EP2337758B1 - Method and device for controlling a lift load - Google Patents

Method and device for controlling a lift load Download PDF

Info

Publication number
EP2337758B1
EP2337758B1 EP09821619.5A EP09821619A EP2337758B1 EP 2337758 B1 EP2337758 B1 EP 2337758B1 EP 09821619 A EP09821619 A EP 09821619A EP 2337758 B1 EP2337758 B1 EP 2337758B1
Authority
EP
European Patent Office
Prior art keywords
speed
load
deceleration
opt
stopping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09821619.5A
Other languages
German (de)
French (fr)
Other versions
EP2337758A1 (en
Inventor
François Malrait
Stéfan Capitaneanu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Toshiba Inverter Europe SAS
Original Assignee
Schneider Toshiba Inverter Europe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Toshiba Inverter Europe SAS filed Critical Schneider Toshiba Inverter Europe SAS
Publication of EP2337758A1 publication Critical patent/EP2337758A1/en
Application granted granted Critical
Publication of EP2337758B1 publication Critical patent/EP2337758B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator

Definitions

  • the present invention relates to a control method implemented in a variable speed drive for controlling a lifting load such as an elevator.
  • the invention also relates to a variable speed drive capable of implementing said method.
  • the profile may also comprise a step of maintaining the speed of the elevator at the first speed before the first speed. deceleration and a holding step at the second speed before the second deceleration.
  • the first speed is set to be the maximum speed to be reached by the elevator when traveling between two stages separated by several levels. But when the elevator must make a shorter trip, for example between two separate floors of a single level, this maximum speed is often never reached. In such a situation the elevator is still controlled according to the control profile defined above. The elevator thus receives the deceleration order before reaching its maximum speed and therefore starts the first deceleration earlier according to the same speed profile than if the maximum speed had been reached. However, at the time of receipt of the deceleration order, the elevator has traveled a short distance. During all the distance remaining before receiving the stop command, the elevator moves at low speed. The time spent by the elevator at low speed is therefore very long.
  • the patent GB1560348 describes a solution to overcome this problem.
  • This document describes the application of a first speed profile to an elevator, this profile with acceleration to a maximum speed, followed by a first deceleration to a low speed landing before further deceleration to a stop.
  • this document proposes the introduction of a second speed profile for shifting the beginning of the first deceleration.
  • the new braking moment occurs at the intersection between the two velocity profiles.
  • the goal is thus to recover the lost distance because of the too premature appearance of the deceleration order by continuing the acceleration to a new speed following the ramp of initial acceleration.
  • the distance remaining to be covered will be respected but not the duration.
  • the document EP0826621 describes a method for adjusting the low speed of an elevator car by applying a compensation frequency in the control.
  • the object of the invention is to provide a control method for minimizing the time spent at low speed when the elevator performs a path such that it receives the deceleration order before reaching its maximum speed.
  • the second control profile includes a step of maintaining the speed of the load at a third speed lower than the second speed.
  • the second control profile comprises a step of receiving a stop command.
  • the second control profile after receiving the stop command, comprises a deceleration step until it stops.
  • the deceleration order or the stop command is sent by an external sensor capable of detecting the passage of the lifting load or can be sent by a PLC connected to the variable speed drive.
  • the invention also relates to a variable speed drive as defined in claim 7.
  • variable speed drive comprises means for maintaining the speed of the load at a third speed lower than the second speed.
  • the second control profile comprises a reception of a stop command.
  • the second control profile comprises a deceleration to the stop following the reception of the stop command.
  • the drive is connected to an external sensor capable of sending the deceleration command or the stop command when it detects the passage of the lifting load.
  • the drive can be connected to a programmable controller able to send the deceleration order or the stop order.
  • Each external sensor is disposed on the elevator path at a distance before the desired arrival stage to meet the deceleration and stopping distances.
  • the control profile defined above is ideal when the elevator moves several levels because the elevator then has a sufficient time to reach its maximum speed ⁇ R before receiving the deceleration order (FLG1).
  • the deceleration order (FLG1) can be received before the elevator has had time to reach its stage. maximum speed ⁇ R.
  • the drive determines a second speed ⁇ R opt lower than the speed ⁇ R and higher than its current speed, this second speed being an optimal speed up to which the elevator can continue to accelerate to minimize the time of travel to a stop while respecting stopping distances (see Figures 3A and 3B ).
  • is designated as the current speed of the load
  • the current position of the load
  • represents the acceleration of the load
  • j represents the pulse ("jerk") of the load.
  • ( ⁇ 0 , ⁇ 0 ) represents the trajectory point at the time of reception of the deceleration order
  • ( ⁇ L , 0) represents the point to reach of the trajectory
  • ⁇ Dd the distance to be traveled during the deceleration movement , between the maximum speed and the low speed.
  • t D represents the deceleration time
  • the pair ( ⁇ 0 , ⁇ 0 ) is obtained by the current position of the trajectory.
  • the distance ⁇ Dd is known because it is the distance traveled during the first deceleration. If this distance ⁇ Dd is respected by the control profile, the stopping distance constraints will also be respected.
  • the resolution consists of starting from all the known data ( ⁇ 0 , ⁇ 0 , ⁇ Dd , T R ) to calculate an optimal maximum speed ⁇ R opt to achieve which minimizes the total time of movement.
  • the calculation of the optimal speed ⁇ R opt is done in respect of the magnitudes of accelerations and impulses to maintain a level of comfort. It may be that the calculation of the optimal speed changes the acceleration and momentum quantities compared to the initial trajectory.
  • the acceleration ramp to reach the optimal speed ⁇ R opt calculated is the acceleration ramp RA of the initially planned control profile and that the deceleration ramp applied after reaching the optimal speed ⁇ R opt is also the deceleration ramp RD of the initially planned control profile.
  • the speed ramps are calculated from a polynomial of order 6, a function of time.
  • speed follows a continuous and non-linear profile.
  • the acceleration ramp to reach the optimal speed ⁇ R opt calculated is also the acceleration ramp RA of the initially planned control profile and that the deceleration ramp applied after reaches the optimum speed ⁇ R opt is also the deceleration ramp RD of the initially planned control profile.
  • ( ⁇ 0 , ⁇ 0 ) represents the trajectory point at the moment of reception of the deceleration order
  • ( ⁇ L , 0) represents the point to reach of the trajectory
  • ⁇ Dd the distance to be traveled during the movement of deceleration, between the maximum speed and the low speed.
  • t D represents the deceleration time
  • the pair ( ⁇ 0 , ⁇ 0 ) is obtained by the current position of the trajectory.
  • the optimum speed calculated by the first or second example is inserted in a new control profile determined by the drive when the deceleration command (FLG1) is received while the maximum speed ⁇ R provided in the initial control profile has not been set. not been reached.
  • This second control profile is determined by taking into account the new optimum speed calculated ⁇ R opt , by respecting the two previously defined principles related to the accelerations and pulses to be applied in order to guarantee an optimal comfort to the user and taking into account the distance remaining to go.
  • the new ramps RA opt , RD opt calculated are of course non-linear to respect the constraints of comfort.
  • the initial ramps RA and RD can no longer be respected and it is necessary to determine new ramps to respect the imposed distance. For example, if the distance to be traveled is too great to reach the optimal speed ⁇ R opt when applying the initial acceleration ramp RA, it is necessary to determine a new ramp which will be steeper.
  • This new control profile can include in particular a step of maintaining the speed of the load at the optimum speed ⁇ R opt to create a step at this speed for a determined duration, between zero and several seconds, and a step of maintaining the speed of the load to the low speed ⁇ L for a certain period, which can range from zero to several seconds before receiving the stop instruction (FLG2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Description

La présente invention se rapporte à un procédé de commande mis en oeuvre dans un variateur de vitesse pour commander une charge de levage tel qu'un ascenseur. L'invention concerne également un variateur de vitesse susceptible de mettre en oeuvre ledit procédé.The present invention relates to a control method implemented in a variable speed drive for controlling a lifting load such as an elevator. The invention also relates to a variable speed drive capable of implementing said method.

