EP2342127A1 - Adsorption cooling system and adsorption cooling method for an aircraft - Google Patents

Adsorption cooling system and adsorption cooling method for an aircraft

Info

Publication number
EP2342127A1
EP2342127A1 EP09743878A EP09743878A EP2342127A1 EP 2342127 A1 EP2342127 A1 EP 2342127A1 EP 09743878 A EP09743878 A EP 09743878A EP 09743878 A EP09743878 A EP 09743878A EP 2342127 A1 EP2342127 A1 EP 2342127A1
Authority
EP
European Patent Office
Prior art keywords
adsorption
adsorber
heat transfer
desorption
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09743878A
Other languages
German (de)
French (fr)
Inventor
Mehmet Altay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations GmbH
Original Assignee
Airbus Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations GmbH filed Critical Airbus Operations GmbH
Publication of EP2342127A1 publication Critical patent/EP2342127A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • F25B17/083Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0674Environmental Control Systems comprising liquid subsystems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/046Operating intermittently
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the present invention relates to an improved adsorption cooling system and an improved adsorption cooling method for cooling at least one device and / or area of an aircraft.
  • a compression refrigeration machine In an aircraft, for example, the cabin, the galleys, the dining cars in the galleys, electronic equipment and the like must be cooled.
  • a compression refrigeration machine is usually used, in which a refrigerant is compressed by means of a compressor, condensed in a condenser and expanded in an evaporator with release of cooling energy.
  • a compression refrigeration machine has the disadvantage that in particular the compressor causes a considerable noise.
  • a compression refrigeration requires relatively much drive energy and it must be discharged a relatively high amount of waste heat.
  • the use of a compression refrigerating machine is required in aircraft of the prior art, in particular on the ground, where the outside temperatures can reach relatively high levels.
  • fluorocarbon-containing refrigerants are frequently used, the use of which is controversial with regard to environmental protection.
  • the central device of the adsorption cooling system is an adsorber containing an adsorption medium.
  • the adsorption medium is adsorbed by gaseous adsorption coolant, which is evaporated in an evaporator providing cooling energy.
  • the adsorption medium is preferably a finely porous material, for example activated carbon, zeolite, silica gel or the like.
  • As the adsorption coolant water or alcohol can be used.
  • the adsorption coolant can accumulate on the adsorption medium only in several molecule layers.
  • the adsorber is saturated and must be regenerated.
  • the adsorption medium is heated so that the adsorbed coolant adsorbed on the adsorption medium is desorbed.
  • the desorbed adsorption refrigerant is condensed, fed to an optional reservoir as a liquid adsorption refrigerant and then returned via an expansion valve to the evaporator described above.
  • the adsorption cooling system known from DE 10 2006 054 560 A1 therefore has two adsorbers which are used or regenerated alternately for adsorption of adsorption coolant, so that quasi-continuous cooling is possible.
  • Adsorption cooling systems have the advantage that no compressor is required, which reduces the energy required for cooling and system reliability can be increased. Furthermore, an adsorption cooling system is relatively quiet operation. Finally, an adsorption cooling system does not require a fluorocarbon-containing coolant, but can be run in an environmentally friendly manner with water. However, known adsorption cooling systems still have deficits in terms of their energy efficiency.
  • the object of the invention is to provide an adsorption cooling system which is suitable for use on board an aircraft and which can be operated in an energy-efficient manner. Furthermore, the invention is directed to the object of specifying a method for operating such an adsorption cooling system.
  • the adsorption cooling system according to the invention for an aircraft comprises an evaporator designed, for example, in the form of a heat exchanger.
  • the evaporator serves to convert a liquid adsorption coolant, for example water, into the gaseous state of matter.
  • the adsorption refrigeration system further comprises a first adsorber containing a first adsorption medium for adsorbing the adsorption refrigerant evaporated in the evaporator.
  • a second adsorber of the adsorption cooling system according to the invention contains a second adsorption medium for adsorption of the adsorption coolant evaporated in the evaporator.
  • Activated carbon, zeolite or silica gel can be used as the adsorption medium, wherein in the first and in the second adsorber the same adsorption medium or different adsorption media can / can be used.
  • the first and second adsorbers of the adsorption refrigeration system of the present invention are operable alternately in an adsorption operation in which adsorption refrigerant is adsorbed on the adsorption medium of the adsorber, and a desorption operation in which adsorbent refrigerant attached to the adsorption medium of the adsorbent is sorbed. Consequently, the adsorption cooling system can be operated quasi-continuously, since in each case one adsorber can adsorb adsorption coolant and the other adsorber can be regenerated.
  • the adsorption refrigeration system of the present invention further comprises a heat transfer system configured to transfer thermal energy from that from the desorbing operation to the adsorbing operation during a transient operation phase during which an adsorber is transferred from the adsorption operation to the desorption operation and the other adsorber is transferred from the desorption operation to the adsorption operation Adsorption to transfer adsorber transferred to the adsorption from the operation in the desorption mode adsorber.
  • the heat transfer system of the adsorption cooling system according to the invention is capable of heat energy stored in an adsorber operated in the desorption mode due to the supply of regeneration energy in the adsorber, in the adsorption in the adsorption
  • the adsorption cooling system according to the invention is therefore particularly energy-efficient operable.
  • the transient operating phase can be shortened and consequently an improved quasi-continuous operation of the adsorption cooling system can be realized.
  • the heat transfer system may include a conduit network and a plurality of valves disposed in the conduit network which may be switched to transfer thermal energy from the adsorber transferred from the desorption operation to the adsorption operation to the adsorber transferred from the adsorption operation to the desorption operation by the heat transfer fluid.
  • the heat transfer system may further comprise a heating device and be adapted to supply thermal energy to an adsorber operated in the desorption mode for the regeneration of the adsorber or of the adsorption medium contained in the adsorber.
  • the heating device can be designed, for example, in the form of a heat exchanger, but also any other heating device, for example, be an electric heater.
  • the heater is preferably for heating the heat transfer fluid to an elevated temperature. With the aid of the heat transfer fluid, the heat energy provided by the heater can then be supplied to the adsorber to be regenerated.
  • the heating device is thermally coupled to a device emitting waste heat emitting device of the aircraft.
  • the loss-heat-emitting device can be, for example, an air conditioning system, a drive device or an energy store of the aircraft.
  • engine bleed air or the waste heat generated when the engine bleed air is cooled in the aircraft air conditioning system may be used as the heat energy source for the heater.
  • auxiliary turbine the so-called auxiliary power unit
  • the weight of the aircraft is reduced because the electric generator can be made smaller due to the fact that no electrically driven compressor of a compression refrigeration system or an electrically operated heater of an adsorption cooling system needs to be supplied with electrical energy.
  • the heat transfer system of the adsorption cooling system may further comprise a cooling device and be adapted to supply cooling energy to an adsorber operated in the adsorption mode for cooling the adsorber or the adsorption medium contained in the adsorber.
  • a cooling device By cooling the adsorption medium of an adsorber operated in the adsorption mode, it is ensured that the adsorption medium retains its electrostatic attraction for the gaseous adsorption coolant.
  • the cooling device is designed such that it cools the heat transfer fluid to a desired low temperature, so that the adsorptive operated in the adsorber via the heat transfer fluid, the cooling energy generated by the cooling device can be supplied.
  • the cooling device may be designed in the form of a heat exchanger in which ambient air is used as a source of cooling energy.
  • the cooling device has a fan which conducts an ambient air flow over cooling fins of the cooling device through which heat transfer fluid flows.
  • the adsorption cooling system according to the invention may further comprise a condenser for condensing adsorption coolant discharged from an adsorber operated in desorption operation.
  • the condenser can be connected to the evaporator . 5 connected to the evaporator Adsorptionskühlstoff in the liquid state to re-evaporate.
  • An expansion valve may also be arranged between the condenser and the evaporator.
  • the adsorption cooling system according to the invention preferably comprises a lo first pressure sensor for measuring the Adsorptionskühlstofftechniks in the condenser, a second pressure sensor for measuring the Adsorptionskühlstoffdrucks in an adsorber and an electronic control unit, which is adapted to detect signals provided by the pressure sensors.
  • each adsorber is preferably equipped with a second pressure sensor for measuring the adsorption coolant pressure in the adsorber.
  • the electronic control unit controls the heat transfer system of the adsorption refrigeration system of the present invention such that during the transient operating phase, the supply of heat energy to the adsorber transferred from the adsorption operation to the desorption operation is terminated when the adsorption refrigerant pressure in the adsorber corresponds to the adsorption refrigerant pressure in the condenser.
  • Adsorption and a desorption are operable so that each adsorber adsorb adsorbent and the other adsorber can be regenerated, during a transitional operating phase during which an adsorber is transferred from the adsorption to the desorption and the other adsorber 5 is transferred from the desorption into the adsorption ,
  • a heat transfer fluid heat energy from that of the desorption in transferred to the adsorption adsorber transferred to the transferred from Adsorptions plante in the desorption mode adsorber.
  • the heat transfer system of the Adsorptionsksselsystems preferably comprises a conduit network and a plurality of arranged in the conduit network valves which can be switched accordingly, and during the transitional operating phase by means of the heat transfer fluid heat energy from the desorption transferred to the adsorption mode adsorber on the transferred from Adsorptions réelle in the desorption mode adsorber transferred to.
  • a heating device of the heat transfer system preferably supplies heat energy to an adsorber operated in the desorption mode for the regeneration of the adsorber or the adsorption medium contained in the adsorber.
  • the heater is supplied from a loss-heat-emitting device of the aircraft loss heat.
  • a cooling device of the heat transfer system supplies an adsorber operated in the adsorption mode for cooling the adsorber or the adsorption medium contained in the adsorber to cold energy.
  • adsorption coolant removed from an adsorber operated in the desorption mode is condensed in a condenser.
  • An electronic control unit may detect signals from a first pressure sensor for measuring the adsorption refrigerant pressure in the condenser and a second pressure sensor for measuring the adsorption refrigerant pressure in an adsorber and control the heat transfer system of the adsorption refrigeration system according to the present invention so that during the transient operating phase, the supply of heat energy to that from the adsorption operation in the Desorptions terme transferred adsorber is terminated when the adsorption refrigerant pressure in the adsorber corresponds to the adsorption refrigerant pressure in the condenser.
  • FIG. 1 shows an adsorption cooling system in an operating state in which adsorption coolant is desorbed in a first adsorber and in a second adsorber
  • Adsorber adsorption coolant is adsorbed
  • FIG. 2 shows the adsorption cooling system according to FIG. 1 in an operating state in which the adsorber is switched over between an adsorption mode and a desorption mode;
  • FIG. 3 shows the adsorption cooling system according to FIG. 1 in an operating state in which adsorption coolant is adsorbed in the first adsorber and desorption coolant is adsorbed in the second adsorber;
  • FIG. 4 shows the adsorption cooling system according to FIG. 1 in an operating state in which the adsorber is again switched between an adsorption mode and a desorption mode.
  • An aircraft adsorption refrigeration system 1 shown in the figures has a first adsorber 2 with a first adsorption medium, a second adsorber 4 with a second adsorption medium, a condenser 8, an expansion valve 6 and an evaporator 18.
  • the adsorption medium (not shown) in the adsorbers 2, 4 may be, for example, activated carbon, zeolite, silica gel.
  • the adsorption cooling system 1 further comprises an adsorption coolant circuit 9 in which an adsorption coolant is recirculated and in which a first adsorption control valve 10, a second adsorption control valve 12, a third adsorption control valve 14, and a fourth adsorption control valve 16 are arranged.
  • the adsorption coolant for example, water and / or alcohol can be used.
  • cooling energy is released in the form of evaporative cooling, which can be conducted to an application site, for example, by means of an airflow generated by an evaporator fan 20.
  • the evaporator 18, which is designed as a heat exchanger, does not necessarily have to cool air, but can cool any cooling medium, for example any fluid or any solid.
  • the cooling energy generated by the evaporator 18 may be used to cool a portion of a cabin, a portion a galley, a dining car in the galley, an electronic device, such as a flight control device, an electronic entertainment system, etc. are used.
  • Adsorption coolant evaporated in the evaporator 18 deposits on the adsorption medium of an adsorber 2, 4 operated in the adsorption mode.
  • the partial pressure of the adsorption coolant in the evaporator 18 is reduced.
  • further liquid adsorption coolant evaporates in the evaporator 18.
  • adsorption coolant in the gaseous state of matter is removed from an adsorber 2, 4 operated in the desorptive or regeneration mode and passed into the condenser 8.
  • In the condenser 8 or downstream of the condenser 8 may be a reservoir (not shown). After condensation in the condenser 8, the adsorption refrigerant is returned to the evaporator 18 via the expansion valve 6 for re-evaporation.
  • the second adsorber 4 is operated in the adsorption mode, while the first adsorber 2 or the first adsorption medium in the first adsorber 4 is regenerated.
  • the first adsorption control valve 10 and the fourth adsorption control valve 16 are opened, whereas the second adsorption control valve 12 and the third adsorption control valve 14 are closed.
  • a heating system 50, a cooling device 52, a first supply valve 60, a second supply valve 62, a third supply valve 64, a fourth supply valve 66, a fifth supply valve 68, a sixth are provided in a heat-transfer system network through which a heat transfer fluid flows Supply valve 70, a seventh supply valve 72, an eighth supply valve 74 and a ninth supply valve 76 arranged.
  • the heat transfer fluid may be delivered through the conduit network due to natural convection or due to forced convection generated by a first pump 54 and a second pump 56.
  • the heat transfer fluid may be both gaseous and liquid, with a liquid heat transfer fluid being preferred.
  • the heat transfer fluid may be, for example, water, a mixture of water and glycol or a Perfluoropolyethers, eg the perfluoropolyethers sold by Solvay Solexis under the trade name Galden HT-135.
  • the heater 50 is supplied with waste heat which is generated in another device .5 of the aircraft as waste heat.
  • the heat loss can be, for example, the heat loss generated by a turbine, an internal combustion engine, an electric motor, an auxiliary unit or an energy storage of the aircraft. It is also possible to use the waste heat created when cooling engine bleed air. This heat loss is delivered in the current aircraft via lo stau Kunststoffowskitechniker to the environment of the aircraft. But it is also possible that the heater 50 is supplied directly with hot engine bleed air or is in the form of an electric heater.
  • the first supply valve 60, the fourth supply valve 66, the fifth supply valve 68 and the eighth supply valve 74 are open, whereas the second supply valve 62, the third supply valve 64, the sixth supply valve 70 and the seventh supply valve 72 are closed.
  • the heat transfer fluid heated in the heater 50 is pumped from the first pump 54 to the first adsorber 2 through the first supply valve 60 opened.
  • the heat transfer fluid provides heat to the first adsorption medium of the first adsorber 2.
  • the first adsorption medium of the first adsorber 2 can be regenerated.
  • the heat transfer fluid exits the first adsorber 2 and flows through the open eighth supply valve 74 to the heater 25, where it is reheated.
  • the first adsorber 2 can be supplied with warm heat transfer fluid until the first adsorption medium contained in the first adsorber 2 is completely regenerated. It is understood that the heat supply to the first adsorber 0 2 can also be interrupted before it is completely regenerated. This may be necessary, for example, if the second adsorption medium in the second adsorber 4 is completely saturated before the first adsorption medium in the first adsorber 2 is completely regenerated.
  • the cooling device 52 serves to cool heat transfer fluid for cooling the second adsorber 4 located in the adsorption mode to a desired low temperature. In the cooling device 52, heat transfer fluid can be added.
  • the second pump 56 pumps the cooled heat transfer fluid from the cooling device 52 through the opened fourth supply valve 66 to the second adsorber 4.
  • the heat transfer fluid cools the second adsorption medium of the second adsorber 4.
  • the electrostatic attraction of the adsorption medium for the adsorption refrigerant is more pronounced at a lower temperature.
  • the heat transfer fluid flows back from the second adsorber 4 through the opened fifth supply valve 68 to the cooler 52 where it is recooled.
  • the heat transfer fluid is pumped from the cooling device 52 by means of the second pump 56 to the condenser 8, where it is used to dissipate the heat of condensation generated by the condensation of the Adsorptionskühlstoffs in the condenser 8. After flowing through the condenser 8, the heat transfer fluid heated when flowing through the condenser 8 is returned to the cooling device 52 for renewed cooling.
  • the cooling capacity required for cooling the condenser 8 and the adsorbent adsorber 4 can be calculated as follows:
  • the second adsorption medium of the second adsorber 4 As soon as the second adsorption medium of the second adsorber 4 is saturated, it must be regenerated. An adsorption medium is then saturated if it can no longer adsorb another adsorption coolant.
  • FIG. 2 shows a transitional operating state in which the first adsorber 2 for the adsorption operation and the second adsorber 4 for the desorption operation are prepared. For this purpose, it is necessary for the first adsorber 2 or the first adsorption medium to be cooled and the second adsorber 4 or the second adsorption medium to be heated.
  • the third and fourth adsorption control valves 10, 12, 14, 16 are closed, and the blower 20 of the evaporator is turned off, so that the adsorption refrigeration system 1 does not provide cooling performance during the transient operation phase.
  • the second supply valve 62, the third supply valve 64, the fifth supply valve 68 and the eighth supply valve 74 are opened during the transitional operating state.
  • the first supply valve 60, the fourth supply valve 66, the sixth supply valve 70, the seventh supply valve 72 and the ninth supply valve 76 are closed, however.
  • the cooling device 52, the cooling device fan 58 and the heating device 50 can be switched off.
  • the second pump 56 thus pumps relatively cool heat transfer fluid from the second adsorber 4 via the fifth supply valve 68, the cooler 52 and the second supply valve 62 to the first adsorber 2.
  • the heat transfer fluid in the second Adsorber 4 has a relatively low temperature because the second adsorber 4 was cooled by the heat transfer fluid during the adsorption operation.
  • the heat transfer fluid is heated in the first adsorber 2 by heat transfer .5 from the first adsorbent medium and flows back to the second adsorber 4 via the eighth supply valve 74, the heater 50, the first pump 54 and the third supply valve 64.
  • the heat transfer fluid thus transports thermal energy from the first one Adsorber 2 to the second adsorber 4 and vice versa cooling energy, ie negative heat energy from the second adsorber 4 lo to the first adsorber 2.
  • the closed ninth supply valve 76 prevents heat transfer fluid from flowing through the condenser 8 during the transient operating phase.
  • the adsorption cooling system 1 requires less energy during the transient operating phase. Further, the switching of the adsorbers 2, 4 from the adsorption to the desorption and vice versa speeds and thus the duration of the transitional operating phase, during which the Adsorptionskühlsys- 20 tem 1 provides no cooling performance can be shortened.
  • the adsorption cooling system 1 may be considered adiabatic during the transient operating phase since only heat exchange within the adsorption cooling system 1 occurs.
  • the amount of heat transferred from the first adsorber 2 to the second adsorber 4 can be represented as follows:
  • the first integral describes the amount of heat extracted from the first adsorber 2, 0, and the second integral describes the amount of heat absorbed by the second adsorber 4.
  • the heater 50 for providing additional thermal energy and the cooler 52 for dissipating thermal energy may be switched on to further reduce the duration of the transient operating phase.
  • the condenser 8 and in the adsorbers 2, 4 are each pressure sensors (not shown) for measuring the Adsorptionskühlschdrucks available. The signals provided by the pressure sensors are detected and processed by an electronic control unit.
  • the electronic control unit controls the components of the adsorption cooling system 1, and in particular the valves 60, 62, 64, 66, 68, 70, 72, 74, 76 of the heat transfer system such that during the transient operating phase the supply of heat to that of the adsorption operation the second adsorber 4 to be switched to the desorption mode is ended as soon as the same adsorption coolant pressure prevails therein as in the condenser 8.
  • the circulation of the heat transfer fluid between the adsorbers 2, 4 can consequently be terminated selectively as soon as the second absorber 4 has reached an operating state in which the regeneration of the second adsorber can be started.
  • the electronic control unit may control the components of the adsorption cooling system 1, and in particular the valves 60, 62, 64, 66, 68, 70, 72, 74, 76 of the heat transfer system such that during the transient operating phase, the supply of heat to that of the Adsorption on the desorption to be switched second adsorber 4 is stopped when the temperature in the second adsorber 4 falls after reaching a maximum value again.
  • the electronic control unit can detect and process signals from temperature sensors (not shown) arranged in the adsorbers 2, 4.
  • FIG. 3 shows an operating state of the adsorption cooling system 1 in which the first adsorber 2 adsorbs adsorption coolant and the second adsorber 4 is regenerated.
  • the second adsorption control valve 12 and the third adsorption control valve 14 are opened, whereas the first adsorption control valve 10 and the fourth adsorption control valve 16 are closed.
  • adsorption refrigerant evaporates in the second adsorber 4, which flows via the opened second adsorption control valve 12 to the condenser 8, where it condenses.
  • the adsorption refrigerant flows to the expansion valve 6 and to the evaporator 18 where it is evaporated.
  • the gaseous adsorption coolant flows through the open Nete third adsorption control valve 14 in the first adsorber 2, where it is adsorbed by the first adsorption medium.
  • the first adsorber 2 operated in the absorption mode and the condenser 8 are supplied with cooling energy by the heat transfer system.
  • the heat transfer system leads to the second adsorber 4 operated in the desorption mode to heat energy.
  • the second supply valve 62, the third supply valve 64, the sixth supply valve 70, the seventh supply valve 72 and the ninth supply valve 76 are opened.
  • the first supply valve 60, the fourth supply valve 66, the fifth supply valve 68 and the eighth supply valve 74 are closed. Consequently, the first pump 54 pumps heat-transfer fluid heated by the heater 50 through the opened third supply valve 64 to the second adsorber 4, so that the second adsorbent medium is heated.
  • the heat transfer fluid then exits the second adsorber 4 and flows back to the heater 50 via the opened sixth supply valve 70.
  • the second pump 56 pumps heat transfer fluid cooled by the cooler 52 through the ninth supply valve 76 to the condenser 8.
  • the heat transfer fluid flows back from the condenser 8 to the cooler 52.
  • the second pump 56 pumps the heat transfer fluid cooled by the cooler 52 through the second supply valve 62 to the first adsorber 2, so that the first adsorbent medium is effectively cooled. Subsequently, the adsorption refrigerant flows back to the cooling device 52.
  • the adsorbers 2, 4 can be switched over again. This is carried out by means of a second switching operation, which substantially corresponds to the first switching operation shown in FIG. 2, heat energy being transferred from the second adsorber 4 to the first adsorber 2 during the second switching operation.
  • This second switching operation is shown in FIG.
  • the first, second, third and fourth adsorption control valves 10, 12, 14, 16 are closed. Consequently, the evaporator 18 can not provide cooling power during the transient operating phase.
  • the first supply valve 60, the fourth supply valve 66, the sixth supply valve 70 and the seventh supply valve 72 opened.
  • the second supply valve 62, the third supply valve 64, the fifth supply valve 68, the eighth supply valve 74 and the ninth supply valve 76 are closed.
  • the heater 50 and the cooler 52 may be turned off.
  • the first pump 54 and the second pump 56 pump warm heat transfer fluid from the second adsorber 4 via the sixth supply valve 70, the heater 50 and the first supply valve 60 to the first adsorber 2, thereby heating the first adsorption medium.
  • cool heat transfer fluid is supplied from the first adsorber 2 via the seventh supply valve 72, the cooler 52, and the fourth supply valve 66 to the second adsorber 4, thereby extracting heat from the second adsorption medium.
  • the transitional operation is continued until in the first adsorber 4 at least the same adsorbent pressure as in the condenser 8 prevails. Otherwise, the transitional operation takes place as previously described with reference to FIG.
  • the adsorption cooling system 1 again enters the state described with reference to FIG.
  • the adsorption cooling system cycles through the four operating states described above according to FIGS. 1 to 4 in the order described.
  • the control unit of the adsorption cooling system 1 may comprise the adsorption control valves 10, 12, 14, 16, the expansion valve 6, the supply valves 60, 62, 64, 66, 68, 70, 72, 74, 76, the evaporator fan 20, the heating device 50, controlling the cooling device 52 and the cooling device fan 58 as previously described with reference to FIGS. 1 to 4. Further, volumetric flow sensors may be provided in the adsorption coolant circuit 9 to determine if an adsorber 2, 4 is saturated. It is also possible to conclude that an adsorber 2, 4 is saturated from an ascending temperature in the evaporator 18 measured by means of a suitable temperature sensor.
  • the adsorber 2, 4 can be completely regenerated. Consequently, a plurality of temperature sensors arranged in the line network of the heat transfer system can be present. The signals of the volumetric flow sensors and of the temperature sensors are detected by the control device and converted into corresponding control signals for controlling the components of the adsorption cooling system 1.
  • the heater 50 and the cooler 52 need not be turned off if no heating or cooling is desired. Instead, appropriate be provided bypassing valves and / or bypass valves, which ensure that the heat transfer fluid flows past one of these facilities. This may be useful, for example, if the heating device 50 is supplied with heat energy by a device which always gives off heat loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

