EP2337758B1 - Method and device for controlling a lift load - Google Patents
Method and device for controlling a lift load Download PDFInfo
- Publication number
- EP2337758B1 EP2337758B1 EP09821619.5A EP09821619A EP2337758B1 EP 2337758 B1 EP2337758 B1 EP 2337758B1 EP 09821619 A EP09821619 A EP 09821619A EP 2337758 B1 EP2337758 B1 EP 2337758B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- speed
- load
- deceleration
- opt
- stopping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 15
- 230000001133 acceleration Effects 0.000 claims description 34
- 102100037009 Filaggrin-2 Human genes 0.000 claims 7
- 101000878281 Homo sapiens Filaggrin-2 Proteins 0.000 claims 7
- 230000036461 convulsion Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
- B66B1/28—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
- B66B1/285—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator
Definitions
- the present invention relates to a control method implemented in a variable speed drive for controlling a lifting load such as an elevator.
- the invention also relates to a variable speed drive capable of implementing said method.
- the profile may also comprise a step of maintaining the speed of the elevator at the first speed before the first speed. deceleration and a holding step at the second speed before the second deceleration.
- the first speed is set to be the maximum speed to be reached by the elevator when traveling between two stages separated by several levels. But when the elevator must make a shorter trip, for example between two separate floors of a single level, this maximum speed is often never reached. In such a situation the elevator is still controlled according to the control profile defined above. The elevator thus receives the deceleration order before reaching its maximum speed and therefore starts the first deceleration earlier according to the same speed profile than if the maximum speed had been reached. However, at the time of receipt of the deceleration order, the elevator has traveled a short distance. During all the distance remaining before receiving the stop command, the elevator moves at low speed. The time spent by the elevator at low speed is therefore very long.
- the patent GB1560348 describes a solution to overcome this problem.
- This document describes the application of a first speed profile to an elevator, this profile with acceleration to a maximum speed, followed by a first deceleration to a low speed landing before further deceleration to a stop.
- this document proposes the introduction of a second speed profile for shifting the beginning of the first deceleration.
- the new braking moment occurs at the intersection between the two velocity profiles.
- the goal is thus to recover the lost distance because of the too premature appearance of the deceleration order by continuing the acceleration to a new speed following the ramp of initial acceleration.
- the distance remaining to be covered will be respected but not the duration.
- the document EP0826621 describes a method for adjusting the low speed of an elevator car by applying a compensation frequency in the control.
- the object of the invention is to provide a control method for minimizing the time spent at low speed when the elevator performs a path such that it receives the deceleration order before reaching its maximum speed.
- the second control profile includes a step of maintaining the speed of the load at a third speed lower than the second speed.
- the second control profile comprises a step of receiving a stop command.
- the second control profile after receiving the stop command, comprises a deceleration step until it stops.
- the deceleration order or the stop command is sent by an external sensor capable of detecting the passage of the lifting load or can be sent by a PLC connected to the variable speed drive.
- the invention also relates to a variable speed drive as defined in claim 7.
- variable speed drive comprises means for maintaining the speed of the load at a third speed lower than the second speed.
- the second control profile comprises a reception of a stop command.
- the second control profile comprises a deceleration to the stop following the reception of the stop command.
- the drive is connected to an external sensor capable of sending the deceleration command or the stop command when it detects the passage of the lifting load.
- the drive can be connected to a programmable controller able to send the deceleration order or the stop order.
- Each external sensor is disposed on the elevator path at a distance before the desired arrival stage to meet the deceleration and stopping distances.
- the control profile defined above is ideal when the elevator moves several levels because the elevator then has a sufficient time to reach its maximum speed ⁇ R before receiving the deceleration order (FLG1).
- the deceleration order (FLG1) can be received before the elevator has had time to reach its stage. maximum speed ⁇ R.
- the drive determines a second speed ⁇ R opt lower than the speed ⁇ R and higher than its current speed, this second speed being an optimal speed up to which the elevator can continue to accelerate to minimize the time of travel to a stop while respecting stopping distances (see Figures 3A and 3B ).
- ⁇ is designated as the current speed of the load
- ⁇ the current position of the load
- ⁇ represents the acceleration of the load
- j represents the pulse ("jerk") of the load.
- ( ⁇ 0 , ⁇ 0 ) represents the trajectory point at the time of reception of the deceleration order
- ( ⁇ L , 0) represents the point to reach of the trajectory
- ⁇ Dd the distance to be traveled during the deceleration movement , between the maximum speed and the low speed.
- t D represents the deceleration time
- the pair ( ⁇ 0 , ⁇ 0 ) is obtained by the current position of the trajectory.
- the distance ⁇ Dd is known because it is the distance traveled during the first deceleration. If this distance ⁇ Dd is respected by the control profile, the stopping distance constraints will also be respected.
- the resolution consists of starting from all the known data ( ⁇ 0 , ⁇ 0 , ⁇ Dd , T R ) to calculate an optimal maximum speed ⁇ R opt to achieve which minimizes the total time of movement.
- the calculation of the optimal speed ⁇ R opt is done in respect of the magnitudes of accelerations and impulses to maintain a level of comfort. It may be that the calculation of the optimal speed changes the acceleration and momentum quantities compared to the initial trajectory.
- the acceleration ramp to reach the optimal speed ⁇ R opt calculated is the acceleration ramp RA of the initially planned control profile and that the deceleration ramp applied after reaching the optimal speed ⁇ R opt is also the deceleration ramp RD of the initially planned control profile.
