EP2346979A2 - Procede d'elevage d'un vin et dispositif pour sa mise en oeuvre - Google Patents

Procede d'elevage d'un vin et dispositif pour sa mise en oeuvre

Info

Publication number
EP2346979A2
EP2346979A2 EP09760238A EP09760238A EP2346979A2 EP 2346979 A2 EP2346979 A2 EP 2346979A2 EP 09760238 A EP09760238 A EP 09760238A EP 09760238 A EP09760238 A EP 09760238A EP 2346979 A2 EP2346979 A2 EP 2346979A2
Authority
EP
European Patent Office
Prior art keywords
sky
wine
oxygen
container
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09760238A
Other languages
German (de)
English (en)
Inventor
Michael Paetzold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2346979A2 publication Critical patent/EP2346979A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G1/00Preparation of wine or sparkling wine
    • C12G1/02Preparation of must from grapes; Must treatment and fermentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231264Diffusers characterised by the shape of the diffuser element being in the form of plates, flat beams, flat membranes or films
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12HPASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
    • C12H1/00Pasteurisation, sterilisation, preservation, purification, clarification, or ageing of alcoholic beverages
    • C12H1/12Pasteurisation, sterilisation, preservation, purification, clarification, or ageing of alcoholic beverages without precipitation
    • C12H1/14Pasteurisation, sterilisation, preservation, purification, clarification, or ageing of alcoholic beverages without precipitation with non-precipitating compounds, e.g. sulfiting; Sequestration, e.g. with chelate-producing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes

Definitions

  • the present invention relates to a method of breeding a wine and to a device for its implementation.
  • the invention relates more particularly to a method of enriching wine, and in particular a method of supplying oxygen during the aging of the wine.
  • the wine (or must) may be stored during at least part of its aging in a stainless steel tank 12.
  • the tanks used for raising the wine comprise in the upper part at least one orifice to allow the introduction of the harvest, the must or various tools in the tank.
  • the tank comprises at least one stitching to allow the drain or extract a portion of the liquid contained.
  • These various orifices and taps are closed by traps or plugs sealed to liquids but not gas to limit the risk of pressurizing said tank.
  • a vat for rearing the wine may be equipped with a device for resuspending the lees and to homogenize the contents of said vat 12.
  • means for injecting an exogenous gas may be provided. in the lower part of the tank.
  • the bubbling of an exogenous gas in the tank can also be used to obtain an oxygenation of the wine.
  • the exogenous gas is pure oxygen or mixed with nitrogen.
  • the gas coming from a reserve 14 is injected from diffusion means 16. arranged in lower part of the tank 12. This method has many disadvantages.
  • the injection into the tank of an exogenous gas requires evacuation of the undissolved gases to avoid any overpressure in the tank 12 and is therefore accompanied by a loss of volatile aromas and alcohol compounds in proportion negligible.
  • this procedure leads to use a quantity of gas to diffuse much higher than that actually dissolved in the wine and thus to waste gas.
  • the wine 10 is circulated via conduits 18 in a liquid / gas exchanger 20 at which it is enriched by exchange with a mixture gas rich in oxygen before being reintroduced into the tank.
  • This process conceivable for a specific operation such as the oxygenation of a must, is not suitable for aging wine for months that would require the circulation of wine from all the cellars of the cellar and therefore a considerable energy expenditure account given the large volume to be circulated.
  • This solution also has the disadvantage of circulating permanently the wine which presents a technical and qualitative risk, because of permanent mixing and alterations due to pumps and valves.
  • the liquid / gas exchanger 20 could be placed in the tank in order to avoid getting the wine out of the tank.
  • the present invention aims to overcome the disadvantages of the prior art by providing a method for gently raising wine in a container by limiting the risk of tampering with said wine.
  • the subject of the invention is a process for rearing a wine contained in a container and surmounted by a gaseous phase called sky, said container comprising means for injecting a gaseous phase into said wine or liquid phase and a circuit which extends from at least one sampling point disposed at the sky to said injection means arranged in the liquid phase, and means for forced circulation of the gas phase between said sampling point and said injection means, characterized in that it consists in introducing into the container an inert gas in order to reduce the level of residual oxygen present in the sky, to recirculate the gaseous phase of the sky via the forced circulation means through the liquid phase so as to establish a forced equilibrium between the gaseous phase and the liquid phase contained in the container, to introduce oxygen into the container and to recirculate the gaseous phase uses the sky via the forced circulation means through the liquid phase so as to maintain a substantially constant residual oxygen level at the sky.
  • FIG. 1A is a diagram illustrating an oxygenation device according to a first variant of the prior art
  • FIG. 1B is a diagram illustrating an oxygenation device according to another variant of the prior art
  • FIGS. 2 to 8 are diagrams illustrating various embodiments of an oxygenation device according to the invention
  • FIG. 9 is a diagram illustrating another embodiment of an oxygenation device according to the invention.
  • FIG. 10A is a diagram illustrating an embodiment of a hatch of an oxygenation device according to the invention
  • FIG. 1B is a diagram illustrating another embodiment of a hatch of a device of FIG. oxygenation according to the invention
  • FIG. 11A is a perspective view of an embodiment of a device according to the invention.
  • FIG. HB is a section of the device of Figure HA.
  • a container adapted to store a liquid.
  • This container 30 can have different shapes and capacities.
  • this container 30 is made of a material capable of storing food products and gas.
  • This container is generally made of several parts and comprises different openings for the introduction of solid or liquid elements.
  • this container 30 is a stainless steel tank.
  • the present invention for managing a gaseous phase capable of being contacted with a liquid can be applied to different phases of wine making.
  • the container 30 comprises means 38 for injecting a gas into the wine, preferably placed at the bottom of the container 30.
  • the means 38 for injecting a gas may be arranged at or above the lees.
  • the injected gas contains oxygen and is intended to be at least partially dissolved in the wine.
  • the injected gas may be a mixture of oxygen and nitrogen.
  • the undissolved gas in the wine constitutes a component of the gaseous phase present at the level of the sky.
  • these injection means 38 may comprise a tube or a pierced plate for passing the gas in the form of bubbles in the wine.
  • the injection means 38 are in the form of at least one diffuser, for example a duct with a certain porosity as a function of the diffusion of the gas in the desired wine, for example a stainless steel sintered tube or a polyethylene tube.
  • This type of diffusion resulting from the porosity of a duct in contact with the wine makes it possible to obtain a micro-oxygenation enabling the exchange surface between the injected gas and the wine to be increased and thus a better dissolution of the gas. of contribution and a better homogenization of the wine.
  • the injection means 38 can be set in motion by the action of the passage of the gas and the injection of the bubbles.
  • the gas injection is associated with a movement of the injection means which forces the suspension of the lees accumulated in the lower part of the tank.
  • the injection means 38 have a spiral shape or of propeller or worm and are set in motion about an axis by the ejection of gases.
  • the device comprises a first circuit 40 which extends from at least one sampling point 42 disposed above the surface 34 of the liquid to the injection means 38 arranged in the liquid, preferably in part lower liquid and means 44 for forced circulation of the gas provided between the sampling point 42 and the injection means 38.
  • the circuit is disposed inside the container or outside.
  • the means 44 for forced circulation ensuring the removal of a portion of the gaseous phase of the sky 36 and its reintroduction into the wine 32 is in the form of a compressor or a pump.
  • the compressor is sized for low flow rates and pressures, such as 1 to 1000 l / min for an overpressure of 0.1 to 10 bar.
  • the gaseous phase of the sky limits the overpressure of the latter and possible loss of aromas.
  • the gaseous phase of the sky is relaxed in the wine, preferably at the bottom of the tank through the injection means 38 for resuspending the lees and homogenizing the contents of the tank 30.
  • the injection means 38 are dynamic and set in motion by the expansion of the injected gas, the bubbles and the movement thus created reinforcing the resuspension of the lees and the homogenization of the contents of the tank 30.
  • the wine does not transit through pumps or fluid circuits during a possible oxygenation which limits the risk of alterations.
  • the injection means 38 may be used to obtain a counterpressure in the circuit 40 between the forced circulation means 44 and said injection means 38.
  • means such as can be provided to adjust the value of the back pressure.
  • the device comprises a reservoir 46 provided between the forced circulation means 44 and the injection means 38 for accumulating the gas phase up to a set value.
  • two 48, preferably solenoid valves are placed upstream and downstream of the tank 46, for respectively closing the inlet and the outlet of the gas phase of the tank 46 to regulate the accumulation of the gas phase to a set value .
  • the set pressure can vary from 0.1 to 9.5 bars, ideally from 0.2 to 4 bars.
  • the device comprises means for introducing a filler gas and in particular oxygen in small amounts for possibly a long duration.
  • the device comprises at least one exchanger 50 for enriching the gas phase with at least one compound necessary for rearing the wine and / or for removing at least one compound from said phase gas.
  • the device comprises means for measuring the variation of the partial pressure of the component removed or brought to the level of the exchanger 50 as well as means for measuring the flow rate of the gas phase.
  • the exchanger 50 is connected in series and placed at the level of the circuit 40 between the sampling point 42 and the injection means 38, preferably after the forced circulation means 44.
  • the device may comprise a second circuit 52, distinct from the circuit 40, at which at least one exchanger 50 is placed to provide a supply or a withdrawal at the gaseous phase. from the sky 36 prior to sampling. This arrangement corresponds to a parallel connection.
  • the exchanger 50 may be of the gas / gas or gas / liquid type.
  • the exchanger 50 comprises at least one wall separating two gaseous phases between which is operated a controlled exchange between the two media.
  • the exchanger 50 comprises at least one wall separating the gas phase from the sky and a liquid between which is operated a controlled exchange between the two media.
  • this exchanger 50 comprises a membrane or a thin layer of polymer permeable to the component to be removed or to be introduced into the gaseous phase of the sky 36.
  • the forced circulation of the phase aerated gas from the sky 36 through this exchanger 50 allows to establish a continuous system of diffusion of oxygen in the wine for long periods.
  • the process of the invention makes it possible, from an initial stable state, to control the oxygen supply as a function of its slow dissolution rate in the wine, avoiding irregular inputs. and abrupt culprits of organoleptic degradations.
  • the device makes it possible to separate the enrichment operation into the filler gas from the wine into two separate and unitary operations, namely, initially, the equilibration of the partial pressure. in the supply gas of the gaseous phase of the sky asec that of the external medium through an exchanger 50, then in a second time, the dissolution of this filler gas in the wine by a second transfer from the gaseous phase to wine.
  • the separation into two unit operations makes it possible to precisely control the overall enrichment of the wine / gas phase system by controlling the partial pressure of the supply gas, outside the tank, with the help of, for example, a probe for measuring the partial pressure of the supply gas in the gas phase between the upstream and the downstream side of the exchanger 50.
  • this control does not require to plunge a probe for measuring the partial pressure of the supply gas such as oxygen dissolved in the wine.
  • Controlling the flow rate of the gas phase and the variation of the partial pressure of the supply gas upstream and downstream of the exchanger thus makes it possible to precisely control the actual quantity of filler gas actually dissolved in the wine.
  • the device comprises means for adjusting the transfer rate at the heat exchanger 50 and thereby controlling, for example, the kinetics of the diffusion of the filler gas into the wine.
  • the setting of the transfer rate in exchanger 50 may result from the adjustment of the surface area of the exchange surface at exchanger 50.
  • exchanger 50 comprises a variable and adjustable exchange surface.
  • the setting of the transfer rate in the heat exchanger 50 may result from the adjustment of the pressure difference on either side of the exchange surface of the heat exchanger 50, in particular the adjustment the difference in partial pressures of the gas to be supplied or removed present in the gaseous phase of the sky and that present in the atmosphere in contact with the exchange surface.
  • the device can be used to diffuse a filler gas such as oxygen for example in wine.
  • a filler gas such as oxygen for example in wine.
  • the device makes it possible to obtain self-regulation.
  • the pressure difference at the exchanger 50 on either side of the exchange surface increases, which results in a transfer of oxygen in the gaseous phase of the sky at the level of the said larger heat exchanger. to meet the need of wine.
  • the partial pressure of oxygen in the gaseous phase of the sky increases.