Le profil de commande d'une charge de levage tel qu'un ascenseur qui se déplace entre des étages comporte en règle générale les étapes principales suivantes:

  • une accélération jusqu'à une première vitesse,
  • la réception d'un ordre de décélération lorsque l'ascenseur a atteint un certain niveau, cet ordre pouvant être donné lors du passage de l'ascenseur devant un capteur externe,
  • une première décélération jusqu'à une seconde vitesse inférieure à la première vitesse,
  • la réception d'un ordre d'arrêt lorsque l'ascenseur est proche de l'étage d'arrivée, cet ordre pouvant également être donné lors du passage de l'ascenseur devant un second capteur,
  • une seconde décélération jusqu'à l'arrêt.
The control profile of a lifting load such as an elevator moving between floors generally comprises the following main steps:
  • an acceleration to a first speed,
  • receiving a deceleration command when the elevator has reached a certain level, this order being able to be given when the elevator passes an external sensor,
  • a first deceleration to a second speed lower than the first speed,
  • receiving a stop command when the elevator is close to the arrival floor, this order can also be given when the elevator passes in front of a second sensor,
  • a second deceleration until the stop.

Selon la durée pour atteindre la première vitesse suite à l'accélération et la durée pour atteindre la seconde vitesse suite à la première décélération, le profil peut également comporter une étape de maintien de la vitesse de l'ascenseur à la première vitesse avant la première décélération et une étape de maintien à la seconde vitesse avant la seconde décélération.Depending on the duration to reach the first speed following the acceleration and the duration to reach the second speed following the first deceleration, the profile may also comprise a step of maintaining the speed of the elevator at the first speed before the first speed. deceleration and a holding step at the second speed before the second deceleration.

La première vitesse est réglée pour être la vitesse maximale à atteindre par l'ascenseur lors d'un trajet entre deux étages séparés de plusieurs niveaux. Or lorsque l'ascenseur doit effectuer un trajet plus court, par exemple entre deux étages séparés d'un seul niveau, cette vitesse maximale n'est souvent jamais atteinte. Dans une telle situation l'ascenseur est tout de même commandé selon le profil de commande défini ci-dessus. L'ascenseur reçoit donc l'ordre de décélération avant d'avoir atteint sa vitesse maximale et débute donc la première décélération plus tôt selon un même profil de vitesse que si la vitesse maximale avait été atteinte. Or, au moment de la réception de l'ordre de décélération, l'ascenseur n'a parcouru qu'une faible distance. Pendant toute la distance restante avant la réception de l'ordre d'arrêt, l'ascenseur se déplace donc à basse vitesse. La durée passée par l'ascenseur à la basse vitesse est donc très longue.The first speed is set to be the maximum speed to be reached by the elevator when traveling between two stages separated by several levels. But when the elevator must make a shorter trip, for example between two separate floors of a single level, this maximum speed is often never reached. In such a situation the elevator is still controlled according to the control profile defined above. The elevator thus receives the deceleration order before reaching its maximum speed and therefore starts the first deceleration earlier according to the same speed profile than if the maximum speed had been reached. However, at the time of receipt of the deceleration order, the elevator has traveled a short distance. During all the distance remaining before receiving the stop command, the elevator moves at low speed. The time spent by the elevator at low speed is therefore very long.

Le brevet GB1560348 décrit une solution permettant de palier ce problème. Ce document décrit l'application d'un premier profil de vitesse à un ascenseur, ce profil comportant une accélération jusqu'à atteindre une vitesse maximale, suivie d'une première décélération jusqu'à un palier à basse vitesse avant une nouvelle décélération jusqu'à l'arrêt. Lorsque l'ordre de freinage qui commande la première décélération intervient alors que la vitesse maximale n'a pas été atteinte, ce document propose l'introduction d'un second profil de vitesse permettant de décaler le début de la première décélération. Le nouvel instant de freinage intervient à l'intersection entre les deux profils de vitesse. Dans ce document de l'état de la technique, le but est ainsi de récupérer la distance perdue à cause de l'apparition trop prématurée de l'ordre de décélération en poursuivant l'accélération jusqu'à une nouvelle vitesse suivant la rampe d'accélération initiale. Cependant, en conservant la rampe d'accélération initiale pour atteindre la nouvelle vitesse, la distance restant à parcourir sera respectée mais pas la durée.The patent GB1560348 describes a solution to overcome this problem. This document describes the application of a first speed profile to an elevator, this profile with acceleration to a maximum speed, followed by a first deceleration to a low speed landing before further deceleration to a stop. When the braking command that controls the first deceleration occurs while the maximum speed has not been reached, this document proposes the introduction of a second speed profile for shifting the beginning of the first deceleration. The new braking moment occurs at the intersection between the two velocity profiles. In this document of the state of the art, the goal is thus to recover the lost distance because of the too premature appearance of the deceleration order by continuing the acceleration to a new speed following the ramp of initial acceleration. However, by keeping the initial acceleration ramp to reach the new speed, the distance remaining to be covered will be respected but not the duration.

Le document EP0826621 décrit pour sa part une méthode pour ajuster la basse vitesse d'une cabine d'ascenseur en appliquant une fréquence de compensation dans la commande.The document EP0826621 describes a method for adjusting the low speed of an elevator car by applying a compensation frequency in the control.

Le but de l'invention est de proposer un procédé de commande permettant de minimiser le temps passé à basse vitesse lorsque l'ascenseur effectue un trajet tel qu'il reçoit l'ordre de décélération avant d'avoir atteint sa vitesse maximale.The object of the invention is to provide a control method for minimizing the time spent at low speed when the elevator performs a path such that it receives the deceleration order before reaching its maximum speed.

Ce but est atteint par un procédé de commande tel que défini dans la revendication 1.This object is achieved by a control method as defined in claim 1.

Selon une autre particularité, entre l'étape de décélération et l'étape d'arrêt, le second profil de commande comporte une étape de maintien de la vitesse de la charge à une troisième vitesse inférieure à la deuxième vitesse.According to another feature, between the deceleration step and the stop step, the second control profile includes a step of maintaining the speed of the load at a third speed lower than the second speed.

Selon une autre particularité, à l'issue de l'étape de décélération, le second profil de commande comporte une étape de réception d'un ordre d'arrêt.According to another feature, at the end of the deceleration step, the second control profile comprises a step of receiving a stop command.

Selon une autre particularité, après réception de l'ordre d'arrêt, le second profil de commande comporte une étape de décélération jusqu'à l'arrêt.According to another particular feature, after receiving the stop command, the second control profile comprises a deceleration step until it stops.

Selon une autre particularité, l'ordre de décélération ou l'ordre d'arrêt est envoyé par un capteur externe apte à détecter le passage de la charge de levage ou peut être envoyé par un automate connecté au variateur de vitesse.According to another particularity, the deceleration order or the stop command is sent by an external sensor capable of detecting the passage of the lifting load or can be sent by a PLC connected to the variable speed drive.