- the speed ramps are calculated from a polynomial of order 6, a function of time.
- speed follows a continuous and non-linear profile.
- the acceleration ramp to reach the optimal speed ⁇ R opt calculated is also the acceleration ramp RA of the initially planned control profile and that the deceleration ramp applied after reaches the optimum speed ⁇ R opt is also the deceleration ramp RD of the initially planned control profile.
- ( ⁇ 0 , ⁇ 0 ) represents the trajectory point at the moment of reception of the deceleration order
- ( ⁇ L , 0) represents the point to reach of the trajectory
- ⁇ Dd the distance to be traveled during the movement of deceleration, between the maximum speed and the low speed.
- t D represents the deceleration time
- the pair ( ⁇ 0 , ⁇ 0 ) is obtained by the current position of the trajectory.
- the optimum speed calculated by the first or second example is inserted in a new control profile determined by the drive when the deceleration command (FLG1) is received while the maximum speed ⁇ R provided in the initial control profile has not been set. not been reached.
- This second control profile is determined by taking into account the new optimum speed calculated ⁇ R opt , by respecting the two previously defined principles related to the accelerations and pulses to be applied in order to guarantee an optimal comfort to the user and taking into account the distance remaining to go.
- the new ramps RA opt , RD opt calculated are of course non-linear to respect the constraints of comfort.
- the initial ramps RA and RD can no longer be respected and it is necessary to determine new ramps to respect the imposed distance. For example, if the distance to be traveled is too great to reach the optimal speed ⁇ R opt when applying the initial acceleration ramp RA, it is necessary to determine a new ramp which will be steeper.
- This new control profile can include in particular a step of maintaining the speed of the load at the optimum speed ⁇ R opt to create a step at this speed for a determined duration, between zero and several seconds, and a step of maintaining the speed of the load to the low speed ⁇ L for a certain period, which can range from zero to several seconds before receiving the stop instruction (FLG2).
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Elevator Control (AREA)
Description
La présente invention se rapporte à un procédé de commande mis en oeuvre dans un variateur de vitesse pour commander une charge de levage tel qu'un ascenseur. L'invention concerne également un variateur de vitesse susceptible de mettre en oeuvre ledit procédé.The present invention relates to a control method implemented in a variable speed drive for controlling a lifting load such as an elevator. The invention also relates to a variable speed drive capable of implementing said method.
Le profil de commande d'une charge de levage tel qu'un ascenseur qui se déplace entre des étages comporte en règle générale les étapes principales suivantes:
- une accélération jusqu'à une première vitesse,
- la réception d'un ordre de décélération lorsque l'ascenseur a atteint un certain niveau, cet ordre pouvant être donné lors du passage de l'ascenseur devant un capteur externe,
- une première décélération jusqu'à une seconde vitesse inférieure à la première vitesse,
- la réception d'un ordre d'arrêt lorsque l'ascenseur est proche de l'étage d'arrivée, cet ordre pouvant également être donné lors du passage de l'ascenseur devant un second capteur,
- une seconde décélération jusqu'à l'arrêt.
- an acceleration to a first speed,
- receiving a deceleration command when the elevator has reached a certain level, this order being able to be given when the elevator passes an external sensor,
- a first deceleration to a second speed lower than the first speed,
- receiving a stop command when the elevator is close to the arrival floor, this order can also be given when the elevator passes in front of a second sensor,
- a second deceleration until the stop.
Selon la durée pour atteindre la première vitesse suite à l'accélération et la durée pour atteindre la seconde vitesse suite à la première décélération, le profil peut également comporter une étape de maintien de la vitesse de l'ascenseur à la première vitesse avant la première décélération et une étape de maintien à la seconde vitesse avant la seconde décélération.Depending on the duration to reach the first speed following the acceleration and the duration to reach the second speed following the first deceleration, the profile may also comprise a step of maintaining the speed of the elevator at the first speed before the first speed. deceleration and a holding step at the second speed before the second deceleration.
La première vitesse est réglée pour être la vitesse maximale à atteindre par l'ascenseur lors d'un trajet entre deux étages séparés de plusieurs niveaux. Or lorsque l'ascenseur doit effectuer un trajet plus court, par exemple entre deux étages séparés d'un seul niveau, cette vitesse maximale n'est souvent jamais atteinte. Dans une telle situation l'ascenseur est tout de même commandé selon le profil de commande défini ci-dessus. L'ascenseur reçoit donc l'ordre de décélération avant d'avoir atteint sa vitesse maximale et débute donc la première décélération plus tôt selon un même profil de vitesse que si la vitesse maximale avait été atteinte. Or, au moment de la réception de l'ordre de décélération, l'ascenseur n'a parcouru qu'une faible distance. Pendant toute la distance restante avant la réception de l'ordre d'arrêt, l'ascenseur se déplace donc à basse vitesse. La durée passée par l'ascenseur à la basse vitesse est donc très longue.The first speed is set to be the maximum speed to be reached by the elevator when traveling between two stages separated by several levels. But when the elevator must make a shorter trip, for example between two separate floors of a single level, this maximum speed is often never reached. In such a situation the elevator is still controlled according to the control profile defined above. The elevator thus receives the deceleration order before reaching its maximum speed and therefore starts the first deceleration earlier according to the same speed profile than if the maximum speed had been reached. However, at the time of receipt of the deceleration order, the elevator has traveled a short distance. During all the distance remaining before receiving the stop command, the elevator moves at low speed. The time spent by the elevator at low speed is therefore very long.