  • the partial pressure difference of the oxygen on either side of the exchange surface is smaller, the oxygen enrichment of the reinjected sky gas phase is reduced.
  • the pressure difference can be adjusted by changing the operating mode of the means 44 for forced circulation of the gas.
  • the setting of the transfer rate in the exchanger may result from the oxygen concentration of the medium in contact with the exchanger, the latter being placed in an enclosure with a controlled atmosphere.
  • the permeability rate (or the porosity rate) of the diffuser and / or the exchanger influences the transfer rate of the filler gas. All of these parameters are adjusted so as to obtain a gradual and long diffusion according to the needs of the wine to obtain the desired organoleptic characteristics of the wine.
  • the device of the invention makes it possible to obtain a constant consumption by the wine of small amounts of dissolved oxygen.
  • a threshold that can be chosen depending on the wine and the kinetics chosen, for example below 0.1 mg / l.
  • a polyethylene film having an oxygen permeability of 2.10 "13 ml.cm " 2 .
  • a polyethylene film having an oxygen permeability of 2.10 "13 ml.cm “ 2 .s “1 .pa “ 1 ) with a thickness of 0.1 mm and a surface of 1200 to 5000 cm 2
  • a film of silicone having an oxygen permeability of 400.10 "13 ml.cm “ 2 .s "1 .pa “ 1 ) with a thickness of 0.1 mm and a surface area of 6 to 25 cm 2 .
  • the device may comprise a tank 54 of supply gas to possibly make an initial contribution.
  • the exchanger 50 ensures a transfer of the supply gas between the gaseous phase of the sky 36 and the ambient air, the bubbling in the wine being obtained by diffusion through a duct with a gas permeability.
  • the exchanger 50 is placed in a chamber 56 with a controlled atmosphere containing a mixture of nitrogen and oxygen, for example with a ratio of 90/10.
  • the bubbling in the wine is obtained by diffusion through a sintered diffuser 58 stainless steel.
  • the device comprises means for adjusting the exchange surface of exchanger 50.
  • the exchanger 50 is in the form of a duct 60 with a permeability to the supply gas that extends from the sampling point 42 to the means 44 for forced circulation.
  • Said conduit can slide in a sheath impervious to the filler gas to modulate the area of the exchange surface.
  • the conduit 60 can slide at an orifice formed at the wall of the container, means ensuring the seal between the inside and the outside of the container at said orifice.
  • the conduit 60 can be introduced more significantly into the container in order to reduce the exchange surface with the outside or it can be extended more significantly from the vessel in order to increase the surface area. exchange.
  • the length of leads 60 in contact with the outside is 2 m.
  • the enrichment of the filler gas is carried out through a circuit independent of the circuit provided for the removal of the gaseous phase from the sky and its reinjection into the wine.
  • the exchanger 50 is disposed at the level of the sky 36.
  • a circuit makes it possible to take a gas outside or in an enclosure, to make it pass through the exchanger 50 and to reject it. outside container.
  • Circulation means 60 are preferably provided to force the passage of gas taken from the exchanger.
  • the exchanger 50 is disposed outside the container.
  • a circuit is provided for withdrawing the gaseous phase from the sky 36, passing it through the exchanger 50 and discharging it into the sky 36.
  • Circulation means 62 are preferably provided to force the passage of the gaseous phase of the sky in the exchanger.
  • the device of the invention can be used to allow the slow diffusion of other gases capable of solubilizing in wine, for example SO 2 or CO 2 .
  • the supplied component necessary for raising wine is introduced in gaseous form directly into the gaseous phase of the sky.
  • the different variants illustrated in FIGS. 4 to 8 can be used to remove a component present in the gas phase, the partial pressure differences of said component on either side of the wall or walls. permeable to said component in the exchanger 50 being adapted to ensure the transfer of said component of the gaseous phase of the sky 36 to another medium and thus remove it from the tank.
  • the injection means 38 may be in the form of a second exchanger placed in the wine ensuring a transfer of at least a portion of the forced gas phase forced by the means 44 in wine.
  • This second exchanger may comprise a porous or membrane module such as the first exchanger 50.
  • the device also comprises means for returning the gaseous phase in the air, for example a return duct extending from the second exchanger and opening into the sky 36.
  • the device comprises means for controlling the back pressure at the injection means 38, for example a valve whose control makes it possible to switch alternately from the bubble injection mode to the single diffusion mode.
  • this mode change is made by varying the back pressure respectively above or below a certain threshold function including the injection means and the hydrostatic pressure of the wine in the culture tank.
  • the device according to the invention thus allows the implementation of two methods either separately, or jointly, or alternatively.
  • a fraction of the gas phase of the tank top is circulated by the means 44 and compressed in a reservoir 46 to a set value.
  • the valve 48 disposed downstream is open so as to let the gaseous phase under pressure relax in the injection means 38 and thus achieve a homogenization of the wine including its solid constituents such as lees and precipitates and its gaseous constituents, such as oxygen, carbon dioxide, nitrogen, sulfur dioxide and its many volatile constituents such as ethanol and alcohols in general but also and especially such as aroma compounds so delicate to keep.
  • a fraction of the gas phase of the tank top is circulated by the means 44 through an exchanger 50 comprising a wall ensuring the exchanges between said gas phase and an external medium rich in at least one component required at the farm such as for example oxygen, before said enriched gaseous phase is at least partially reinjected into the wine.
  • the gaseous phase is used as carrier gas of the component necessary for rearing.
  • the device allows at the beginning of aging to enrich the gaseous phase and reinject it into the wine with agitation to improve the exchanges between the gaseous phase and the wine, to resuspend the lees and to homogenize the contents of the tank.
  • the device also allows oxygenation of the wine without agitation when it is desired to leave the lees at rest and no longer stir the wine at the end of aging as will be detailed later.
  • the device of the invention may comprise an automaton for programming different ways of raising wine and ensuring control of the circulation means, exchanges at the exchanger (s) and injection means.
  • the device according to the invention can be disassembled and used with different tanks.
  • the tanks may each be equipped with a device according to the invention.
  • the device may comprise means for absorbing and / or destroying at least one component of the gaseous phase of the sky, in particular at the level of the circuit 40.
  • the device for the introduction of a filler gas, the device comprises a filler chamber 54 and means for alternately communicating said filler chamber 54 either with the inside of the tank or with the ambient air or a tank of filler gas.
  • the filler chamber 54 is connected by a duct 56 to the upper part of the tank at which is provided a solenoid valve 58 and a duct 60 to the ambient air or to a tank (solution not shown) at which a solenoid valve 62 is provided.
  • the volume of the filler chamber 54 is adjustable so as to adjust the volume of gas introduced into the tank in one step.
  • the solenoid valve 58 is switched to the open state so as to penetrate the gas. supply to the filler chamber 54.
  • the solenoid valve 62 is turned off and the solenoid valve 58 is switched to the open state so that the gas contained in the filler chamber mixes with the gas contained in the sky of the tank.
  • the volume of the sky will represent less than 10% of the volume of the tank and the volume of daily oxygen intake less than 0.01% of the volume of the tank.
  • the tank is relatively tight and that the various orifices, connections or systems for introducing the supply gas are gastight.
  • the forced circulation means 44 and the feed gas introduction system 54 to 62 are arranged in at least one sealed and inert enclosure 64.
  • the tank comprises at its upper part an orifice 66 to allow the introduction of the harvest, the must and various tools, said orifice 66 being sealed by a lid equipped with gastight reinforced sealing means allowing isolate the inside of the tank with the outside atmosphere.
  • the orifice 66 is closed by a cover 68, a seal 70 being interposed between these two elements.
  • the vessel comprises an enclosure 72 covering the orifice 66 and its cover 68 immersed in a sanitized liquid.
  • the orifice 66 is surmounted by a duct 74 with a collar 76 at the top.
  • a first cover 78 is provided with a peripheral seal
  • the process comprises four successive steps.
  • the first initialization step consists in introducing an inert gas into the tank using the injection means 38 so as to reduce the level of residual oxygen in the air to an initial value.
  • the inert gas is pure nitrogen or a mixture of nitrogen with carbon dioxide (80% nitrogen, 20% carbon dioxide).
  • the injection of the inert gas is carried out with a sufficient flow rate, of the order of 10 l / min for the sky to be swept in the passage of the inert gas and that the residual oxygen content of the sky drops.
  • the sampling point 42 is connected to an exhaust 86 so as not to have a vessel under pressure.
  • a gas analyzer 88 makes it possible to measure the variation of the partial pressure of the oxygen and to follow the reduction in the level of residual oxygen in the air 36.
  • the exhaust 86 is closed, and the means 44 for forced circulation are operated so that the gas phase contained in the sky is injected into the liquid phase so as to force the balance between the two phases.
  • the forced balance is obtained after the recirculation of the gaseous phase of the sky in the liquid phase for several minutes, of the order of 20 minutes.
  • This duration also depends on the flow rate of the means 44 for forced circulation, preferably of the order of 201 / min, of the geometry of the vessel, preferably cylindrical, with a height greater than diameter, injection means 38, in particular their length (preferably greater than or equal to the radius of the tank) and their location (preferably near the bottom for example 100 mm from the bottom).
  • the liquid phase has a dissolved oxygen concentration directly proportional to the oxygen level in the so-called equilibrium sky. For example, if the gaseous phase of the sky comprises 1% by volume of residual oxygen, the liquid phase comprises of the order of 0.4 mg / l of dissolved oxygen.
  • the second so-called maintenance step aims to control that the system is gas-tight and that the supply of oxygen in small quantities will not be disturbed by a leak with the atmosphere outside the tank likely to bring more oxygen than the desired intake.
  • the gaseous phase of the sky is recirculated by spaced sequences without input and the gas analyzer 88 placed on the recirculation loop ensures the stability of the oxygen level.
  • this recirculation is not continuous but performed at regular intervals. For example, recirculation is performed for one minute every six hours. This step can last 24 hours.
  • the third step called intake is to introduce into the sky a given volume of oxygen.
  • this step can be carried out by circulating the gaseous phase of the sky in contact with an oxygen-permeable membrane or by using a filler chamber 54 and a set of solenoid valves 58 and
  • the volume of the filler chamber represents of the order of
  • the oxygen supply is done in successive doses of a volume of the order of
  • the fourth so-called recirculation step consists of recirculating the gaseous phase of the sky in the liquid phase using the injection means 38 and the forced circulation means 44.
  • This recirculation is related to the rate of enrichment when using a membrane at the recirculation circuit 40 for the supply or it can be independent at the supply phase when using a filler chamber 54 and a set of solenoid valves 58 and 62 for introducing the oxygen.
  • a gas analyzer is provided to analyze the composition of the gas phase of the sky so as to control the recirculation or the oxygen supply.
  • the recirculation and delivery steps are performed in a time offset manner or simultaneously.
  • control and control means are provided for controlling the solenoid valves 58 and 62 and the means 44 for forced circulation.
  • the process of the invention makes it possible, from an initial stable state, to control the oxygen supply as a function of its slow dissolution rate in the wine, avoiding irregular inputs. and abrupt culprits of organoleptic degradations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

