlüssig eingesteckt. Diese Anordnung bildet eine Vorrichtung 30 zur Kraftübertragung für einen (in Fig. 5 nicht gezeigten, jedoch in Fig. 1 dargestellten) Stuhl, im Folgenden "Kraftsystem" 30 genannt. Dieses Kraftsystem 30 dient prinzipiell zum Anlegen eines Rückstelldrehmoments auf einen Rückenträger bzw. einen Sitz des Stuhls für den Fall, dass der Rückenträger bzw. der Sitz gegenüber einem Träger für den Rückenträger bzw. den Sitz geschwenkt wird. Das Kraftsystem 30 ist über das Aussengehäuse des Basis-Elastomer-Torsionsfederelements 28 mit dem im Wesentlichen starren Träger (nicht gezeigt) des Stuhls verbunden. Die Lagerwelle 26 ist an ihren axialen Endabschnitten drehfest mit dem Rückenträger verbunden. Lehnt sich eine auf dem Stuhl sitzende Person mit dem Rückenteil zurück, so wird der Rückenträger und ein eventuell damit synchron angelenkter Sitzträger geschwenkt. Da der Rückenträger drehfest mit der Lagerwelle 26 verbunden ist, wird die Lagerwelle 26 gedreht (in diesem Beispiel erfolgt die Umdrehung entgegen dem Uhrzeigersinn). Dieser Umdrehung wirkt stets zumindest ein Rückstelldrehmoment entgegen, welches durch das Basis-Elastomer-Torsionsfederelements 28 hervorgerufen wird.
  • In der Figur 5 sind ferner Sperrelemente 32'-32''' gezeigt, welche an einer parallel zur Lagerwelle 26 verlaufenden Welle angelenkt sind. Die Sperrelemente 32'-32''' sind über Arretiernocken 34'-34''' ansteuerbar, welche radial an einer Nockenwelle 36 angebracht sind. Bei der Ansteuerung werden die Sperrelemente 32'-32''' jeweils separat voneinander diskret in zwei unterschiedliche Positionen geschwenkt. Bei dem in der Figur 5 dargestellten Beispiel sind alle Sperrelemente 32'-32''' momentan derart angeordnet, dass sie mit den Aussengehäuse-Nocken 18'-18''', welche auf den jeweiligen Aussengehäusen der Elastomer-Torsionsfederelemente 10'-10''' angeformt sind, nicht in Kontakt gebracht sind, sodass sich die Sperrelemente 32'-32''' und die Elastomer-Torsionsfederelemente 10'-10''' in einem entkoppelten Zustand befinden. Die parallel zur Lagerwelle 26 verlaufende Nockenwelle 36 kann derart gedreht werden, dass die einzelnen Arretiernocken 34'-34''' eine geänderte Position derart einnehmen, bei welcher ein oder mehrere Sperrelemente 32' bzw. 32" bzw. 32''' (abhängig von der jeweiligen Stellung der Nockenwelle 36 nach der jeweiligen Drehung) in eine Position geschwenkt werden, in welcher diejenigen Sperrelemente 32' bzw. 32'' bzw. 32''', welche bei der jeweiligen Drehung der Nockenwelle 36 geschwenkt wurden, mit den jeweiligen Aussengehäuse-Nocken 18' bzw. 18'' bzw. 18''' der jeweiligen Elastomer-Torsionsfederelemente 10'-10''' in Kontakt gebracht und somit mit den jeweiligen Elastomer-Torsionsfederelementen 10'-10''' gekoppelt werden (in Fig. 5 nicht gezeigt). In diesem gekoppelten Zustand fixieren diejenigen Sperrelemente 32' bzw. 32" bzw. 32"', welche bei der jeweiligen Drehung der Nockenwelle 36 geschwenkt wurden, die Aussengehäuse der jeweiligen Elastomer-Torsionsfederelemente 10'-10''' in einer vorgegebenen Stellung.
  • Bei dem in Fig. 5 gezeigten Beispiel liegt keine Kopplung zwischen den Sperrelementen 32'-32''' und den Aussengehäuse-Nocken 18'-18''' vor, sodass sich bei dem oben geschilderten Zurücklehnen einer auf dem Stuhl sitzenden Person die Lagerwelle 26 entgegen dem Uhrzeigersinn drehen würde und die Elastomer-Torsionsfederelemente 10'-10''' als Ganzes der Drehung der Lagerwelle 26 folgen würden. Wie oben beschrieben, ist das gesamte vom dem Kraftsystem 30 bereitgestellte Rückstelldrehmoment D in diesem Beispiel identisch mit dem Rückstelldrehmoment, welches ausschliesslich durch das Basis-Elastomer-Torsionsfederelement 28 hervorgerufen wird. Die Elastomer-Torsionsfederelemente 10'-10''' tragen dementsprechend nicht zu dem vom dem Kraftsystem 30 bereitgestellten Rückstelldrehmoment D bei.
  • Bei einer geänderten Umdrehung der Nockenwelle 36 kann beispielsweise eine Kopplung zwischen einem oder mehreren Sperrelementen 32'-32''' und einem oder mehreren Aussengehäuse-Nocken 18'-18''' realisiert werden. Somit sind diejenigen Elastomer-Torsionsfederelemente 10'-10''', welche an eines der jeweiligen Sperrelemente 32'-32''' gekoppelt sind, an ihren Aussengehäusen arretiert. Dies hat zur Folge, dass das gesamte Rückstelldrehmoment, welches vom dem Kraftsystem 30 bereitgestellt wird, aus der Summe aller Rückstelldrehmomente besteht, welche durch das Basis-Elastomer-Torsionsfederelement 28 und diejenigen Elastomer-Torsionsfederelemente 10'-10''', welche jeweils mittels der jeweiligen Sperrelemente 32'-32''' arretiert sind, hervorgerufen werden. Genauer gesagt, lässt sich das gesamte Rückstelldrehmoment in Abhängigkeit von der Umdrehung der Nockenwelle 36 einstellen.