Le brevet
Le document
Le but de l'invention est de proposer un procédé de commande permettant de minimiser le temps passé à basse vitesse lorsque l'ascenseur effectue un trajet tel qu'il reçoit l'ordre de décélération avant d'avoir atteint sa vitesse maximale.The object of the invention is to provide a control method for minimizing the time spent at low speed when the elevator performs a path such that it receives the deceleration order before reaching its maximum speed.
Ce but est atteint par un procédé de commande tel que défini dans la revendication 1.This object is achieved by a control method as defined in claim 1.
Selon une autre particularité, entre l'étape de décélération et l'étape d'arrêt, le second profil de commande comporte une étape de maintien de la vitesse de la charge à une troisième vitesse inférieure à la deuxième vitesse.According to another feature, between the deceleration step and the stop step, the second control profile includes a step of maintaining the speed of the load at a third speed lower than the second speed.
Selon une autre particularité, à l'issue de l'étape de décélération, le second profil de commande comporte une étape de réception d'un ordre d'arrêt.According to another feature, at the end of the deceleration step, the second control profile comprises a step of receiving a stop command.
Selon une autre particularité, après réception de l'ordre d'arrêt, le second profil de commande comporte une étape de décélération jusqu'à l'arrêt.According to another particular feature, after receiving the stop command, the second control profile comprises a deceleration step until it stops.
Selon une autre particularité, l'ordre de décélération ou l'ordre d'arrêt est envoyé par un capteur externe apte à détecter le passage de la charge de levage ou peut être envoyé par un automate connecté au variateur de vitesse.According to another particularity, the deceleration order or the stop command is sent by an external sensor capable of detecting the passage of the lifting load or can be sent by a PLC connected to the variable speed drive.
L'invention concerne également un variateur de vitesse tel que défini dans la revendication 7.The invention also relates to a variable speed drive as defined in claim 7.
Selon une autre particularité, le variateur de vitesse comporte des moyens pour maintenir la vitesse de la charge à une troisième vitesse inférieure à la deuxième vitesse.According to another feature, the variable speed drive comprises means for maintaining the speed of the load at a third speed lower than the second speed.
Selon une autre particularité, le second profil de commande comporte une réception d'un ordre d'arrêt.According to another particularity, the second control profile comprises a reception of a stop command.
Selon une autre particularité, le second profil de commande comporte une décélération jusqu'à l'arrêt suite à la réception de l'ordre d'arrêt.According to another particularity, the second control profile comprises a deceleration to the stop following the reception of the stop command.
Selon une autre particularité, le variateur est connecté à un capteur externe apte à envoyer l'ordre de décélération ou l'ordre d'arrêt lorsque qu'il détecte le passage de la charge de levage. En variante, le variateur peut être connecté à un automate programmable apte à envoyer l'ordre de décélération ou l'ordre d'arrêt.According to another feature, the drive is connected to an external sensor capable of sending the deceleration command or the stop command when it detects the passage of the lifting load. Alternatively, the drive can be connected to a programmable controller able to send the deceleration order or the stop order.
D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels :
- les
figures 1A et 1B représentent respectivement un profil de vitesse et son profil de position correspondant suivis par un ascenseur se déplaçant entre deux étages en atteignant sa vitesse maximale, - les
figures 2A et 2B représentent respectivement un profil de vitesse et son profil de position correspondant suivis par un ascenseur se déplaçant entre deux étages sans atteindre sa vitesse maximale et sans application du procédé de commande de l'invention, - les
figures 3A et 3B représentent respectivement un profil de vitesse et son profil de position correspondant suivis par un ascenseur se déplaçant entre deux étages sans atteindre sa vitesse maximale et avec application du procédé de commande de l'invention.
- the
Figures 1A and 1B respectively represent a speed profile and its corresponding position profile followed by an elevator moving between two stages while reaching its maximum speed, - the
Figures 2A and 2B respectively represent a speed profile and its corresponding position profile followed by an elevator moving between two stages without reaching its maximum speed and without application of the control method of the invention, - the
Figures 3A and 3B respectively represent a speed profile and its corresponding position profile followed by an elevator moving between two stages without reaching its maximum speed and with application of the control method of the invention.
Comme déjà décrit précédemment, en référence à la
- réception d'un ordre de départ pour déplacer l'ascenseur d'un étage à un autre,
- accélération selon une rampe d'accélération RA jusqu'à atteindre une vitesse maximale ωR,
- réception d'un ordre de décélération (FLG1) par exemple à l'aide d'un premier capteur externe placé sur le trajet de l'ascenseur,
- décélération selon une rampe de décélération RD jusqu'à atteindre une basse vitesse ωL,
- réception d'un ordre d'arrêt (FLG2) par exemple à l'aide d'un second capteur externe placé sur le trajet de l'ascenseur,
- décélération selon une rampe d'arrêt RS jusqu'à l'arrêt complet de l'ascenseur à l'étage voulu.
- receiving a departure order to move the elevator from one floor to another,
- acceleration according to an acceleration ramp RA until reaching a maximum speed ω R ,
- reception of a deceleration order (FLG1) for example with the aid of a first external sensor placed on the path of the elevator,
- deceleration according to a deceleration ramp RD to reach a low speed ω L ,
- receiving a stop command (FLG2) for example by means of a second external sensor placed on the path of the elevator,
- deceleration according to a stop ramp RS until the complete stop of the elevator to the desired floor.