An adsorption cooling system (1) for an aircraft, comprises an evaporator (18), a first adsorber (2), with a first adsorbent for adsorbing an adsorbent coolant evaporated in the evaporator (18) and an second adsorber (4), containing a second adsorbent for adsorbing an adsorbent coolant evaporated in the evaporator (18), wherein the first and the second adsorber (2, 4) may be alternately operated in an adsorption mode and a desorption mode such that one adsorber (2, 4) adsorbs adsorption coolant ad the other adsorber (2, 4) can be regenerated. A heat transfer system in the adsorption cooling system (1) is designed to transmit heat from the adsorber (2, 4) going from desorption mode into absorption mode to the adsorber (2, 4) going from adsorption mode to desorption mode by means of a heat transfer fluid during a transition phase in which one adsorber (2, 4) goes from adsorption mode to desorption mode and the other adsorber (2, 4) goes from desorption mode to adsorption mode.

Description

ADSORPTIONSKÜHLSYSTEM UND ADSORPTIONSKÜHLVERFAHREN FÜR EIN ADSORPTION COOLING SYSTEM AND ADSORPTION COOLING PROCEDURE FOR ONE
LUFTFAHRZEUGAIRCRAFT
Die vorliegende Erfindung betrifft ein verbessertes Adsorptionskühlsystem und ein verbessertes Adsorptionskühlverfahren zum Kühlen zumindest einer Einrichtung und/oder eines Bereichs eines Luftfahrzeuges.The present invention relates to an improved adsorption cooling system and an improved adsorption cooling method for cooling at least one device and / or area of an aircraft.
In einem Luftfahrzeug müssen beispielsweise die Kabine, die Galleys, die Speisewa- gen in den Galleys, elektronische Einrichtungen und dergleichen gekühlt werden. Hierzu wird üblicherweise eine Kompressionskältemaschine verwendet, bei der ein Kühlmittel mittels eines Verdichters komprimiert, in einem Kondensator kondensiert und in einem Verdampfer unter Abgabe von Kälteenergie entspannt wird. Eine Kompressionskältemaschine hat den Nachteil, dass insbesondere der Verdichter eine erhebliche Geräuschentwicklung verursacht. Ferner benötigt eine Kompressionskältemaschine relativ viel Antriebsenergie und es muss ein relativ hoher Betrag an Abwärme abgeführt werden. Der Einsatz einer Kompressionskältemaschine ist bei Luftfahrzeugen des Standes der Technik insbesondere am Boden erforderlich, wo die Außentemperaturen relativ hohe Werte erreichen können. Ferner müssen häufig fluorkohlenwasserstoffhaltige Kühlmittel verwendet werden, deren Verwendung mit Hinblick auf den Umweltschutz umstritten ist.In an aircraft, for example, the cabin, the galleys, the dining cars in the galleys, electronic equipment and the like must be cooled. For this purpose, a compression refrigeration machine is usually used, in which a refrigerant is compressed by means of a compressor, condensed in a condenser and expanded in an evaporator with release of cooling energy. A compression refrigeration machine has the disadvantage that in particular the compressor causes a considerable noise. Furthermore, a compression refrigeration requires relatively much drive energy and it must be discharged a relatively high amount of waste heat. The use of a compression refrigerating machine is required in aircraft of the prior art, in particular on the ground, where the outside temperatures can reach relatively high levels. Furthermore, fluorocarbon-containing refrigerants are frequently used, the use of which is controversial with regard to environmental protection.
Um die zuvor genannten Probleme zu überwinden, wird versucht, in zukünftigen Luftfahrzeugen Adsorptionskühlsysteme einzusetzen. Ein beispielhaftes Adsorptions- kühlsystem ist in der DE 10 2006 054 560 Al beschrieben. Die zentrale Einrichtung des Adsorptionskühlsystems ist ein Adsorber, der ein Adsorptionsmedium enthält. An das Adsorptionsmedium lagert sich gasförmiges Adsorptionskühlmittel an, das in einem Kälteenergie bereitstellenden Verdampfer verdampft wird. Das Adsorptionsmedium ist vorzugsweise ein feinporöser Stoff, beispielsweise Aktivkohle, Zeolith, Silikagel oder dergleichen. Als Adsorptionskühlmittel kann Wasser oder Alkohol verwendet werden. Das Adsorptionskühlmittel kann sich lediglich in mehreren Moleküllagen am Adsorptionsmedium anlagern. Ist das Adsorptionsmedium vollständig mit Adsorptionskühlmittel benetzt, so dass sich kein weiteres Adsorptionskühlmittel anlagern kann, ist der Adsorber gesättigt und muss regeneriert werden. Hierfür wird das Adsorptionsmedium erwärmt, so dass das an dem Adsorptionsmedium angelagerte Adsorptionskühlmittel desorbiert wird. Das desorbierte Adsorptionskühlmittel wird kondensiert, einem optionalen Reservoir als flüssiges Adsorptionskühlmittel zugeführt und anschließend über ein Expansionsventil an den eingangs beschriebenen Verdampfer zurückgeleitet. Im Adsorptionsbetrieb des Adsorptionskühlsystem kann somit Kälteenergie erzeugt wird, während im Desorptionsbetrieb bzw. Regenerationsbetrieb des Adsorptionskühlsystem nicht nur keine Kälteenergie erzeugt werden kann, sondern sogar Regenerationsenergie in Form von Wärmeenergie zugeführt werden muss. Das aus der DE 10 2006 054 560 Al bekannte Adsorptionskühlsystem weist daher zwei Adsorber auf, die alternierend zum Adsorbieren von Adsorptionskühlmittel verwendet bzw. regeneriert werden, so dass eine quasikontinuierliche Kühlung möglich ist.To overcome the aforementioned problems, it is attempted to use adsorption cooling systems in future aircraft. An exemplary adsorption cooling system is described in DE 10 2006 054 560 A1. The central device of the adsorption cooling system is an adsorber containing an adsorption medium. The adsorption medium is adsorbed by gaseous adsorption coolant, which is evaporated in an evaporator providing cooling energy. The adsorption medium is preferably a finely porous material, for example activated carbon, zeolite, silica gel or the like. As the adsorption coolant, water or alcohol can be used. The adsorption coolant can accumulate on the adsorption medium only in several molecule layers. If the adsorption medium is completely wetted with adsorption coolant, so that no further adsorption coolant can accumulate, the adsorber is saturated and must be regenerated. For this purpose, the adsorption medium is heated so that the adsorbed coolant adsorbed on the adsorption medium is desorbed. The desorbed adsorption refrigerant is condensed, fed to an optional reservoir as a liquid adsorption refrigerant and then returned via an expansion valve to the evaporator described above. Thus, in the adsorption mode of the adsorption cooling system, it is possible to generate cooling energy, while in the desorption mode or regeneration mode of the adsorption cooling system not only no cooling energy can be generated but even regeneration energy in the form of thermal energy has to be supplied. The adsorption cooling system known from DE 10 2006 054 560 A1 therefore has two adsorbers which are used or regenerated alternately for adsorption of adsorption coolant, so that quasi-continuous cooling is possible.
Adsorptionskühlsysteme haben den Vorteil, dass kein Verdichter erforderlich ist, wodurch der zum Kühlen erforderliche Energieaufwand reduziert und die Systemzuverlässigkeit erhöht werden kann. Ferner ist ein Adsorptionskühlsystem relativ geräuscharm betreibbar. Schließlich erfordert ein Adsorptionskühlsystem kein fluorkohlenwasserstoffhaltiges Kühlmittel, sondern kann umweltfreundlich mit Wasser betrieben werden. Bekannte Adsorptionskühlsysteme weisen jedoch noch Defizite hinsichtlich ihrer Energieeffizienz auf.Adsorption cooling systems have the advantage that no compressor is required, which reduces the energy required for cooling and system reliability can be increased. Furthermore, an adsorption cooling system is relatively quiet operation. Finally, an adsorption cooling system does not require a fluorocarbon-containing coolant, but can be run in an environmentally friendly manner with water. However, known adsorption cooling systems still have deficits in terms of their energy efficiency.
Der Erfindung liegt die Aufgabe zugrunde, ein zum Einsatz an Bord eines Luftfahr- zeugs geeignetes, energieeffizient betreibbares Adsorptionskühlsystem bereitzustellen. Femer ist die Erfindung auf die Aufgabe gerichtet, ein Verfahren zum Betreiben eines derartigen Adsorptionskühlsystems anzugeben.The object of the invention is to provide an adsorption cooling system which is suitable for use on board an aircraft and which can be operated in an energy-efficient manner. Furthermore, the invention is directed to the object of specifying a method for operating such an adsorption cooling system.
Diese Aufgabe wird durch ein Adsorptionskühlsystem für ein Luftfahrzeug mit den Merkmalen des Anspruchs 1 sowie ein Verfahren zum Betreiben eines Adsorptionskühlsystems für ein Luftfahrzeug mit den Merkmalen des Anspruchs 7 gelöst.This object is achieved by an adsorption cooling system for an aircraft with the features of claim 1 and a method for operating an adsorption cooling system for an aircraft with the features of claim 7.
Das erfindungsgemäße Adsorptionskühlsystem für ein Luftfahrzeug umfasst einen beispielsweise in Form eines Wärmetauschers ausgebildeten Verdampfer. Der Ver- dampfer dient dazu, ein flüssiges Adsorptionskühlmittel, beispielsweise Wasser in den gasförmigen Aggregatzustand zu überführen. Das Adsorptionskühlsystem umfasst ferner einen ersten Adsorber, der ein erstes Adsorptionsmedium zur Adsorption des in dem Verdampfer verdampften Adsorptionskühlmittels enthält. Ein zweiter Adsorber des erfindungsgemäßen Adsorptionskühlsystems enthält ein zweites Adsorptionsme- dium zur Adsorption des in dem Verdampfer verdampften Adsorptionskühlmittels. Als Adsorptionsmedium kann Aktivkohle, Zeolith oder Silikagel eingesetzt werden, wobei in dem ersten und in dem zweiten Adsorber das gleiche Adsorptionsmedium oder unterschiedliche Adsorptionsmedien zum Einsatz kommen kann/können. Der erste und der zweite Adsorber des erfindungsgemäßen Adsorptionskühlsystems sind wechselweise in einem Adsorptionsbetrieb, in dem an dem Adsorptionsmedium des Ad- sorbers Adsorptionskühlmittel adsorbiert wird, und einem Desorptionsbetrieb, in dem an dem Adsorptionsmedium des Adsorbers angelagertes Adsorptionskühlmittel de- sorbiert wird, betreibbar. Das Adsorptionskühlsystem ist folglich quasi-kontinuierlich betreibbar, da jeweils ein Adsorber Adsorptionskühlmittel adsorbieren und der andere Adsorber regeneriert werden kann.The adsorption cooling system according to the invention for an aircraft comprises an evaporator designed, for example, in the form of a heat exchanger. The evaporator serves to convert a liquid adsorption coolant, for example water, into the gaseous state of matter. The adsorption refrigeration system further comprises a first adsorber containing a first adsorption medium for adsorbing the adsorption refrigerant evaporated in the evaporator. A second adsorber of the adsorption cooling system according to the invention contains a second adsorption medium for adsorption of the adsorption coolant evaporated in the evaporator. Activated carbon, zeolite or silica gel can be used as the adsorption medium, wherein in the first and in the second adsorber the same adsorption medium or different adsorption media can / can be used. The first and second adsorbers of the adsorption refrigeration system of the present invention are operable alternately in an adsorption operation in which adsorption refrigerant is adsorbed on the adsorption medium of the adsorber, and a desorption operation in which adsorbent refrigerant attached to the adsorption medium of the adsorbent is sorbed. Consequently, the adsorption cooling system can be operated quasi-continuously, since in each case one adsorber can adsorb adsorption coolant and the other adsorber can be regenerated.
Das erfindungsgemäße Adsorptionskühlsystem umfasst ferner ein Wärmeübertragungssystem, das dazu eingerichtet ist, während einer Übergangsbetriebsphase, während der ein Adsorber vom Adsorptionsbetrieb in den Desorptionsbetrieb überführt wird und der andere Adsorber vom Desorptionsbetrieb in den Adsorptionsbetrieb überführt wird, mittels eines Wärmeübertragungsfluids Wärmeenergie von dem vom Desorptionsbetrieb in den Adsorptionsbetrieb überführten Adsorber auf den vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber zu übertragen. Mit anderen Worten, das Wärmeübertragungssystem des erfindungsgemäßen Adsorptionskühlsystems ist dazu in der Lage, die Wärmeenergie, die in einem im Desorptionsbetrieb betriebenen Adsorber aufgrund der Zufuhr von Regenerations- energie in den Adsorber gespeichert ist, auf einen vom Adsorptionsbetrieb in denThe adsorption refrigeration system of the present invention further comprises a heat transfer system configured to transfer thermal energy from that from the desorbing operation to the adsorbing operation during a transient operation phase during which an adsorber is transferred from the adsorption operation to the desorption operation and the other adsorber is transferred from the desorption operation to the adsorption operation Adsorption to transfer adsorber transferred to the adsorption from the operation in the desorption mode adsorber. In other words, the heat transfer system of the adsorption cooling system according to the invention is capable of heat energy stored in an adsorber operated in the desorption mode due to the supply of regeneration energy in the adsorber, in the adsorption in the adsorption
Desorptionsbetrieb zu überführenden Adsorber zu übertragen und dort als Regenerationsenergie zu nutzen. Das erfindungsgemäße Adsorptionskühlsystem ist daher besonders energieeffizient betreibbar. Darüber hinaus kann die Übergangsbetriebsphase verkürzt und folglich ein verbesserter quasi-kontinuierlicher Betrieb des Ad- sorptionskühlsystems realisiert werden.Desorption to transfer to transfer adsorber and use there as regeneration energy. The adsorption cooling system according to the invention is therefore particularly energy-efficient operable. In addition, the transient operating phase can be shortened and consequently an improved quasi-continuous operation of the adsorption cooling system can be realized.