  • Wie in der Figur 5 gezeigt, sind die Elastomer-Torsionsfederelemente 10'-10''' unterschiedlich dimensioniert. Dies hat zur Folge, dass sie jeweils unterschiedliche Rückstelldrehmomente hervorrufen können. In diesem Beispiel ruft das Elastomer-Torsionsfederelement 10''' ein grösseres Rückstelldrehmoment als das Elastomer-Torsionsfederelement 10" hervor, welches ein grösseres Rückstelldrehmoment als das Elastomer-Torsionsfederelement 10' hervorruft. Durch eine entsprechende separate Kopplung bzw. Entkopplung von einzelnen Elastomer-Torsionsfederelementen 10'-10''' sind somit insgesamt acht unterschiedliche Rückstelldrehmomente wählbar. Hierdurch sind Rückstelldrehmomente zuschaltbar, welche jeweils dem individuellen Gewicht einer auf dem Stuhl sitzenden Person entsprechen. Somit kann, durch eine geeignete Kopplung bzw. Entkopplung der jeweiligen Elastomer-Torsionsfederelemente 10'-10''' und der jeweiligen Sperrelemente 32'-32''' eine Person mit beispielsweise einem Gewicht von 45 kg eine ergonomisch angepasste Rückstellkraft erfahren, wie auch eine Person mit einem Gewicht von beispielsweise 120 kg eine ergonomisch angepasste Rückstellkraft erfahren kann. Aufgrund der oben geschilderten acht unterschiedlichen Stufen, können auch Personen mit einem beispielsweise zwischen 45 kg und 120 kg liegenden Gewicht ergonomisch optimal gestützt werden. Dadurch wird der Sitzkomfort stark erhöht.
  • Figur 6 zeigt ein Elastomer-Torsionsfederelement 10 in einer zweiten Ausführungsform. In dieser Ausführungsform sind das Innengehäuse (nicht gezeigt) und das Aussengehäuse 14 in Relation zueinander durch ein Spannelement 38 vorgespannt. Zur genaueren Beschreibung dieses Elastomer-Torsionsfederelements wird auf die Figuren 7A-7C verwiesen.
  • Figuren 7A-7C zeigen jeweils ein Kraftsystem 30 in unterschiedlichen Ansichten, welches, ähnlich dem in Figur 5 dargestellten Beispiel, ebenfalls drei Elastomer-Torsionsfederelemente 10'-10''' enthält. Diese drei Elastomer-Torsionsfederelemente 10'-10''' sind jeweils in der in Figur 6 dargestellten Ausführungsform ausgeführt. Das Kraftsystem 30 enthält ferner ein Basis-Elastomer-Torsionsfederelement 28 und eine Welle 26. In dem dargestellten Beispiel sind Spannelemente 38'-38'''' enthalten, welche sich von den in den Figuren 4 und 5 gezeigten Spannelementen 20 unterscheiden. Die gezeigten Spannelemente 38'-38'''' sind plattenähnliche Elemente, deren Innenbereiche rechteckig ausgestanzt sind. Hierbei ist die Kontur der Ausstanzung formschlüssig an die Aussenkontur der (Vierkant-) Lagerwelle 26 angepasst. An den Aussenbereichen der Spannelemente 38'-38'''' sind Wölbungen 39'-39'''' angeformt, welche jeweils eine senkrechte Durchbohrung enthalten.
  • Bei der Montage des Kraftsystems 30 werden die Lagerwelle 26 und das Innengehäuse des Basis-Elastomer-Torsionsfederelements 28 radial formschlüssig miteinander verbunden. Nachfolgend wird ein erstes Spannelement 38' über seine Ausstanzung auf die Lagerwelle 26 aufgesteckt, sodass auch zwischen der Lagerwelle 26 und dem Spannelement 38' eine radial formschlüssige Verbindung hergestellt ist. Anschliessend wird ein erstes Elastomer-Torsionsfederelement 10' auf die Lagerwelle 26 aufgesetzt. Diesem Schritt nachfolgend wird ein weiteres Spannelement 38'' aufgesetzt, usw. Nachdem alle drei Elastomer-Torsionsfederelemente 10'-10''' mit jeweils dazwischen gesetzten Spannelementen 38'-38''' auf die Lagerwelle 26 aufgesetzt sind, wird abschliessend das letzte Spannelement 38'''' stirnseitig aufgesetzt.
  • Anschliessend werden die Elastomer-Torsionsfederelemente 10'-10''' entweder einzeln oder gleichzeitig vorgespannt, indem beispielsweise ihre Aussengehäuse, bei radial fixierter Lagerwelle 26, im Uhrzeigersinn um die Längsrichtung der Lagerwelle 26 gedreht werden. Diese Drehung erfolgt bis zu einem Drehwinkel, bei welchem Stifte 40', 40" durch die jeweiligen Bohrungen der Wölbungen 39'-39'''' hindurch steckbar sind. Nachdem die Stifte 40', 40" durch diese Bohrungen durchgesteckt sind, wird die Krafteinleitung zum Umdrehen der Aussengehäuse beendet. In diesem Zustand verbleiben die einzelnen Elastomer-Torsionsfederelemente 10'-10''' in dieser Position, da die jeweiligen Aussenflächen der Aussengehäuse nun gegen einen Umfangsabschnitt der Stifte 40', 40" anstossen. Somit ist es nicht mehr möglich, dass das jeweilige Aussengehäuse in den Anfangszustand zurückgedreht wird.
  • Ein Vorteil der Anordnung und der Ausgestaltung der Spannelemente 38'-38"" besteht darin, dass nunmehr, im Unterschied zu dem in den Figuren 4 und 5 gezeigten Beispiel, kein Flansch in die jeweiligen Innengehäuse der Elastomer-Torsionsfederelemente 10'-10'" gesteckt ist. Somit steht die Lagerwelle 26 mit der gesamten Innenfläche der jeweiligen Innengehäuse im radial formschlüssigen Eingriff. Dadurch wird ein Spiel zwischen der Lagerwelle 26 und dem Innengehäuse der Elastomer-Torsionsfederelemente 10'-10'" vermieden. Im Falle des in den Figuren 4 und 5 dargestellten Beispiels tritt hingegen ein Lagerspiel auf, welches darauf beruht, dass die Einleitung der Rückstelldrehmomente der jeweiligen Elastomer-Torsionsfederelemente 10'-10'" in die Lagerwelle 26 abschnittsweise über die Flansche 22 erfolgt und die Innengehäuse der jeweiligen Elastomer-Torsionsfederelemente 10'-10'" demzufolge nicht mit der Lagerwelle 26 in mechanischem Kontakt stehen können (siehe Figuren 4 und 5).
  • Ein weiterer Vorteil des in Figuren 7A-7C gezeigten Beispiels besteht darin, dass die Montage gegenüber dem in den Figuren 4 und 5 dargestellten Beispiel, bei welchem jedes Elastomer-Torsionsfederelement zuvor mit seinen Spannelementen 20 bestückt wurde, sehr viel einfacher ist. Zudem wird die Montagezeit stark verkürzt, Ein weiterer Vorteil besteht in der weitaus einfacheren und weniger zeitintensiven Herstellung der einzelnen Spannelemente 38'-38"". Diese können lediglich mittels Ausstanzung kostengünstig hergestellt werden.