L'invention concerne également un variateur de vitesse tel que défini dans la revendication 7.The invention also relates to a variable speed drive as defined in claim 7.

Selon une autre particularité, le variateur de vitesse comporte des moyens pour maintenir la vitesse de la charge à une troisième vitesse inférieure à la deuxième vitesse.According to another feature, the variable speed drive comprises means for maintaining the speed of the load at a third speed lower than the second speed.

Selon une autre particularité, le second profil de commande comporte une réception d'un ordre d'arrêt.According to another particularity, the second control profile comprises a reception of a stop command.

Selon une autre particularité, le second profil de commande comporte une décélération jusqu'à l'arrêt suite à la réception de l'ordre d'arrêt.According to another particularity, the second control profile comprises a deceleration to the stop following the reception of the stop command.

Selon une autre particularité, le variateur est connecté à un capteur externe apte à envoyer l'ordre de décélération ou l'ordre d'arrêt lorsque qu'il détecte le passage de la charge de levage. En variante, le variateur peut être connecté à un automate programmable apte à envoyer l'ordre de décélération ou l'ordre d'arrêt.According to another feature, the drive is connected to an external sensor capable of sending the deceleration command or the stop command when it detects the passage of the lifting load. Alternatively, the drive can be connected to a programmable controller able to send the deceleration order or the stop order.

D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels :

  • les figures 1A et 1B représentent respectivement un profil de vitesse et son profil de position correspondant suivis par un ascenseur se déplaçant entre deux étages en atteignant sa vitesse maximale,
  • les figures 2A et 2B représentent respectivement un profil de vitesse et son profil de position correspondant suivis par un ascenseur se déplaçant entre deux étages sans atteindre sa vitesse maximale et sans application du procédé de commande de l'invention,
  • les figures 3A et 3B représentent respectivement un profil de vitesse et son profil de position correspondant suivis par un ascenseur se déplaçant entre deux étages sans atteindre sa vitesse maximale et avec application du procédé de commande de l'invention.
Other features and advantages will appear in the detailed description which follows with reference to an embodiment given by way of example and represented by the appended drawings in which:
  • the Figures 1A and 1B respectively represent a speed profile and its corresponding position profile followed by an elevator moving between two stages while reaching its maximum speed,
  • the Figures 2A and 2B respectively represent a speed profile and its corresponding position profile followed by an elevator moving between two stages without reaching its maximum speed and without application of the control method of the invention,
  • the Figures 3A and 3B respectively represent a speed profile and its corresponding position profile followed by an elevator moving between two stages without reaching its maximum speed and with application of the control method of the invention.

Comme déjà décrit précédemment, en référence à la figure 1B, un profil de commande classique appliqué dans un variateur de vitesse pour commander une charge de levage telle qu'un ascenseur à l'aide d'un moteur électrique comporte les étapes principales suivantes :

  • réception d'un ordre de départ pour déplacer l'ascenseur d'un étage à un autre,
  • accélération selon une rampe d'accélération RA jusqu'à atteindre une vitesse maximale ωR,
  • réception d'un ordre de décélération (FLG1) par exemple à l'aide d'un premier capteur externe placé sur le trajet de l'ascenseur,
  • décélération selon une rampe de décélération RD jusqu'à atteindre une basse vitesse ωL,
  • réception d'un ordre d'arrêt (FLG2) par exemple à l'aide d'un second capteur externe placé sur le trajet de l'ascenseur,
  • décélération selon une rampe d'arrêt RS jusqu'à l'arrêt complet de l'ascenseur à l'étage voulu.
As already described above, with reference to the Figure 1B , a conventional control profile applied in a variable speed drive to control a lifting load such as an elevator using an electric motor comprises the following main steps:
  • receiving a departure order to move the elevator from one floor to another,
  • acceleration according to an acceleration ramp RA until reaching a maximum speed ω R ,
  • reception of a deceleration order (FLG1) for example with the aid of a first external sensor placed on the path of the elevator,
  • deceleration according to a deceleration ramp RD to reach a low speed ω L ,
  • receiving a stop command (FLG2) for example by means of a second external sensor placed on the path of the elevator,
  • deceleration according to a stop ramp RS until the complete stop of the elevator to the desired floor.

Chaque capteur externe est disposé sur le trajet de l'ascenseur à une certaine distance avant l'étage d'arrivée souhaité pour respecter les distances de décélération et d'arrêt.Each external sensor is disposed on the elevator path at a distance before the desired arrival stage to meet the deceleration and stopping distances.

Ce type de profil de commande est mis en oeuvre en tenant compte de contraintes liées au confort de l'utilisateur. En effet, ce profil de commande doit être appliqué de manière confortable pour l'utilisateur ce qui implique l'application de rampes non linéaires. Pour cela, deux principes sont généralement appliqués :

  • chaque rampe (accélération, décélération, arrêt) doit être appliquée suivant une accélération faible, au plus égale à 0,5 m/s2,
  • les impulsions ou arrondis (jerk en anglais) en début et en fin de chaque rampe doivent être limitées, par exemple à une valeur comprise entre 0,2 et 0,5 m/s3.
This type of control profile is implemented taking into account constraints related to user comfort. Indeed, this control profile must be applied in a comfortable manner for the user which implies the application of nonlinear ramps. For this, two principles are generally applied:
  • each ramp (acceleration, deceleration, stop) must be applied at a low acceleration, at most equal to 0.5 m / s 2 ,
  • pulses or rounded (jerk in English) in the beginning and end of each ramp should be limited, for example to a value between 0.2 and 0.5 m / s 3.

Le profil de commande défini ci-dessus est idéal lorsque l'ascenseur se déplace de plusieurs niveaux car l'ascenseur dispose alors d'un temps suffisant pour atteindre sa vitesse maximale ωR avant la réception de l'ordre de décélération (FLG1). En revanche, lorsque l'ascenseur effectue un trajet court entre deux étages, par exemple séparés d'un seul niveau, l'ordre de décélération (FLG1) peut être reçu avant que l'ascenseur n'ait eu le temps d'atteindre sa vitesse maximale ωR. Dans ce cas, si l'ascenseur continue d'accélérer après la réception de l'ordre de décélération (FLG1), les distances d'arrêt à l'étage souhaité ne pourront pas être respectées ou si l'ascenseur est commandé en décélération selon le profil de commande défini ci-dessus, la basse vitesse ωL sera atteinte très tôt et l'ascenseur sera donc amené à se déplacer très lentement à cette basse vitesse ωL pour atteindre l'étage voulu comme représenté sur les figures 2A et 2B.The control profile defined above is ideal when the elevator moves several levels because the elevator then has a sufficient time to reach its maximum speed ω R before receiving the deceleration order (FLG1). On the other hand, when the elevator makes a short path between two stages, for example separated by a single level, the deceleration order (FLG1) can be received before the elevator has had time to reach its stage. maximum speed ω R. In this case, if the elevator continues to accelerate after receiving the deceleration order (FLG1), the stopping distances at the desired floor can not be met or if the elevator is decelerated according to the control profile defined above, the low speed ω L will be reached very early and the elevator will have to move very slowly at this low speed ω L to reach the desired floor as shown on the Figures 2A and 2B .