L'objet de l'invention est un procédé d'élevage d'un vin (32) contenu dans un contenant (30) et surmonté d'une phase gazeuse appelée ciel (36), ledit contenant comportant des moyens (38) d'injection d'une phase gazeuse dans ledit vin (32) ou phase liquide et un circuit (40) qui s'étend depuis au moins un point de prélèvement (42) disposé au niveau du ciel (36) jusqu'auxdits moyens (38) d'injection disposés dans la phase liquide, ainsi que des moyens (44) de circulation forcée de la phase gazeuse entre ledit point de prélèvement (42) et lesdits moyens (38) d'injection, caractérisé en ce qu'il consiste à introduire dans le contenant (30) un gaz inerte afin de réduire le taux d'oxygène résiduel présent dans le ciel (36), à faire recirculer la phase gazeuse du ciel (36) via les moyens (44) de circulation forcée à travers la phase liquide de manière à établir un équilibre forcée entre la phase gazeuse et la phase liquide contenues dans le contenant (30), à introduire de l'oxygène dans le contenant et à faire recirculer la phase gazeuse du ciel (36) via les moyens (44) de circulation forcée à travers la phase liquide de façon à conserver un taux d'oxygène résiduel sensiblement constant au niveau du ciel.

Description

PROCEDE D'ELEVAGE D'UN VIN ET DISPOSITIF POUR SA MISE EN
OEUVRE
La présente invention se rapporte à un procédé d'élevage d'un vin ainsi qu'à un dispositif pour sa mise en oeuvre. L'invention se rapporte plus particulièrement à un procédé d'enrichissement du vin, et notamment un procédé d'apport d'oxygène lors de l'élevage du vin. Comme illustré sur les figures IA et IB, le vin (ou le moût) 10 peut être stocké durant au moins une partie de son élevage dans une cuve 12 en acier inoxydable. Les cuves utilisées pour l'élevage du vin comprennent en partie supérieure au moins un orifice pour permettre l'introduction de la vendange, du moût ou de différents outils dans la cuve. En complément, la cuve comprend au moins un piquage pour permettre de la vidanger ou de soutirer une partie du liquide contenu. Ces différents orifices et piquages sont obturés par des trappes ou des bouchons étanches aux liquides mais pas au gaz pour limiter les risques de mise en pression de ladite cuve. Une cuve pour l'élevage du vin peut être équipée d'un dispositif permettant de remettre en suspension les lies et d'homogénéiser le contenu de ladite cuve 12. A cet effet, des moyens d'injection d'un gaz exogène peuvent être prévus en partie inférieure de la cuve.
Le bullage d'un gaz exogène dans la cuve peut être également utilisé pour obtenir une oxygénation du vin. Dans ce cas, le gaz exogène est de l'oxygène pur ou mélangé avec de l'azote.
Selon un premier procédé d'oxygénation illustré sur la figure IA, le gaz provenant d'une réserve 14 est injecté à partir de moyens de diffusion 16 disposés en partie Inférieure de la cuve 12. Ce procédé présente de nombreux inconvénients.
Ainsi, l'injection dans la cuve d'un gaz exogène nécessite une évacuation des gaz non dissous pour éviter toute surpression dans la cuve 12 et s'accompagne donc d'une perte de composés d'arômes volatils et d'alcool en proportion non négligeable. Il en résulte un mode d'injection le plus souvent discontinu et donc une série d'oxydations brutales suivies de phases réductrices pour le vin, soit un élevage par paliers. De plus, ce mode opératoire conduit à utiliser une quantité de gaz à diffuser très supérieure à celle réellement dissoute dans le vin et donc à gaspiller ledit gaz.
Selon un autre procédé d'oxygénation décrit dans le document FR-2629096 et illustré sur la figure IB, le vin 10 est mis en circulation via des conduits 18 dans un échangeur liquide/gaz 20 au niveau duquel il est enrichi par échange avec un mélange gazeux riche en oxygène avant d'être réintroduit dans la cuve. Ce procédé, envisageable pour une opération ponctuelle comme l'oxygénation d'un moût, n'est pas adapté à l'élevage pendant des mois du vin qui nécessiterait la circulation du vin de toutes les cuves du chai et donc une dépense énergétique considérable compte tenu du volume important à faire circuler. Cette solution présente également l'inconvénient de faire circuler de manière permanente le vin ce qui présente un risque technique et qualitatif, du fait du brassage permanent et des altérations dues aux pompes et aux vannes. Selon une solution alternative, l'échangeur liquide/gaz 20 pourrait être placé dans la cuve afin d'éviter de sortir le vin de la cuve. Toutefois, même dans ce cas, il serait nécessaire de prévoir des pompes immergées dans la cuve ou tout autre moyen analogue pour mettre en mouvement le vin dans l'échangeur liquide/gaz 20 ce qui présenterait des risques d'altération accrus. Aussi, la présente invention vise à pallier les inconvénients de l'art antérieur en proposant un procédé permettant un élevage doux du vin dans un contenant en limitant les risques d'altérations dudit vin.
A cet effet, l'invention a pour objet un procédé d'élevage d'un vin contenu dans un contenant et surmonté d'une phase gazeuse appelée ciel, ledit contenant comportant des moyens d'injection d'une phase gazeuse dans ledit vin ou phase liquide et un circuit qui s'étend depuis au moins un point de prélèvement disposé au niveau du ciel jusqu'auxdits moyens d'injection disposés dans la phase liquide, ainsi que des moyens de circulation forcée de la phase gazeuse entre ledit point de prélèvement et lesdits moyens d'injection, caractérisé en ce qu'il consiste à introduire dans le contenant un gaz inerte afin de réduire le taux d'oxygène résiduel présent dans le ciel, à faire recirculer la phase gazeuse du ciel via les moyens de circulation forcée à travers la phase liquide de manière à établir un équilibre forcée entre la phase gazeuse et la phase liquide contenues dans le contenant, à introduire de l'oxygène dans le contenant et à faire recirculer la phase gazeuse du ciel via les moyens de circulation forcée à travers la phase liquide de façon à conserver un taux d'oxygène résiduel sensiblement constant au niveau du ciel. D'autres caractéristiques et avantages ressortiront de la description qui va suivre de l' invention, description donnée à titre d'exemple uniquement, en regard des dessins annexés sur lesquels :
- la figure IA est un schéma illustrant un dispositif d'oxygénation selon une première variante de l'art antérieur,
- la figure IB est un schéma illustrant un dispositif d'oxygénation selon une autre variante de l'art antérieur,
- les figures 2 à 8 sont des schémas illustrant différents modes de réalisation d'un dispositif d'oxygénation selon l'invention, - la figure 9 est un schéma illustrant un autre mode de réalisation d'un dispositif d'oxygénation selon l'invention,
- la figure 1OA est un schéma illustrant un mode de réalisation d'une trappe d'un dispositif d'oxygénation selon l'invention, - la figure 1OB est un schéma illustrant un autre mode de réalisation d'une trappe d'un dispositif d'oxygénation selon l'invention,
- la figure 11 A est une vue en perspective d'un mode de réalisation d'un dispositif selon l'invention, et
- la figure HB est une coupe du dispositif de la figure HA. Sur les différentes figures 2 à 8, on a représenté en 30 un contenant apte à stocker un liquide. Ce contenant 30 peut avoir différentes formes et contenances.
Selon un mode de réalisation non limitatif, ce contenant 30 est réalisé en un matériau apte à stocker des produits alimentaires et au gaz. Ce contenant est généralement réalisé en plusieurs parties et comprend différentes ouvertures pour l'introduction d'éléments solides ou liquides. A titre d'exemple, ce contenant 30 est une cuve en acier inoxydable. La présente invention visant à gérer une phase gazeuse susceptible d'être mise en contact avec un liquide peut être appliquée à différentes phases de l'élaboration du vin.
On a représenté en 32 le vin contenu dans le contenant 30 avec une surface 34 séparant la phase liquide et une phase gazeuse 36 appelée par la suite ciel, située au dessus de la surface 34. Pour la suite de la description, on entend par vin, un produit issu du raisin à ses différentes phases de son élaboration. Dans le contenant, le vin peut comprendre au niveau de la surface 34 une accumulation d'éléments solides appelée chapeau. La phase gazeuse du ciel 36 est constituée de gaz qui ont été extraits de la phase liquide suite à un équilibre thermodynamique et peuvent très difficilement se re-solubiliser, même si théoriquement un nouvel état thermodynamique le permettrait, faute d'une surface d'échange suffisante et/ou faute d'un apport d'énergie suffisant pour franchir la barrière énergétique de la hauteur de liquide. De manière connue, le contenant 30 comprend des moyens 38 pour injecter un gaz dans le vin, de préférence placés en pied du contenant 30.
En variante, les moyens 38 pour injecter un gaz peuvent être disposés au niveau ou au dessus des lies.
Dans le cas de l'oxygénation du vin, le gaz injecté contient de l'oxygène et est destiné à être dissous au moins partiellement dans le vin. A titre d'exemple le gaz injecté peut être un mélange d'oxygène et d'azote. Le gaz non dissous dans le vin constitue une composante de la phase gazeuse présente au niveau du ciel 36.
Selon un mode de réalisation, ces moyens 38 d'injection peuvent comprendre un tube ou une plaque percée pour laisser passer le gaz sous forme de bulles dans le vin. De préférence, les moyens 38 d'injection se présentent sous la forme d'au moins un diffuseur, par exemple un conduit asec une certaine porosité en fonction de la diffusion du gaz dans le vin souhaité, par exemple un tube fritte en acier inoxydable ou un tube en polyéthylène.
Ce type de diffusion découlant de la porosité d'un conduit en contact as/ec le vin permet d'obtenir une micro-oxygénation permettant d'augmenter la surface d'échange entre le gaz injecté et le vin et donc une meilleure dissolution du gaz d'apport et une meilleure homogénéisation du vin.
Dans un mode de réalisation complémentaire, les moyens 38 d'injection peuvent être mis en mouvement par l'action du passage du gaz et l'injection des bulles. Ainsi, l'injection du gaz est associée d'un mouvement des moyens d'injection qui force la mise en suspension des lies accumulées en partie inférieure de la cuve.
Par exemple, les moyens 38 d'injection présentent une forme de spirale ou d'hélice ou de vis sans fin et sont mis en mouvement autour d'un axe par l'éjection des gaz.
D'autres modes de réalisation peuvent être prévus pour les moyens 38 d'injection et seront décrits ultérieurement. Selon l'invention, le dispositif comprend un premier circuit 40 qui s'étend depuis au moins un point de prélèvement 42 disposé au dessus de la surface 34 du liquide jusqu'aux moyens 38 d'injection disposés dans le liquide, de préférence en partie inférieure du liquide ainsi que des moyens 44 de circulation forcée du gaz prévus entre le point de prélèvement 42 et les moyens 38 d'injection. Selon les cas, le circuit est disposé à l'intérieur du contenant ou à l'extérieur.
Selon un mode de réalisation, les moyens 44 de circulation forcée assurant le prélèvement d'une partie de la phase gazeuse du ciel 36 et sa réintroduction dans le vin 32 se présentent sous la forme d'un compresseur ou d'une pompe. De préférence, le compresseur est dimensionné pour de faibles débits et pressions, tels que 1 à 1000 l/min pour une surpression de 0,1 à 10 bars.
Le fait de faire recirculer la phase gazeuse du ciel permet de limiter la surpression de cette dernière et les éventuelles pertes d'arômes. Selon l'invention, la phase gazeuse du ciel est détendue dans le vin, de préférence en pied de cuve au travers des moyens d'injection 38 permettant la remise en suspension des lies et l'homogénéisation du contenu de la cuve 30. De préférence, les moyens 38 d'injection sont dynamiques et mis en mouvement par la détente du gaz injecté, les bulles et le mouvement ainsi créés renforçant la remise en suspension des lies et l'homogénéisation du contenu de la cuve 30. Selon un autre avantage, si un gaz d'apport est seulement partiellement dissous dans le vin, la fraction du gaz d'apport non dissoute accumulée dans la phase gazeuse du ciel 36 est de nouveau réintroduite dans le vin permettant de re-solubiliser des composés normalement perdus, car « sortis » du vin. Ceci conduit à améliorer le rapport entre la quantité de gaz d'apport réellement consommée par le vin et celle utilisée.