Chaque capteur externe est disposé sur le trajet de l'ascenseur à une certaine distance avant l'étage d'arrivée souhaité pour respecter les distances de décélération et d'arrêt.Each external sensor is disposed on the elevator path at a distance before the desired arrival stage to meet the deceleration and stopping distances.
Ce type de profil de commande est mis en oeuvre en tenant compte de contraintes liées au confort de l'utilisateur. En effet, ce profil de commande doit être appliqué de manière confortable pour l'utilisateur ce qui implique l'application de rampes non linéaires. Pour cela, deux principes sont généralement appliqués :
- chaque rampe (accélération, décélération, arrêt) doit être appliquée suivant une accélération faible, au plus égale à 0,5 m/s2,
- les impulsions ou arrondis (jerk en anglais) en début et en fin de chaque rampe doivent être limitées, par exemple à une valeur comprise entre 0,2 et 0,5 m/s3.
- each ramp (acceleration, deceleration, stop) must be applied at a low acceleration, at most equal to 0.5 m / s 2 ,
- pulses or rounded (jerk in English) in the beginning and end of each ramp should be limited, for example to a value between 0.2 and 0.5 m / s 3.
Le profil de commande défini ci-dessus est idéal lorsque l'ascenseur se déplace de plusieurs niveaux car l'ascenseur dispose alors d'un temps suffisant pour atteindre sa vitesse maximale ωR avant la réception de l'ordre de décélération (FLG1). En revanche, lorsque l'ascenseur effectue un trajet court entre deux étages, par exemple séparés d'un seul niveau, l'ordre de décélération (FLG1) peut être reçu avant que l'ascenseur n'ait eu le temps d'atteindre sa vitesse maximale ωR. Dans ce cas, si l'ascenseur continue d'accélérer après la réception de l'ordre de décélération (FLG1), les distances d'arrêt à l'étage souhaité ne pourront pas être respectées ou si l'ascenseur est commandé en décélération selon le profil de commande défini ci-dessus, la basse vitesse ωL sera atteinte très tôt et l'ascenseur sera donc amené à se déplacer très lentement à cette basse vitesse ωL pour atteindre l'étage voulu comme représenté sur les
Selon l'invention, lorsque le variateur de vitesse reçoit l'ordre de décélération (FLG1) alors que l'ascenseur est à une vitesse courante inférieure à sa vitesse maximale ωR, le variateur détermine une deuxième vitesse ωR opt inférieure à la vitesse maximale ωR et supérieure à sa vitesse courante, cette deuxième vitesse étant une vitesse optimale jusqu'à laquelle l'ascenseur peut continuer d'accélérer pour minimiser le temps de parcours jusqu'à l'arrêt tout en respectant les distances d'arrêt (voir
Dans laquelle ω est désignée comme la vitesse courante de la charge, θ la position courante de la charge, γ représente l'accélération de la charge et j représente l'impulsion ("jerk") de la charge.In which ω is designated as the current speed of the load, θ the current position of the load, γ represents the acceleration of the load and j represents the pulse ("jerk") of the load.
Cette fonction f devra respecter les contraintes suivantes
(ω0,γ0) représente le point de trajectoire au moment de la réception de l'ordre de décélération, (ωL,0) représente le point à atteindre de la trajectoire et θDd la distance à parcourir pendant le mouvement de décélération, entre la vitesse maximale et la basse vitesse. tD représente pour sa part le temps de décélération(ω 0 , γ 0 ) represents the trajectory point at the time of reception of the deceleration order, (ω L , 0) represents the point to reach of the trajectory and θ Dd the distance to be traveled during the deceleration movement , between the maximum speed and the low speed. t D represents the deceleration time
Le couple (ω0,γ0) est obtenu par la position courante de la trajectoire.The pair (ω 0 , γ 0 ) is obtained by the current position of the trajectory.
La distance θDd est connue car il s'agit de la distance parcourue lors de la première décélération. Si cette distance θDd est respectée par le profil de commande, les contraintes de distance d'arrêt le seront également.The distance θ Dd is known because it is the distance traveled during the first deceleration. If this distance θ Dd is respected by the control profile, the stopping distance constraints will also be respected.
Si nous ajoutons un paramètre connu de temps TR correspondant à un temps de palier à la vitesse maximale atteinte par l'ascenseur, la résolution consiste à partir de toutes les données connues (ω0,γ0,θDd,TR) à calculer une vitesse maximale optimale ωR opt à atteindre qui minimise le temps total du mouvement.If we add a known time parameter T R corresponding to a dwell time at the maximum speed reached by the elevator, the resolution consists of starting from all the known data (ω 0 , γ 0 , θ Dd , T R ) to calculate an optimal maximum speed ω R opt to achieve which minimizes the total time of movement.
Par définition, la vitesse maximale optimale est définie par ωR opt = f'(tR), où tR est tel que f"(tR) = 0.By definition, the optimal maximum velocity is defined by ω R opt = f '(t R ), where t R is such that f "(t R ) = 0.
Deux exemples sont traités ci-après pour modéliser la fonction f définie ci-dessus.Two examples are discussed below to model the function f defined above.