Selon l'invention, lorsque le variateur de vitesse reçoit l'ordre de décélération (FLG1) alors que l'ascenseur est à une vitesse courante inférieure à sa vitesse maximale ωR, le variateur détermine une deuxième vitesse ωR opt inférieure à la vitesse maximale ωR et supérieure à sa vitesse courante, cette deuxième vitesse étant une vitesse optimale jusqu'à laquelle l'ascenseur peut continuer d'accélérer pour minimiser le temps de parcours jusqu'à l'arrêt tout en respectant les distances d'arrêt (voir figures 3A et 3B). Le principe de l'invention consiste donc à chercher une fonction du temps telle que : { θ = f t ω = f t γ = f " t j = f‴ t

Figure imgb0001
According to the invention, when the speed controller receives the deceleration order (FLG1) while the elevator is at a current speed lower than its maximum speed ω R , the drive determines a second speed ω R opt lower than the speed ω R and higher than its current speed, this second speed being an optimal speed up to which the elevator can continue to accelerate to minimize the time of travel to a stop while respecting stopping distances (see Figures 3A and 3B ). The principle of the invention therefore consists in seeking a function of time such that: { θ = f t ω = f ' t γ = f " t j = f ‴ t
Figure imgb0001

Dans laquelle ω est désignée comme la vitesse courante de la charge, θ la position courante de la charge, γ représente l'accélération de la charge et j représente l'impulsion ("jerk") de la charge.In which ω is designated as the current speed of the load, θ the current position of the load, γ represents the acceleration of the load and j represents the pulse ("jerk") of the load.

Cette fonction f devra respecter les contraintes suivantes : { 0 = f 0 θ Dd = f t D ω 0 = f 0 ω L = f t D γ 0 = f " 0 0 = f " t D 0 = f‴ t D et γ < γ MAX , j < j MAX

Figure imgb0002
This function f must respect the following constraints : { 0 = f 0 θ dd = f t D ω 0 = f ' 0 ω The = f ' t D γ 0 = f " 0 0 = f " t D 0 = f ‴ t D and γ < γ MAX , j < j MAX
Figure imgb0002

00) représente le point de trajectoire au moment de la réception de l'ordre de décélération, (ωL,0) représente le point à atteindre de la trajectoire et θDd la distance à parcourir pendant le mouvement de décélération, entre la vitesse maximale et la basse vitesse. tD représente pour sa part le temps de décélération0 , γ 0 ) represents the trajectory point at the time of reception of the deceleration order, (ω L , 0) represents the point to reach of the trajectory and θ Dd the distance to be traveled during the deceleration movement , between the maximum speed and the low speed. t D represents the deceleration time

Le couple (ω00) est obtenu par la position courante de la trajectoire.The pair (ω 0 , γ 0 ) is obtained by the current position of the trajectory.

La distance θDd est connue car il s'agit de la distance parcourue lors de la première décélération. Si cette distance θDd est respectée par le profil de commande, les contraintes de distance d'arrêt le seront également.The distance θ Dd is known because it is the distance traveled during the first deceleration. If this distance θ Dd is respected by the control profile, the stopping distance constraints will also be respected.

Si nous ajoutons un paramètre connu de temps TR correspondant à un temps de palier à la vitesse maximale atteinte par l'ascenseur, la résolution consiste à partir de toutes les données connues (ω00Dd,TR) à calculer une vitesse maximale optimale ωR opt à atteindre qui minimise le temps total du mouvement.If we add a known time parameter T R corresponding to a dwell time at the maximum speed reached by the elevator, the resolution consists of starting from all the known data (ω 0 , γ 0 , θ Dd , T R ) to calculate an optimal maximum speed ω R opt to achieve which minimizes the total time of movement.

Par définition, la vitesse maximale optimale est définie par ωR opt = f'(tR), où tR est tel que f"(tR) = 0.By definition, the optimal maximum velocity is defined by ω R opt = f '(t R ), where t R is such that f "(t R ) = 0.

Deux exemples sont traités ci-après pour modéliser la fonction f définie ci-dessus.Two examples are discussed below to model the function f defined above.

Le premier exemple consiste à déterminer la vitesse optimale ωR opt, en considérant par exemple le profil de commande suivant, linéaire par morceaux en accélération (voir figure 1B) :

  • accélération γA pendant le temps Ta suivant une rampe d'accélération RA,
  • maintien à la vitesse ωR pendant un temps de palier Tp,
  • accélération γD pendant le temps Td suivant une rampe de décélération RD,
  • maintien à la basse vitesse ωL pendant un temps TL afin de parcourir la distance restante jusqu'à l'arrêt.
The first example is to determine the optimal speed ω R opt , considering for example the following control profile, piecewise linear acceleration (see Figure 1B ):
  • acceleration γ A during the time Ta following an acceleration ramp RA,
  • maintaining the speed ω R during a plateau time Tp,
  • acceleration γ D during the time Td following a ramp deceleration RD,
  • holding at low speed ω L for a time T L to travel the remaining distance to the stop.

Le calcul de la vitesse optimale ωR opt se fait en respect des grandeurs d'accélérations et d'impulsions pour maintenir un niveau de confort. Il se peut que le calcul de la vitesse optimale modifie les grandeurs d'accélération et d'impulsion comparées à la trajectoire initiale.The calculation of the optimal speed ω R opt is done in respect of the magnitudes of accelerations and impulses to maintain a level of comfort. It may be that the calculation of the optimal speed changes the acceleration and momentum quantities compared to the initial trajectory.

Dans ce premier exemple, nous considérons que la rampe d'accélération pour atteindre la vitesse optimale ωR opt calculée est la rampe d'accélération RA du profil de commande initialement prévu et que la rampe de décélération appliquée après avoir atteint la vitesse optimale ωR opt est également la rampe de décélération RD du profil de commande initialement prévu.In this first example, we consider that the acceleration ramp to reach the optimal speed ω R opt calculated is the acceleration ramp RA of the initially planned control profile and that the deceleration ramp applied after reaching the optimal speed ω R opt is also the deceleration ramp RD of the initially planned control profile.

A partir du profil de commande défini ci-dessus en liaison avec la figure 1B, avec ω désignée comme la vitesse courante de la charge et θ la position courante de la charge, on effectue le raisonnement suivant :