Enfin, selon l'invention, le vin ne transite pas à travers des pompes ou des circuits de fluide lors d'une éventuelle oxygénation ce qui limite les risques d'altérations. Selon un mode de réalisation simplifié illustré sur la figure 2, les moyens 38 d'injection peuvent être utilisés pour obtenir une contrepression dans le circuit 40 entre les moyens 44 de circulation forcée et lesdits moyens 38 d'injection. A cet effet, des moyens telle qu'une peuvent être prévus pour ajuster la valeur de la contre-pression. Selon un autre mode de réalisation illustré sur la figure 3, le dispositif comprend un réservoir 46 prévu entre les moyens 44 de circulation forcée et les moyens 38 d'injection pour accumuler la phase gazeuse jusqu'à une valeur de consigne. Selon ce mode de réalisation, deux 48, préférentiellement des électrovannes, sont placées en amont et en aval du réservoir 46, permettant de fermer respectivement l'admission et la sortie de la phase gazeuse du réservoir 46 pour réguler l'accumulation de la phase gazeuse jusqu'à une valeur de consigne.
A titre indicatif, la pression de consigne peut varier de 0,1 à 9,5 Bars, idéalement de 0,2 à 4 Bars. Selon l'invention, le dispositif comprend des moyens pour introduire un gaz d'apport et notamment de l'oxygène en faible quantité durant éventuellement une longue durée.
Selon des modes de réalisation illustrés sur les figures 4 à 8, le dispositif comprend au moins un échangeur 50 pour enrichir la phase gazeuse en au moins un composé nécessaire pour l'élevage du vin et/ou pour retirer au moins un composé de ladite phase gazeuse. De préférence, le dispositif comprend des moyens pour mesurer la variation de la pression partielle du composant retiré ou apporté au niveau de l'échangeur 50 ainsi que des moyens pour mesurer le débit de la phase gazeuse. Selon des variantes illustrées sur les figures 4 à 6, l'échangeur 50 est monté en série et placé au niveau du circuit 40 entre le point de prélèvement 42 et les moyens 38 d'injection, de préférence après les moyens 44 de circulation forcée. Selon d'autres variantes illustrées sur les figures 7 et 8, le dispositif peut comprendre un deuxième circuit 52, distinct du circuit 40, au niveau duquel est placé au moins un échangeur 50 pour réaliser un apport ou un retrait au niveau de la phase gazeuse du ciel 36 préalablement à son prélèvement. Cet agencement correspond à un montage en parallèle.
Contrairement à la solution proposée dans le document FR-2629096, la quantité d'énergie nécessaire pour la diffusion d'un gaz d'apport dans le vin est très nettement inférieure dans la mesure où le volume de la phase gazeuse est très nettement inférieur à celui du vin.
Selon les cas, l'échangeur 50 peut être de type gaz/gaz ou gaz/liquide. Dans le premier cas, l'échangeur 50 comprend au moins une paroi séparant deux phases gazeuses entre lesquelles est opéré un échange maîtrisé entre les deux milieux. Dans le second cas, l'échangeur 50 comprend au moins une paroi séparant la phase gazeuse du ciel et un liquide entre lesquels est opéré un échange maîtrisé entre les deux milieux.
Selon un mode de réalisation, cet échangeur 50 comprend une membrane ou une couche fine de polymère perméable au composant à retirer ou à apporter dans la phase gazeuse du ciel 36. Dans le cadre de l'oxygénation du vin, la circulation forcée de la phase gazeuse du ciel 36 au travers de cet échangeur 50 permet d'établir un régime continu de diffusion de l'oxygène dans le vin durant de longues périodes. Contrairement aux procédés de l'art antérieur, le procédé de l'invention permet, à partir d'un état stable initial, de piloter l'apport en oxygène en fonction de sa vitesse lente de dissolution dans le vin, en évitant les apports irréguliers et brusques responsables de dégradations organoleptiques. Selon un autre avantage de l'invention, le dispositif permet de séparer l'opération d'enrichissement en gaz d'apport du vin en deux opérations unitaires et distinctes, à savoir dans un premier temps la mise à l'équilibre de la pression partielle en gaz d'apport de la phase gazeuse du ciel asec celle du milieu externe au travers d'un échangeur 50, puis dans un second temps, la dissolution de ce gaz d'apport dans le vin par un second transfert depuis la phase gazeuse vers le vin. La séparation en deux opérations unitaires permet de contrôler précisément l'enrichissement global du système vin/phase gazeuse par la maîtrise de la pression partielle en gaz d'apport, à l'extérieur de la cuve, à l'aide par exemple d'une sonde de mesure de la pression partielle du gaz d'apport dans la phase gazeuse entre l'amont et l'aval de l'échangeur 50.
Selon l'invention, ce contrôle ne nécessite pas de plonger une sonde de mesure de la pression partielle du gaz d'apport tel que l'oxygène dissous dans le vin. Le contrôle du débit de la phase gazeuse et de la variation de la pression partielle du gaz d'apport en amont et en aval de l'échangeur permet ainsi de maîtriser précisément la quantité réelle de gaz d'apport réellement dissoute dans le vin. De préférence, le dispositif comprend des moyens pour ajuster le taux de transfert au niveau de l'échangeur 50 et contrôler de cette manière par exemple la cinétique de la diffusion du gaz d'apport dans le vin. Selon une première variante, le réglage du taux de transfert dans l'échangeur 50 peut découler de l'ajustement de la superficie de la surface d'échange au niveau de l'échangeur 50. Ainsi selon une première variante, l'échangeur 50 comprend une surface d'échange variable et ajustable. Selon une autre variante, le réglage du taux de transfert dans l'échangeur 50 peut découler de l'ajustement de la différence de pression de part et d'autre de la surface d'échange de l'échangeur 50, notamment de l'ajustement de la différence de pressions partielles du gaz à apporter ou à retirer présent dans la phase gazeuse du ciel et de celui présent dans l'atmosphère en contact avec la surface d'échange.
De manière non limitative, le dispositif peut être utilisé pour diffuser un gaz d'apport tel que de l'oxygène par exemple dans le vin. Dans ce cas, le dispositif permet d'obtenir une autorégulation. Ainsi, lorsque le vin peut dissoudre plus d'oxygène ce qui correspond a un besoin en oxygène, la pression partielle de l'oxygène de la phase gazeuse du ciel diminue. Par conséquent, la différence de pression au niveau de l'échangeur 50 de part et d'autre de la surface d'échange augmente ce qui se traduit par un transfert d'oxygène dans la phase gazeuse du ciel au niveau dudit échangeur plus importante afin de répondre au besoin du vin. A contrario, lorsque le vin ne peut plus dissoudre d'oxygène, la pression partielle de l'oxygène de la phase gazeuse du ciel augmente. Par conséquent, la différence de pression partielle de l'oxygène de part et d'autre de la surface d'échange étant plus faible, l'enrichissement en oxygène de la phase gazeuse du ciel réinjecté est réduit. La différence de pression peut être ajustée en modifiant le régime de fonctionnement des moyens 44 de circulation forcée du gaz. En variante, le réglage du taux de transfert dans l'échangeur peut découler de la concentration en oxygène du milieu en contact avec l'échangeur, ce dernier étant placé dans une enceinte avec une atmosphère contrôlée. Toutefois, d'autres éléments peuvent permettre d'agir sur cette différence de pression. Ainsi, les taux de perméabilité (ou le taux de porosité) du diffuseur et/ou de l'échangeur influencent le taux de transfert en gaz d'apport. L'ensemble de ces paramètres sont ajustés de manière à obtenir une diffusion progressive et longue en fonction des besoins du vin pour obtenir les caractéristiques organoleptiques du vin recherchées. Ainsi, le dispositif de l'invention permet d'obtenir une consommation constante par le vin de petites quantités d'oxygène dissous.
Ainsi, on cherchera à limiter la quantité d'oxygène dissous à chaque instant en dessous d'un seuil pouvant être choisi en fonction du vin et de la cinétique choisie, par exemple en dessous de 0,1 mg/l. A titre indicatif, pour un contenant de 225 litres, pour un apport de 10 à 40 mg/l/an, on peut utiliser un film de polyéthylène (ayant une perméabilité à l'oxygène de 2.10"13 ml.cm"2.s"1.pa"1) avec une épaisseur de 0,1 mm et une surface de 300 à 1000 cm2 , un film de polyéthylène avec une épaisseur de 0,01 mm et une surface de 30 à 100 cm2 ou un film de silicone (ayant une perméabilité à l'oxygène de 400.10"13 ml.cm"2.s"1.pa"1) avec une épaisseur de 0,1 mm et une surface de 1,5 à 5 cm 2.
A titre indicatif, pour un contenant de 1000 litres, pour un apport de 10 à 40 mg/l/an, on peut utiliser un film de polyéthylène (ayant une perméabilité à l'oxygène de 2.10"13 ml.cm"2.s"1.pa"1) avec une épaisseur de 0,1 mm et une surface de 1200 à 5000 cm2 , un film de polyéthylène avec une épaisseur de 0,01 mm et une surface de 120 à 500 cm2 ou un film de silicone (ayant une perméabilité à l'oxygène de 400.10"13 ml.cm"2.s"1.pa"1) avec une épaisseur de 0,1 mm et une surface de 6 à 25 cm2.
Comme illustré sur la figure 4, le dispositif peut comprendre un réservoir 54 de gaz d'apport pour réaliser éventuellement un apport initial. Selon le mode de réalisation illustré sur la figure 4, l'échangeur 50 assure un transfert de gaz d'apport entre la phase gazeuse du ciel 36 et l'air ambiant, le bullage dans le vin étant obtenu par diffusion à travers un conduit avec une perméabilité au gaz. Selon un mode de réalisation illustré sur la figure 5, l'échangeur 50 est placé dans une enceinte 56 avec une atmosphère contrôlée contenant un mélange d'azote et d'oxygène, par exemple avec un rapport de 90/10. Selon l'exemple illustré sur cette figure, le bullage dans le vin est obtenu par la diffusion à travers un diffuseur 58 fritte en acier inoxydable.
Sur la figure 6, le dispositif comprend des moyens pour régler la surface d'échange de l'échangeur 50.
Selon ce mode de réalisation, l'échangeur 50 se présente sous la forme d'un conduit 60 avec une perméabilité au gaz d'apport qui s'étend depuis le point de prélèvement 42 jusqu'aux moyens 44 de circulation forcée. Ledit conduit peut coulisser dans un fourreau imperméable au gaz d'apport pour moduler la superficie de la surface d'échange. Selon un mode de réalisation, le conduit 60 peut coulisser au niveau d'un orifice ménagé au niveau de la paroi du contenant, des moyens assurant l'étanchéité entre l'intérieur et l'extérieur du contenant au niveau dudit orifice. En fonction des besoins, le conduit 60 peut être introduit de manière plus importante dans le contenant afin de réduire la surface d'échange avec l'extérieur ou il peut être sorti de manière plus importante de la cuve afin d'augmenter la surface d'échange. A titre d'exemple, si on souhaite apporter 50 mg/l/an à 1000 litres de vin au travers d'un conduit en silicone de 0,5 mm d'épaisseur et de 2 mm de diamètre, il faudra que la longueur du conduit 60 en contact avec l'extérieur soit de 2 m. Sur les figures 7 et 8, l'enrichissement en gaz d'apport est réalisé au travers d'un circuit indépendant du circuit prévu pour le prélèvement de la phase gazeuse du ciel et sa réinjection dans le vin. Selon une première variante illustrée sur la figure 7, l'échangeur 50 est disposé au niveau du ciel 36. Un circuit permet de prélever un gaz à l'extérieur ou dans une enceinte, de lui faire traverser l'échangeur 50 et de le rejeter à l'extérieur du contenant. Des moyens 60 de circulation sont de préférence prévus pour forcer le passage du gaz prélevé dans l'échangeur.
Selon une autre variante illustrée sur la figure 8, l'échangeur 50 est disposé à l'extérieur du contenant. Dans ce cas, un circuit est prévu pour prélever la phase gazeuse du ciel 36, la faire traverser l'échangeur 50 et la rejeter dans le ciel 36. Des moyens 62 de circulation sont de préférence prévus pour forcer le passage de la phase gazeuse du ciel dans l'échangeur.
Le dispositif de l'invention peut être utilisé pour permettre la diffusion lente d'autres gaz aptes à se solubiliser dans le vin, par exemple le SO2 ou le CO2. Dans un mode de réalisation simplifié, le composant apporté nécessaire à l'élevage du vin est introduit sous forme gazeuse directement dans la phase gazeuse du ciel.