  • Figuren 8A-8C zeigen jeweils ein Elastomer-Torsionsfederelement 10 in der zweiten beispielhaften Ausführungsform, bei welchem das Innengehäuse 12 und das Aussengehäuse 14 in Relation zueinander in Abfolge der Figuren um einen zunehmenden Drehwinkel ϕ gegeneinander verdreht sind. In Fig. 8A ist das Elastomer-Torsionsfederelement 10 in einem unverdrehten Anfangszustand dargestellt, wobei angenommen ist, dass der Elastomer-Körper 16 in diesem Zustand keine elastische Deformation aufweist und somit kein Rückstelldrehmoment zwischen dem Innengehäuse 12 und dem Aussengehäuse 14 erzeugen (D=0). Hierbei sind das Innengehäuse 12 und das Aussengehäuse 14 in Relation zueinander bei einem Drehwinkel von -40° entgegen dem Uhrzeigersinn verdreht angeordnet. In Fig. 8B ist das Elastomer-Torsionsfederelement 10 in einem im Uhrzeigersinn verdrehten Zustand dargestellt. Hierbei ist das Innengehäuse 12 relativ zum Aussengehäuse 14 bei einem Drehwinkel ϕ=0° angeordnet. Genauer gesagt, sind das Innengehäuse 12 und das Aussengehäuse 14 in Relation zueinander, im Vergleich zu dem in Fig. 8A gezeigten Anfangszustand, um Δϕ=40° verdreht. In Fig. 8C ist das Elastomer-Torsionsfederelement 10 verdrehten Zustand gezeigt, wobei das Innengehäuse 12 im Vergleich zu den Zuständen gemäss Fig. 8A um Δϕ=70° verdreht ist.
  • Der Vorteil des Drehversatzes um -40° zwischen dem Innengehäuse 12 und Aussengehäuse 14 im Vergleich zum unverdrehten Anfangszustand (Fig. 8A) liegt darin, dass ein weiteres Umdrehen zwischen dem Innengehäuse 12 und Aussengehäuse 14 in Relation zueinander im Uhrzeigersinn (siehe Fig. 8B-8C) in einem Drehwinkelbereich erfolgt, in welchem die Kennlinie des Rückstelldrehmoments als Funktion des Drehwinkels ϕ über einen grossen Winkelbereich linear verläuft und eine besonders grosse Steigung als Funktion des Drehwinkels aufweist.
  • Figur 9 zeigt das in Figuren 7A-7C dargestellte Kraftsystem 30, welches in einen Träger 42 eines Stuhls (in Fig. 9 nicht gezeigt) eingebaut ist. Hierbei ist das Basis-Elastomer-Torsionsfederelement 28 über sein Aussengehäuse fest mit dem Träger 42 verbunden. Die Lagerwelle (nicht gezeigt) kann durch eine Öffnung des Trägers 42 hindurch mit einem Abschnitt eines Rückenträgers 44 drehfest gekoppelt sein. Der Rückenträger 44 wiederum dient zur Aufnahme eines Rückenteils 3 gemäss Fig. 1 (in Fig. 9 nicht gezeigt), mit welchem eine im Wesentlichen senkrecht verlaufende Rückenlehne 4 gemäss Fig. 1 verbunden ist. Die Rückenlehne 4 ist somit gegen das durch das Kraftsystem 30 eingeleitete Rückstelldrehmoment schwenkbar. Ferner kann ein Sitzträger für einen Sitz 5 gemäss Fig. 1 mit dem Rückenträger 44 und/oder der Rückenlehne verbunden sein, sodass der Sitz 5 synchron zu der Rückenlehne 4 schwenkbar ist.
  • Wie bereits zur Beschreibung des in Figur 5 dargestellten Kraftsystems 30 beschrieben, wird die Lagerwelle 26 gedreht, sobald sich eine auf dem Stuhl sitzende Person zurücklehnt. Bei dem in Figur 9 gezeigten Beispiel würde sich die Lagerwelle beim Zurücklehnen der Person im Uhrzeigersinn umdrehen. In einem Zustand, bei welchem die Aussengehäuse-Nocken (nicht gezeigt) der jeweiligen Elastomer-Torsionsfederelemente 10'-10"' des Kraftsystems 30 nicht über die Sperrelemente mit dem Träger 42 gekoppelt sind, würden die einzelnen Elastomer-Torsionsfederelemente 10'-10"' dieser Drehung folgen.
  • In Abhängigkeit von einer jeweiligen Umdrehung der Nockenwelle 36 können die einzelnen Sperrelemente 32'-32"', jeweils betätigt durch einzelne auf der Nockenwelle 36 angeordnete Arretiernocken 34'-34''', derart geschaltet werden, dass sie mit den jeweiligen Aussengehäuse-Nocken 18'-18''' der Elastomer-Torsionsfederelemente 10'-10''' gekoppelt werden. Ist ein gekoppelter Zustand mit einem beliebigen Aussengehäuse-Nocken 18'-18''' eines Elastomer-Torsionsfederelements 10', 10" oder 10''' hergestellt, so würde dieses gekoppelte Elastomer-Torsionsfederelement 10', 10'' oder 10''' sein jeweiliges Rückstelldrehmoment, zusätzlich zu dem Rückstelldrehmoment des Basis-Elastomer-Torsionsfederelements 28, auf die Lagerwelle 26 anlegen. Somit sind die Elastomer-Torsionsfederelemente 10', 10" oder 10''' vorteilhaft derart ausgebildet und angeordnet, dass sie, einzeln geschaltet, ein zu dem Drehwinkel lineares Rückstelldrehmoment, welches dem Gewicht einer auf dem Stuhl sitzenden Person angepasst ist, auf den Rückenträger anlegen. Hierdurch wird eine optimale Rückstellkraft gegen den Rücken der Person angelegt, wodurch der Sitzkomfort erhöht wird.
  • Fig. 10A-10E zeigen unterschiedliche Ansichten einer Spannvorrichtung 46 zum Vorspannen der in den Figuren 7A-7C gezeigten Elastomer-Torsionsfederelemente 10'-10''' mit den dazwischen und stirnseitig aufgesetzten Spannelementen 38'-38''''. In Fig. 10A und 10C ist die Spannvorrichtung 46 jeweils in einer Vollansicht, von unterschiedlichen Richtungen aus betrachtet, dargestellt. In Fig. 10B und 10D ist die Spannvorrichtung 46 jeweils in einer Detailansicht, von unterschiedlichen Richtungen aus betrachtet, dargestellt. Die Spannvorrichtung 46 dient zum einfachen und schnellen Vorspannen der einzelnen Elastomer-Torsionsfederelemente 10'-10''' mit nur wenigen Schritten. Die Spannvorrichtung 46 enthält Fixiereinrichtungen 48', 48'', welche die Lagerwelle 26 (in Fig. 10A-10E nicht gezeigt) an ihren axialen Enden festgespannt fixieren. Auf die Lagerwelle 26 sind zuvor, wie zur Beschreibung der Figuren 7A-7C dargelegt, die einzelnen Elastomer-Torsionsfederelemente 10'-10''' aufgesteckt, wobei die Spannelemente 38'-38'''' jeweils dazwischen und stirnseitig aufgesteckt sind. Diese Spannelemente 38'-38'''' sind jeweils radial formschlüssig mit der Lagerwelle verbunden.