  • Entre 0 et Ta (phase d'accélération), nous avons : ω = ω 0 + γ A t
    Figure imgb0003
    θ = ω 0 t + 1 2 γ A t 2
    Figure imgb0004
    Ce qui donne en Ta : ω R = ω 0 + γ A T A
    Figure imgb0005
    θ R = ω 0 T A + 1 2 γ A T A 2
    Figure imgb0006
    Soit avec T A = ω R ω 0 γ A
    Figure imgb0007
    Nous obtenons alors : θ R = ω R 2 ω 0 2 2 γ A
    Figure imgb0008
  • Entre Ta et Ta+Tp, la vitesse étant constante, nous avons : ω = ω R
    Figure imgb0009
    θ = θ R + ω R t
    Figure imgb0010
    Ce qui donne en Ta+Tp : θ P = θ R + ω R T P
    Figure imgb0011
  • Entre Ta+Tp et Ta+Tp +Td (phase de décélération), nous avons : ω = ω R γ D t
    Figure imgb0012
    θ = θ P + ω R t 1 2 γ D t 2
    Figure imgb0013
    Ce qui donne en Ta+Tp+Td : ω R = ω L + γ D T D
    Figure imgb0014
    θ D = θ P + ω R T D 1 2 γ D T D 2
    Figure imgb0015
    Avec T D = ω R ω L γ D
    Figure imgb0016
    On obtient alors : θ D = ω R 2 ω 0 2 2 γ A + ω R 2 ω L 2 2 γ D + ω R T P
    Figure imgb0017
  • Puis entre Ta+Tp+Td et TR=Ta+Tp+Td+TL , nous avons : ω = ω L
    Figure imgb0018
    θ = θ D + ω L t
    Figure imgb0019
    Ce qui donne en TR : θ Dd = θ D + ω L T L = ω R 2 ω 0 2 2 γ A + ω R 2 ω L 2 2 γ D + ω L T L + ω R T P
    Figure imgb0020
    sous la condition que TL>0, il vient alors : T L = θ Dd ω R T P ω R 2 ω 0 2 2 γ A ω R 2 ω L 2 2 γ D ω L
    Figure imgb0021
Nous obtenons alors : T R = ω R ω 0 γ A + T P + ω R ω L γ D + θ Dd ω R T P ω R 2 ω 0 2 2 γ A ω R 2 ω L 2 2 γ D ω L > 0
Figure imgb0022
Avec : T A = ω R ω 0 γ A , T D = ω R ω L γ D et T L = θ Dd ω R T P ω R 2 ω 0 2 2 γ A ω R 2 ω L 2 2 γ D ω L
Figure imgb0023
Nous obtenons donc que le temps de parcours est une fonction de la vitesse ωR.
Si TL <0, cela signifie que les mouvements de fin d'accélération et décélération ont consommés trop de distance. Par conséquent, le temps TL doit être positif ce qui nous amène à poser les relations suivantes : ω R θ = 2 θ Dd + ω 0 2 γ A + ω L 2 γ D 1 γ A + 1 γ D et ω R γ = T P 1 γ A + 1 γ D
Figure imgb0024
et à étudier la contrainte : T L = θ Dd ω R T P 1 γ A + 1 γ D ω R 2 2 + ω 0 2 2 γ A + ω L 2 2 γ D ω L 0
Figure imgb0025
Nous obtenons alors la relation suivante : T L = 1 γ A + 1 γ D ω R 2 θ 2 ω R γ ω R ω R 2 2 ω L 0
Figure imgb0026
Pour remplir la condition TL ≥ 0 , il faut donc que ωR θ2 - 2ωR γ · ωR - ωR 2 ≥ 0
En résolvant cette équation du second degré, on obtient la vitesse optimale ωR opt à atteindre tenant compte de la contrainte : ω R opt = ω R γ + ω R 2 γ + ω R 2 θ
Figure imgb0027
Afin de confirmer que la vitesse ωR opt est bien la vitesse optimale permettant de minimiser le temps de parcours, il suffit d'étudier la fonction suivante et son évolution en fonction de ωR : T R ω R = ω R ω 0 γ A + T P + ω R ω L γ D + θ Dd ω R T P ω R 2 ω 0 2 2 γ A ω R 2 ω L 2 2 γ D ω L
Figure imgb0028
= 1 γ A + 1 γ D ω R ω 0 γ A ω L γ D + T P + 1 γ A + 1 γ D ω R 2 θ 2 ω R γ ω R ω R 2 2 ω L
Figure imgb0029
La variation de TR est déterminée à partir de sa dérivée : dT R R ω R = 1 γ A + 1 γ D 1 γ A + 1 γ D ω R γ + ω R ω L = 1 γ A + 1 γ D 1 ω R γ + ω R ω L
Figure imgb0030
Par définition ωR est supérieure à ωL, il vient donc que la fonction TR est monotone décroissante sur son espace de définition, c'est-à-dire ωR dans [ωL, ωR opt].
Nous constatons donc que le temps TR est minimum lorsque ωR est maximum permettant de justifier le choix de ω R opt = ω R γ + ω R γ 2 + ω R θ 2 .
Figure imgb0031
On obtient alors : ω R = ω R opt = ω R γ + ω R 2 γ + ω R 2 θ = T P 1 γ A + 1 γ D + T P 1 γ A + 1 γ D 2 + 2 θ Dd + ω 0 2 γ A + ω L 2 γ D 1 γ A + 1 γ D .
Figure imgb0032
From the control profile defined above in connection with the Figure 1B with ω designated as the current speed of the load and θ the current position of the load, the following reasoning is carried out:
  • Between 0 and Ta (acceleration phase), we have: ω = ω 0 + γ AT t
    Figure imgb0003
    θ = ω 0 t + 1 2 γ AT t 2
    Figure imgb0004
    What gives in Ta: ω R = ω 0 + γ AT T AT
    Figure imgb0005
    θ R = ω 0 T AT + 1 2 γ AT T AT 2
    Figure imgb0006
    Either with T AT = ω R - ω 0 γ AT
    Figure imgb0007
    We then get: θ R = ω R 2 - ω 0 2 2 γ AT
    Figure imgb0008
  • Between Ta and Ta + Tp , the speed being constant, we have: ω = ω R
    Figure imgb0009
    θ = θ R + ω R t
    Figure imgb0010
    Which gives in Ta + Tp : θ P = θ R + ω R T P
    Figure imgb0011
  • Between Ta + Tp and Ta + Tp + Td (deceleration), we have: ω = ω R - γ D t
    Figure imgb0012
    θ = θ P + ω R t - 1 2 γ D t 2
    Figure imgb0013
    Which gives in Ta + Tp + Td: ω R = ω The + γ D T D
    Figure imgb0014
    θ D = θ P + ω R T D - 1 2 γ D T D 2
    Figure imgb0015
    With T D = ω R - ω The γ D
    Figure imgb0016
    We then obtain: θ D = ω R 2 - ω 0 2 2 γ AT + ω R 2 - ω The 2 2 γ D + ω R T P
    Figure imgb0017
  • Then between Ta + Tp + Td and T R = Ta + Tp + Td + T L , we have: ω = ω The
    Figure imgb0018
    θ = θ D + ω The t
    Figure imgb0019
    Which gives in T R : θ dd = θ D + ω The T The = ω R 2 - ω 0 2 2 γ AT + ω R 2 - ω The 2 2 γ D + ω The T The + ω R T P
    Figure imgb0020
    under the condition that T L > 0, it comes then: T The = θ dd - ω R T P - ω R 2 - ω 0 2 2 γ AT - ω R 2 - ω The 2 2 γ D ω The
    Figure imgb0021
We then get: T R = ω R - ω 0 γ AT + T P + ω R - ω The γ D + θ dd - ω R T P - ω R 2 - ω 0 2 2 γ AT - ω R 2 - ω The 2 2 γ D ω The > 0
Figure imgb0022
With: T AT = ω R - ω 0 γ AT , T D = ω R - ω The γ D and T The = θ dd - ω R T P - ω R 2 - ω 0 2 2 γ AT - ω R 2 - ω The 2 2 γ D ω The
Figure imgb0023
We thus obtain that the travel time is a function of the speed ω R.
If T L <0, this means that the end acceleration and deceleration movements have consumed too much distance. Therefore, the time T L must be positive, which leads us to the following relationships: ω R θ = 2 θ dd + ω 0 2 γ AT + ω The 2 γ D 1 γ AT + 1 γ D and ω R γ = T P 1 γ AT + 1 γ D
Figure imgb0024
and to study the constraint: T The = θ dd - ω R T P - 1 γ AT + 1 γ D ω R 2 2 + ω 0 2 2 γ AT + ω The 2 2 γ D ω The 0
Figure imgb0025
We then get the following relation: T The = 1 γ AT + 1 γ D ω R 2 θ - 2 ω R γ ω R - ω R 2 2 ω The 0
Figure imgb0026
To fulfill the condition T L ≥ 0, it is therefore necessary that ω R θ 2 - 2ω R γ · ω R - ω R 2 ≥ 0
By solving this equation of the second degree, we obtain the optimal speed ω R opt to reach taking into account the constraint: ω R Opt = - ω R γ + ω R 2 γ + ω R 2 θ
Figure imgb0027
To confirm that the speed ω R opt is the optimum speed to minimize travel time, just consider the following function and its evolution in terms of ω R: T R ω R = ω R - ω 0 γ AT + T P + ω R - ω The γ D + θ dd - ω R T P - ω R 2 - ω 0 2 2 γ AT - ω R 2 - ω The 2 2 γ D ω The
Figure imgb0028
= 1 γ AT + 1 γ D ω R - ω 0 γ AT - ω The γ D + T P + 1 γ AT + 1 γ D ω R 2 θ - 2 ω R γ ω R - ω R 2 2 ω The
Figure imgb0029
The variation of T R is determined from its derivative: dT R R ω R = 1 γ AT + 1 γ D - 1 γ AT + 1 γ D ω R γ + ω R ω The = 1 γ AT + 1 γ D 1 - ω R γ + ω R ω The
Figure imgb0030
By definition ω R is greater than ω L , it follows that the function T R is monotonically decreasing on its definition space, that is to say ω R in [ω L , ω R opt ].
We thus note that the time T R is minimum when ω R is maximum allowing to justify the choice of ω R Opt = - ω R γ + ω R γ 2 + ω R θ 2 .
Figure imgb0031
We then obtain: ω R = ω R Opt = - ω R γ + ω R 2 γ + ω R 2 θ = - T P 1 γ AT + 1 γ D + T P 1 γ AT + 1 γ D 2 + 2 θ dd + ω 0 2 γ AT + ω The 2 γ D 1 γ AT + 1 γ D .
Figure imgb0032