Le premier exemple consiste à déterminer la vitesse optimale ωR opt, en considérant par exemple le profil de commande suivant, linéaire par morceaux en accélération (voir
- accélération γA pendant le temps Ta suivant une rampe d'accélération RA,
- maintien à la vitesse ωR pendant un temps de palier Tp,
- accélération γD pendant le temps Td suivant une rampe de décélération RD,
- maintien à la basse vitesse ωL pendant un temps TL afin de parcourir la distance restante jusqu'à l'arrêt.
- acceleration γ A during the time Ta following an acceleration ramp RA,
- maintaining the speed ω R during a plateau time Tp,
- acceleration γ D during the time Td following a ramp deceleration RD,
- holding at low speed ω L for a time T L to travel the remaining distance to the stop.
Le calcul de la vitesse optimale ωR opt se fait en respect des grandeurs d'accélérations et d'impulsions pour maintenir un niveau de confort. Il se peut que le calcul de la vitesse optimale modifie les grandeurs d'accélération et d'impulsion comparées à la trajectoire initiale.The calculation of the optimal speed ω R opt is done in respect of the magnitudes of accelerations and impulses to maintain a level of comfort. It may be that the calculation of the optimal speed changes the acceleration and momentum quantities compared to the initial trajectory.
Dans ce premier exemple, nous considérons que la rampe d'accélération pour atteindre la vitesse optimale ωR opt calculée est la rampe d'accélération RA du profil de commande initialement prévu et que la rampe de décélération appliquée après avoir atteint la vitesse optimale ωR opt est également la rampe de décélération RD du profil de commande initialement prévu.In this first example, we consider that the acceleration ramp to reach the optimal speed ω R opt calculated is the acceleration ramp RA of the initially planned control profile and that the deceleration ramp applied after reaching the optimal speed ω R opt is also the deceleration ramp RD of the initially planned control profile.
A partir du profil de commande défini ci-dessus en liaison avec la
-
Entre 0 et Ta (phase d'accélération), nous avons : - Entre Ta et Ta+Tp, la vitesse étant constante, nous avons :
- Entre Ta+Tp et Ta+Tp +Td (phase de décélération), nous avons :
- Puis entre Ta+Tp+Td et TR=Ta+Tp+Td+TL , nous avons :
Si TL <0, cela signifie que les mouvements de fin d'accélération et décélération ont consommés trop de distance. Par conséquent, le temps TL doit être positif ce qui nous amène à poser les relations suivantes :
En résolvant cette équation du second degré, on obtient la vitesse optimale ωR opt à atteindre tenant compte de la contrainte :
Nous constatons donc que le temps TR est minimum lorsque ωR est maximum permettant de justifier le choix de
- Between 0 and Ta (acceleration phase), we have:
- Between Ta and Ta + Tp , the speed being constant, we have:
- Between Ta + Tp and Ta + Tp + Td (deceleration), we have:
- Then between Ta + Tp + Td and T R = Ta + Tp + Td + T L , we have:
If T L <0, this means that the end acceleration and deceleration movements have consumed too much distance. Therefore, the time T L must be positive, which leads us to the following relationships:
By solving this equation of the second degree, we obtain the optimal speed ω R opt to reach taking into account the constraint:
We thus note that the time T R is minimum when ω R is maximum allowing to justify the choice of
Dans le second exemple, les rampes de vitesse sont calculées à partir d'un polynôme d'ordre 6, fonction du temps. Par construction, la vitesse suit un profil continue et non linéaire. Nous considérons également que la rampe d'accélération pour atteindre la vitesse optimale ωR opt calculée est également la rampe d'accélération RA du profil de commande initialement prévu et que la rampe de décélération appliquée après avoir atteint la vitesse optimale ωR opt est également la rampe de décélération RD du profil de commande initialement prévu. Considérons le polynôme P d'ordre 6 suivant :
(ω0,γ0) représente le point de trajectoire au moment de la réception de l'ordre de décélération, (ωL,0) représente le point à atteindre de la trajectoire, et θDd la distance à parcourir pendant le mouvement de décélération, entre la vitesse maximale et la basse vitesse. tD représente pour sa part le temps de décélération
Le couple (ω0,γ0) est obtenu par la position courante de la trajectoire.(ω 0 , γ 0 ) represents the trajectory point at the moment of reception of the deceleration order, (ω L , 0) represents the point to reach of the trajectory, and θ Dd the distance to be traveled during the movement of deceleration, between the maximum speed and the low speed. t D represents the deceleration time
The pair (ω 0 , γ 0 ) is obtained by the current position of the trajectory.
La distance θDd est connue car il s'agit de la distance parcourue lors de la première décélération. Si cette distance θDd est respectée par le profil de commande, les contraintes de distance d'arrêt le seront également.
Nous avons donc à trouver les coefficients du polynôme P vérifiant les contraintes :
We therefore have to find the coefficients of the polynomial P satisfying the constraints:
Par définition, la vitesse optimale atteinte pendant le mouvement est alors définie par ωR opt · tD = P'(x), où x est tel que P"(x) = 0.By definition, the optimal speed reached during the motion is then defined by ω R opt t D = P '(x), where x is such that P "(x) = 0.