Selon un autre aspect de l'invention, les différentes variantes illustrées sur les figures 4 à 8 peuvent être utilisées pour retirer un composant présent dans la phase gazeuse, les différences de pression partielle dudit composant de part et d'autre de la ou des parois perméables audit composant dans l'échangeur 50 étant adaptées pour assurer le transfert dudit composant de la phase gazeuse du ciel 36 vers un autre milieu et ainsi le retirer de la cuve. Selon un autre mode de réalisation, les moyens 38 d'injection peuvent se présenter sous la forme d'un second échangeur placé dans le vin assurant un transfert d'au moins une partie de la phase gazeuse mise en circulation forcée par les moyens 44 dans le vin. Ce second échangeur peut comprendre un module poreux ou membranaire comme le premier échangeur 50. Dans le cas d'une simple diffusion, le dispositif comporte également des moyens de retour de la phase gazeuse dans le ciel, par exemple un conduit de retour s'étendant depuis le second échangeur et débouchant dans le ciel 36.
Dans un mode de réalisation privilégié, le dispositif comprend des moyens pour contrôler la contre-pression au niveau des moyens d'injection 38, par exemple une vanne dont le pilotage permet de passer alternativement du mode d'injection de bulles au mode de simple diffusion. Ainsi, ce changement de modes est opéré en faisant varier la contre-pression respectivement au dessus ou au dessous d'un certain seuil fonction notamment des moyens d'injection et de la pression hydrostatique du vin dans la cuve d'élevage.
Le dispositif selon l'invention permet donc la mise en oeuvre de deux procédés soit séparément, soit conjointement, soit alternativement. Selon le premier procédé, une fraction de la phase gazeuse du ciel de la cuve est mise en circulation par les moyens 44 et comprimée dans un réservoir 46jusqu'à une valeur de consigne. Lorsque cette dernière est atteinte, la vanne 48 disposée en aval est ouverte de manière à laisser passer la phase gazeuse sous pression se détendre dans les moyens 38 d'injection et réaliser ainsi une homogénéisation du vin incluant ses constituants solides tels que les lies et précipitats et ses constituants gazeux, tels que l'oxygène, le dioxyde de carbone, l'azote, le dioxyde de soufre et ses nombreux constituants volatils tels que l'éthanol et les alcools en général mais aussi et surtout tels que les composés d'arômes si délicats à conserver.
Selon un second procédé, une fraction de la phase gazeuse du ciel de la cuve est mise en circulation par les moyens 44 à travers un échangeur 50 comportant une paroi assurant les échanges entre ladite phase gazeuse et un milieu externe riche en au moins un composant nécessaire à l'élevage tel que par exemple l'oxygène, avant que ladite phase gazeuse enrichie soit au moins partiellement réinjectée dans le vin. Dans ce cas, la phase gazeuse est utilisée comme gaz vecteur du composant nécessaire à l'élevage. En contrôlant la contre-pression au niveau des moyens 38 d'injection et/ou en autorisant le transfert que d'une partie de la phase gazeuse au niveau des moyens 38 d'injection et en rejetant la partie restante dans le ciel via un conduit de retour, il est possible de choisir entre un mode d'injection avec ou sans agitation.
Ainsi, le dispositif permet en début d'élevage d'enrichir la phase gazeuse et de la réinjecter dans le vin avec agitation afin d'améliorer les échanges entre la phase gazeuse et le vin, de remettre en suspension les lies et d'homogénéiser le contenu de la cuve.
Le dispositif permet également une oxygénation du vin sans agitation lorsque l'on souhaite laisser les lies au repos et ne plus agiter le vin en fin d'élevage comme cela sera détaillé ultérieurement. Le dispositif de l'invention peut comprendre un automate permettant de programmer différents modes d'élevage du vin et assurant le contrôle des moyens de circulation, des échanges au niveau du ou des échangeur(s) et des moyens d'injection. Selon les cas, le dispositif selon l'invention peut être démonté et être utilisé avec différentes cuves. En variante, les cuves peuvent être équipées chacune d'un dispositif selon l'invention.
Le dispositif peut comprendre des moyens d'absorption et/ou de destruction d'au moins un composant de la phase gazeuse du ciel, notamment au niveau du circuit 40. Selon un autre mode de réalisation illustré sur les figures 9, HA et HB, pour l'introduction d'un gaz d'apport, le dispositif comprend une chambre d'apport 54 et des moyens pour faire communiquer de manière alternée ladite chambre d'apport 54 soit avec l'intérieur de la cuve soit avec l'air ambiant ou un réservoir de gaz d'apport. A cet effet, la chambre d'apport 54 est reliée par un conduit 56 à la partie supérieure de la cuve au niveau duquel est prévue une électrovanne 58 et par un conduit 60 à l'air ambiant ou à un réservoir (solution non représentée) au niveau duquel est prévue une électrovanne 62. Avantageusement, le volume de la chambre d'apport 54 est ajustable de manière à pouvoir régler le volume de gaz introduit dans la cuve en une étape.
Ainsi pour introduire un volume donné de gaz (correspondant au volume de la chambre d'apport), l'électrovanne 58 étant à l'état fermé, on commute l'électrovanne 62 à l'état ouvert de manière à faire pénétrer le gaz d'apport dans la chambre d'apport 54. Lorsque la chambre d'apport 54 est remplie, on commute l'électrovanne 62 à l'état fermé puis l'électrovanne 58 est commutée à l'état ouvert de manière à ce que le gaz contenu dans la chambre d'apport se mélange avec le gaz contenu au niveau du ciel de la cuve. En pratique, le volume du ciel représentera moins de 10% du volume de la cuve et le volume d'apport journalier en oxygène inférieur à 0,01% du volume de la cuve.
Compte tenu de ce faible apport d'oxygène, il est important que la cuve soit relativement étanche et que les différents orifices, piquages ou systèmes d'introduction du gaz d'apport soient étanches au gaz. A cet effet, comme illustré sur la figure 9, les moyens 44 de circulation forcée et le système d'introduction du gaz d'apport 54 à 62 sont disposés dans au moins une enceinte 64 étanche et inertée.
En complément, la cuve comprend au niveau de sa partie supérieure un orifice 66 pour permettre l'introduction de la vendange, du moût et de différents outils, ledit orifice 66 étant obturé par un couvercle équipé de moyens d'étanchéité renforcés étanches aux gaz permettant d'isoler l'intérieur de la cuve avec l'atmosphère extérieure.
Selon un mode de réalisation illustré sur la figure 10 A, l'orifice 66 est obturé par un couvercle 68, un joint 70 étant intercalé entre ces deux éléments. Pour renforcer l'étanchéité, la cuve comprend une enceinte 72 recouvrant l'orifice 66 et son couvercle 68 immergés dans un liquide aseptisé.
Selon un autre mode de réalisation illustré sur la figure 1OB, l'orifice 66 est surmonté d'un conduit 74 avec en partie supérieure une collerette 76. Pour obturer l'orifice, on prévoit un premier couvercle 78 avec un joint périphérique
80 intercalé entre le premier couvercle 78 et la collerette 76 ainsi qu'un second couvercle 82 recouvrant le premier avec un joint périphérique 84 intercalé entre ledit second couvercle 82 et la collerette 76, l'espace prévu entre les deux couvercles 78 et 82 étant rempli d'un gaz de préférence de l'azote sous pression contrôlée.
Pour assurer une oxygénation optimale, le procédé comprend quatre étapes successives. La première étape d'initialisation consiste à introduire dans la cuve un gaz inerte à l'aide des moyens 38 d'injection de manière à faire chuter le taux d'oxygène résiduel dans le ciel jusqu'à une valeur dite initiale. A titre d'exemple le gaz inerte est de l'azote pur ou un mélange d'azote avec du gaz carbonique (80% azote, 20% gaz carbonique). L'injection du gaz inerte est réalisée avec un débit suffisant, de l'ordre de 10l/min pour que le ciel soit balayé au passage du gaz inerte et que le taux d'oxygène résiduel du ciel chute.
Le point de prélèvement 42 est relié à un échappement 86 pour ne pas avoir une cuve sous pression. Un analyseur de gaz 88 permet de mesurer la variation de la pression partielle de l'oxygène et de suivre la réduction du taux d'oxygène résiduel dans le ciel 36. Lorsque le taux souhaité d'oxygène résiduel dans le ciel est atteint par exemple de l'ordre de 1% en volume du ciel, l'échappement 86 est fermé, et les moyens 44 de circulation forcée sont mis en fonctionnement de manière à ce que la phase gazeuse contenue dans le ciel soit injectée dans la phase liquide de manière à forcer l'équilibre entre les deux phases. L'équilibre forcé est obtenu après la recirculation de la phase gazeuse du ciel dans la phase liquide pendant plusieurs minutes, de l'ordre de 20 minutes. Cette durée dépend également du débit des moyens 44 de circulation forcée, de préférence de l'ordre de 201/min, de la géométrie de la cuve, de préférence cylindrique, de hauteur supérieure au diamètre, des moyens 38 d'injection, notamment de leur longueur (de préférence supérieure ou égale au rayon de la cuve) et de leur emplacement (de préférence à proximité du fond par exemple à 100 mm du fond).
Au terme de cette première étape, la phase liquide présente une concentration d'oxygène dissout directement proportionnel au taux d'oxygène dans le ciel dit d'équilibre. Par exemple si la phase gazeuse du ciel comprend 1% en volume d'oxygène résiduel, la phase liquide comprend de l'ordre de 0,4 mg/l d'oxygène dissout.
La deuxième étape dite de maintien vise à contrôler que le système est étanche au gaz et que l'apport d'oxygène en faible quantité ne va pas être perturbé par une fuite avec l'atmosphère extérieure à la cuve susceptible d'apporter plus d'oxygène que l'apport souhaité.
Durant cette deuxième étape, la phase gazeuse du ciel est mis en recirculation par séquences espacées sans apport et l'analyseur de gaz 88 placé sur la boucle de recirculation permet de s'assurer de la stabilité du taux d'oxygène.
De préférence, cette recirculation n'est pas continue mais réalisée à intervalles réguliers. Par exemple, la recirculation est opérée pendant une minute toutes les six heures. Cette étape peut durer 24 heures.
La troisième étape dite d'apport consiste à introduire dans le ciel un volume donné d'oxygène. Selon les variantes des dispositifs, cette étape peut s'opérer en faisant circuler la phase gazeuse du ciel au contact d'une membrane perméable à l'oxygène ou en utilisant une chambre d'apport 54 et un jeu d'électrovannes 58 et
62. Avantageusement, le volume de la chambre d'apport représente de l'ordre de
0,001% du volume de la cuve. Ainsi, l'apport en oxygène se fait par doses successives d'un volume de l'ordre de
0,001% du volume de la cuve afin d'obtenir une oxygénation progressive adaptée à la lente dissolution dans le vin. La quatrième étape dite de recirculation consiste à faire recirculer la phase gazeuse du ciel dans la phase liquide en utilisant les moyens 38 d'injection et les moyens 44 de circulation forcée. Cette recirculation est liée à la vitesse d'enrichissement lorsqu'on utilise une membrane au niveau du circuit 40 de recirculation pour l'apport ou elle peut être indépendante à la phase d'apport lorsqu'on utilise une chambre d'apport 54 et un jeu d'électrovannes 58 et 62 pour introduire l'oxygène. Dans ce dernier cas, un analyseur de gaz est prévu pour analyser la composition de la phase gazeuse du ciel de manière à piloter la recirculation ou l'apport d'oxygène. Les étapes de recirculation et d'apport sont réalisées de manière décalée dans le temps ou de manière simultanée. Les fréquences de l'apport et/ou de la recirculation sont ajustées de façon à conserver un taux d'oxygène résiduel sensiblement constant au niveau du ciel dit taux d'équilibre. De préférence, des moyens de contrôle et de pilotage sont prévus pour piloter les électrovannes 58 et 62 et les moyens 44 de circulation forcée.
Ainsi lorsque le taux d'oxygène du ciel diminue et que la vitesse de consommation accélère de façon dangereuse et risque d'occasionner une dégradation aromatique, il est possible d'interrompre ou de réduire la recirculation. Dans le cas contraire, lorsque le taux d'oxygène du ciel augmente et que la vitesse de consommation décroit, il est possible d'augmenter la recirculation de la phase gazeuse au travers de la phase liquide.
Contrairement aux procédés de l'art antérieur, le procédé de l'invention permet, à partir d'un état stable initial, de piloter l'apport en oxygène en fonction de sa vitesse lente de dissolution dans le vin, en évitant les apports irréguliers et brusques responsables de dégradations organoleptiques.