  • Die Spannvorrichtung 46 enthält ferner einen Stab 50, welcher senkrecht zwischen zwei Hebelarmen eines Hebels 52 verbunden ist. Die Hebelarme sind über Spannvorrichtungslager 54', 54'' schwenkbar angelenkt. Der Hebel 52 lässt sich an seinem unteren Ende über einen Antrieb 56 vor und zurück auslenken. Bei einer Auslenkung des unteren Abschnittes des Hebels 52 in einer Richtung aus der Figurenebene der Fig. 10A heraus wird der Stab 50 zu den Elastomer-Torsionsfederelementen 10'-10''' hin ausgelenkt, wie durch einen Pfeil A angedeutet.
  • Wie besonders gut in Fig. 10C-10E zu erkennen, gelangt, bei einer ersten Stufe der Auslenkung des Stabes 50 in Richtung des Pfeils A, ein Oberflächenbereich des Stabes 50 zunächst mit einem Bereich der Aussenfläche des Aussengehäuses eines ersten Elastomer-Torsionsfederelements 10''', beispielsweise über einen daran ausgeformten Aussengehäuse-Nocken 18'-18''', in Eingriff.
  • Ab einer zweiten Stufe der Auslenkung des Stabes 50 in Richtung des Pfeils A gelangt ein weiterer Oberflächenbereich des Stabes 50 mit der Aussenfläche des Aussengehäuses eines zweiten Elastomer-Torsionsfederelements 10'' in Eingriff. Während der Auslenkung des Stabes 50 zwischen der ersten Stufe und der zweiten Stufe, wird die zuvor in Eingriff gebrachte Aussenfläche des Aussengehäuses des ersten Elastomer-Torsionsfederelements 10''' mitgeschwenkt bzw. gedreht. Bei einer dritten Stufe der Auslenkung des Stabes 50 in Richtung des Pfeils A wird ein Bereich der Aussenfläche des Aussengehäuses eines dritten Elastomer-Torsionsfederelements 10' in Eingriff genommen. Während der Auslenkung des Stabes 50 zwischen der zweiten Stufe und der dritten Stufe werden die Elastomer-Torsionsfederelemente 10''' und 10'' ausgelenkt bzw. gedreht. Bei einer vierten Stufe der Auslenkung des Stabes 50 sind nun alle Elastomer-Torsionsfederelemente 10'-10''' parallel zueinander derart ausgelenkt bzw. gedreht, dass die ebenfalls in Figuren 7A-7C dargestellten Stifte 40', 40'' durch die Bohrungen der jeweiligen Wölbungen 39'-39''', der einzelnen Spannelemente 38'-38'''' hindurch gesteckt werden können. Sobald die Stifte 40', 40'' durch die genannte Bohrungen gesteckt sind, wird die genannte Auslenkung des Stabes 50 rückgängig gemacht, d.h. der Stab 50 wird entgegen der Pfeilrichtung A bewegt. Die eingesetzten Stifte 40', 40'' liegen an den einzelnen Aussenflächen der Aussengehäuse der Elastomer-Torsionsfederelemente 10'-10''' an und sind aufgrund der Wirkung der Rückstelldrehmomente der Elastomer-Torsionsfederelemente 10'-10''' eingespannt. Ferner sind die Stifte 40', 40'' jeweils durch die radial drehstarr gekoppelten Spannelemente 38'-38'''' gehalten. Somit können die einzelnen Elastomer-Torsionsfederelemente 10'-10''' nicht mehr in den jeweils unausgelenkten Initialzustand (Fig. 10A-10E) zurückkehren.
  • Figur 10E zeigt die Spannvorrichtung 46 in einer axial zu den Spannvorrichtungslagern 54', 54'' betrachteten Ansicht. In dieser Figur ist besonders deutlich zu erkennen, dass die einzelnen Elastomer-Torsionsfederelemente 10'-10''' in ihrem Initialzustand jeweils unterschiedlich ausgelenkt sind. Dies liegt daran, dass die jeweiligen Innengehäuse der Elastomer-Torsionsfederelemente 10'-10''' in Relation zur Kontur ihrer jeweiligen Aussengehäuse jeweils mit einem Drehversatz angeordnet sind, welcher für die Elastomer-Torsionsfederelemente 10'-10''' jeweils unterschiedlich gross ist. Die Drehversätze können für die Elastomer-Torsionsfederelemente 10'-10''' beispielsweise 20°, 25° und 40° betragen. Bedingt durch den jeweils unterschiedlichen Drehversatz zwischen dem Innengehäuse und Aussengehäuse, werden die einzelnen Elastomer-Torsionsfederelemente 10'-10''' somit auch unterschiedlich stark vorgespannt. In diesem Beispiel wird somit das Elastomer-Torsionsfederelement 10''' stärker vorgespannt als das Elastomer-Torsionsfederelement 10'', welches wiederum stärker vorgespannt wird als das Elastomer-Torsionsfederelement 10'. Wie in den Figuren 10A und 10C-10E angedeutet, können die Stifte 40', 40'' nach dem Vorspannen durch die Bohrungen der Wölbungen 39'-39'''' der jeweiligen Spannelemente 38'-38'''' hindurch gesteckt werden. Somit wird die jeweilige Vorspannung der einzelnen Elastomer-Torsionsfederelemente 10'-10''' durch die Stifte 40', 40'' beibehalten.
  • Diese Vorspannung kann nicht unterschritten werden, jedoch können die Aussengehäuse der einzelnen Elastomer-Torsionsfederelemente 10'-10''' relativ zu den entsprechenden Innengehäusen in eine Drehrichtung derart weitergedreht werden, dass das von dem jeweiligen Torsionsfederelement 10'-10''' erzeugte Rückstelldrehmoment mit wachsendem Drehwinkel vergrössert wird, bis die an dem jeweiligen Aussengehäuse angeformten Aussengehäuse-Nocken 18'-18''' gegen den Stift 40' anstossen. In diesem Zustand sind die Elastomer-Torsionsfederelemente 10'-10''' an ihrem maximal zulässigen Drehwinkel angelangt und stellen jeweils das grösstmögliche Rückstelldrehmoment bereit.
  • Die in den Figuren 10A-10E gezeigte Spannvorrichtung 46 und das hierzu beispielhaft beschriebene Verfahren zeigen auf, dass das zuvor beschriebene Kraftsystem 30 auch bei unterschiedlich vorgespannten Elastomer-Torsionsfederelementen 10'-10"' sehr schnell und mit nur wenigen Handgriffen hergestellt werden kann.