Das Wärmeübertragungssystem kann ein Leitungsnetz sowie eine Mehrzahl von in dem Leitungsnetz angeordneten Ventilen umfassen, die entsprechend geschaltet werden können, um mittels des Wärmeübertragungsfluids Wärmeenergie von dem vom Desorptionsbetrieb in den Adsorptionsbetrieb überführten Adsorber auf den vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber zu übertragen.The heat transfer system may include a conduit network and a plurality of valves disposed in the conduit network which may be switched to transfer thermal energy from the adsorber transferred from the desorption operation to the adsorption operation to the adsorber transferred from the adsorption operation to the desorption operation by the heat transfer fluid.
Das Wärmeübertragungssystem kann ferner eine Heizeinrichtung umfassen und dazu eingerichtet sein, einem im Desorptionsbetrieb betriebenen Adsorber zur Regenerati- on des Adsorbers bzw. des in dem Adsorber enthaltenen Adsorptionsmediums Wärmeenergie zuzuführen. Die Heizeinrichtung kann beispielsweise in Form eines Wärmetauschers ausgebildet sein, aber auch eine beliebige andere Heizeinrichtung, beispielsweise eine elektrische Heizeinrichtung sein. Die Heizeinrichtung dient vorzugsweise dazu, das Wärmeübertragungsfluid auf eine erhöhte Temperatur aufzuheizen. Mit Hilfe des Wärmeübertragungsfluids kann die von der Heizeinrichtung bereitgestellte Wärmeenergie dann dem zu regenerierenden Adsorber zugeführt werden.The heat transfer system may further comprise a heating device and be adapted to supply thermal energy to an adsorber operated in the desorption mode for the regeneration of the adsorber or of the adsorption medium contained in the adsorber. The heating device can be designed, for example, in the form of a heat exchanger, but also any other heating device, for example, be an electric heater. The heater is preferably for heating the heat transfer fluid to an elevated temperature. With the aid of the heat transfer fluid, the heat energy provided by the heater can then be supplied to the adsorber to be regenerated.
Eine weitere Steigerung der Energieeffizienz des erfindungsgemäßen Adsorptionskühlsystems ist möglich, wenn die Heizeinrichtung mit einer Verlustwärme abgebenden Einrichtung des Luftfahrzeugs thermisch gekoppelt ist. Die Verlustwärme abgebende Einrichtung kann beispielsweise eine Klimaanlage, eine Antriebseinrichtung oder ein Energiespeicher des Luftfahrzeugs sein. Beispielsweise kann Triebwerkszapfluft oder die beim Abkühlen der Triebwerkszapfluft in der Luftfahrzeugklimaanlage entstehende Abwärme als Wärmeenergiequelle für die Heizeinrichtung verwendet werden. Es ist auch denkbar, die von einer Hilfsturbine, der sogenannten Auxiliary Power Unit, erzeugte Abwärme als Wärmeenergiequelle für die Heizeinrichtung zu verwenden. Dadurch sinkt der Gesamtenergiebedarf des Luftfahrzeuges. Ferner wird das Gewicht des Luftfahrzeuges reduziert, da der elektrische Generator aufgrund der Tatsache, dass kein elektrisch betriebener Verdichter eines Kompressi- onskühlungssystems oder eine elektrisch betriebene Heizeinrichtung eines Adsorpti- onskühlsystems mit elektrischer Energie versorgt werden muss, kleiner dimensioniert werden kann.A further increase in the energy efficiency of the adsorption cooling system according to the invention is possible if the heating device is thermally coupled to a device emitting waste heat emitting device of the aircraft. The loss-heat-emitting device can be, for example, an air conditioning system, a drive device or an energy store of the aircraft. For example, engine bleed air or the waste heat generated when the engine bleed air is cooled in the aircraft air conditioning system may be used as the heat energy source for the heater. It is also conceivable to use the waste heat generated by an auxiliary turbine, the so-called auxiliary power unit, as a heat energy source for the heating device. This reduces the total energy requirements of the aircraft. Further, the weight of the aircraft is reduced because the electric generator can be made smaller due to the fact that no electrically driven compressor of a compression refrigeration system or an electrically operated heater of an adsorption cooling system needs to be supplied with electrical energy.
Das Wärmeübertragungssystem des erfindungsgemäßen Adsorptionskühlsystems kann ferner eine Kühleinrichtung umfassen und dazu eingerichtet sein, einem im Adsorptionsbetrieb betriebenen Adsorber zur Kühlung des Adsorbers bzw. des in dem Adsorber enthaltenen Adsorptionsmediums Kälteenergie zuzuführen. Durch die Kühlung des Adsorptionsmediums eines im Adsorptionsbetrieb betriebenen Adsorbers wird sichergestellt, dass das Adsorptionsmedium seine elektrostatische Anziehungskraft für das gasförmige Adsorptionskühlmittel beibehält. Vorzugsweise ist die Kühl- einrichtung so gestaltet, dass sie das Wärmeübertragungsfluid auf eine gewünschte tiefe Temperatur abkühlt, so dass dem im Adsorptionsbetrieb betriebenen Adsorber über das Wärmeübertragungsfluid die von der Kühleinrichtung erzeugte Kälteenergie zugeführt werden kann. Beispielsweise kann die Kühleinrichtung in Form eines Wärmetauschers ausgebildet sein, in dem Umgebungsluft als Kälteenergiequelle genutzt wird. Vorzugsweise weist die Kühleinrichtung ein Gebläse auf, das einen Umgebungsluftstrom über von Wärmeübertragungsfluid durchströmte Kühllamellen der Kühleinrichtung führt. Das erfindungsgemäße Adsorptionskühlsystem kann ferner einen Kondensator zur Kondensation von aus einem im Desorptionsbetrieb betriebenen Adsorber abgeführtem Adsorptionskühlmittel umfassen. Der Kondensator kann mit dem Verdampfer .5 verbunden sein, um dem Verdampfer Adsorptionskühlmittel im flüssigen Aggregatzustand zur erneuten Verdampfung zuzuführen. Zwischen dem Kondensator und dem Verdampfer kann ferner ein Expansionsventil angeordnet sein.The heat transfer system of the adsorption cooling system according to the invention may further comprise a cooling device and be adapted to supply cooling energy to an adsorber operated in the adsorption mode for cooling the adsorber or the adsorption medium contained in the adsorber. By cooling the adsorption medium of an adsorber operated in the adsorption mode, it is ensured that the adsorption medium retains its electrostatic attraction for the gaseous adsorption coolant. Preferably, the cooling device is designed such that it cools the heat transfer fluid to a desired low temperature, so that the adsorptive operated in the adsorber via the heat transfer fluid, the cooling energy generated by the cooling device can be supplied. For example, the cooling device may be designed in the form of a heat exchanger in which ambient air is used as a source of cooling energy. Preferably, the cooling device has a fan which conducts an ambient air flow over cooling fins of the cooling device through which heat transfer fluid flows. The adsorption cooling system according to the invention may further comprise a condenser for condensing adsorption coolant discharged from an adsorber operated in desorption operation. The condenser can be connected to the evaporator . 5 connected to the evaporator Adsorptionskühlmittel in the liquid state to re-evaporate. An expansion valve may also be arranged between the condenser and the evaporator.
Ferner umfasst das erfindungsgemäße Adsorptionskühlsystem vorzugsweise einen lo ersten Drucksensor zur Messung des Adsorptionskühlmitteldrucks im Kondensator, einen zweiten Drucksensor zur Messung des Adsorptionskühlmitteldrucks in einem Adsorber und eine elektronische Steuereinheit, die dazu eingerichtet ist, von den Drucksensoren bereitgestellte Signale zu erfassen. Bei dem erfindungsgemäßen Adsorptionskühlsystem ist vorzugsweise jeder Adsorber mit einem zweiten Drucksen- i5 sor zur Messung des Adsorptionskühlmitteldrucks in dem Adsorber ausgestattet.Furthermore, the adsorption cooling system according to the invention preferably comprises a lo first pressure sensor for measuring the Adsorptionskühlmitteldrucks in the condenser, a second pressure sensor for measuring the Adsorptionskühlmitteldrucks in an adsorber and an electronic control unit, which is adapted to detect signals provided by the pressure sensors. In the adsorption cooling system according to the invention, each adsorber is preferably equipped with a second pressure sensor for measuring the adsorption coolant pressure in the adsorber.
Vorzugsweise steuert die elektronische Steuereinheit das Wärmeübertragungssystem des erfindungsgemäßen Adsorptionskühlsystems derart, dass während der Übergangsbetriebsphase die Zufuhr von Wärmeenergie zu dem vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber beendet wird, wenn der Adsorptions- 20 kühlmitteldruck in dem Adsorber dem Adsorptionskühlmitteldruck im Kondensator entspricht. Dadurch wird verhindert, dass Adsorptionskühlmittel vom Kondensator in den Adsorber strömt, wenn zu Beginn des Desorptionsbetriebs des Adsorbers eine Fluidverbindung zwischen dem Kondensator und dem Adsorber geöffnet wird. 5 Bei einem erfindungsgemäßen Verfahren zum Betreiben eines Adsorptionskühlsystems für ein Luftfahrzeug mit einem Verdampfer, einem ersten Adsorber, der ein erstes Adsorptionsmedium zur Adsorption eines in dem Verdampfer verdampften Adsorptionskühlmittels enthält, und einem zweiten Adsorber, der ein zweites Adsorptionsmedium zur Adsorption des in dem Verdampfer verdampften Adsorptionskühl- o mittels enthält, wobei der erste und der zweite Adsorber wechselweise in einemPreferably, the electronic control unit controls the heat transfer system of the adsorption refrigeration system of the present invention such that during the transient operating phase, the supply of heat energy to the adsorber transferred from the adsorption operation to the desorption operation is terminated when the adsorption refrigerant pressure in the adsorber corresponds to the adsorption refrigerant pressure in the condenser. This prevents adsorption refrigerant from flowing into the adsorber from the condenser when fluid communication between the condenser and the adsorber is opened at the beginning of the desorption operation of the adsorber. 5 In a method according to the invention for operating an adsorption cooling system for an aircraft having an evaporator, a first adsorber containing a first adsorption medium for adsorbing an adsorption refrigerant evaporated in the evaporator, and a second adsorbent having a second adsorption medium for adsorbing the vaporized in the evaporator Adsorptionskühl- o means, wherein the first and the second adsorber alternately in a
Adsorptionsbetrieb und einem Desorptionsbetrieb betreibbar sind, so dass jeweils ein Adsorber Adsorptionskühlmittel adsorbieren und der andere Adsorber regeneriert werden kann, wird während einer Übergangsbetriebsphase, während der ein Adsorber vom Adsorptionsbetrieb in den Desorptionsbetrieb überführt wird und der andere 5 Adsorber vom Desorptionsbetrieb in den Adsorptionsbetrieb überführt wird, mittels eines Wärmeübertragungsfluids Wärmeenergie von dem vom Desorptionsbetrieb in den Adsorptionsbetrieb überführten Adsorber auf den vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber übertragen.Adsorption and a desorption are operable so that each adsorber adsorb adsorbent and the other adsorber can be regenerated, during a transitional operating phase during which an adsorber is transferred from the adsorption to the desorption and the other adsorber 5 is transferred from the desorption into the adsorption , By means of a heat transfer fluid heat energy from that of the desorption in transferred to the adsorption adsorber transferred to the transferred from Adsorptionsbetrieb in the desorption mode adsorber.
Das Wärmeübertragungssystem des Adsorptionskühlsystems umfasst vorzugsweise ein Leitungsnetz sowie eine Mehrzahl von in dem Leitungsnetz angeordneten Ventilen, die entsprechend geschaltet werden können, und während der Übergangsbetriebsphase mittels des Wärmeübertragungsfluids Wärmeenergie von dem vom Desorptionsbetrieb in den Adsorptionsbetrieb überführten Adsorber auf den vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber zu übertragen.The heat transfer system of the Adsorptionskühlsystems preferably comprises a conduit network and a plurality of arranged in the conduit network valves which can be switched accordingly, and during the transitional operating phase by means of the heat transfer fluid heat energy from the desorption transferred to the adsorption mode adsorber on the transferred from Adsorptionsbetrieb in the desorption mode adsorber transferred to.
Eine Heizeinrichtung des Wärmeübertragungssystems führt vorzugsweise einem im Desorptionsbetrieb betriebenen Adsorber zur Regeneration des Adsorbers bzw. des in dem Adsorber enthaltenen Adsorptionsmediums Wärmeenergie zu.A heating device of the heat transfer system preferably supplies heat energy to an adsorber operated in the desorption mode for the regeneration of the adsorber or the adsorption medium contained in the adsorber.
Vorzugsweise wird der Heizeinrichtung von einer Verlustwärme abgebenden Einrichtung des Luftfahrzeugs Verlustwärme zugeführt.Preferably, the heater is supplied from a loss-heat-emitting device of the aircraft loss heat.
Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens führt eine Kühleinrichtung des Wärmeübertragungssystems einem im Adsorptionsbetrieb betriebenen Adsorber zur Kühlung des Adsorbers bzw. des in dem Adsorber enthaltenen Adsorptionsmediums Kälteenergie zu.In a preferred embodiment of the method according to the invention, a cooling device of the heat transfer system supplies an adsorber operated in the adsorption mode for cooling the adsorber or the adsorption medium contained in the adsorber to cold energy.
Vorzugsweise wird aus einem im Desorptionsbetrieb betriebenen Adsorber abgeführtes Adsorptionskühlmittel in einem Kondensator kondensiert. Eine elektronische Steuereinheit kann Signale von einem ersten Drucksensor zur Messung des Adsorptionskühlmitteldrucks im Kondensator und einem zweiten Drucksensor zur Messung des Adsorptionskühlmitteldrucks in einem Adsorber erfassen und das Wärmeübertragungssystem des erfindungsgemäßen Adsorptionskühlsystems derart steuern, dass während der Übergangsbetriebsphase die Zufuhr von Wärmeenergie zu dem vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber beendet wird, wenn der Adsorptionskühlmitteldruck in dem Adsorber dem Adsorptionskühlmitteldruck im Kondensator entspricht. Die Erfindung wird jetzt mit Hilfe der beigefügten Figuren detaillierter beschrieben. Es zeigen:Preferably, adsorption coolant removed from an adsorber operated in the desorption mode is condensed in a condenser. An electronic control unit may detect signals from a first pressure sensor for measuring the adsorption refrigerant pressure in the condenser and a second pressure sensor for measuring the adsorption refrigerant pressure in an adsorber and control the heat transfer system of the adsorption refrigeration system according to the present invention so that during the transient operating phase, the supply of heat energy to that from the adsorption operation in the Desorptionsbetrieb transferred adsorber is terminated when the adsorption refrigerant pressure in the adsorber corresponds to the adsorption refrigerant pressure in the condenser. The invention will now be described in more detail with the aid of the attached figures. Show it:
