EP2337630A1 - Method for continuously producing a catalyst - Google Patents

Method for continuously producing a catalyst

Info

Publication number
EP2337630A1
EP2337630A1 EP09781982A EP09781982A EP2337630A1 EP 2337630 A1 EP2337630 A1 EP 2337630A1 EP 09781982 A EP09781982 A EP 09781982A EP 09781982 A EP09781982 A EP 09781982A EP 2337630 A1 EP2337630 A1 EP 2337630A1
Authority
EP
European Patent Office
Prior art keywords
metal
temperature
catalyst
platinum group
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09781982A
Other languages
German (de)
French (fr)
Inventor
Ekkehard Schwab
Stefan Kotrel
Alexander Panchenko
Sigmar BRÄUNINGER
Sandra Magnus
Claudia Querner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09781982A priority Critical patent/EP2337630A1/en
Publication of EP2337630A1 publication Critical patent/EP2337630A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • B01J35/393
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • B01J6/002Calcining using rotating drums
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a process for the continuous production of a catalyst comprising an alloy of a metal of the platinum group and a second metal selected from the metals of the platinum group or the transition metals.
  • Catalysts containing an alloy of a metal of the platinum group and a second metal are used, for example, in fuel cells.
  • the catalyst is generally applied to an ion-conducting membrane in the form of a catalytically active layer. Usually, such catalyst layers are applied to both sides of the membrane.
  • the membrane provided with the catalyst layers is positioned between two porous gas distribution layers. Through the gas distribution layers, the respective reaction gases are conducted close to the membrane. At the same time, the gas distribution layer also serves to supply and discharge the electrons taken up or released by the reactants.
  • the catalyst layer which is located between the membrane and the gas distribution layer, the actual reduction or oxidation reaction takes place.
  • the membrane in turn ensures ionic current transport in the fuel cell.
  • Another object of the membrane is to form a gas-tight barrier between the two electrodes.
  • the catalysts are suitable, for example, for use as cathode catalysts in fuel cells. Both application in so-called low-temperature fuel cells, for example proton exchange membrane fuel cells (PEMFC), and in high-temperature fuel cells, for example phosphoric acid fuel cells (PAFC), is possible.
  • PEMFC proton exchange membrane fuel cells
  • PAFC phosphoric acid fuel cells
  • cathode catalysts When used in direct methanol fuel cells (DMFC) cathode catalysts must also have a high tolerance to methanol in addition to a high current density for the oxygen reduction.
  • Temperature-treated porphyrin-transition metal complexes e.g. from J. Applied Electrochemistry (1998), pp. 673-682, or transition metal sulfides, for example ReRuS or MoRuS systems, as described e.g. from J. Electrochem. Soc, 145 (10), 1998, pages 3463-3471, see e.g. a high current density for the oxygen reduction and show a good tolerance to methanol.
  • these catalysts do not achieve the activity of Pt-based catalysts and are also not stable enough to ensure a sufficient current density in the acidic environment of a fuel cell for a long time.
  • Suitable methods of preparation include, on the one hand, the impregnation of carbon carriers with metal-containing precursors, the application of colloidal metal alloy particles
  • the application of colloidal metal alloy particles to supports and the synthesis of highly dispersed metal particles in microemulsions require the use of very expensive starting materials, for example surfactants
  • the disadvantage of impregnation is that it is generally difficult to control the size of the nanoparticles and their distribution, and in particular the use of high-boiling solvents, as is often the case during impregnation but problematic in the production of technically relevant amounts of catalyst.
  • a platinum catalyst is first prepared in a first step. This is again after filtration, washing and drying in a liquid reaction medium, generally water, dispersed.
  • the element to be incorporated is added in the form of a suitable soluble salt and precipitated with a suitable precipitant, preferably sodium carbonate.
  • a suitable precipitant preferably sodium carbonate.
  • the resulting dispersion is filtered, the separated solid washed, dried and then subjected to a high temperature treatment under a reducing atmosphere.
  • the disadvantage of this process is that a product which has already been filtered, washed and dried must be subjected a second time to this sequence of processing steps.
  • the object is achieved by a method for producing a catalyst comprising an alloy of a metal of the platinum group and at least one second metal as alloying metal, selected from the metals of the platinum group or the transition metals, comprising the following steps:
  • the catalyst prepared according to the invention is stable to acids and has a high current density for the oxygen reduction, as desired by cathode catalysts in fuel cells.
  • the catalyst containing the metal of the platinum group is mixed with the at least one complex compound containing the alloy metal in step (a), preferably to a dry or wet powder. This avoids having to refilter, wash and dry the already washed and dried catalyst containing the metal of the platinum group. All that follows is heating in step (b) to obtain the alloy. - A -