Claims (15)

  1. Sitzeinrichtung (1),
    mit einem Sitz (5),
    mit einem Rückenträger (44),
    mit einem Träger (42) für den Rückenträger (44) und/oder den Sitz (5), wobei der Rückenträger (44) und/oder der Sitz (5) am Träger (42) derart schwenkbar angelenkt ist, dass eine Schwenkbewegung des Rückenträgers (44) und/oder des Sitzes (5) um eine Drehachse (6) ausführbar ist; und
    mit mindestens einem Elastomer-Torsionsfederelement (10, 28), welches ein Innengehäuse (12), ein das Innengehäuse (12) umgebendes Aussengehäuse (14) und einen in einem Zwischenraum zwischen dem Innengehäuse (12) und dem Aussengehäuse angeordneten Elastomer-Körper (16) umfasst, welches Innengehäuse (12) mindestens eine Kontaktfläche (12a) aufweist, an welcher der Elastomer-Körper (16) mit dem Innengehäuse (12) in Kontakt ist,
    welches Aussengehäuse (14) mindestens eine Kontaktfläche (14a) aufweist, an welcher der Elastomer-Körper (16) mit dem Aussengehäuse (14) in Kontakt ist,
    wobei der Elastomer-Körper (16) mit der Kontaktfläche (12a) des Innengehäuses (12) und der Kontaktfläche (14a) des Aussengehäuses (14) fest verbunden ist,
    wobei das Innengehäuse (12) und/oder das Aussengehäuse (14) des jeweiligen Elastomer-Torsionsfederelements (10, 28) um die Drehachse (6) drehbar angeordnet ist
    und der Träger (42) mit dem Aussengehäuse (14) des jeweiligen Elastomer-Torsionsfederelements (10, 28) und der Rückenträger (44) und/oder der Sitz (5) mit dem Innengehäuse (12) des jeweiligen Elastomer-Torsionsfederelements (10, 28) derart gekoppelt ist, dass bei der jeweiligen Schwenkbewegung des Rückenträgers (44) und/oder des Sitzes (5) eine Drehung des Innengehäuses (12) um einen Drehwinkel (ϕ) um die Drehachse (6) ausgeführt wird, bei welcher Drehung das Innengehäuse (12) relativ zum Aussengehäuse (14) bewegt und dabei eine Deformation des Elastomer-Körpers (16) erzeugt wird, sodass der Elastomer-Körper (16) zwischen dem Aussengehäuse (14) und dem Innengehäuse (12) ein Rückstelldrehmoment erzeugt, welches der Drehung entgegengerichtet ist, und
    wobei die Kontaktfläche (12a) des Innengehäuses (12) in einer zur Drehachse (6) senkrechten Schnittebene einen nicht kreisförmigen Querschnitt aufweist und/oder die Kontaktfläche (14a) des Aussengehäuses (14) in einer zur Drehachse (6) senkrechten Schnittebene einen nicht kreisförmigen Querschnitt aufweist,
    dadurch gekennzeichnet, dass
    die Kontaktfläche (14a) des Außengehäuses (14)
    (a) zumindest abschnittsweise zylindrisch ausgebildet ist, oder
    (b) - jeweils in einer zur Drehachse (6) senkrechten Schnittebene - rechteckig ausgebildet ist, wobei zumindest zwei paarweise gegenüberliegende Ecken abgerundet sind, oder
    (c) zwei paarweise gegenüberliegende, gleichschenklige Winkelsegmente und zwei paarweise gegenüberliegende Halbkreissegmente, deren Enden jeweils mit den Enden der Winkelsegmente verbunden sind, enthält.
  2. Sitzeinrichtung (1),
    mit einem Sitz (5),
    mit einem Rückenträger (44),
    mit einem Träger (42) für den Rückenträger (44) und/oder den Sitz (5), wobei der Rückenträger (44) und/oder der Sitz (5) am Träger (42) derart schwenkbar angelenkt ist, dass eine Schwenkbewegung des Rückenträgers (44) und/oder des Sitzes (5) um eine Drehachse (6) ausführbar ist; und
    mit mindestens einem Elastomer-Torsionsfederelement (10, 28), welches ein Innengehäuse (12), ein das Innengehäuse (12) umgebendes Aussengehäuse (14) und einen in einem Zwischenraum zwischen dem Innengehäuse (12) und dem Aussengehäuse angeordneten Elastomer-Körper (16) umfasst, welches Innengehäuse (12) mindestens eine Kontaktfläche (12a) aufweist, an welcher der Elastomer-Körper (16) mit dem Innengehäuse (12) in Kontakt ist,
    welches Aussengehäuse (14) mindestens eine Kontaktfläche (14a) aufweist, an welcher der Elastomer-Körper (16) mit dem Aussengehäuse (14) in Kontakt ist,
    wobei der Elastomer-Körper (16) mit der Kontaktfläche (12a) des Innengehäuses (12) und der Kontaktfläche (14a) des Aussengehäuses (14) fest verbunden ist,
    wobei das Innengehäuse (12) und/oder das Aussengehäuse (14) des jeweiligen Elastomer-Torsionsfederelements (10, 28) um die Drehachse (6) drehbar angeordnet ist
    und der Träger (42) mit dem Innengehäuse (12) des jeweiligen Elastomer-Torsionsfederelements (10, 28) und der Rückenträger (44) und/oder der Sitz (5) mit dem Aussengehäuse (14) des jeweiligen Elastomer-Torsionsfederelements (10, 28) derart gekoppelt ist, dass bei der jeweiligen Schwenkbewegung des Rückenträgers (44) und/oder des Sitzes (5) eine Drehung des Aussengehäuses (14) um einen Drehwinkel (ϕ) um die Drehachse (6) ausgeführt wird, bei welcher Drehung das Innengehäuse (12) relativ zum Aussengehäuse (14) bewegt und dabei eine Deformation des Elastomer-Körpers (16) erzeugt wird, sodass der Elastomer-Körper (16) zwischen dem Aussengehäuse (14) und dem Innengehäuse (12) ein Rückstelldrehmoment erzeugt, welches der Drehung entgegengerichtet ist, und
    wobei die Kontaktfläche (12a) des Innengehäuses (12) in einer zur Drehachse (6) senkrechten Schnittebene einen nicht kreisförmigen Querschnitt aufweist und/oder die Kontaktfläche (14a) des Aussengehäuses (14) in einer zur Drehachse (6) senkrechten Schnittebene einen nicht kreisförmigen Querschnitt aufweist,
    dadurch gekennzeichnet, dass
    die Kontaktfläche (14a) des Aussengehäuses (14)
    (a) zumindest abschnittsweise zylindrisch ausgebildet ist, oder
    (b) - jeweils in einer zur Drehachse (6) senkrechten Schnittebene - rechteckig ausgebildet ist, wobei zumindest zwei paarweise gegenüberliegende Ecken abgerundet sind, oder
    (c) zwei paarweise gegenüberliegende, gleichschenklige Winkelsegmente und zwei paarweise gegenüberliegende Halbkreissegmente, deren Enden jeweils mit den Enden der Winkelsegmente verbunden sind, enthält.
  3. Sitzeinrichtung (1) nach Anspruch 1, bei welcher
    das Aussengehäuse (14) des jeweiligen Elastomer-Torsionsfederelements (10, 28) mit dem Träger (42) verbunden ist und das Innengehäuse (12) des jeweiligen Elastomer-Torsionsfederelements (10, 28) mit einer um die Drehachse (6) drehbaren Lagerwelle (26) verbunden ist, welche drehstarr mit dem Rückenträger (44) und/oder dem Sitz (5) verbunden ist.
  4. Sitzeinrichtung (1) nach Anspruch 2, bei welcher