Dans le second exemple, les rampes de vitesse sont calculées à partir d'un polynôme d'ordre 6, fonction du temps. Par construction, la vitesse suit un profil continue et non linéaire. Nous considérons également que la rampe d'accélération pour atteindre la vitesse optimale ωR opt calculée est également la rampe d'accélération RA du profil de commande initialement prévu et que la rampe de décélération appliquée après avoir atteint la vitesse optimale ωR opt est également la rampe de décélération RD du profil de commande initialement prévu. Considérons le polynôme P d'ordre 6 suivant : P = a 6 X 6 + a 5 X 5 + a 4 X 4 + a 3 X 3 + a 2 X 2 + a 1 X + a 0

Figure imgb0033
Définissons la fonction du temps f telle que : f t = P t t D
Figure imgb0034
Par définition, nous pouvons exprimer la position θ, la vitesse ω, l'accélération γ, et l'impulsion j à partir de la fonction f et de ses dérivées. { θ = f t ω = f t γ = f " t j = f‴ t
Figure imgb0035
avec les contraintes { 0 = f 0 θ Dd = f t D ω 0 = f 0 ω L = f t D γ 0 = f " 0 0 = f " t D 0 = f‴ t D et γ < γ MAX , j < j MAX
Figure imgb0036
In the second example, the speed ramps are calculated from a polynomial of order 6, a function of time. By construction, speed follows a continuous and non-linear profile. We also consider that the acceleration ramp to reach the optimal speed ω R opt calculated is also the acceleration ramp RA of the initially planned control profile and that the deceleration ramp applied after reaches the optimum speed ω R opt is also the deceleration ramp RD of the initially planned control profile. Consider the following order P polynomial 6: P = at 6 X 6 + at 5 X 5 + at 4 X 4 + at 3 X 3 + at 2 X 2 + at 1 X + at 0
Figure imgb0033
Define the function of time f such that: f t = P t t D
Figure imgb0034
By definition, we can express the position θ, the velocity ω, the acceleration γ, and the pulse j from the function f and its derivatives. { θ = f t ω = f ' t γ = f " t j = f ‴ t
Figure imgb0035
with the constraints { 0 = f 0 θ dd = f t D ω 0 = f ' 0 ω The = f ' t D γ 0 = f " 0 0 = f " t D 0 = f ‴ t D and γ < γ MAX , j < j MAX
Figure imgb0036

00) représente le point de trajectoire au moment de la réception de l'ordre de décélération, (ωL,0) représente le point à atteindre de la trajectoire, et θDd la distance à parcourir pendant le mouvement de décélération, entre la vitesse maximale et la basse vitesse. tD représente pour sa part le temps de décélération
Le couple (ω00) est obtenu par la position courante de la trajectoire.
0 , γ 0 ) represents the trajectory point at the moment of reception of the deceleration order, (ω L , 0) represents the point to reach of the trajectory, and θ Dd the distance to be traveled during the movement of deceleration, between the maximum speed and the low speed. t D represents the deceleration time
The pair (ω 0 , γ 0 ) is obtained by the current position of the trajectory.

La distance θDd est connue car il s'agit de la distance parcourue lors de la première décélération. Si cette distance θDd est respectée par le profil de commande, les contraintes de distance d'arrêt le seront également.
Nous avons donc à trouver les coefficients du polynôme P vérifiant les contraintes : { 0 = P 0 θ Dd = P 1 ω 0 t D = P 0 ω L t D = P 1 γ 0 t D 2 = P " 0 0 = P " 1 0 = P‴ 1

Figure imgb0037
Il vient : a 6 = 10 θ Dd + 6 ω L t D + 4 ω 0 t D + 1 2 γ 0 t D 2
Figure imgb0038
a 5 = 36 θ Dd 21 ω L t D 15 ω 0 t D 2 γ 0 t D 2
Figure imgb0039
a 4 = 45 θ Dd + 25 ω L t D + 20 ω 0 t D + 3 γ 0 t D 2
Figure imgb0040
a 3 = 20 θ Dd 10 ω L t D 10 ω 0 t D 2 γ 0 t D 2
Figure imgb0041
a 2 = 1 2 γ 0 t D 2
Figure imgb0042
a 1 = ω 0 t D
Figure imgb0043
a 0 = 0
Figure imgb0044
The distance θ Dd is known because it is the distance traveled during the first deceleration. If this distance θ Dd is respected by the control profile, the stopping distance of the constraints will be.
We therefore have to find the coefficients of the polynomial P satisfying the constraints: { 0 = P 0 θ dd = P 1 ω 0 t D = P ' 0 ω The t D = P ' 1 γ 0 t D 2 = P " 0 0 = P " 1 0 = P ‴ 1
Figure imgb0037
He comes : at 6 = - 10 θ dd + 6 ω The t D + 4 ω 0 t D + 1 2 γ 0 t D 2
Figure imgb0038
at 5 = 36 θ dd - 21 ω The t D - 15 ω 0 t D - 2 γ 0 t D 2
Figure imgb0039
at 4 = - 45 θ dd + 25 ω The t D + 20 ω 0 t D + 3 γ 0 t D 2
Figure imgb0040
at 3 = 20 θ dd - 10 ω The t D - 10 ω 0 t D - 2 γ 0 t D 2
Figure imgb0041
at 2 = 1 2 γ 0 t D 2
Figure imgb0042
at 1 = ω 0 t D
Figure imgb0043
at 0 = 0
Figure imgb0044

Par définition, la vitesse optimale atteinte pendant le mouvement est alors définie par ωR opt · tD = P'(x), où x est tel que P"(x) = 0.By definition, the optimal speed reached during the motion is then defined by ω R opt t D = P '(x), where x is such that P "(x) = 0.