  • a rotary kiln or a belt calciner is preferably used as a continuously operated furnace used to form the alloy.
  • a rotary kiln the amount of gaseous compounds which is formed in the preparation of the alloy by decomposition of the complex compound, remove, so that the production of larger amounts of catalyst is possible.
  • the catalyst containing the platinum group metal is present, for example, as a metallic powder.
  • the catalyst has a large specific surface area. This is preferably achieved in that the catalyst contains a carrier, wherein the alloy of the metal of the platinum group and the second metal is applied to the carrier. To achieve a large surface area, it is preferred if the support is porous.
  • the catalyst When the catalyst is supported on the carrier, individual particles of the catalyst material are generally contained on the carrier surface. Usually, the catalyst is not present as a continuous layer on the support surface.
  • the catalyst containing the metal of the platinum group already includes the carrier.
  • the carrier used here is generally a catalytically non-active material, to which the catalytically active material is applied, or which contains the catalytically active material.
  • Suitable, non-catalytically active materials which can be used as carriers are, for example, carbon or ceramics.
  • Other suitable support materials are, for example, tin oxide, preferably semiconducting tin oxide, ⁇ -alumina, which is optionally carbon-coated, titanium dioxide, zirconium dioxide or silicon dioxide, the latter preferably being highly dispersed, the primary particles having a diameter of 50 to 200 nm.
  • tungsten oxide and molybdenum oxide which are also known as bronzes, d. H. may be present as substoichiometric oxide.
  • a carrier material is carbon.
  • An advantage of carbon as a carrier material is that it is electrically conductive.
  • the carbon used as a carrier may be, for example, as Activated carbon, carbon black, graphite or nanostructured carbon. Suitable carbon blacks are, for example, Vulcan XC72 or Ketjen black EC300. When the carbon is nanostructured carbon, carbon nanotubes are preferred.
  • the metal of the platinum group is combined with the carrier material.
  • the metal of the platinum group is first deposited on the support. This is generally done in solution.
  • Metal compounds be dissolved in a solvent.
  • the metal can be bound covalently, ionically or complexed.
  • the metal is deposited reductively, as a precursor or alkaline by precipitation of the corresponding hydroxide.
  • Further possibilities for the deposition of the metal of the platinum group are also impregnations with a metal-containing solution (Incipient Wetness), Chemical Vapor Deposition (CVD) or Physical Vapor Deposition (PVD) processes as well as all other processes known to the person skilled in the art where a metal can be deposited.
  • a salt of the metal of the platinum group is first precipitated. After precipitation, drying and temperature treatment are carried out to prepare the catalyst containing the metal of the platinum group.
  • the metal of the platinum group is rhodium, iridium, nickel, palladium, platinum, copper, silver and gold.
  • the platinum group metal is platinum or palladium, most preferably platinum.
  • the metal of the platinum group is preferably present as a powder having a particle size in the range of 1 to 200 microns.
  • the metal of the platinum group has primary particle sizes in the range of 2 to 20 nm.
  • the powder of the metal of the platinum group can also contain further, catalytically inactive constituents. These serve, for example, as release agents.
  • all materials which can also be used as catalyst supports are suitable for this purpose.
  • the at least one alloying metal contained in the thermally decomposable compound preferably a complex compound, especially an organometallic complex compound, and is selected from the metals of the platinum group or the Transition metals, is preferably selected from the group consisting of ruthenium, cobalt, nickel and palladium.
  • the at least one alloying metal is present as an organometallic complex compound.
  • Preferred ligands for forming the organometallic complex compound are olefins, preferably dimethyloctadiene, aromatics, preferably pyridine, 2,4-pentanedione.
  • the at least one alloying metal is in the form of a mixed cyclopentadienyl-carbonyl complex or as a pure or mixed carbonyl, phosphine, cyano or isocyano complex.
  • the at least one alloying metal is present as organometallic complex compound with acetylacetonate or 2,4-pentanedione as ligand.
  • the at least one alloying metal is preferably ionic.
  • the thermally decomposable compound containing the at least one alloy metal dry.
  • the thermally decomposable compound is dissolved in a solvent.
  • the solvent is preferably selected from the group consisting of ethanol, hexane, cyclohexane, toluene and ether compounds.
  • Preferred ether compounds are open-chain ethers, for example diethyl ether, di-n-propyl ether or 2-methoxypropane, and also cyclic ethers, such as tetrahydrofuran or 1,4-dioxane.
  • the thermally decomposable compound containing the at least one alloying metal is dissolved in a solvent