Figur 1 ein Adsorptionskühlsystem in einem Betriebszustand, in dem in einem ersten Adsorber Adsorptionskühlmittel desorbiert und in einem zweitenFIG. 1 shows an adsorption cooling system in an operating state in which adsorption coolant is desorbed in a first adsorber and in a second adsorber
Adsorber Adsorptionskühlmittel adsorbiert wird;Adsorber adsorption coolant is adsorbed;
Figur 2 das Adsorptionskühlsystem gemäß Figur 1 in einem Betriebszustand, in dem zwischen einem Adsorptionsbetrieb und einem Desorptionsbetrieb der Adsorber umgeschaltet wird;FIG. 2 shows the adsorption cooling system according to FIG. 1 in an operating state in which the adsorber is switched over between an adsorption mode and a desorption mode;
Figur 3 das Adsorptionskühlsystem gemäß Figur 1 in einem Betriebszustand, in dem in dem ersten Adsorber Adsorptionskühlmittel adsorbiert und in dem zweiten Adsorber Adsorptionskühlmittel desorbiert wird; undFIG. 3 shows the adsorption cooling system according to FIG. 1 in an operating state in which adsorption coolant is adsorbed in the first adsorber and desorption coolant is adsorbed in the second adsorber; and
Figur 4 das Adsorptionskühlsystem gemäß Figur 1 in einem Betriebszustand, in dem erneut zwischen einem Adsorptionsbetrieb und einem Desorptionsbetrieb der Adsorber umgeschaltet wird.FIG. 4 shows the adsorption cooling system according to FIG. 1 in an operating state in which the adsorber is again switched between an adsorption mode and a desorption mode.
Ein in den Figuren gezeigtes Luftfahrzeug-Adsorptionskühlsystem 1 weist einen ersten Adsorber 2 mit einem ersten Adsorptionsmedium, einen zweiten Adsorber 4 mit einem zweiten Adsorptionsmedium, einen Kondensator 8, ein Expansionsventil 6 und einen Verdampfer 18 auf. Das Adsorptionsmedium (nicht gezeigt) in den Adsorbern 2, 4 kann beispielsweise Aktivkohle, Zeolith, Silikagel sein. Das Adsorptionskühlsys- tem 1 umfasst ferner einen Adsorptionskühlmittelkreislauf 9, in dem ein Adsorptionskühlmittel im Kreislauf geführt wird und in dem ein erstes Adsorptionssteuerventil 10, ein zweites Adsorptionssteuerventil 12, ein drittes Adsorptionssteuerventil 14 und ein viertes Adsorptionssteuerventil 16 angeordnet sind. Als Adsorptionskühlmittel kann beispielsweise Wasser und/oder Alkohol verwendet werden.An aircraft adsorption refrigeration system 1 shown in the figures has a first adsorber 2 with a first adsorption medium, a second adsorber 4 with a second adsorption medium, a condenser 8, an expansion valve 6 and an evaporator 18. The adsorption medium (not shown) in the adsorbers 2, 4 may be, for example, activated carbon, zeolite, silica gel. The adsorption cooling system 1 further comprises an adsorption coolant circuit 9 in which an adsorption coolant is recirculated and in which a first adsorption control valve 10, a second adsorption control valve 12, a third adsorption control valve 14, and a fourth adsorption control valve 16 are arranged. As the adsorption coolant, for example, water and / or alcohol can be used.
Bei der Verdampfung des Adsorptionskühlmittels im Verdampfer 18 wird Kühlenergie in Form von Verdampfungskälte frei, die beispielsweise mittels eines durch ein Verdampfergebläse 20 erzeugten Luftstroms an einen Einsatzort geführt werden kann. Der als Wärmetauscher ausgebildete Verdampfer 18 muss nicht notwendigerweise Luft kühlen, sondern kann ein beliebiges Kühlmedium, beispielsweise ein beliebiges Fluid oder einen beliebigen Feststoff, kühlen. Die von dem Verdampfer 18 erzeugte Kühlenergie kann zum Kühlen eines Teilbereichs einer Kabine, eines Teilbereichs einer Galley, eines Speisewagens in der Galley, einer elektronischen Einrichtung, beispielsweise einer Flugsteuerungseinrichtung, eines elektronischen Unterhaltungssystems, etc. verwendet werden.During the evaporation of the adsorption coolant in the evaporator 18, cooling energy is released in the form of evaporative cooling, which can be conducted to an application site, for example, by means of an airflow generated by an evaporator fan 20. The evaporator 18, which is designed as a heat exchanger, does not necessarily have to cool air, but can cool any cooling medium, for example any fluid or any solid. The cooling energy generated by the evaporator 18 may be used to cool a portion of a cabin, a portion a galley, a dining car in the galley, an electronic device, such as a flight control device, an electronic entertainment system, etc. are used.
.5 In dem Verdampfer 18 verdampftes Adsorptionskühlmittel lagert sich an dem Adsorptionsmedium eines im Adsorptionsbetrieb betriebenen Adsorbers 2, 4 an. Durch das Adsorbieren des gasförmigen Adsorptionskühlmittels verringert sich der Partial- druck des Adsorptionskühlmittels im Verdampfer 18. Dies führt dazu, dass weiteres flüssiges Adsorptionskühlmittel im Verdampfer 18 verdampft. Aus einem im Desorpti- lo ons- oder Regenerationsbetrieb betriebenen Adsorber 2, 4 wird dagegen Adsorptionskühlmittel im gasförmigen Aggregatzustand abgeführt und in den Kondensator 8 geleitet. Im Kondensator 8 oder stromabwärts des Kondensators 8 kann sich ein Reservoir (nicht gezeigt) befinden. Nach der Kondensation in dem Kondensator 8 wird das Adsorptionskühlmittel über das Expansionsventil 6 in den Verdampfer 18 zur i5 erneuten Verdampfung zurückgeführt..5 Adsorption coolant evaporated in the evaporator 18 deposits on the adsorption medium of an adsorber 2, 4 operated in the adsorption mode. By adsorbing the gaseous adsorption coolant, the partial pressure of the adsorption coolant in the evaporator 18 is reduced. As a result, further liquid adsorption coolant evaporates in the evaporator 18. By contrast, adsorption coolant in the gaseous state of matter is removed from an adsorber 2, 4 operated in the desorptive or regeneration mode and passed into the condenser 8. In the condenser 8 or downstream of the condenser 8 may be a reservoir (not shown). After condensation in the condenser 8, the adsorption refrigerant is returned to the evaporator 18 via the expansion valve 6 for re-evaporation.
In dem in Figur 1 gezeigten Betriebszustand des Adsorptionskühlsystems 1 wird der zweite Adsorber 4 im Adsorptionsbetrieb betrieben, während der erste Adsorber 2 bzw. das erste Adsorptionsmedium in dem ersten Adsorber 4 regeneriert wird. Das 20 erste Adsorptionssteuerventil 10 und das vierte Adsorptionssteuerventil 16 sind geöffnet, wohingegen das zweite Adsorptionssteuerventil 12 und das dritte Adsorptionssteuerventil 14 geschlossen sind.In the operating state of the adsorption cooling system 1 shown in FIG. 1, the second adsorber 4 is operated in the adsorption mode, while the first adsorber 2 or the first adsorption medium in the first adsorber 4 is regenerated. The first adsorption control valve 10 and the fourth adsorption control valve 16 are opened, whereas the second adsorption control valve 12 and the third adsorption control valve 14 are closed.
Im Folgenden wird ein Wärmeübertragungssystem des Adsorptionskühlsystems 1 5 näher erläutert, das dazu dient, den Adsorbern 2, 4 und dem Kondensator 8, je nach Bedarf, Kühlenergie oder Wärmeenergie zuzuführen. In einem von einem Wärme- übertragungsfluid durchströmten Leitungsnetz des Wärmeübertragungssystems sind eine Heizeinrichtung 50, eine Kühleinrichtung 52, ein erstes Versorgungsventil 60, ein zweites Versorgungsventil 62, ein drittes Versorgungsventil 64, ein viertes Ver- o sorgungsventil 66, ein fünftes Versorgungsventil 68, ein sechstes Versorgungsventil 70, ein siebtes Versorgungsventil 72, ein achtes Versorgungsventil 74 und ein neuntes Versorgungsventil 76 angeordnet. Das Wärmeübertragungsfluid kann aufgrund natürlicher Konvektion oder aufgrund einer von einer ersten Pumpe 54 und einer zweiten Pumpe 56 erzeugten Zwangskonvektion durch das Leitungsnetz gefördert 5 werden. Das Wärmeübertragungsfluid kann sowohl gasförmig als auch flüssig sein, wobei ein flüssiges Wärmeübertragungsfluid bevorzugt ist. Das Wärmeübertragungsfluid kann beispielsweise Wasser, ein Gemisch aus Wasser und Glykol oder ein Perfluorpolyether, z.B. der von Solvay Solexis unter dem Markennamen Galden HT- 135 angebotene Perfluorpolyether sein.In the following, a heat transfer system of the Adsorptionskühlsystems 1 5 is explained in more detail, which serves to supply the adsorbers 2, 4 and the capacitor 8, as needed, cooling energy or thermal energy. A heating system 50, a cooling device 52, a first supply valve 60, a second supply valve 62, a third supply valve 64, a fourth supply valve 66, a fifth supply valve 68, a sixth are provided in a heat-transfer system network through which a heat transfer fluid flows Supply valve 70, a seventh supply valve 72, an eighth supply valve 74 and a ninth supply valve 76 arranged. The heat transfer fluid may be delivered through the conduit network due to natural convection or due to forced convection generated by a first pump 54 and a second pump 56. The heat transfer fluid may be both gaseous and liquid, with a liquid heat transfer fluid being preferred. The heat transfer fluid may be, for example, water, a mixture of water and glycol or a Perfluoropolyethers, eg the perfluoropolyethers sold by Solvay Solexis under the trade name Galden HT-135.
Der Heizeinrichtung 50 wird Abwärme zugeführt, die in einer anderen Einrichtung .5 des Luftfahrzeugs als Verlustwärme erzeugt wird. Die Verlustwärme kann beispielsweise die von einer Turbine, einem Verbrennungsmotor, einem Elektromotor, einem Hilfsaggregat oder einem Energiespeicher des Luftfahrzeugs erzeugte Verlustwärme sein. Es ist auch möglich, die Verlustwärme zu nutzen, die beim Kühlen von Triebwerkszapfluft entsteht. Diese Verlustwärme wird bei derzeitigen Luftfahrzeugen über lo Stauluftwärmetauscher an die Umgebung des Luftfahrzeuges abgegeben. Es ist aber auch möglich, dass die Heizeinrichtung 50 direkt mit heißer Triebwerkszapfluft versorgt wird oder in Form einer elektrischen Heizeinrichtung ausgebildet ist.The heater 50 is supplied with waste heat which is generated in another device .5 of the aircraft as waste heat. The heat loss can be, for example, the heat loss generated by a turbine, an internal combustion engine, an electric motor, an auxiliary unit or an energy storage of the aircraft. It is also possible to use the waste heat created when cooling engine bleed air. This heat loss is delivered in the current aircraft via lo stauluftwärmetauscher to the environment of the aircraft. But it is also possible that the heater 50 is supplied directly with hot engine bleed air or is in the form of an electric heater.
In dem in Figur 1 dargestellten Betriebszustand des Adsorptionskühlsystems 1 sind i5 das erste Versorgungsventil 60, das vierte Versorgungsventil 66, das fünfte Versorgungsventil 68 und das achte Versorgungsventil 74 geöffnet, wohingegen das zweite Versorgungsventil 62, das dritte Versorgungsventil 64, das sechste Versorgungsventil 70 und das siebte Versorgungsventil 72 geschlossen sind. Das in der Heizeinrichtung 50 erwärmte Wärmeübertragungsfluid wird von der ersten Pumpe 54 durch das 20 geöffnete erste Versorgungsventil 60 zum ersten Adsorber 2 gepumpt. Im ersten Adsorber 2 stellt das Wärmeübertragungsfluid dem ersten Adsorptionsmedium des ersten Adsorbers 2 Wärme bereit. Dadurch kann das erste Adsorptionsmedium des ersten Adsorbers 2 regeneriert werden. Das Wärmeübertragungsfluid tritt aus dem ersten Adsorber 2 aus und strömt über das geöffnete achte Versorgungsventil 74 zur 25 Heizeinrichtung 50, wo es erneut erwärmt wird.1, the first supply valve 60, the fourth supply valve 66, the fifth supply valve 68 and the eighth supply valve 74 are open, whereas the second supply valve 62, the third supply valve 64, the sixth supply valve 70 and the seventh supply valve 72 are closed. The heat transfer fluid heated in the heater 50 is pumped from the first pump 54 to the first adsorber 2 through the first supply valve 60 opened. In the first adsorber 2, the heat transfer fluid provides heat to the first adsorption medium of the first adsorber 2. As a result, the first adsorption medium of the first adsorber 2 can be regenerated. The heat transfer fluid exits the first adsorber 2 and flows through the open eighth supply valve 74 to the heater 25, where it is reheated.