La vitesse optimale calculée grâce au premier ou second exemple est insérée dans un nouveau profil de commande déterminé par le variateur lorsque l'ordre de décélération (FLG1) est reçu alors que la vitesse maximale ωR prévue dans le profil de commande initial n'a pas été atteinte. Ce second profil de commande est déterminé en tenant compte de la nouvelle vitesse optimale calculée ωR opt, en respectant les deux principes définis précédemment liés aux accélérations et impulsions à appliquer pour garantir un confort optimal à l'utilisateur et en tenant compte de la distance restant à parcourir.The optimum speed calculated by the first or second example is inserted in a new control profile determined by the drive when the deceleration command (FLG1) is received while the maximum speed ω R provided in the initial control profile has not been set. not been reached. This second control profile is determined by taking into account the new optimum speed calculated ω R opt , by respecting the two previously defined principles related to the accelerations and pulses to be applied in order to guarantee an optimal comfort to the user and taking into account the distance remaining to go.
Ce nouveau profil de commande comporte donc, après la réception de l'ordre de décélération (FLG1), les étapes suivantes :
- accélération jusqu'à la vitesse optimale ωR opt calculée selon une nouvelle rampe d'accélération RAopt tenant compte notamment de la distance restant à parcourir,
- décélération selon une nouvelle rampe de décélération RDopt, tenant compte également de la distance restant à parcourir, jusqu'à atteindre la basse vitesse ωL,
- réception de l'ordre d'arrêt (FLG2) par exemple à l'aide du second capteur externe placé sur le trajet de l'ascenseur,
- décélération selon la rampe d'arrêt RS jusqu'à l'arrêt complet de l'ascenseur à l'étage voulu.
- acceleration to the optimum speed ω R opt calculated according to a new acceleration ramp RA opt taking into account in particular the distance remaining to be traveled,
- deceleration according to a new deceleration ramp RD opt , also taking into account the distance remaining to be traveled, until reaching the low speed ω L ,
- receiving the stop command (FLG2) for example with the aid of the second external sensor placed on the path of the elevator,
- deceleration according to the RS stop ramp until the elevator stops at the desired floor.
Les nouvelles rampes RAopt, RDopt calculées sont bien entendu non linéaires pour respecter les contraintes de confort.The new ramps RA opt , RD opt calculated are of course non-linear to respect the constraints of comfort.
Selon l'invention, dans certains cas, les rampes initiales RA et RD ne peuvent plus être respectées et il est nécessaire de déterminer de nouvelles rampes permettant de respecter la distance imposée. Par exemple, si la distance à parcourir est trop grande pour atteindre la vitesse optimale ωR opt lorsqu'on applique la rampe d'accélération initiale RA, il est nécessaire de déterminer une nouvelle rampe qui sera plus raide.According to the invention, in certain cases, the initial ramps RA and RD can no longer be respected and it is necessary to determine new ramps to respect the imposed distance. For example, if the distance to be traveled is too great to reach the optimal speed ω R opt when applying the initial acceleration ramp RA, it is necessary to determine a new ramp which will be steeper.
Ce nouveau profil de commande peut notamment comporter une étape de maintien de la vitesse de la charge à la vitesse optimale ωR opt pour créer un palier à cette vitesse pendant une durée déterminée, comprise entre zéro et plusieurs secondes, et une étape de maintien de la vitesse de la charge à la basse vitesse ωL pendant une certaine durée, pouvant aller de zéro à plusieurs secondes, avant la réception de l'ordre d'arrêt (FLG2).This new control profile can include in particular a step of maintaining the speed of the load at the optimum speed ω R opt to create a step at this speed for a determined duration, between zero and several seconds, and a step of maintaining the speed of the load to the low speed ω L for a certain period, which can range from zero to several seconds before receiving the stop instruction (FLG2).
Claims (12)
- A control method implemented in a variable speed drive for controlling a lifting load, the control of the load being carried out according to a first control profile which comprises the following main steps:- acceleration of the load for reaching a first speed (ωR) in accordance with a first non-linear acceleration ramp (RA),- deceleration of the load subsequent to the receipt of a deceleration order (FLG1),- stopping of the load,characterized in that when the load receives the deceleration order (FLG1) while being at a current speed below the first speed (ωR), the method comprises:- a step of determining a second speed (ωR opt) below the first speed (ωR) and above the current speed, said second speed (ωR opt) having an optimal value so as to minimize the travel time of the load until stopping,- a step of generating and applying a second control profile replacing the first control profile and comprising a step of accelerating the load until reaching the second speed (ωR opt) according to a second non-linear acceleration ramp (RAopt) taking account of the remaining distance to be traveled, followed by a step of maintaining the speed of the load at the second speed (ωR opt) for a determined duration, a deceleration step and a stopping step.
- The method as claimed in claim 1, characterized in that, between the deceleration step and the stopping step, the second control profile comprises a step of maintaining the speed of the load at a third speed (ωL) below the second speed (ωR opt).
- The method as claimed in one of claims 1 or 2, characterized in that, on completion of the deceleration step, the second control profile comprises a step of receiving a stopping order (FLG2).
- The method as claimed in claim 3, characterized in that after receipt of the stopping order (FLG2), the second control profile comprises a step of deceleration until stopping.
- The method as claimed in claim 3 or 4, characterized in that the deceleration order (FLG1) or the stopping order (FLG2) is dispatched by a sensor in front of which the lifting load passes.
- The method as claimed in claim 3 or 4, characterized in that the deceleration order (FLG1) or the stopping order (FLG2) is dispatched by an automaton connected to the variable speed drive.