Claims

REVENDICATIONS
1. Procédé d'élevage d'un vin (32) contenu dans un contenant (30) et surmonté d'une phase gazeuse appelée ciel (36), ledit contenant comportant des moyens (38) d'injection d'une phase gazeuse dans ledit vin (32) ou phase liquide et un circuit (40) qui s'étend depuis au moins un point de prélèvement (42) disposé au niveau du ciel (36) jusqu'auxdits moyens (38) d'injection disposés dans la phase liquide, ainsi que des moyens (44) de circulation forcée de la phase gazeuse entre ledit point de prélèvement (42) et lesdits moyens (38) d'injection, caractérisé en ce qu'il consiste à introduire dans le contenant (30) un gaz inerte afin de réduire le taux d'oxygène résiduel présent dans le ciel (36), à faire recirculer la phase gazeuse du ciel (36) via les moyens (44) de circulation forcée à travers la phase liquide de manière à établir un équilibre forcée entre la phase gazeuse et la phase liquide contenues dans le contenant (30), à introduire de l'oxygène dans le contenant et à faire recirculer la phase gazeuse du ciel (36) via les moyens (44) de circulation forcée à travers la phase liquide de façon à conserver un taux d'oxygène résiduel sensiblement constant au niveau du ciel.
2. Procédé d'élevage d'un vin selon la revendication 1, caractérisé en ce qu'il consiste préalablement à l'apport en oxygène à contrôler la stabilité du taux d'oxygène dans le ciel (36).
3. Procédé d'élevage d'un vin selon la revendication 2, caractérisé en ce qu'il consiste à faire recirculer la phase gazeuse du ciel (36) via les moyens (44) de circulation forcée à travers la phase liquide durant des séquences espacées.
4. Procédé d'élevage d'un vin selon l'une quelconque des revendications précédentes, caractérisé en ce que le taux de l'oxygène résiduel présent dans le ciel est de l'ordre de 1% en volume du ciel.
5. Procédé d'élevage d'un vin selon l'une quelconque des revendications précédentes, caractérisé en ce que l'apport en oxygène se fait par doses successives d'un volume de l'ordre de 0,001% du volume de la cuve.
6. Dispositif pour la mise en oeuvre du procédé d'élevage du vin selon l'une quelconque des revendications précédentes, comportant un contenant apte à contenir du vin surmonté d'une phase gazeuse appelée ciel (36), ledit contenant comportant des moyens (38) d'injection d'une phase gazeuse dans ledit vin (32) ou phase liquide et un circuit (40) qui s'étend depuis au moins un point de prélèvement (42) disposé au niveau du ciel (36) jusqu'auxdits moyens (38) d'injection disposés dans la phase liquide, ainsi que des moyens (44) de circulation forcée de la phase gazeuse entre ledit point de prélèvement (42) et lesdits moyens (38) d'injection, caractérisé en ce qu'il comprend des moyens pour mesurer le taux d'oxygène résiduel contenu dans le ciel (36), des moyens pour introduire de l'oxygène dans le contenant et des moyens de contrôle et de pilotage pour piloter lesdits moyens (44) de circulation forcée et lesdits moyens pour introduire l'oxygène en fonction du taux mesuré d'oxygène résiduel contenu dans le ciel.
7. Dispositif pour l'élevage du vin selon la revendication 6, caractérisé en ce que les moyens pour introduire l'oxygène comprennent une chambre d'apport (54) et des moyens pour faire communiquer de manière alternée ladite chambre d'apport (54) soit avec l'intérieur du contenant soit avec l'air ambiant ou un réservoir de gaz d'apport.
8. Dispositif pour l'élevage du vin selon la revendication 7, caractérisé en ce que la chambre d'apport (54) est reliée par un conduit (56) à la partie supérieure de la cuve au niveau duquel est prévue une électrovanne (58) et par un conduit (60) à l'air ambiant ou à un réservoir au niveau duquel est prévue une électrovanne (62).
9. Dispositif pour l'élevage du vin selon la revendication 7 ou 8, caractérisé en ce que la chambre d'apport (54) a un volume réglable.
10. Dispositif pour l'élevage du vin selon l'une quelconque des revendications 6 à 9, caractérisé en ce qu'il comprend au moins une enceinte étanche et inerte dans laquelle sont disposés les moyens (44) de circulation forcée et les moyens pour introduire l'oxygène.
11. Dispositif pour l'élevage du vin selon la revendication 6, caractérisé en ce que les moyens pour introduire l'oxygène comprennent au moins un échangeur (50) assurant le transfert de l'oxygène entre la phase gazeuse du ciel (36) et un milieu et comportant une surface d'échange perméable à l'oxygène contre laquelle s'écoule la phase gazeuse du ciel.
12. Dispositif pour l'élevage du vin selon l'une quelconque des revendications 6 à 11, caractérisé en ce que le contenant (30) comprend en partie supérieure un orifice (66) obturé par un couvercle équipé de moyens d'étanchéité renforcés étanches aux gaz.
EP09760238A 2008-10-29 2009-10-29 Procede d'elevage d'un vin et dispositif pour sa mise en oeuvre Withdrawn EP2346979A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857352A FR2937651B1 (fr) 2008-10-29 2008-10-29 Dispositif pour une cuve d'elevage d'un vin et procedes associes
PCT/FR2009/052089 WO2010049653A2 (fr) 2008-10-29 2009-10-29 Procede d'elevage d'un vin et dispositif pour sa mise en oeuvre