Dem ersten Adsorber 2 kann so lange warmes Wärmeübertragungsfluid zugeführt werden, bis das in dem ersten Adsorber 2 enthaltene erste Adsorptionsmedium vollständig regeneriert ist. Es versteht sich, dass die Wärmezufuhr zum ersten Adsorber 0 2 auch unterbrochen werden kann, bevor dieser vollständig regeneriert ist. Dies kann beispielsweise erforderlich sein, falls das zweite Adsorptionsmedium in dem zweiten Adsorber 4 vollständig gesättigt ist, bevor das erste Adsorptionsmedium in dem ersten Adsorber 2 vollständig regeneriert ist. 5 Die Kühleinrichtung 52 dient dazu, Wärmeübertragungsfluid zur Kühlung des sich im Adsorptionsbetrieb befindenden zweiten Adsorber 4 auf eine gewünschte tiefe Temperatur zu kühlen. In der Kühleinrichtung 52 kann Wärmeübertragungsfluid bei- spielsweise durch einen aus der Umgebung entnommenen Luftstrom gekühlt werden, der mittels eines Kϋhleinrichtungsgebläses 58 auf Lamellen der Kühleinrichtung 52 gerichtet wird, durch die das Wärmeübertragungsfluid strömt. Die zweite Pumpe 56 pumpt das gekühlte Wärmeübertragungsfluid von der Kühleinrichtung 52 durch das geöffnete vierte Versorgungsventil 66 zum zweiten Adsorber 4. Im zweiten Ad- sorber 4 kühlt das Wärmeübertragungsfluid das zweite Adsorptionsmedium des zweiten Adsorbers 4. Dadurch wird die Adsorptionsleistung des zweiten Adsorbers 4 verbessert, da die elektrostatische Anziehungskraft des Adsorptionsmediums für das Adsorptionskühlmittel bei einer niedrigeren Temperatur stärker ausgeprägt ist. Das Wärmeübertragungsfluid strömt vom zweiten Adsorber 4 durch das geöffnete fünfte Versorgungsventil 68 zur Kühleinrichtung 52 zurück, wo es erneut gekühlt wird.The first adsorber 2 can be supplied with warm heat transfer fluid until the first adsorption medium contained in the first adsorber 2 is completely regenerated. It is understood that the heat supply to the first adsorber 0 2 can also be interrupted before it is completely regenerated. This may be necessary, for example, if the second adsorption medium in the second adsorber 4 is completely saturated before the first adsorption medium in the first adsorber 2 is completely regenerated. The cooling device 52 serves to cool heat transfer fluid for cooling the second adsorber 4 located in the adsorption mode to a desired low temperature. In the cooling device 52, heat transfer fluid can be added. For example, be cooled by an air stream taken from the environment, which is directed by a Kϋhleinrichtungsgebläses 58 on fins of the cooling device 52 through which the heat transfer fluid flows. The second pump 56 pumps the cooled heat transfer fluid from the cooling device 52 through the opened fourth supply valve 66 to the second adsorber 4. In the second adsorber 4, the heat transfer fluid cools the second adsorption medium of the second adsorber 4. Thus, the adsorption performance of the second adsorber 4 is improved. since the electrostatic attraction of the adsorption medium for the adsorption refrigerant is more pronounced at a lower temperature. The heat transfer fluid flows back from the second adsorber 4 through the opened fifth supply valve 68 to the cooler 52 where it is recooled.
Ferner wird das Wärmeübertragungsfluid von der Kühleinrichtung 52 mittels der zweiten Pumpe 56 zum Kondensator 8 gepumpt, wo es zu Abfuhr der durch die Kon- densation des Adsorptionskühlmittels in dem Kondensator 8 erzeugten Kondensationsabwärme verwendet wird. Nach dem Durchströmen des Kondensators 8 wird das beim Durchströmen des Kondensators 8 erwärmte Wärmeübertragungsfluid zur erneuten Kühlung in die Kühleinrichtung 52 zurückgeführt.Further, the heat transfer fluid is pumped from the cooling device 52 by means of the second pump 56 to the condenser 8, where it is used to dissipate the heat of condensation generated by the condensation of the Adsorptionskühlmittels in the condenser 8. After flowing through the condenser 8, the heat transfer fluid heated when flowing through the condenser 8 is returned to the cooling device 52 for renewed cooling.
Im Folgenden werden zur Berechnung der erforderlichen Kühl- und Heizleistungen der einzelnen Komponenten des Adsorptionskühlsystems 1 folgende Symbole verwendet:In the following, the following symbols are used to calculate the required cooling and heating capacities of the individual components of the adsorption cooling system 1:
A Fläche am TotmassenverhältnisA area at the dead mass ratio
Cp [kJ/ (kgK)] spezifische WärmekapazitätCp [kJ / (kgK)] specific heat capacity
COP Leistungszahl/WärmeverhältrCOP coefficient of performance / heat balance
Q [J] WärmemengeQ [J] amount of heat
Q [W] WärmestromQ [W] heat flow
Q [W] mittlerer Wärmestrom h [kJ/ kg] spezifische Enthalpie k [W/(m2K)] Wärmedurchgangskoeffizient m [kg] Masse m [kg/ s] MassenstromQ [W] mean heat flux h [kJ / kg] specific enthalpy k [W / (m 2 K)] heat transfer coefficient m [kg] mass m [kg / s] mass flow
V [mV s] VolumenstromV [mV s] volumetric flow
P [W] elektrische LeistungP [W] electrical power
P [Pa] Druck r [kJ/ kg] Verdampfungsenthalpie t [S] ZeitP [Pa] pressure r [kJ / kg] Evaporation enthalpy t [S] Time
T [K] Temperatur q [kgw/kgz] BeladungT [K] Temperature q [kg w / kg z ] load
X ProportionalitätsfaktorX proportionality factor
Δ DifferenzΔ difference
3 [0C] Temperatur λ [W/ (mK)] Wärmeleitfähigkeit3 [ 0 C] Temperature λ [W / (mK)] Thermal conductivity
P [kg/ m3] DichteP [kg / m 3 ] density
Indizes:indices:
0 Verdampfer, Verdampfung0 evaporator, evaporation
1 Anfangszustand1 initial state
2 Endzustand erf erforderlich hr Wärmerückgewinnung (Heat Recovery) htf Wärmeübertragungsfluid (Heat Transfer Fluid) hx Wärmetauscher (Heat-Exchanger) in Eingang out Ausgang2 Final condition required hr heat recovery htf heat transfer fluid hx heat exchanger (heat exchanger) in input out output
A AdsorptionsanfangA adsorption beginning
Abk AbkühlenAbk cooling
Auf AufheizenOn heating
Ads AdsorptionAds adsorption
Adsl AdsorberlAdsl Adsorberl
Ads2 Adsorber2Ads2 Adsorber2
D DesorptionsanfangD desorption beginning
Des DesorptionDesorption
Kond Kondensator, KondensationKond capacitor, condensation
Kühl Kühlung max maximal min minimal reg RegenerationCooling cooling max. Min. Min. Min regeneration
S SättigungS saturation
W WasserW water
Z Zeolith Die zum Desorbieren des zu regenerierenden ersten Adsorbers 2 erforderliche Leistung beträgt:Z zeolite The power required to desorb the first adsorber 2 to be regenerated is:
*Z Des ~ "1IiIf cp K1 DeSWIt λ Des, m > \ i- )* Z Des ~ " 1 IiIf c p K 1 De W It λ Des, m> \ i-)
5 Die zum Kühlen des Kondensators 8 und des adsorbierenden Adsorbers 4 erforderliche Kühlleistung kann wie folgt berechnet werden:The cooling capacity required for cooling the condenser 8 and the adsorbent adsorber 4 can be calculated as follows:
Q ii KuIiI _ ~ QϊiKond L p'"f - AT Kllolfnd ,m ~ >\ ' +^ " mι A'"Jds - c c p'"f - - AT Aludfs.in λ ) Q ii KuIiI _ ~ QϊiKond L p '" f - A TK ll o lf nd, m ~>\' + ^" m ι A '" J ds - c c p'" f - - A TA lu d f s.in λ)
wobei gilt: rhfds + rhfond = ™L" und τχ„ = T^ld m ;where: rhf ds + rhf ond = ™ L "and τχ" = T ^ ld m ;
1010
Sobald das zweite Adsorptionsmedium des zweiten Adsorbers 4 gesättigt ist, muss es regeneriert werden. Ein Adsorptionsmedium ist dann gesättigt, wenn es kein weiteres Adsorptionskühlmittel mehr adsorbieren kann.As soon as the second adsorption medium of the second adsorber 4 is saturated, it must be regenerated. An adsorption medium is then saturated if it can no longer adsorb another adsorption coolant.
i5 Figur 2 zeigt einen Übergangsbetriebszustand, in dem der erste Adsorber 2 für den Adsorptionsbetrieb und der zweite Adsorber 4 für den Desorptionsbetrieb vorbereitet wird. Hierfür ist es erforderlich, dass der erste Adsorber 2 bzw. das erste Adsorptionsmedium gekühlt und der zweite Adsorber 4 bzw. das zweite Adsorptionsmedium erwärmt wird. Während der Übergangsbetriebsphase werden das erste, das zweite,FIG. 2 shows a transitional operating state in which the first adsorber 2 for the adsorption operation and the second adsorber 4 for the desorption operation are prepared. For this purpose, it is necessary for the first adsorber 2 or the first adsorption medium to be cooled and the second adsorber 4 or the second adsorption medium to be heated. During the transitional operation phase, the first, the second,
20 das dritte und das vierte Adsorptionssteuerventil 10, 12, 14, 16 geschlossen, und das Gebläse 20 des Verdampfers ausgeschaltet, so dass das Adsorptionskühlsystem 1 während der Übergangsbetriebsphase keine Kühlleistung bereitstellt.20, the third and fourth adsorption control valves 10, 12, 14, 16 are closed, and the blower 20 of the evaporator is turned off, so that the adsorption refrigeration system 1 does not provide cooling performance during the transient operation phase.
Im Leitungsnetz des Wärmeübertragungssystem werden während des Übergangsbe- 25 triebszustands das zweite Versorgungsventil 62, das dritte Versorgungsventil 64, das fünfte Versorgungsventil 68 und das achte Versorgungsventil 74 geöffnet. Das erste Versorgungsventil 60, das vierte Versorgungsventil 66, das sechste Versorgungsventil 70, das siebte Versorgungsventil 72 und das neunte Versorgungsventil 76 werden dagegen geschlossen. Zusätzlich können die Kühleinrichtung 52, das Kühleinrich- 3o tungsgebläse 58 und die Heizeinrichtung 50 ausgeschaltet werden. Die zweite Pumpe 56 pumpt somit relativ kühles Wärmeübertragungsfluid vom zweiten Adsorber 4 über das fünfte Versorgungsventil 68, die Kühleinrichtung 52 und das zweite Versorgungsventil 62 zum ersten Adsorber 2. Das Wärmeübertragungsfluid im zweiten Adsorber 4 weist eine relativ niedrige Temperatur auf, da der zweite Adsorber 4 während des Adsorptionsbetriebs durch das Wärmeübertragungsfluid gekühlt wurde.In the transmission system of the heat transfer system, the second supply valve 62, the third supply valve 64, the fifth supply valve 68 and the eighth supply valve 74 are opened during the transitional operating state. The first supply valve 60, the fourth supply valve 66, the sixth supply valve 70, the seventh supply valve 72 and the ninth supply valve 76 are closed, however. In addition, the cooling device 52, the cooling device fan 58 and the heating device 50 can be switched off. The second pump 56 thus pumps relatively cool heat transfer fluid from the second adsorber 4 via the fifth supply valve 68, the cooler 52 and the second supply valve 62 to the first adsorber 2. The heat transfer fluid in the second Adsorber 4 has a relatively low temperature because the second adsorber 4 was cooled by the heat transfer fluid during the adsorption operation.
Das Wärmeübertragungsfluid wird im ersten Adsorber 2 durch Wärmeübertragung .5 von dem ersten Adsorptionsmedium erwärmt und strömt über das achte Versorgungsventil 74, die Heizeinrichtung 50, die erste Pumpe 54 und das dritte Versorgungsventil 64 zurück zum zweiten Adsorber 4. Das Wärmeübertragungsfluid transportiert folglich Wärmeenergie vom ersten Adsorber 2 zum zweiten Adsorber 4 und umgekehrt Kälteenergie, d.h. negative Wärmeenergie vom zweiten Adsorber 4 lo zum ersten Adsorber 2. Das geschlossene neunte Versorgungsventil 76 verhindert, dass während der Übergangsbetriebsphase Wärmeübertragungsfluid durch den Kondensator 8 strömt.The heat transfer fluid is heated in the first adsorber 2 by heat transfer .5 from the first adsorbent medium and flows back to the second adsorber 4 via the eighth supply valve 74, the heater 50, the first pump 54 and the third supply valve 64. The heat transfer fluid thus transports thermal energy from the first one Adsorber 2 to the second adsorber 4 and vice versa cooling energy, ie negative heat energy from the second adsorber 4 lo to the first adsorber 2. The closed ninth supply valve 76 prevents heat transfer fluid from flowing through the condenser 8 during the transient operating phase.
Da Wärmeenergie vom ersten Adsorber 2 zum zweiten Adsorber 4 transportiert wird i5 und umgekehrt Kälteenergie vom zweiten Adsorber 4 zum ersten Adsorber 2 transportiert wird, benötigt das Adsorptionskühlsystem 1 während der Übergangsbetriebsphase weniger Energie. Ferner kann das Umschalten der Adsorber 2, 4 vom Adsorptionsbetrieb auf den Desorptionsbetrieb und umgekehrt beschleunigt und damit die Dauer der Übergangsbetriebsphase, während der das Adsorptionskühlsys- 20 tem 1 keine Kühlleistung bereitstellt, verkürzt werden.Since heat energy is transported from the first adsorber 2 to the second adsorber 4 and, conversely, that cold energy is transported from the second adsorber 4 to the first adsorber 2, the adsorption cooling system 1 requires less energy during the transient operating phase. Further, the switching of the adsorbers 2, 4 from the adsorption to the desorption and vice versa speeds and thus the duration of the transitional operating phase, during which the Adsorptionskühlsys- 20 tem 1 provides no cooling performance can be shortened.
Das Adsorptionskühlsystem 1 kann während der Übergangsbetriebsphase als adiabat betrachtet werden, da lediglich ein Wärmeaustausch innerhalb des Adsorptionskühlsystem 1 erfolgt. Die von dem ersten Adsorber 2 auf den zweiten Adsorber 4 über- 25 tragene Wärmemenge kann wie folgt dargestellt werden:The adsorption cooling system 1 may be considered adiabatic during the transient operating phase since only heat exchange within the adsorption cooling system 1 occurs. The amount of heat transferred from the first adsorber 2 to the second adsorber 4 can be represented as follows:
reg ~ )m hlJ Cp K1 AbKOM 1 AhKm ) " * ~ )m /;(/ Cp V1AUf1OW λ Auf ,m ) Ü T (j)reg ~) m HLJ C p K 1 1 AbKOM AhKm) "* ~) m / (/ C p V 1 λ 1 OW on, (m) T Ü j)
Das erste Integral beschreibt die dem ersten Adsorber 2 entzogene Wärmemenge, 0 und das zweite Integral beschreibt die vom zweiten Adsorber 4 aufgenommene Wärmemenge.The first integral describes the amount of heat extracted from the first adsorber 2, 0, and the second integral describes the amount of heat absorbed by the second adsorber 4.
Es versteht sich, dass die Heizeinrichtung 50 zum Bereitstellen zusätzlicher thermischer Energie und die Kühleinrichtung 52 zum Abführen thermischer Energie einge- 5 schaltet sein können, damit die Dauer der Übergangsbetriebsphase nochmals verkürzt werden kann. Im Kondensator 8 und in den Adsorbern 2, 4 sind jeweils Drucksensoren (nicht gezeigt) zum Messen des Adsorptionskühlmitteldrucks vorhanden. Die von den Drucksensoren bereitgestellten Signale werden von einer elektronischen Steuereinheit erfasst und verarbeitet. In Abhängigkeit der Drucksensorsignale steuert die elektronische Steuereinheit die Komponenten des Adsorptionskühlsystems 1 und insbesondere die Ventile 60, 62, 64, 66, 68, 70, 72, 74, 76 des Wärmeübertragungssystems derart, dass während der Übergangsbetriebsphase die Zufuhr von Wärme zu dem vom Adsorptionsbetrieb auf den Desorptionsbetrieb umzuschaltenden zweiten Adsor- ber 4 beendet wird, sobald in diesem der gleiche Adsorptionskühlmitteldruck herrscht wie im Kondensator 8. Dadurch wird verhindert, dass Adsorptionskühlmittel vom Kondensator 8 in den zweiten Adsorber 4 strömt, wenn im Desorptionsbetrieb des zweiten Adsorbers 4 die Fluidverbindung zwischen dem Kondensator 8 und dem zweiten Adsorber 4 geöffnet wird. Das Zirkulieren des Wärmeübertragungsfluids zwischen den Adsorbern 2, 4 kann folglich gezielt beendet werden, sobald der zweite Absorber 4 einen Betriebszustand erreicht hat, in dem mit dem Regenerieren des zweiten Adsorbers begonnen werden kann.It will be appreciated that the heater 50 for providing additional thermal energy and the cooler 52 for dissipating thermal energy may be switched on to further reduce the duration of the transient operating phase. In the condenser 8 and in the adsorbers 2, 4 are each pressure sensors (not shown) for measuring the Adsorptionskühlmitteldrucks available. The signals provided by the pressure sensors are detected and processed by an electronic control unit. Depending on the pressure sensor signals, the electronic control unit controls the components of the adsorption cooling system 1, and in particular the valves 60, 62, 64, 66, 68, 70, 72, 74, 76 of the heat transfer system such that during the transient operating phase the supply of heat to that of the adsorption operation the second adsorber 4 to be switched to the desorption mode is ended as soon as the same adsorption coolant pressure prevails therein as in the condenser 8. This prevents adsorption coolant from flowing from the condenser 8 into the second adsorber 4 when the fluid connection between the desorption operation of the second adsorber 4 the capacitor 8 and the second adsorber 4 is opened. The circulation of the heat transfer fluid between the adsorbers 2, 4 can consequently be terminated selectively as soon as the second absorber 4 has reached an operating state in which the regeneration of the second adsorber can be started.