- A variable speed drive for controlling a lifting load, the control of the load being carried out according to a first control profile which comprises the following steps:- acceleration of the load for reaching a first speed (ωR) in accordance with a first non-linear acceleration ramp (RA),- receipt of a deceleration order (FLG1),- deceleration of the load,- stopping of the load,characterized in that when the load receives the deceleration order (FLG1) at a current speed below the first speed (ωR), the variable speed drive implements:- means for determining a second speed (ωR opt) below the first speed (ωR) and above the current speed, said second speed (ωR opt) having an optimal value so as to minimize the travel time of the load until stopping,- means for generating and implementing a second control profile replacing the first control profile and comprising a step of accelerating the load until reaching the second speed (ωR opt) according to a second non-linear acceleration ramp (RAopt) taking account of the remaining distance to be traveled, followed by a step of maintaining the speed of the load at the second speed (ωR opt) for a determined duration, a deceleration step and a stopping step.
- The variable drive as claimed in claim 7, characterized in that the variable speed drive comprises means for maintaining the speed of the load at a third speed (ωL) below the second speed (ωR opt).
- The variable drive as claimed in claim 7 or 8, characterized in that the second control profile comprises a receipt of a stopping order (FLG2).
- The variable drive as claimed in claim 9, characterized in that the second control profile comprises a deceleration until stopping subsequent to the receipt of the stopping order.
- The variable drive as claimed in claim 9 or 10, characterized in that it is connected to an external sensor able to dispatch the deceleration order (FLG1) or the stopping order (FLG2) when it detects the passage of the lifting load.
- The variable drive as claimed in claim 9 or 10, characterized in that it is connected to an automaton able to dispatch the deceleration order (FLG1) or the stopping order (FLG2).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0857167A FR2937432B1 (en) | 2008-10-22 | 2008-10-22 | METHOD AND DEVICE FOR CONTROLLING A LIFTING LOAD |
PCT/EP2009/063334 WO2010046275A1 (en) | 2008-10-22 | 2009-10-13 | Method and device for controlling a wash load |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2337758A1 EP2337758A1 (en) | 2011-06-29 |
EP2337758B1 true EP2337758B1 (en) | 2017-06-21 |
Family
ID=40957668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09821619.5A Active EP2337758B1 (en) | 2008-10-22 | 2009-10-13 | Method and device for controlling a lift load |
Country Status (7)
Country | Link |
---|---|
US (1) | US8584808B2 (en) |
EP (1) | EP2337758B1 (en) |
JP (1) | JP2012506352A (en) |
CN (1) | CN102196982B (en) |
ES (1) | ES2640763T3 (en) |
FR (1) | FR2937432B1 (en) |
WO (1) | WO2010046275A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2497362B (en) * | 2011-12-09 | 2014-12-24 | Control Tech Ltd | A method of controlling movement of a load using comfort peak curve operation |
CN102751939A (en) * | 2012-04-13 | 2012-10-24 | 深圳众为兴技术股份有限公司 | High precision control method for motor |
EP2835334B1 (en) * | 2013-08-08 | 2021-09-29 | KONE Corporation | Method for controlling an elevator and elevator |
US9862568B2 (en) | 2016-02-26 | 2018-01-09 | Otis Elevator Company | Elevator run profile modification for smooth rescue |
CN113479730A (en) * | 2021-07-14 | 2021-10-08 | 江苏中宝龙工程机械有限公司 | Construction elevator load detection method and frequency converter |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1100898B (en) * | 1955-02-09 | 1961-03-02 | E E S Etablissements Edoux Sam | Delay control for express elevator |
JPS4815499B1 (en) * | 1968-11-13 | 1973-05-15 | ||
DE2641983C2 (en) * | 1976-09-17 | 1982-08-12 | Loher Gmbh Elektromotorenwerke, 8399 Ruhstorf | Method for delaying the start of braking in regulated transport drives and a device for their implementation |
JPS5693672A (en) * | 1979-12-27 | 1981-07-29 | Mitsubishi Electric Corp | Generator for speed instruction of elevator |
US4751984A (en) * | 1985-05-03 | 1988-06-21 | Otis Elevator Company | Dynamically generated adaptive elevator velocity profile |
JPH02249878A (en) * | 1989-03-17 | 1990-10-05 | Mitsubishi Electric Corp | Speed control method for elevator |
US5035301A (en) * | 1989-07-03 | 1991-07-30 | Otis Elevator Company | Elevator speed dictation system |
US5325036A (en) * | 1992-06-15 | 1994-06-28 | Otis Elevator Company | Elevator speed sensorless variable voltage variable frequency induction motor drive |
JPH06100251A (en) * | 1992-09-25 | 1994-04-12 | Fuji Electric Co Ltd | Elevator control device |
JPH09290966A (en) * | 1996-04-25 | 1997-11-11 | Hitachi Ltd | Speed controller for elevator |
EP0826621A3 (en) * | 1996-08-27 | 1998-08-19 | Otis Elevator Company | Adaptive load compensation for an elevator system |
KR100312768B1 (en) * | 1998-08-28 | 2002-05-09 | 장병우 | Operation speed command controlling apparatus and method for elevator |
JP4587517B2 (en) * | 2000-03-08 | 2010-11-24 | 東芝エレベータ株式会社 | Elevator control device |
JP4158883B2 (en) * | 2001-12-10 | 2008-10-01 | 三菱電機株式会社 | Elevator and its control device |
WO2006043926A1 (en) * | 2004-10-14 | 2006-04-27 | Otis Elevator Company | Elevation motion profile control for limiting power consumption |
CN101044080B (en) * | 2004-10-28 | 2011-05-11 | 三菱电机株式会社 | Control device of rotating machine for elevator |
FI119878B (en) * | 2005-02-04 | 2009-04-30 | Kone Corp | A system and method for improving elevator safety |