  • the drying can take place at ambient temperature or at an elevated temperature. When drying takes place at elevated temperature, the temperature is preferably above the boiling point of the solvent.
  • the drying time is chosen such that, after drying, the proportion of solvents in the mixture of the catalyst containing the metal of the platinum group and the at least one complex compound is less than 5% by weight, preferably less than 2% by weight. % is.
  • Suitable solids mixers usually comprise a container in which the material to be mixed is moved.
  • Suitable solids mixers are, for example, blade mixers, screw mixers, silo mixers or pneumatic mixers.
  • the thermally decomposable compound is dissolved in a solvent
  • the mixture of the catalyst containing the metal of the platinum group and the at least one dissolved complex compound is prepared by a conventional dispersing method known to those skilled in the art.
  • a container used in the fast rotating blades or blades are included.
  • Such a device is e.g. an Ultra-Turrax®.
  • the catalyst containing the metal of the platinum group is still free-flowing. This is generally the case when the catalyst has a residual moisture of up to 50% by weight of water.
  • the residual moisture content of the catalyst containing the metal of the platinum group is preferably in the range of 20 to 30% by weight of water. Due to the low water content, the mixture of the catalyst containing the metal of the platinum group and the at least one complex compound containing the alloying metal remains free-flowing. This is an essential prerequisite for its operation, in particular when using a rotary kiln as a continuously operated furnace.
  • the residual moisture of the catalyst containing the metal of the platinum group is obtained, for example, by air drying in the production. However, it is of course also possible to use a completely dried catalyst.
  • step (a) To produce an alloy of the metal of the platinum group and the at least one alloying metal selected from the metals of the platinum group or the transition metals, this is by mixing the catalyst containing the metal of the platinum group with the at least one thermally decomposable compound containing the alloying metal heats powders prepared in step (a).
  • the mixture produced in step (a) in a continuously operated oven to a temperature in the range of 90 to 900 0 C, preferably in the range of 350 to 900 0 C, more preferably in the range of 400 to 850 0 C and in particular in the range of 400 to 650 0 C.
  • the at least one complex compound Upon heating, the at least one complex compound is decomposed and the metal bound in it is liberated.
  • the metal combines with the metal of the platinum group.
  • the result is an alloy in which each metal crystallites are juxtaposed.
  • the individual metal crystallites generally have a size in the range of 2 to 7 nm.
  • the heating takes place in two temperature stages, wherein the temperature of the first temperature stage is lower than the temperature of the second temperature stage. It is also possible that the heating takes place in more than two temperature stages. fen. In each case, the temperature of the subsequent temperature stage is preferably higher than the temperature of the preceding temperature stage. However, it is preferred that the heating takes place in two temperature stages.
  • the temperature of the first temperature stage in the range of 300 to 500 0 C., preferably in the range 350-480 0 C and in particular in the range of 370 to 460 0 C, and the temperature of the second temperature stage in the range of 500 to 700 0 C, more preferably in the range of 550 to 680 0 C and in particular in the range of 570 to 660 0 C.
  • the temperature of the second temperature stage is preferably at least 100 0 C, preferably at least 150 0 C, higher than the temperature of the first tem- peraturlace.
  • the residence time in the continuously operated furnace in step (b) is preferably in the range of 30 minutes to 10 hours, more preferably in the range of 45 minutes to 5 hours and in particular in the range of 1 to 2 hours.
  • the heating of the alloy precursor in step (b) is preferably carried out under a reducing atmosphere.
  • the reducing atmosphere preferably contains hydrogen.
  • the proportion of hydrogen is dependent on the composition of the catalyst to be prepared.
  • the proportion of hydrogen in the reducing atmosphere can be up to 100% by volume.
  • a Formiergasatmosphotre is used, wherein the concentration of hydrogen is usually less than 30 vol .-%, generally less than 20 vol .-%.
  • the proportion of hydrogen in the reducing atmosphere is less than 10% by volume and in particular about 5% by volume.
  • the proportion of hydrogen in the reducing atmosphere preferably in the range of 4 to 10 vol .-%, in particular about 5 vol .-%.
  • the reducing atmosphere preferably contains at least one inert gas.
  • the reducing atmosphere contains nitrogen.
  • nitrogen is used instead of the nitrogen, for example. It is also possible to use a mixture of nitrogen and argon. However, nitrogen is preferred.
  • the reducing atmosphere contains no further constituents in addition to the hydrogen and the inert gas.
  • passivation is preferably carried out.
  • the produced alloy is cooled, for example, to ambient temperature under an inert atmosphere.
  • the inert atmosphere is preferably a nitrogen atmosphere or an argon atmosphere. It is also possible to use a mixture of nitrogen and argon.