Publications (1)

Publication Number Publication Date
EP2346979A2 true EP2346979A2 (fr) 2011-07-27

Family

ID=40637098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09760238A Withdrawn EP2346979A2 (fr) 2008-10-29 2009-10-29 Procede d'elevage d'un vin et dispositif pour sa mise en oeuvre

Country Status (7)

Country Link
US (1) US20110268856A1 (fr)
EP (1) EP2346979A2 (fr)
AU (1) AU2009309539A1 (fr)
CL (1) CL2011000974A1 (fr)
FR (1) FR2937651B1 (fr)
WO (1) WO2010049653A2 (fr)
ZA (1) ZA201103105B (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1393121B1 (it) * 2009-03-05 2012-04-11 Air Liquide Italia S P A Metodo ed impianto per la rimozione dell'ossigeno disciolto ed il mantenimento in atmosfera controllata dell'uva, o di altri prodotti vegetali, nei mezzi meccanici di raccolta, trasporto e stoccaggio
EP2582782B1 (fr) * 2010-06-21 2018-08-08 Noform S.r.l. Dispositif de fermentation
US20120196016A1 (en) * 2011-02-01 2012-08-02 Palmer Neal Tank for the storage and/or maturation of an alcoholic beverage
EP2690166A1 (fr) * 2012-07-25 2014-01-29 Mecánica Logroñesa 71, S.L. Procédé et appareil de fermentation
ES2396676B1 (es) * 2012-11-08 2013-09-20 Máquinas Y Herramientas La Rioja, S.L. Proceso de fermentación de mosto, y cuba de fermentación
EP2918666B1 (fr) * 2012-11-08 2018-05-02 Maquinas y Herramientas la Rioja, S.L. Processus de fermentation de moût et cuve de fermentation
ES2901060T3 (es) * 2015-11-23 2022-03-21 Nz Inst Plant & Food Res Ltd Método y aparato para liberar gas
US20220251486A1 (en) * 2019-04-22 2022-08-11 Pulsair Systems, Inc. A method for draining fermenting must from a tank, and related systems
FR3103823A1 (fr) * 2019-12-02 2021-06-04 Franck LABEYRIE Dispositif de bullage pour cuve de fermentation et appareillage a cette fin

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE743367C (de) * 1940-11-12 1943-12-23 Otto Gamerdinger Verfahren zum Aufbrechen des Maischekuchens bei der Rotweingaerung
DE2706831A1 (de) * 1977-02-17 1978-08-31 Eckes Fa Peter Verfahren zur kontinuierlichen vergaerung von vergaerbaren loesungen mit hefe
IT1164059B (it) * 1978-11-06 1987-04-08 Inventa A G Fur Forschung & Pa Procedimento ed apparecchio per la produzione di biogas
CH651064A5 (fr) * 1982-04-26 1985-08-30 Nestle Sa Procede et fermenteur pour la production d'alcool.
US4595296A (en) * 1984-02-06 1986-06-17 Parks Richard E Method and apparatus for gas induced mixing and blending
FR2596768A1 (fr) * 1986-08-28 1987-10-09 Magyar Sa Perfectionnements apportes aux procedes et aux dispositifs de vinification
JPS63156598A (ja) * 1986-12-22 1988-06-29 Aoki Denki Kogyo Kk 有機性廃水処理系で作用する細菌群の簡易培養装置
FR2709983B1 (fr) * 1993-09-14 2002-02-08 Laplace Sarl Pierre Procédé de dosage et d'injection de gaz pour cuverie de vinification et installation à cet effet.
US6790417B2 (en) * 2000-12-21 2004-09-14 Corning Incorporated Monolith loop reactors
AT5698U1 (de) * 2001-11-23 2002-10-25 Hermann Boeck Vorrichtung und verfahren zum mischen von flüssigen, zähflüssigen und/oder rieselfähigen medien
KR20040070850A (ko) * 2003-02-04 2004-08-11 한국과학기술원 순수산소를 이용한 유용물질 제조방법 및 폐수처리방법
NZ537239A (en) * 2003-04-08 2006-08-31 Richard E Apparatus and method for gas induced mixing and agitating of a fermenting juice in a tank during vinification
US7985574B2 (en) * 2004-02-17 2011-07-26 American Air Liquide, Inc. Oxygen-assisted fermentation process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2010049653A2 *

Also Published As

Publication number Publication date
CL2011000974A1 (es) 2011-10-21
WO2010049653A2 (fr) 2010-05-06
FR2937651A1 (fr) 2010-04-30
AU2009309539A1 (en) 2010-05-06
US20110268856A1 (en) 2011-11-03
ZA201103105B (en) 2012-01-25
FR2937651B1 (fr) 2015-05-01
WO2010049653A3 (fr) 2011-03-03

Similar Documents

Publication Publication Date Title
EP2346979A2 (fr) Procede d'elevage d'un vin et dispositif pour sa mise en oeuvre
EP2976264B1 (fr) Installation et procede pour la preparation d'un conteneur charge avec un fluide biopharmaceutique
EP0727557B1 (fr) Procédé d'introduction d'un gaz de remplissage dans une enceinte et installation de mise en oeuvre
EP0092697B1 (fr) Procédé et fermenteur pour la production d'alcool
EP2882840A1 (fr) Procédé et dispositif de méthanisation continue en voie sèche
WO2010092299A1 (fr) Appareil de service au verre d'un liquide, notamment de vin
EP2162207B1 (fr) Enceinte contenant un lit granulaire et une distribution d'une phase gazeuse et d'une phase liquide circulant en un écoulement ascendant dans cette enceinte.
WO2015135921A1 (fr) Dispositif de séparation de constituants gazeux contenus dans un mélange gazeux, et son utilisation pour la séparation de méthane et de dioxyde de carbone d'un biogaz
EP2496685A1 (fr) Procédé pour l'expansion et/ou la conservation de cellules par enrichissement en gaz du milieu de culture
FR2959567A1 (fr) Procede pour evaluer au moins une caracteristique du vin lors de son elevage et dispositif pour sa mise en oeuvre
FR2616487A1 (fr) Dispositif de mise en circulation continue d'un liquide en vue d'effectuer un prelevement ou un controle de ce liquide
FR2679248A1 (fr) Bioreacteur et dispositif pour la culture de cellules animales.
EP1553159B1 (fr) Procédé de malaxage d'une pâte d'olive
EP3587287B1 (fr) Dispositif et procédé visant à réaliser une atmosphère contrôlée au niveau du ciel gazeux d'un récipient de stockage d'un produit
FR3031752A1 (fr) Dispositif pour realiser des essais de fermentation avec un petit volume de mout
FR3081858A1 (fr) Carafe d'aeration d'eau
FR2974734A1 (fr) Procede permettant l'extraction de gaz dissous et eventuellement la carbonatation d'un compose fluide
WO2002059036A1 (fr) Dispositif portatif de soutirage et de conservation du vin
WO2012117179A1 (fr) Procede et installation visant a realiser une atmosphere controlee au niveau du ciel gazeux d'un recipient de stockage d'un produit mettant en oeuvre une emulsion gaz/liquide
FR2852944A1 (fr) Procede et dispositif de remplissage volumetrique d'un recipient tel qu'une bouteille au moyen d'un liquide.
EP2538983B1 (fr) Procede d'inertage de tanks aseptiques
BE625493A (fr)
FR2982778A1 (fr) Procede de separation membranaire en regime discontinu.
BE425271A (fr)
FR3001724A1 (fr) Dispositif pour delivrer des doses de boissons et plus particulierement adapte pour l'assemblage d'un vin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110427

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120308

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 13/02 20060101ALI20170224BHEP

Ipc: C12G 1/02 20060101ALI20170224BHEP

Ipc: B01F 3/04 20060101AFI20170224BHEP

Ipc: C12M 1/04 20060101ALI20170224BHEP

Ipc: C12H 1/14 20060101ALI20170224BHEP

INTG Intention to grant announced

Effective date: 20170314

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170725