JP4705407B2 (en) * | 2005-05-13 | 2011-06-22 | 株式会社日立製作所 | Elevator control device |
WO2010016826A1 (en) * | 2008-08-04 | 2010-02-11 | Otis Elevator Company | Elevator motion profile control |
US9067762B2 (en) * | 2009-07-15 | 2015-06-30 | Otis Elevator Company | Energy savings with optimized motion profiles |
-
2008
- 2008-10-22 FR FR0857167A patent/FR2937432B1/en active Active
-
2009
- 2009-10-13 CN CN200980141932.5A patent/CN102196982B/en active Active
- 2009-10-13 EP EP09821619.5A patent/EP2337758B1/en active Active
- 2009-10-13 ES ES09821619.5T patent/ES2640763T3/en active Active
- 2009-10-13 US US13/063,077 patent/US8584808B2/en active Active
- 2009-10-13 WO PCT/EP2009/063334 patent/WO2010046275A1/en active Application Filing
- 2009-10-13 JP JP2011532590A patent/JP2012506352A/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2010046275A1 (en) | 2010-04-29 |
EP2337758A1 (en) | 2011-06-29 |
FR2937432A1 (en) | 2010-04-23 |
CN102196982A (en) | 2011-09-21 |
JP2012506352A (en) | 2012-03-15 |
ES2640763T3 (en) | 2017-11-06 |
FR2937432B1 (en) | 2015-10-30 |
CN102196982B (en) | 2014-01-08 |
US8584808B2 (en) | 2013-11-19 |
US20110166697A1 (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2337758B1 (en) | Method and device for controlling a lift load | |
EP3694767B1 (en) | Method for automatically driving a vehicle under constraint, in particular a bus in a storage facility, and device implementing such a method | |
CA2431361C (en) | Method and device for automatic control of an aircraft deceleration in running phase | |
EP1273986B1 (en) | Device and method for controlling at least one trim surface of an aircraft during takeoff | |
EP4077086B1 (en) | Method for determining a speed profile of a motor vehicle with non-predetermined acceleration | |
EP2439116B1 (en) | Method for managing parking brakes in a braking system for vehicles equipped with electric brakes | |
FR2710601A1 (en) | Method for controlling the brake pressure in an assisted braking system of a motor vehicle | |
FR2923032A1 (en) | METHOD AND DEVICE FOR AIDING THE CONTROL OF AN AIRCRAFT FOR A DOWNHILL PHASE. | |
EP2514647A2 (en) | Method for controlling deceleration on the ground of a vehicle | |
WO2007000554A2 (en) | Method for controlling the coupling or the decoupling of two motors of a parallel hybrid motive power group | |
EP1684145B1 (en) | Flight management process for an aircraft | |
EP2546977B1 (en) | Method of control implemented in a variable speed drive for controlling the deceleration of an electric motor in the case of power outage | |
EP2442197A1 (en) | Method for operating an actuator moving a windable mobile element of a home-automation device and actuator operating according to said method | |
FR2508854A1 (en) | APPARATUS AND METHOD FOR CONTROLLING THE PROPULSION OF AN ELECTRIC PROPULSION VEHICLE | |
FR2962959A1 (en) | DRIVING ASSISTANCE SYSTEM WITH BRAKE CONTROL | |
FR3077254A1 (en) | SYSTEM AND METHOD FOR CONTROLLING A MOTOR VEHICLE FOR CROSSING A LOW OBSTACLE | |
FR3072068A1 (en) | CONTROL SYSTEM WITH RESTRICTION OF THE TORQUE DISTRIBUTION RATIO | |
CA1243378A (en) | Braking control function for wheeled vehicles | |
EP3990327A1 (en) | Method for evaluating a coastdown load, and assisted driving method | |
EP1526033B1 (en) | Process for managing the operation of a seat and seat making use of this process | |
EP4251487A1 (en) | Method and device for adapting a setpoint acceleration trajectory of an adaptive vehicle cruise control of an autonomous vehicle | |
WO2021121913A1 (en) | Method for determining a motor vehicle speed profile | |
EP4056439B1 (en) | Method for automatically regulating the speed of a motor vehicle | |
WO2020094860A1 (en) | Method for controlling the powertrain of a motor vehicle | |
EP3071442A1 (en) | Method for developing a nominal torque of an electric engine of a motor vehicle, and associated power train |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110323 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20121221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602009046786 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B66B0001240000 Ipc: B66B0001280000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B66B 1/28 20060101AFI20170222BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170329 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 902745 Country of ref document: AT Kind code of ref document: T Effective date: 20170715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009046786 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170921 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170922 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2640763 Country of ref document: ES Kind code of ref document: T3 Effective date: 20171106 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170921 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171021 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009046786 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
26N | No opposition filed |
Effective date: 20180322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171013 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171013 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 902745 Country of ref document: AT Kind code of ref document: T Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231024 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231110 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231024 Year of fee payment: 15 Ref country code: FR Payment date: 20231026 Year of fee payment: 15 Ref country code: DE Payment date: 20231027 Year of fee payment: 15 Ref country code: AT Payment date: 20231018 Year of fee payment: 15 |