Alternativ oder zusätzlich dazu kann die elektronische Steuereinheit die Komponenten des Adsorptionskühlsystems 1 und insbesondere die Ventile 60, 62, 64, 66, 68, 70, 72, 74, 76 des Wärmeübertragungssystems derart steuern, dass während der Übergangsbetriebsphase die Zufuhr von Wärme zu dem vom Adsorptionsbetrieb auf den Desorptionsbetrieb umzuschaltenden zweiten Adsorber 4 beendet wird, wenn die Temperatur im zweiten Adsorber 4 nach Erreichen eines Maximalwertes wieder ab- fällt. Hierzu kann die elektronische Steuereinheit Signale von in den Adsorbern 2, 4 angeordneten Temperatursensoren (nicht gezeigt) erfassen und verarbeiten.Alternatively or additionally, the electronic control unit may control the components of the adsorption cooling system 1, and in particular the valves 60, 62, 64, 66, 68, 70, 72, 74, 76 of the heat transfer system such that during the transient operating phase, the supply of heat to that of the Adsorption on the desorption to be switched second adsorber 4 is stopped when the temperature in the second adsorber 4 falls after reaching a maximum value again. For this purpose, the electronic control unit can detect and process signals from temperature sensors (not shown) arranged in the adsorbers 2, 4.
Figur 3 stellt einen Betriebszustand des Adsorptionskühlsystems 1 dar, in dem der erste Adsorber 2 Adsorptionskühlmittel adsorbiert und der zweite Adsorber 4 regene- riert wird. Hierzu werden das zweite Adsorptionssteuerventil 12 und das dritte Adsorptionssteuerventil 14 geöffnet, wohingegen das erste Adsorptionssteuerventil 10 und das vierte Adsorptionssteuerventil 16 geschlossen werden. Somit verdampft Adsorptionskühlmittel im zweiten Adsorber 4, das über das geöffnete zweite Adsorptionssteuerventil 12 zum Kondensator 8 strömt, wo es kondensiert. Anschließend strömt das Adsorptionskühlmittel zum Expansionsventil 6 und zum Verdampfer 18, wo es verdampft wird. Das gasförmige Adsorptionskühlmittel strömt durch das geöff- nete dritte Adsorptionssteuerventil 14 in den ersten Adsorber 2, wo es von dem ersten Adsorptionsmedium adsorbiert wird.FIG. 3 shows an operating state of the adsorption cooling system 1 in which the first adsorber 2 adsorbs adsorption coolant and the second adsorber 4 is regenerated. For this purpose, the second adsorption control valve 12 and the third adsorption control valve 14 are opened, whereas the first adsorption control valve 10 and the fourth adsorption control valve 16 are closed. Thus, adsorption refrigerant evaporates in the second adsorber 4, which flows via the opened second adsorption control valve 12 to the condenser 8, where it condenses. Subsequently, the adsorption refrigerant flows to the expansion valve 6 and to the evaporator 18 where it is evaporated. The gaseous adsorption coolant flows through the open Nete third adsorption control valve 14 in the first adsorber 2, where it is adsorbed by the first adsorption medium.
Der im Absorptionsbetrieb betriebene erste Adsorber 2 und der Kondensator 8 wer- .5 den von dem Wärmeübertragungssystem Kühlenergie versorgt. Im Gegensatz dazu führt das Wärmeübertragungssystem dem im Desorptionsbetrieb betriebenen zweiten Adsorber 4 Wärmeenergie zu. Hierzu werden das zweite Versorgungsventil 62, das dritte Versorgungsventil 64, das sechste Versorgungsventil 70, das siebte Versorgungsventil 72 und das neunte Versorgungsventil 76 geöffnet. Das erste Versor- lo gungsventil 60, das vierte Versorgungsventil 66, das fünfte Versorgungsventil 68 und das achte Versorgungsventil 74 werden geschlossen. Folglich pumpt die erste Pumpe 54 von der Heizeinrichtung 50 erwärmtes Wärmeübertragungsfluid durch das geöffnete dritte Versorgungsventil 64 zum zweiten Adsorber 4, so dass das zweite Adsorptionsmedium erwärmt wird. Das Wärmeübertragungsfluid tritt anschließend aus dem i5 zweiten Adsorber 4 aus und strömt über das geöffnete sechste Versorgungsventil 70 zur Heizeinrichtung 50 zurück.The first adsorber 2 operated in the absorption mode and the condenser 8 are supplied with cooling energy by the heat transfer system. In contrast, the heat transfer system leads to the second adsorber 4 operated in the desorption mode to heat energy. For this purpose, the second supply valve 62, the third supply valve 64, the sixth supply valve 70, the seventh supply valve 72 and the ninth supply valve 76 are opened. The first supply valve 60, the fourth supply valve 66, the fifth supply valve 68 and the eighth supply valve 74 are closed. Consequently, the first pump 54 pumps heat-transfer fluid heated by the heater 50 through the opened third supply valve 64 to the second adsorber 4, so that the second adsorbent medium is heated. The heat transfer fluid then exits the second adsorber 4 and flows back to the heater 50 via the opened sixth supply valve 70.
Die zweite Pumpe 56 pumpt von der Kühleinrichtung 52 gekühltes Wärmeübertragungsfluid durch das neunte Versorgungsventil 76 zum Kondensator 8. Das Wärme- 20 übertragungsfluid strömt vom Kondensator 8 zur Kühleinrichtung 52 zurück. Ferner pumpt die zweite Pumpe 56 das von der Kühleinrichtung 52 gekühlte Wärmeübertragungsfluid durch das zweite Versorgungsventil 62 zum ersten Adsorber 2, so dass das erste Adsorptionsmedium wirksam gekühlt wird. Anschließend strömt das Adsorptionskühlmittel zur Kühleinrichtung 52 zurück.The second pump 56 pumps heat transfer fluid cooled by the cooler 52 through the ninth supply valve 76 to the condenser 8. The heat transfer fluid flows back from the condenser 8 to the cooler 52. Further, the second pump 56 pumps the heat transfer fluid cooled by the cooler 52 through the second supply valve 62 to the first adsorber 2, so that the first adsorbent medium is effectively cooled. Subsequently, the adsorption refrigerant flows back to the cooling device 52.
2525
Sobald der erste Adsorber 2 gesättigt und/oder der zweite Adsorber 4 regeneriert ist, können die Adsorber 2, 4 wieder umgeschaltet werden. Dies wird mittels eines zweiten Umschaltvorganges durchgeführt, der im Wesentlichen dem in Figur 2 gezeigten ersten Umschaltvorgang entspricht, wobei beim zweiten Umschaltvorgang Wärme- 0 energie vom zweiten Adsorber 4 zum ersten Adsorber 2 übertragen wird. Dieser zweite Umschaltvorgang ist in Figur 4 dargestellt.As soon as the first adsorber 2 is saturated and / or the second adsorber 4 is regenerated, the adsorbers 2, 4 can be switched over again. This is carried out by means of a second switching operation, which substantially corresponds to the first switching operation shown in FIG. 2, heat energy being transferred from the second adsorber 4 to the first adsorber 2 during the second switching operation. This second switching operation is shown in FIG.
Während der in Figur 4 veranschaulichten Übergangsbetriebsphase werden das erste, zweite, dritte und vierte Adsorptionssteuerventil 10, 12, 14, 16 geschlossen. Der 5 Verdampfer 18 kann folglich während der Übergangsbetriebsphase keine Kühlleistung bereitstellen. Ferner werden das erste Versorgungsventil 60, das vierte Versorgungsventil 66, das sechste Versorgungsventil 70 und das siebte Versorgungsventil 72 geöffnet. Das zweite Versorgungsventil 62, das dritte Versorgungsventil 64, das fünfte Versorgungsventil 68, das achte Versorgungsventil 74 und das neunte Versorgungsventil 76 werden geschlossen. Die Heizeinrichtung 50 und die Kühleinrichtung 52 können ausgeschaltet werden. Die erste Pumpe 54 und die zweite Pumpe 56 pumpen warmes Wärmeübertragungsfluid vom zweiten Adsorber 4 über das sechste Versorgungsventil 70, die Heizeinrichtung 50 und das erste Versorgungsventil 60 zum ersten Adsorber 2, wodurch das erste Adsorptionsmedium erwärmt wird. Ferner wird kühles Wärmeübertragungsfluid vom ersten Adsorber 2 über das siebte Versorgungsventil 72, die Kühleinrichtung 52 und das vierte Versorgungsventil 66 zum zweiten Adsorber 4 geleitet, wodurch dem zweiten Adsorptionsmedium Wärme entzogen wird. Der Übergangsbetrieb wird fortgeführt, bis im ersten Adsorber 4 zumindest der gleiche Adsorptionsmitteldruck wie im Kondensator 8 herrscht. Im übrigen erfolgt der Übergangsbetrieb so, wie zuvor mit Bezugnahme auf Figur 2 beschrieben wurde. Nach dem Beenden der Übergangsbetriebsphase tritt das Adsorptionskühlsys- tem 1 wieder in den unter Bezugnahme auf Figur 1 beschriebenen Zustand ein. Das Adsorptionskühlsystem durchläuft die zuvor beschriebenen vier Betriebszustände gemäß Figuren 1 bis 4 zyklisch in der beschriebenen Reihenfolge.During the transient operating phase illustrated in FIG. 4, the first, second, third and fourth adsorption control valves 10, 12, 14, 16 are closed. Consequently, the evaporator 18 can not provide cooling power during the transient operating phase. Further, the first supply valve 60, the fourth supply valve 66, the sixth supply valve 70 and the seventh supply valve 72 opened. The second supply valve 62, the third supply valve 64, the fifth supply valve 68, the eighth supply valve 74 and the ninth supply valve 76 are closed. The heater 50 and the cooler 52 may be turned off. The first pump 54 and the second pump 56 pump warm heat transfer fluid from the second adsorber 4 via the sixth supply valve 70, the heater 50 and the first supply valve 60 to the first adsorber 2, thereby heating the first adsorption medium. Further, cool heat transfer fluid is supplied from the first adsorber 2 via the seventh supply valve 72, the cooler 52, and the fourth supply valve 66 to the second adsorber 4, thereby extracting heat from the second adsorption medium. The transitional operation is continued until in the first adsorber 4 at least the same adsorbent pressure as in the condenser 8 prevails. Otherwise, the transitional operation takes place as previously described with reference to FIG. After completion of the transitional operating phase, the adsorption cooling system 1 again enters the state described with reference to FIG. The adsorption cooling system cycles through the four operating states described above according to FIGS. 1 to 4 in the order described.
Die Steuereinheit des Adsorptionskühlsystems 1 kann die Adsorptionssteuerungsven- tile 10, 12, 14, 16, das Expansionsventil 6, die Versorgungsventile 60, 62, 64, 66, 68, 70, 72, 74, 76, das Verdampfergebläse 20, die Heizeinrichtung 50, die Kühleinrichtung 52 und das Kühleinrichtungsgebläse 58 so steuern, wie zuvor unter Bezugnahme auf die Figuren 1 bis 4 beschrieben wurde. Ferner können im Adsorptionskühlmittelkreislauf 9 Volumenstromsensoren vorgesehen sein, um zu bestimmen, ob ein Adsorber 2, 4 gesättigt ist. Es ist auch möglich, aus einer mittels eines geeigneten Temperatursensors gemessenen, steigenden Temperatur im Verdampfer 18 auf eine Sättigung eines Adsorbers 2, 4 zu schließen. Wenn beim Regenerieren eines Adsorbers 2, 4 festgestellt wird, dass die Temperatur des Wärmeübertragungsfluids beim Durchströmen des Adsorbers 2, 4 nicht (wesentlich) abnimmt, kann der Adsor- ber 2, 4 vollständig regeneriert sein. Es können folglich eine Mehrzahl von im Leitungsnetz des Wärmeübertragungssystems angeordnete Temperatursensoren vorhanden sein. Die Signale der Volumenstromsensoren und der Temperatursensoren werden von der Steuerungseinrichtung erfasst und in entsprechende Steuersignale zur Steuerung der Komponenten des Adsorptionskühlsystems 1 umgesetzt.The control unit of the adsorption cooling system 1 may comprise the adsorption control valves 10, 12, 14, 16, the expansion valve 6, the supply valves 60, 62, 64, 66, 68, 70, 72, 74, 76, the evaporator fan 20, the heating device 50, controlling the cooling device 52 and the cooling device fan 58 as previously described with reference to FIGS. 1 to 4. Further, volumetric flow sensors may be provided in the adsorption coolant circuit 9 to determine if an adsorber 2, 4 is saturated. It is also possible to conclude that an adsorber 2, 4 is saturated from an ascending temperature in the evaporator 18 measured by means of a suitable temperature sensor. If it is determined during regeneration of an adsorber 2, 4 that the temperature of the heat transfer fluid does not (substantially) decrease as it flows through the adsorber 2, 4, the adsorber 2, 4 can be completely regenerated. Consequently, a plurality of temperature sensors arranged in the line network of the heat transfer system can be present. The signals of the volumetric flow sensors and of the temperature sensors are detected by the control device and converted into corresponding control signals for controlling the components of the adsorption cooling system 1.
Ferner müssen die Heizeinrichtung 50 und die Kühleinrichtung 52 nicht ausgeschaltet werden, falls kein Heizen bzw. Kühlen gewünscht ist. Statt dessen können entspre- chende Bypassleitungen und/oder Bypassventile vorgesehen sein, die dafür sorgen, dass das Wärmeübertragungsfluid an einer dieser Einrichtungen vorbeiströmt. Die kann beispielsweise sinnvoll sein, wenn die Heizeinrichtung 50 von einer immer Verlustwärme abgebenden Einrichtung mit Wärmeenergie versorgt wird. Further, the heater 50 and the cooler 52 need not be turned off if no heating or cooling is desired. Instead, appropriate be provided bypassing valves and / or bypass valves, which ensure that the heat transfer fluid flows past one of these facilities. This may be useful, for example, if the heating device 50 is supplied with heat energy by a device which always gives off heat loss.