    das Innengehäuse des jeweiligen Elastomer-Torsionsfederelements mit dem Träger verbunden ist und das Innengehäuse des jeweiligen Elastomer-Torsionsfederelements mit einer um die Drehachse drehbaren Lagerwelle verbunden ist, welche drehstarr mit dem Rückenträger und/oder dem Sitz verbunden ist.
  5. Sitzeinrichtung (1) nach einem der vorhergehenden Ansprüche, bei welchem die Kontaktfläche (12a) des Innengehäuses (12) und die Kontaktfläche (14a) des Aussengehäuses (14) derart relativ zueinander angeordnet sind, dass bei der Drehung des Innengehäuses (12) und/oder des Aussengehäuses (14) um die Drehachse (6) zumindest in einem vorbestimmten Drehwinkelbereich eine Reduktion (x1-x2, y1-y2) einer Distanz zwischen einem definierten Punkt des Innengehäuses (12) und einem definierten Punkt des Aussengehäuses (14) hervorrufbar ist.
  6. Sitzeinrichtung (1) nach einem der vorhergehenden Ansprüche, bei welchem die Kontaktfläche (12a) des Innengehäuses (12) und die Kontaktfläche (14a) des Aussengehäuses (14) in einer zur Drehachse (6) senkrechten Schnittebene einen nicht kreisförmigen Querschnitt aufweisen und derart relativ zueinander angeordnet sind, dass mittels der Drehung des Innengehäuses (12) und/oder des Aussengehäuses (14) um die Drehachse (6) eine Druckbelastung in zumindest einem Bereich des Elastomer-Körpers (16) hervorrufbar ist.
  7. Sitzeinrichtung (1) nach einem der vorhergehenden Ansprüche, bei welchem die Kontaktfläche (12a) des Innengehäuses (12) und/oder die Kontaktfläche (14a) des Aussengehäuses (14) - jeweils in einer zur Drehachse (6) senkrechten Schnittebene - polygonal oder zumindest abschnittsweise geradlinig ausgebildet sind.
  8. Sitzeinrichtung (1) nach einem der vorhergehenden Ansprüche, bei welchem die Kontaktfläche (12a) des Innengehäuses (12) - jeweils in einer zur Drehachse (6) senkrechten Schnittebene - rechteckig ausgebildet ist.
  9. Sitzeinrichtung (1) nach einem der vorhergehenden Ansprüche, wobei das Verhältnis des Flächeninhalts (Fa) eines Innenquerschnitts des jeweiligen Aussengehäuses (14) zum Flächeninhalt (Fi) eines Aussenquerschnitts des jeweiligen Innengehäuses (12) grösser als 7/3 ist.
  10. Sitzeinrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Elastomer-Körper (16) ein oder mehrere durch den Elastomer-Körper (16) durchgehende Löcher (17) aufweist, wobei sich das jeweilige Loch (17) entlang der Drehachse (6) erstreckt.
  11. Sitzeinrichtung (1) nach einem der vorhergehenden Ansprüche, wobei an dem jeweiligen Elastomer-Torsionsfederelement (10)ein Halteelement (19, 20, 38, 38'-38'''') angeordnet ist, welches dazu ausgelegt ist,
    (i) das Innengehäuse (12) in einer vorgegebenen Grundstellung relativ zum Aussengehäuse (14) zu halten, in welcher Grundstellung der Elastomer-Körper (16) eine vorgegebene elastische Verformung aufweist und zwischen dem Aussengehäuse (14) und dem Innengehäuse (12) ein Rückstelldrehmoment erzeugt, welches gleich einem vorgegebenen Mindest-Wert ist, und
    (ii) eine Drehung des Innengehäuses (12) relativ zum Aussengehäuse um einen Drehwinkel (ϕ) um die Drehachse (6) in eine Drehrichtung freizugeben, in welcher das Rückstelldrehmoment mit wachsendem Drehwinkel (ϕ) zunimmt.
  12. Sitzeinrichtung (1) nach Anspruch 11, bei welchem das Halteelement zumindest ein Spannelement (19, 20, 38, 38'-38'''') enthält, welches entweder
    (i) einen ersten Abschnitt aufweist, der mit dem Innengehäuse (12) in einem festen Eingriff steht, und einen zweiten Abschnitt aufweist, der - wenn sich das Innengehäuse (12) in der vorgegebenen Grundstellung relativ zum Aussengehäuse befindet - gegen einen Abschnitt des Aussengehäuses (14) anschlägt und eine Drehung des Innengehäuses (12) und des Aussengehäuses (14) in Relation zueinander um die Drehachse (6) in diejenige Drehrichtung freigibt, in welche das Rückstelldrehmoment zunimmt, oder
    (ii) einen ersten Abschnitt aufweist, der mit dem Aussengehäuse (14) in einem festen Eingriff steht, und einen zweiten Abschnitt aufweist, der - wenn sich das Innengehäuse (12) in der vorgegebenen Grundstellung relativ zum Aussengehäuse (14) befindet - gegen einen Abschnitt des Innengehäuses (12) anschlägt und eine Drehung des Innengehäuses (12) und des Aussengehäuses (14) in Relation zueinander um die Drehachse (6) in diejenige Drehrichtung freigibt, in welche das Rückstelldrehmoment zunimmt.
  13. Sitzeinrichtung (1) nach Anspruch 12, bei welchem das Innengehäuse (12) eine Ausnehmung (12.1) umfasst und der erste Abschnitt des Spannelements (20) drehstarr in diese Ausnehmung (12.1) im Innengehäuse (12) gesteckt ist und der zweite Abschnitt des Spannelements (20) - wenn sich das Innengehäuse (12) in der vorgegebenen Grundstellung relativ zum Aussengehäuse (14) befindet - gegen einen Abschnitt des Aussengehäuses (14) anschlägt.
  14. Sitzeinrichtung (1) nach einem der vorhergehenden Patentansprüche, mit
    einer Mehrzahl des Elastomer-Torsionsfederelements, wobei die jeweiligen Elastomer-Torsionsfederelemente derart nebeneinander angeordnet sind, dass die Innengehäuse (12) und/oder die Aussengehäuse (14) der jeweiligen Elastomer-Torsionsfederelemente um dieselbe Drehachse (6) drehbar angeordnet sind.
  15. Sitzeinrichtung (1) nach Anspruch 14, wobei
    die Innengehäuse der jeweiligen Elastomer-Torsionsfederelemente starr miteinander verbunden sind und/oder die Aussengehäuse der jeweiligen Elastomer-Torsionsfederelemente starr miteinander verbunden sind.
EP10013971A 2010-01-22 2010-10-22 Sitzeinrichtung mit einem Elastomer-Torsionsfederelement Active EP2347678B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10013971A EP2347678B1 (de) 2010-01-22 2010-10-22 Sitzeinrichtung mit einem Elastomer-Torsionsfederelement
BRPI1100702-8A BRPI1100702A2 (pt) 2010-01-22 2011-01-11 conjunto de assento com um elemento de mola de tração elastomérico
US13/006,826 US8485604B2 (en) 2010-01-22 2011-01-14 Seat assembly with an elastomer torsion-spring element
JP2011012075A JP5749023B2 (ja) 2010-01-22 2011-01-24 弾性トーションばね要素を備えたシートアセンブリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10405013A EP2348226A1 (de) 2010-01-22 2010-01-22 Elastomer-Torsionsfederelement, Vorrichtung zur Kraftübertragung mit einem Elastomer-Torsionsfederelement und Sitzeinrichtung mit einer Vorrichtung zur Kraftübertragung
EP10013971A EP2347678B1 (de) 2010-01-22 2010-10-22 Sitzeinrichtung mit einem Elastomer-Torsionsfederelement