La vitesse optimale calculée grâce au premier ou second exemple est insérée dans un nouveau profil de commande déterminé par le variateur lorsque l'ordre de décélération (FLG1) est reçu alors que la vitesse maximale ωR prévue dans le profil de commande initial n'a pas été atteinte. Ce second profil de commande est déterminé en tenant compte de la nouvelle vitesse optimale calculée ωR opt, en respectant les deux principes définis précédemment liés aux accélérations et impulsions à appliquer pour garantir un confort optimal à l'utilisateur et en tenant compte de la distance restant à parcourir.The optimum speed calculated by the first or second example is inserted in a new control profile determined by the drive when the deceleration command (FLG1) is received while the maximum speed ω R provided in the initial control profile has not been set. not been reached. This second control profile is determined by taking into account the new optimum speed calculated ω R opt , by respecting the two previously defined principles related to the accelerations and pulses to be applied in order to guarantee an optimal comfort to the user and taking into account the distance remaining to go.

Ce nouveau profil de commande comporte donc, après la réception de l'ordre de décélération (FLG1), les étapes suivantes :

  • accélération jusqu'à la vitesse optimale ωR opt calculée selon une nouvelle rampe d'accélération RAopt tenant compte notamment de la distance restant à parcourir,
  • décélération selon une nouvelle rampe de décélération RDopt, tenant compte également de la distance restant à parcourir, jusqu'à atteindre la basse vitesse ωL,
  • réception de l'ordre d'arrêt (FLG2) par exemple à l'aide du second capteur externe placé sur le trajet de l'ascenseur,
  • décélération selon la rampe d'arrêt RS jusqu'à l'arrêt complet de l'ascenseur à l'étage voulu.
This new control profile therefore comprises, after receiving the deceleration order (FLG1), the following steps:
  • acceleration to the optimum speed ω R opt calculated according to a new acceleration ramp RA opt taking into account in particular the distance remaining to be traveled,
  • deceleration according to a new deceleration ramp RD opt , also taking into account the distance remaining to be traveled, until reaching the low speed ω L ,
  • receiving the stop command (FLG2) for example with the aid of the second external sensor placed on the path of the elevator,
  • deceleration according to the RS stop ramp until the elevator stops at the desired floor.

Les nouvelles rampes RAopt, RDopt calculées sont bien entendu non linéaires pour respecter les contraintes de confort.The new ramps RA opt , RD opt calculated are of course non-linear to respect the constraints of comfort.

Selon l'invention, dans certains cas, les rampes initiales RA et RD ne peuvent plus être respectées et il est nécessaire de déterminer de nouvelles rampes permettant de respecter la distance imposée. Par exemple, si la distance à parcourir est trop grande pour atteindre la vitesse optimale ωR opt lorsqu'on applique la rampe d'accélération initiale RA, il est nécessaire de déterminer une nouvelle rampe qui sera plus raide.According to the invention, in certain cases, the initial ramps RA and RD can no longer be respected and it is necessary to determine new ramps to respect the imposed distance. For example, if the distance to be traveled is too great to reach the optimal speed ω R opt when applying the initial acceleration ramp RA, it is necessary to determine a new ramp which will be steeper.

Ce nouveau profil de commande peut notamment comporter une étape de maintien de la vitesse de la charge à la vitesse optimale ωR opt pour créer un palier à cette vitesse pendant une durée déterminée, comprise entre zéro et plusieurs secondes, et une étape de maintien de la vitesse de la charge à la basse vitesse ωL pendant une certaine durée, pouvant aller de zéro à plusieurs secondes, avant la réception de l'ordre d'arrêt (FLG2).This new control profile can include in particular a step of maintaining the speed of the load at the optimum speed ω R opt to create a step at this speed for a determined duration, between zero and several seconds, and a step of maintaining the speed of the load to the low speed ω L for a certain period, which can range from zero to several seconds before receiving the stop instruction (FLG2).

Claims (12)

  1. A control method implemented in a variable speed drive for controlling a lifting load, the control of the load being carried out according to a first control profile which comprises the following main steps:
    - acceleration of the load for reaching a first speed (ωR) in accordance with a first non-linear acceleration ramp (RA),
    - deceleration of the load subsequent to the receipt of a deceleration order (FLG1),
    - stopping of the load,
    characterized in that when the load receives the deceleration order (FLG1) while being at a current speed below the first speed (ωR), the method comprises:
    - a step of determining a second speed (ωR opt) below the first speed (ωR) and above the current speed, said second speed (ωR opt) having an optimal value so as to minimize the travel time of the load until stopping,
    - a step of generating and applying a second control profile replacing the first control profile and comprising a step of accelerating the load until reaching the second speed (ωR opt) according to a second non-linear acceleration ramp (RAopt) taking account of the remaining distance to be traveled, followed by a step of maintaining the speed of the load at the second speed (ωR opt) for a determined duration, a deceleration step and a stopping step.
  2. The method as claimed in claim 1, characterized in that, between the deceleration step and the stopping step, the second control profile comprises a step of maintaining the speed of the load at a third speed (ωL) below the second speed (ωR opt).
  3. The method as claimed in one of claims 1 or 2, characterized in that, on completion of the deceleration step, the second control profile comprises a step of receiving a stopping order (FLG2).
  4. The method as claimed in claim 3, characterized in that after receipt of the stopping order (FLG2), the second control profile comprises a step of deceleration until stopping.
  5. The method as claimed in claim 3 or 4, characterized in that the deceleration order (FLG1) or the stopping order (FLG2) is dispatched by a sensor in front of which the lifting load passes.
  6. The method as claimed in claim 3 or 4, characterized in that the deceleration order (FLG1) or the stopping order (FLG2) is dispatched by an automaton connected to the variable speed drive.
  7. A variable speed drive for controlling a lifting load, the control of the load being carried out according to a first control profile which comprises the following steps:
    - acceleration of the load for reaching a first speed (ωR) in accordance with a first non-linear acceleration ramp (RA),
    - receipt of a deceleration order (FLG1),
    - deceleration of the load,
    - stopping of the load,
    characterized in that when the load receives the deceleration order (FLG1) at a current speed below the first speed (ωR), the variable speed drive implements:
    - means for determining a second speed (ωR opt) below the first speed (ωR) and above the current speed, said second speed (ωR opt) having an optimal value so as to minimize the travel time of the load until stopping,
    - means for generating and implementing a second control profile replacing the first control profile and comprising a step of accelerating the load until reaching the second speed (ωR opt) according to a second non-linear acceleration ramp (RAopt) taking account of the remaining distance to be traveled, followed by a step of maintaining the speed of the load at the second speed (ωR opt) for a determined duration, a deceleration step and a stopping step.
  8. The variable drive as claimed in claim 7, characterized in that the variable speed drive comprises means for maintaining the speed of the load at a third speed (ωL) below the second speed (ωR opt).
  9. The variable drive as claimed in claim 7 or 8, characterized in that the second control profile comprises a receipt of a stopping order (FLG2).
  10. The variable drive as claimed in claim 9, characterized in that the second control profile comprises a deceleration until stopping subsequent to the receipt of the stopping order.
  11. The variable drive as claimed in claim 9 or 10, characterized in that it is connected to an external sensor able to dispatch the deceleration order (FLG1) or the stopping order (FLG2) when it detects the passage of the lifting load.
  12. The variable drive as claimed in claim 9 or 10, characterized in that it is connected to an automaton able to dispatch the deceleration order (FLG1) or the stopping order (FLG2).
EP09821619.5A 2008-10-22 2009-10-13 Method and device for controlling a lift load Active EP2337758B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857167A FR2937432B1 (en) 2008-10-22 2008-10-22 METHOD AND DEVICE FOR CONTROLLING A LIFTING LOAD
PCT/EP2009/063334 WO2010046275A1 (en) 2008-10-22 2009-10-13 Method and device for controlling a wash load