Claims

Patentansprüche claims
1. Adsorptionskühlsystem (1) für ein Luftfahrzeug, mit:An adsorptive cooling system (1) for an aircraft, comprising:
- einem Verdampfer (18),an evaporator (18),
- einem ersten Adsorber (2), der ein erstes Adsorptionsmedium zur Adsorption eines in dem Verdampfer (18) verdampften Adsorptionskühlmittels enthält,a first adsorber (2) containing a first adsorption medium for adsorbing an adsorption refrigerant evaporated in the evaporator (18),
- einem zweiten Adsorber (4), der ein zweites Adsorptionsmedium zur Adsorption des in dem Verdampfer (18) verdampften Adsorptionskühlmittels enthält, wobei der erste und der zweite Adsorber (2, 4) wechselweise in einem Adsorptionsbetrieb und einem Desorptionsbetrieb betreibbar sind, so dass jeweils ein Adsorber (2, 4) Adsorptionskühlmittel adsorbieren und der andere Adsorber (2, 4) regeneriert werden kann,a second adsorber (4) containing a second adsorption medium for adsorbing the adsorption refrigerant evaporated in the evaporator (18), the first and second adsorbers (2, 4) being operable alternately in an adsorption mode and a desorption mode, respectively an adsorber (2, 4) adsorbing adsorption coolant and the other adsorber (2, 4) can be regenerated,
- einem Wärmeübertragungssystem, das dazu eingerichtet ist, während einer Über- gangsbetriebsphase, während der ein Adsorber (2, 4) vom Adsorptionsbetrieb in dena heat transfer system, which is adapted, during a transitional operating phase, during which an adsorber (2, 4) from the adsorption in the
Desorptionsbetrieb überführt wird und der andere Adsorber (2, 4) vom Desorptionsbetrieb in den Adsorptionsbetrieb überführt wird, mittels eines Wärmeübertra- gungsfluids Wärmeenergie von dem vom Desorptionsbetrieb in den Adsorptionsbetrieb überführten Adsorber (2, 4) auf den vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber (2, 4) zu übertragen,Desorption is transferred and the other adsorber (2, 4) is transferred from the desorption into the adsorption, by means of a heat transfer fluid heat energy from the transferred from desorption to adsorption adsorber (2, 4) on the transferred from adsorption to desorption mode adsorber ( 2, 4),
- einem Kondensator (8) zur Kondensation von aus einem im Desorptionsbetrieb betriebenen Adsorber (2, 4) abgeführtem Adsorptionskühlmittel, das nach dem Kondensieren dem Verdampfer (18) zugeführt wird,a condenser (8) for condensing adsorption coolant removed from an adsorber (2, 4) operated in the desorption mode, which is fed to the evaporator (18) after condensing,
- einem ersten Drucksensor zur Messung des Adsorptionskühlmitteldrucks im Kon- densator (8),a first pressure sensor for measuring the adsorption coolant pressure in the condenser (8),
- einem zweiten Drucksensor zur Messung des Adsorptionskühlmitteldrucks in einem Adsorber (2, 4), unda second pressure sensor for measuring the adsorption coolant pressure in an adsorber (2, 4), and
- einer elektronischen Steuereinheit, die dazu eingerichtet ist, von den Drucksensoren bereitgestellte Signale zu erfassen und das Wärmeübertragungssystem des Ad- sorptionskühlsystems (1) derart zu steuern, dass während der- An electronic control unit which is adapted to detect signals provided by the pressure sensors and to control the heat transfer system of the adsorption cooling system (1) such that during the
Übergangsbetriebsphase die Zufuhr von Wärmeenergie zu dem vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber (2, 4) beendet wird, wenn der Adsorptionskühlmitteldruck in dem Adsorber (2, 4) dem Adsorptionskühlmitteldruck im Kondensator (8) entspricht. Transitional operating phase, the supply of heat energy to the transferred from the adsorption to the desorption mode adsorber (2, 4) is terminated when the adsorption refrigerant pressure in the adsorber (2, 4) corresponds to the Adsorptionskühlmitteldruck in the condenser (8).
2. Adsorptionskühlsystem nach Anspruch 1, dadurch gekennzeichnet, dass das Wärmeübertragungssystem ein Leitungsnetz sowie eine Mehrzahl von in dem Leitungsnetz angeordneten Ventilen (60, 62, 64, 66, 68, 70, 72, 74, 76) umfasst2. adsorption cooling system according to claim 1, characterized in that the heat transfer system comprises a conduit network and a plurality of arranged in the conduit network valves (60, 62, 64, 66, 68, 70, 72, 74, 76)
.5.5
3. Adsorptionskühlsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Wärmeübertragungssystem eine Heizeinrichtung (50) umfasst und dazu eingerichtet ist, einem im Desorptionsbetrieb betriebenen Adsorber (2, 4) zur Regeneration des Adsorbers (2, 4) Wärmeenergie zuzuführen.3. adsorption cooling system according to claim 1 or 2, characterized in that the heat transfer system comprises a heater (50) and is adapted to supply a desorbed operation in the adsorber (2, 4) for regenerating the adsorber (2, 4) thermal energy.
1010
4. Adsorptionskühlsystem nach Anspruch 3, dadurch gekennzeichnet, dass die Heizeinrichtung (50) mit einer Verlustwärme abgebenden Einrichtung des Luftfahrzeugs thermisch gekoppelt ist.4. Adsorptionskühlsystem according to claim 3, characterized in that the heating device (50) is thermally coupled to a loss-heat emitting device of the aircraft.
i5 5. Adsorptionskühlsystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Wärmeübertragungssystem ferner eine Kühleinrichtung (52) umfasst und dazu eingerichtet ist, einem im Adsorptionsbetrieb betriebenen Adsorber (2, 4) zur Kühlung des Adsorbers (2, 4) Kälteenergie zuzuführen.5. adsorptive cooling system according to one of claims 1 to 4, characterized in that the heat transfer system further comprises a cooling device (52) and is adapted to an adsorber operated adsorber (2, 4) for cooling the adsorber (2, 4) cooling energy supply.
20 6. Verfahren zum Betreiben eines Adsorptionskühlsystems (1) für ein Luftfahrzeug, wobei das Adsorptionskühlsystem (1) umfasst:A method of operating an adsorption refrigeration system (1) for an aircraft, the adsorption refrigeration system (1) comprising:
- einen Verdampfer (18),an evaporator (18),
- einen ersten Adsorber (2), der ein erstes Adsorptionsmedium zur Adsorption eines in dem Verdampfer (18) verdampften Adsorptionskühlmittels enthält, unda first adsorber (2) containing a first adsorption medium for adsorbing an adsorption refrigerant evaporated in the evaporator (18), and
25 - einen zweiten Adsorber (4), der ein zweites Adsorptionsmedium zur Adsorption des in dem Verdampfer (18) verdampften Adsorptionskühlmittels enthält, wobei der erste und der zweite Adsorber (2, 4) wechselweise in einem Adsorptionsbetrieb und einem Desorptionsbetrieb betreibbar sind, so dass jeweils ein Adsorber (2, 4) Adsorptionskühlmittel adsorbieren und der andere Adsorber (2, 4) regeneriert werden kann,25 - a second adsorber (4) containing a second adsorption medium for adsorbing the adsorption refrigerant evaporated in the evaporator (18), the first and second adsorbers (2, 4) being operable alternately in an adsorption operation and a desorption operation, such that one adsorber (2, 4) can adsorb adsorption coolant and the other adsorber (2, 4) can be regenerated,
30 wobei bei dem Verfahren zum Betreiben eines Adsorptionskühlsystems (1)Wherein in the method of operating an adsorption refrigeration system (1)
- während einer Übergangsbetriebsphase, während der ein Adsorber (2, 4) vom Adsorptionsbetrieb in den Desorptionsbetrieb überführt wird und der andere Adsorber (2, 4) vom Desorptionsbetrieb in den Adsorptionsbetrieb überführt wird, mittels eines Wärmeϋbertragungsfluids Wärmeenergie von dem vom Desorptionsbetrieb in- During a transitional operating phase during which an adsorber (2, 4) is transferred from the adsorption to the desorption and the other adsorber (2, 4) is transferred from the desorption into the adsorption, by means of a heat transfer fluid heat energy from that of the Desorptionsbetrieb in
35 den Adsorptionsbetrieb überführten Adsorber (2, 4) auf den vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber (2, 4) übertragen wird, - aus einem im Desorptionsbetrieb betriebenen Adsorber (2, 4) abgeführtes Adsorptionskühlmittel in einem Kondensator (8) kondensiert und dem Verdampfer (18) zugeführt wird, und35 adsorber (2, 4) transferred to the adsorption operation is transferred to the adsorber (2, 4) transferred from the adsorption operation to the desorption operation, condensed from a adsorber (2, 4) operated in the desorption mode adsorption in a condenser (8) and the evaporator (18) is fed, and
- eine elektronische Steuereinheit Signale von einem ersten Drucksensor zur Mes-an electronic control unit sends signals from a first pressure sensor to the measuring
5 sung des Adsorptionskühlmitteldrucks im Kondensator (8) und einem zweiten Drucksensor zur Messung des Adsorptionskühlmitteldrucks in einem Adsorber (2, 4) erfasst und das Wärmeübertragungssystem des Adsorptionskühlsystems (1) derart steuert, dass während der Übergangsbetriebsphase die Zufuhr von Wärmeenergie zu dem vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber (2, 4) been- lo det wird, wenn der Adsorptionskühlmitteldruck in dem Adsorber (2, 4) dem Adsorptionskühlmitteldruck im Kondensator (8) entspricht.5 senses the adsorption refrigerant pressure in the condenser (8) and a second pressure sensor for measuring the adsorption refrigerant pressure in an adsorber (2, 4) and controls the heat transfer system of the adsorption refrigeration system (1) such that during the transient operating phase the supply of heat energy to that from the adsorption operation in the adsorber (2, 4) transferred to the desorption operation is stopped when the adsorption coolant pressure in the adsorber (2, 4) corresponds to the adsorption coolant pressure in the condenser (8).
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Wärmeübertragungssystem ein Leitungsnetz so- i5 wie eine Mehrzahl von in dem Leitungsnetz angeordneten Ventilen (60, 62, 64, 66, 68, 70, 72, 74, 76) umfasst, die entsprechend geschaltet werden, um während der Übergangsbetriebsphase mittels des Wärmeübertragungsfluids Wärmeenergie von dem vom Desorptionsbetrieb in den Adsorptionsbetrieb überführten Adsorber (2, 4) auf den vom Adsorptionsbetrieb in den Desorptionsbetrieb überführten Adsorber (2, 20 4) zu übertragen.7. The method according to claim 6, characterized in that the heat transfer system comprises a line network as i5 a plurality of arranged in the line network valves (60, 62, 64, 66, 68, 70, 72, 74, 76), corresponding to to transfer thermal energy from the adsorber (2, 4) transferred from the desorption mode to the adsorption mode to the adsorber (2, 20 4) transferred from the adsorption mode to the desorption mode during the transitional operating phase by means of the heat transfer fluid.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass eine Heizeinrichtung (50) des Wärmeübertragungssystems einem im Desorptionsbetrieb betriebenen Adsorber (2, 4) zur Regeneration des 5 Adsorbers (2, 4) Wärmeenergie zuführt.8. The method according to claim 6 or 7, characterized in that a heating device (50) of the heat transfer system to a desorbed operation adsorber (2, 4) for the regeneration of the adsorber 5 (2, 4) supplies thermal energy.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Heizeinrichtung (50) von einer Verlustwärme abgebenden Einrichtung des Luftfahrzeugs Verlustwärme zugeführt wird. 09. The method according to claim 8, characterized in that the heating device (50) is supplied from a loss of heat-emitting device of the aircraft loss heat. 0
10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass eine Kühleinrichtung (52) des Wärmeübertragungssystems einem im Adsorptionsbetrieb betriebenen Adsorber (2, 4) zur Kühlung des Adsorbers (2, 4) Kälteenergie zuführt. 5 10. The method according to any one of claims 6 to 9, characterized in that a cooling device (52) of the heat transfer system to a powered adsorption in the adsorber (2, 4) for cooling the adsorber (2, 4) supplying cold energy. 5
EP09743878A 2008-10-30 2009-10-28 Adsorption cooling system and adsorption cooling method for an aircraft Withdrawn EP2342127A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10954308P 2008-10-30 2008-10-30
DE102008053828A DE102008053828A1 (en) 2008-10-30 2008-10-30 Improved adsorption cooling system and adsorption cooling process for an aircraft
PCT/EP2009/007724 WO2010049147A1 (en) 2008-10-30 2009-10-28 Adsorption cooling system and adsorption cooling method for an aircraft