Publications (2)

Publication Number Publication Date
EP2347678A1 EP2347678A1 (de) 2011-07-27
EP2347678B1 true EP2347678B1 (de) 2013-02-20

Family

ID=42228695

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10405013A Withdrawn EP2348226A1 (de) 2010-01-22 2010-01-22 Elastomer-Torsionsfederelement, Vorrichtung zur Kraftübertragung mit einem Elastomer-Torsionsfederelement und Sitzeinrichtung mit einer Vorrichtung zur Kraftübertragung
EP10013971A Active EP2347678B1 (de) 2010-01-22 2010-10-22 Sitzeinrichtung mit einem Elastomer-Torsionsfederelement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10405013A Withdrawn EP2348226A1 (de) 2010-01-22 2010-01-22 Elastomer-Torsionsfederelement, Vorrichtung zur Kraftübertragung mit einem Elastomer-Torsionsfederelement und Sitzeinrichtung mit einer Vorrichtung zur Kraftübertragung

Country Status (4)

Country Link
US (1) US8485604B2 (de)
EP (2) EP2348226A1 (de)
JP (1) JP5749023B2 (de)
BR (1) BRPI1100702A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD699993S1 (en) 2011-06-03 2014-02-25 Keith Nelson Letter A chair
USD743712S1 (en) 2013-03-15 2015-11-24 Herman Miller, Inc. Chair
EP3576573B1 (de) * 2017-02-03 2021-04-07 Zhejiang Sunon Furniture Manufacture Co., Ltd. Stuhl
CN107136798B (zh) * 2017-05-08 2023-05-30 克恩-里伯斯(太仓)有限公司 一种座椅靠背调节器及其平衡装置
NO343925B1 (no) * 2017-10-20 2019-07-08 Ekornes Asa Sittemodul
US10383448B1 (en) 2018-03-28 2019-08-20 Haworth, Inc. Forward tilt assembly for chair seat
DE112019002029T5 (de) 2018-04-19 2021-06-17 Hachadorian Design & Calculation Gmbh Elektrische Steckverbindung mit führungskurvengesteuerter Verriegelungsvorrichtung
USD982340S1 (en) 2019-09-20 2023-04-04 Inno-Sports Co., Ltd. Chair
CN211380428U (zh) * 2019-10-09 2020-09-01 路华(厦门)贸易有限公司 一种椅子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003653A1 (en) * 1991-08-22 1993-03-04 Peter James Riddle Weight compensating chair backrest
CH681772A5 (en) * 1990-12-10 1993-05-28 Zesar Ag Retainer for chair seat with coupled support plate - permits forwards and backwards tilt of seat and involves holder plate at upper end of vertical column