Publications (2)

Publication Number Publication Date
EP2337758A1 EP2337758A1 (en) 2011-06-29
EP2337758B1 true EP2337758B1 (en) 2017-06-21

Family

ID=40957668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09821619.5A Active EP2337758B1 (en) 2008-10-22 2009-10-13 Method and device for controlling a lift load

Country Status (7)

Country Link
US (1) US8584808B2 (en)
EP (1) EP2337758B1 (en)
JP (1) JP2012506352A (en)
CN (1) CN102196982B (en)
ES (1) ES2640763T3 (en)
FR (1) FR2937432B1 (en)
WO (1) WO2010046275A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497362B (en) * 2011-12-09 2014-12-24 Control Tech Ltd A method of controlling movement of a load using comfort peak curve operation
CN102751939A (en) * 2012-04-13 2012-10-24 深圳众为兴技术股份有限公司 High precision control method for motor
EP2835334B1 (en) * 2013-08-08 2021-09-29 KONE Corporation Method for controlling an elevator and elevator
US9862568B2 (en) 2016-02-26 2018-01-09 Otis Elevator Company Elevator run profile modification for smooth rescue
CN113479730A (en) * 2021-07-14 2021-10-08 江苏中宝龙工程机械有限公司 Construction elevator load detection method and frequency converter

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1100898B (en) * 1955-02-09 1961-03-02 E E S Etablissements Edoux Sam Delay control for express elevator
JPS4815499B1 (en) * 1968-11-13 1973-05-15
DE2641983C2 (en) * 1976-09-17 1982-08-12 Loher Gmbh Elektromotorenwerke, 8399 Ruhstorf Method for delaying the start of braking in regulated transport drives and a device for their implementation
JPS5693672A (en) * 1979-12-27 1981-07-29 Mitsubishi Electric Corp Generator for speed instruction of elevator
US4751984A (en) * 1985-05-03 1988-06-21 Otis Elevator Company Dynamically generated adaptive elevator velocity profile
JPH02249878A (en) * 1989-03-17 1990-10-05 Mitsubishi Electric Corp Speed control method for elevator
US5035301A (en) * 1989-07-03 1991-07-30 Otis Elevator Company Elevator speed dictation system
US5325036A (en) * 1992-06-15 1994-06-28 Otis Elevator Company Elevator speed sensorless variable voltage variable frequency induction motor drive
JPH06100251A (en) * 1992-09-25 1994-04-12 Fuji Electric Co Ltd Elevator control device
JPH09290966A (en) * 1996-04-25 1997-11-11 Hitachi Ltd Speed controller for elevator
EP0826621A3 (en) * 1996-08-27 1998-08-19 Otis Elevator Company Adaptive load compensation for an elevator system
KR100312768B1 (en) * 1998-08-28 2002-05-09 장병우 Operation speed command controlling apparatus and method for elevator
JP4587517B2 (en) * 2000-03-08 2010-11-24 東芝エレベータ株式会社 Elevator control device
JP4158883B2 (en) * 2001-12-10 2008-10-01 三菱電機株式会社 Elevator and its control device
WO2006043926A1 (en) * 2004-10-14 2006-04-27 Otis Elevator Company Elevation motion profile control for limiting power consumption
CN101044080B (en) * 2004-10-28 2011-05-11 三菱电机株式会社 Control device of rotating machine for elevator
FI119878B (en) * 2005-02-04 2009-04-30 Kone Corp A system and method for improving elevator safety
JP4705407B2 (en) * 2005-05-13 2011-06-22 株式会社日立製作所 Elevator control device
WO2010016826A1 (en) * 2008-08-04 2010-02-11 Otis Elevator Company Elevator motion profile control
US9067762B2 (en) * 2009-07-15 2015-06-30 Otis Elevator Company Energy savings with optimized motion profiles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2010046275A1 (en) 2010-04-29
EP2337758A1 (en) 2011-06-29
FR2937432A1 (en) 2010-04-23
CN102196982A (en) 2011-09-21
JP2012506352A (en) 2012-03-15
ES2640763T3 (en) 2017-11-06
FR2937432B1 (en) 2015-10-30
CN102196982B (en) 2014-01-08
US8584808B2 (en) 2013-11-19
US20110166697A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
EP2337758B1 (en) Method and device for controlling a lift load
EP3694767B1 (en) Method for automatically driving a vehicle under constraint, in particular a bus in a storage facility, and device implementing such a method
CA2431361C (en) Method and device for automatic control of an aircraft deceleration in running phase
EP1273986B1 (en) Device and method for controlling at least one trim surface of an aircraft during takeoff
EP4077086B1 (en) Method for determining a speed profile of a motor vehicle with non-predetermined acceleration
EP2439116B1 (en) Method for managing parking brakes in a braking system for vehicles equipped with electric brakes
FR2710601A1 (en) Method for controlling the brake pressure in an assisted braking system of a motor vehicle
FR2923032A1 (en) METHOD AND DEVICE FOR AIDING THE CONTROL OF AN AIRCRAFT FOR A DOWNHILL PHASE.
EP2514647A2 (en) Method for controlling deceleration on the ground of a vehicle
WO2007000554A2 (en) Method for controlling the coupling or the decoupling of two motors of a parallel hybrid motive power group
EP1684145B1 (en) Flight management process for an aircraft
EP2546977B1 (en) Method of control implemented in a variable speed drive for controlling the deceleration of an electric motor in the case of power outage
EP2442197A1 (en) Method for operating an actuator moving a windable mobile element of a home-automation device and actuator operating according to said method
FR2508854A1 (en) APPARATUS AND METHOD FOR CONTROLLING THE PROPULSION OF AN ELECTRIC PROPULSION VEHICLE
FR2962959A1 (en) DRIVING ASSISTANCE SYSTEM WITH BRAKE CONTROL
FR3077254A1 (en) SYSTEM AND METHOD FOR CONTROLLING A MOTOR VEHICLE FOR CROSSING A LOW OBSTACLE
FR3072068A1 (en) CONTROL SYSTEM WITH RESTRICTION OF THE TORQUE DISTRIBUTION RATIO
CA1243378A (en) Braking control function for wheeled vehicles
EP3990327A1 (en) Method for evaluating a coastdown load, and assisted driving method
EP1526033B1 (en) Process for managing the operation of a seat and seat making use of this process
EP4251487A1 (en) Method and device for adapting a setpoint acceleration trajectory of an adaptive vehicle cruise control of an autonomous vehicle
WO2021121913A1 (en) Method for determining a motor vehicle speed profile
EP4056439B1 (en) Method for automatically regulating the speed of a motor vehicle
WO2020094860A1 (en) Method for controlling the powertrain of a motor vehicle
EP3071442A1 (en) Method for developing a nominal torque of an electric engine of a motor vehicle, and associated power train

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009046786

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B66B0001240000

Ipc: B66B0001280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B66B 1/28 20060101AFI20170222BHEP

INTG Intention to grant announced

Effective date: 20170329

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 902745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009046786

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2640763

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009046786

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

26N No opposition filed

Effective date: 20180322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171013

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171013

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 902745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231110

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231024

Year of fee payment: 15

Ref country code: FR

Payment date: 20231026

Year of fee payment: 15

Ref country code: DE

Payment date: 20231027

Year of fee payment: 15

Ref country code: AT

Payment date: 20231018

Year of fee payment: 15