Publications (1)

Publication Number Publication Date
EP2342127A1 true EP2342127A1 (en) 2011-07-13

Family

ID=42096292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09743878A Withdrawn EP2342127A1 (en) 2008-10-30 2009-10-28 Adsorption cooling system and adsorption cooling method for an aircraft

Country Status (8)

Country Link
US (1) US20120000220A1 (en)
EP (1) EP2342127A1 (en)
JP (1) JP2012506817A (en)
CN (1) CN102202969B (en)
CA (1) CA2742321A1 (en)
DE (1) DE102008053828A1 (en)
RU (1) RU2011118855A (en)
WO (1) WO2010049147A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095646A1 (en) 2011-01-11 2012-07-19 Bae Systems Plc Turboprop-powered aircraft
EP2474472A1 (en) * 2011-01-11 2012-07-11 BAE Systems PLC Turboprop-powered aircraft
US9422060B2 (en) 2011-01-11 2016-08-23 Bae Systems Plc Turboprop-powered aircraft with thermal system
TR201909690T4 (en) * 2011-02-22 2019-07-22 Cooll Sustainable Energy Solutions B V A method for operating an adsorption compressor and an adsorption compressor for use in said method.
DE102011005253A1 (en) * 2011-03-08 2012-09-13 Siemens Aktiengesellschaft Cooling method for electrical rail vehicle components
DE102011053310B4 (en) * 2011-09-06 2016-07-28 Technische Universität Berlin Method for operating a refrigeration system and refrigeration system
CN102628625A (en) * 2012-05-03 2012-08-08 金继伟 Recovered and absorbed heat warming and boosting system device
FR2990267B1 (en) * 2012-05-03 2018-04-06 Coldway DEVICE AND METHOD FOR THE CONTINUOUS PRODUCTION OF THERMOCHEMICAL COLD
EP2664543B1 (en) * 2012-05-16 2016-03-23 Airbus Operations GmbH Method for operating an aircraft cooling system and aircraft cooling system
DE102014223079A1 (en) 2013-11-13 2015-05-13 MAHLE Behr GmbH & Co. KG Method for cooling and / or heating of media, preferably in a motor vehicle, and a sorptives heat and cold storage system
US10240825B2 (en) 2013-11-13 2019-03-26 Mahle International Gmbh Evaporator set, preferably for a thermally driven adsorption device, and adsorption device
DK3134118T3 (en) 2014-04-18 2020-04-06 Univ Auburn Particulate vaccine formulations to induce innate and adaptive immunity
US9914337B2 (en) 2015-03-05 2018-03-13 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle with adsorption-based thermal battery
JP6260576B2 (en) 2015-04-13 2018-01-17 株式会社デンソー Adsorption type refrigerator
US9982931B2 (en) * 2015-04-28 2018-05-29 Rocky Research Systems and methods for controlling refrigeration cycles of sorption reactors based on recuperation time
US10017257B2 (en) * 2015-04-29 2018-07-10 Honeywell International Inc. Combined VOC—O2—CO2 treatment system
DE102015010003B4 (en) 2015-07-31 2020-06-18 Audi Ag Adsorption refrigeration system for air conditioning a vehicle and method for operating the same
US10052932B2 (en) 2015-11-06 2018-08-21 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle waste energy harvesting system
DE102015226611A1 (en) * 2015-12-23 2017-06-29 Bayerische Motoren Werke Aktiengesellschaft Thermal management system, method of operating a thermal management system and valve unit for a thermal management system
JP6577389B2 (en) * 2016-03-14 2019-09-18 株式会社Nttファシリティーズ Dehumidifying / humidifying device
KR102396178B1 (en) * 2016-05-11 2022-05-09 스톤 마운틴 테크놀로지스, 인크. Sorption heat pumps and control methods
CN108413647A (en) * 2018-05-15 2018-08-17 天津商业大学 A kind of refrigeration system that compression is combined with adsorption type photograph
WO2020117580A1 (en) 2018-12-03 2020-06-11 Carrier Corporation Membrane purge system
CN112334721A (en) 2018-12-03 2021-02-05 开利公司 Enhanced refrigeration purge system
CN112334720A (en) 2018-12-03 2021-02-05 开利公司 Enhanced refrigeration purification system
WO2020117582A1 (en) 2018-12-03 2020-06-11 Carrier Corporation Enhanced refrigeration purge system
JP7448908B2 (en) 2019-05-31 2024-03-13 ゴビ テクノロジーズ インコーポレイテッド thermal regulation system
US20210310711A1 (en) 2019-05-31 2021-10-07 Gobi Technologies Inc. Temperature-controlled sorption system
US11201341B2 (en) * 2019-10-22 2021-12-14 Ford Global Technologies, Llc Thermal management system for fuel cell vehicle having multiple fuel-cell stacks
DE102020007212A1 (en) * 2019-12-17 2021-07-01 Silica Verfahrenstechnik Gmbh Method and hollow profile adsorber for treating a gas contaminated with harmful and / or useful components
CN113028676B (en) * 2021-04-06 2022-02-25 上海交通大学 Refrigerating system and refrigerating method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610148A (en) * 1985-05-03 1986-09-09 Shelton Samuel V Solid adsorbent heat pump system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1580432A (en) * 1976-05-18 1980-12-03 British Petroleum Co Refrigeration apparatus
FR2539854A1 (en) * 1983-04-22 1984-07-27 Cetiat ADSORPTION REFRIGERATION FACILITY ON SOLID ADSORBENT AND METHOD FOR ITS IMPLEMENTATION
AU581825B1 (en) * 1987-08-28 1989-03-02 Union Industry Co., Ltd Adsorption refrigeration system
US5855119A (en) * 1995-09-20 1999-01-05 Sun Microsystems, Inc. Method and apparatus for cooling electrical components
DE19644938A1 (en) * 1996-10-29 1998-04-30 Lutz Johannes Adsorption chiller and method for its operation
SG82589A1 (en) * 1998-12-10 2001-08-21 Univ Singapore A regenerative adsorption process and multi-reactor regenerative adsorption chiller
JP3730960B2 (en) * 2000-11-28 2006-01-05 パク、ジュン−ロ Pressure distribution, pressure regulation system and method for heating / air conditioning unit, and high-rise building using the same
DE102006011409B4 (en) * 2005-12-07 2008-02-28 Sortech Ag Adsorption machine with heat recovery
DE102006054560A1 (en) 2006-11-20 2008-05-21 Airbus Deutschland Gmbh Airplane device cooling system, has adsorbers with adsorption medium for adsorption of fluid that is evaporated in evaporators, and control system that is arranged to make or disconnect fluid connection between evaporators and adsorbers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610148A (en) * 1985-05-03 1986-09-09 Shelton Samuel V Solid adsorbent heat pump system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010049147A1 *

Also Published As

Publication number Publication date
WO2010049147A1 (en) 2010-05-06
JP2012506817A (en) 2012-03-22
CN102202969A (en) 2011-09-28
CA2742321A1 (en) 2010-05-06
US20120000220A1 (en) 2012-01-05
RU2011118855A (en) 2012-12-10
CN102202969B (en) 2013-06-19
DE102008053828A1 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
WO2010049147A1 (en) Adsorption cooling system and adsorption cooling method for an aircraft
DE102017221157B4 (en) Heat pump system for vehicle
DE102015122721B4 (en) Air conditioning system of a motor vehicle and method for operating the air conditioning system
DE102019129304A1 (en) Heat pump system for a vehicle
EP1264715B2 (en) Vehicle cooling system for a temperature increasing device as well as method for the cooling of the temperature increasing device
DE102019207203A1 (en) HEAT PUMP SYSTEM FOR VEHICLES
EP1456046B1 (en) Construction and control of an air-conditioning system for a motor vehicle
DE102020122306A1 (en) HEAT PUMP SYSTEM FOR VEHICLE
DE102013216009B4 (en) automotive climate control system
DE102014100632B4 (en) Vehicle heat pump system and method using intermediate gas recompression
DE102013111515B4 (en) Air conditioning for a vehicle
DE10309584A1 (en) Heat storage system for a vehicle with an adsorbent
DE102013105747A1 (en) Device and method for operating the device for heat distribution in a motor vehicle
DE102017109309A1 (en) Air conditioning system of a motor vehicle and method for operating the air conditioning system
DE10330104A1 (en) Cooling system with adsorption cooling device
DE102005004397A1 (en) Air conditioning for a motor vehicle
DE102010042127A1 (en) Refrigerant circuit of an air conditioning system of a motor vehicle
DE102014223079A1 (en) Method for cooling and / or heating of media, preferably in a motor vehicle, and a sorptives heat and cold storage system
DE112013001478T5 (en) cooling system
DE10333219A1 (en) cooling arrangement
DE102013214267A1 (en) Heat pump system for a vehicle, in particular an electric or hybrid vehicle, and method for operating such a heat pump system
DE102021117580A1 (en) Heat pump system for a vehicle
DE102020111505A1 (en) Heat pump arrangement for battery-operated vehicles and method for operating a heat pump arrangement
DE102020117471A1 (en) Heat pump arrangement with indirect battery heating for battery-operated motor vehicles and method for operating a heat pump arrangement
DE102012208992A1 (en) Heating/cooling circuit for hybrid vehicle and electric car, has medium pressure heat exchanger through which air is made to flow, where refrigerant arrives at compressor low pressure input at low pressure level by low pressure exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140402

R18D Application deemed to be withdrawn (corrected)

Effective date: 20140403