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1906057A (en) * 1929-09-13 1933-04-25 Guy Murton Inc Universal joint
US1906067A (en) * 1931-11-30 1933-04-25 George H Howard Starter drive
DE1128307B (de) * 1959-03-24 1962-04-19 Auto Union Gmbh Wartungsfreies Drehschublager zur Lagerung von Schwenkarmen mit kleinen Winkelausschlaegen in Kraftfahrzeugen
DE1554058A1 (de) * 1966-08-04 1970-03-26 Heinz Paulisch Federung des Sitzes bei Sitzmoebeln,wie Polstersesseln,Kraftfahrzeugsitzen u.dgl.
US3881772A (en) * 1973-10-03 1975-05-06 Stewart Warner Corp Chair control mechanism
JPS5379106U (de) * 1976-12-03 1978-07-01
US4101166A (en) * 1977-07-07 1978-07-18 Gf Business Equipment, Inc. Chair control mechanism
GB2070727B (en) 1980-02-08 1983-07-27 Pritchard A C Motor mounting
US4586748A (en) * 1983-06-01 1986-05-06 Stow & Davis Furniture Company Adjustable chair iron
US4768761A (en) * 1984-03-21 1988-09-06 The B. F. Goodrich Company Rubber-plastic composite
DE3429186A1 (de) * 1984-08-08 1986-02-20 Uredat-Neuhoff, Angela, 4592 Lindern Sitzmoebel, insbesondere buerostuhl
US4597567A (en) * 1984-10-26 1986-07-01 Barry Wright Corporation Adjustable torsion spring
US4766761A (en) * 1987-09-03 1988-08-30 The B. F. Goodrich Company Method of determining the internal porosity of powders
EP0857444A3 (de) 1992-06-15 2000-08-30 Herman Miller, Inc. Wippmechanik für einen Stuhl
US6585320B2 (en) * 2001-06-15 2003-07-01 Virco Mgmt. Corporation Tilt control mechanism for a tilt back chair
KR100767959B1 (ko) * 2002-07-23 2007-10-17 오카무라 가부시키가이샤 의자
JP4153741B2 (ja) * 2002-07-23 2008-09-24 株式会社岡村製作所 椅子における背凭れ等の傾動装置
US20040189073A1 (en) * 2003-03-28 2004-09-30 Donald Chadwick Adjustable chair
US6945602B2 (en) * 2003-12-18 2005-09-20 Haworth, Inc. Tilt control mechanism for chair
US8172323B2 (en) * 2007-02-27 2012-05-08 Okamura Corporation Locking device for a movable member in a chair

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH681772A5 (en) * 1990-12-10 1993-05-28 Zesar Ag Retainer for chair seat with coupled support plate - permits forwards and backwards tilt of seat and involves holder plate at upper end of vertical column
WO1993003653A1 (en) * 1991-08-22 1993-03-04 Peter James Riddle Weight compensating chair backrest

Also Published As

Publication number Publication date
BRPI1100702A2 (pt) 2012-09-04
US20110181085A1 (en) 2011-07-28
US8485604B2 (en) 2013-07-16
EP2347678A1 (de) 2011-07-27
JP5749023B2 (ja) 2015-07-15
JP2011147787A (ja) 2011-08-04
EP2348226A1 (de) 2011-07-27

Similar Documents

Publication Publication Date Title
EP2347678B1 (de) Sitzeinrichtung mit einem Elastomer-Torsionsfederelement
EP2347676B1 (de) Tragstruktur für ein Rückenteil und/oder einen Sitz einer Sitzeinrichtung und Sitzeinrichtung mit einer derartigen Tragstruktur
DE10328300B4 (de) Verstellbeschlag für Kraftfahrzeugsitz
EP3281019B1 (de) Klemmhülse und ein verfahren zur herstellung einer klemmhülse
EP3094212B1 (de) Schwenkgelenk und möbelstück mit einem solchen
DE102014005551B3 (de) Fahrzeugsitz mit Rollenführung
DE3412139A1 (de) Stellmechanismus
EP2880334A1 (de) Ringmutter
EP1879758B1 (de) Geteilter elektromechanischer kraftfahrzeugstabilisator mit blockiereinrichtung und verfahren zur wankstabilisierung bei ausfall oder abschaltung des aktiven kraftfahrzeugstabilisators
DE102009038735B4 (de) Verstellvorrichtung für eine Fahrzeugkomponente
DE102019210891A1 (de) Drehbeschlag mit einer Exzenterbaugruppe
DE102011018895B4 (de) Rückenlehne mit einer Dämpfungsvorrichtung
DE2459352A1 (de) Vorrichtung zur umwandlung einer drehbewegung in eine axiale, translatorische bewegung und verfahren zur verwendung der vorrichtung zum richten, polieren oder walzen eines umdrehungskoerpers
EP2625442B1 (de) Klemmrollenfreilauf für eine verstelleinrichtung in einem kraftfahrzeug
EP0955482A2 (de) Gelenklager, insbesondere Federaugenlager
EP2186661A1 (de) Veränderbare Abstützung einer Schraubendruckfeder oder dergleichen für ein Kraftfahrzeug
DE10135627B4 (de) Verriegelungsvorrichtung für einen Fahrzeugsitz
DE102008036647A1 (de) Taumelgelenkbeschlag für einen Kraftfahrzeugsitz
DE10134355A1 (de) Verstellbeschlag für Kraftfahrzeugsitze
DE10112017A1 (de) Stellantrieb zur Verstellung zweier relativ zueinander beweglicher Bauteile
DE19524926B4 (de) Elastische Bolzenkupplung
DE102007036537B4 (de) Gelenkbeschlag eines Kraftfahrzeugsitzes
DE102016222521A1 (de) Tripodegelenk
DE2055536C3 (de) Streck- oder Stauchwalze für Textilbahnen und dünne Bahnen
DE102014221741A1 (de) Schwenkmodul einer Anhängerkupplung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120124

17Q First examination report despatched

Effective date: 20120312

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI AND CO. PATENTANWAELTE, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 597139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002339

Country of ref document: DE

Effective date: 20130418

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002339

Country of ref document: DE

Effective date: 20131121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101022

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181203

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181019

Year of fee payment: 9

Ref country code: IT

Payment date: 20181024

Year of fee payment: 9

Ref country code: BE

Payment date: 20181019

Year of fee payment: 9

Ref country code: FR

Payment date: 20181023

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 597139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191022

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191022

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191022

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230921

Year of fee payment: 14

Ref country code: CH

Payment date: 20231102

Year of fee payment: 14