  • the alloy produced in step (b) may be introduced, for example, into a water blanket after leaving the continuously operated furnace for passivation.
  • the catalyst prepared by the process according to the invention is suitable, for example, for use as electrode material in a fuel cell.
  • Typical fuel cells in which the catalyst can be used are, for example, proton exchange membrane fuel cells (PEMFC), direct methanol fuel cells (DMFC), direct ethanol fuel cells (DEFC), and phosphoric acid fuel cells (PAFC).
  • PEMFC proton exchange membrane fuel cells
  • DMFC direct methanol fuel cells
  • DEFC direct ethanol fuel cells
  • PAFC phosphoric acid fuel cells
  • the catalyst prepared by the process according to the invention is suitable as a cathode catalyst, i. as a catalyst for oxygen reduction.
  • Other suitable applications are the electro-oxidation of methanol or hydrogen outside of fuel cells, the electroreduction of oxygen, chlor-alkali electrolysis and water electrolysis.
  • the catalyst prepared by the process of the present invention can be e.g.
  • the carbon-supported platinum catalyst thus prepared is then reslurried as a wet washed filter cake in 3 IH 2 O. With about 20 drops of 65% HNO 3 , the pH of the suspension is adjusted to 2.1. To the suspension is 48.86 g Ni (NO 3) ⁇ 6H 2 O dissolved in 400 ml H 2 O was added. The mixture is then thoroughly mixed for 10 minutes, and the pH is increased to 8.5 with about 290 ml of 10% strength Na 2 CO 3 solution. The suspension is stirred for 1 h at 75 0 C and the pH of 8.5. Subsequently, a 6.3% formaldehyde solution, which is prepared by dilution of 18 ml of 35% formaldehyde solution to 100 ml, was added and stirred at 75 0 C again for 1 h.
  • the suspension is cooled to about 60 0 C and the catalyst filtered off by suction through a Buchner funnel with paper filter and washed with 15 liters of cold H 2 O NO 3 -free.
  • the catalyst is then dried for about 48 h at 80 0 C oven temperature under a nitrogen atmosphere.
  • the product obtained is heated in a hydrogen / argon atmosphere with 15 vol .-% hydrogen at a rate of 5 ° C / min to 500 0 C, held for 30 min at this temperature and then also with a Rate of 5 ° C / min heated to 850 0 C, held again for 30 min at this temperature, then cooled to room temperature and in nitrogen, dam stepwise air is added until air atmosphere is present, passivated.
  • the platinum content of the catalyst thus prepared is 23.2 wt .-%, the nickel content at 6.8 wt .-% and the water content at less than 0.5 wt .-%.
  • the PtNi crystallite size is 9.0 nm and the lattice constant is 3.810 ⁇ .
  • Nickel acetylacetonate blended and filled in a batch operated rotary kiln First, the mixture for 2 h at 100 0 C while passing nitrogen dried. Connecting is converted to a stream of 0.8 l / h of hydrogen and 15 l / h of nitrogen and gradually heated up to 600 0 C. Subsequently, the catalyst thus prepared is cooled and passivated at room temperature with air / nitrogen.
  • the prepared catalyst has a platinum content of 21, 6 wt .-%, a nickel content of 8.7 wt .-% and a water content of 0.5 wt .-%.
  • the crystallite size of the PtNi crystallites is 2.4 nm and the lattice constant of the PtNi alloy is 3.742 ⁇ .
  • a carbon supported platinum catalyst is prepared as described in Comparative Example 2.
  • 28.8 g of the carbon-supported platinum catalyst thus prepared are mixed with 1 1, 2 g of nickel acetylacetonate and filled into the reservoir of a continuously operable rotary kiln.
  • the rotary kiln has three heating zones, the first heating zone at 400 0 C and the second and third heating zones are adjusted respectively to 600 0 C.
  • the gas atmosphere in the rotary kiln consists of a mixture of 5 vol .-% hydrogen in 95 vol .-% nitrogen.
  • the capacity of the rotary kiln is adjusted so that per hour 50 g of catalyst are conveyed through the rotary kiln.
  • the residence time of the product in the heated zone of the rotary kiln is 1 h.
  • the product obtained is collected after leaving the rotary kiln in a receiver and finally passivated out of the rotary kiln in an air / nitrogen stream.
  • the catalyst thus prepared has a platinum content of 17.8% by weight, a nickel content of 7.9% by weight and a water content of 0.6% by weight.
  • the crystallite size of the PtNi crystallites is 2.4 nm and the lattice constant of the PtNi alloy is 3.762 ⁇ .

Abstract

The invention relates to a method for continuously producing a catalyst comprising an alloy of a platinum group metal and at least a second metal as an alloying metal selected from the platinum group metals or the transition metals, wherein a catalyst comprising the platinum group metal is admixed with at least one complex compound, each of which contains an alloying metal, to form an alloy precursor, and wherein the alloy precursor is heated in a continuous furnace for producing the alloy.

Description

Verfahren zur kontinuierlichen Herstellung eines Katalysators Process for the continuous production of a catalyst
Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung eines Katalysators, enthaltend eine Legierung aus einem Metall der Platin-Gruppe sowie einem zweiten Metall, ausgewählt aus den Metallen der Platin-Gruppe oder der Übergangsmetalle.The invention relates to a process for the continuous production of a catalyst comprising an alloy of a metal of the platinum group and a second metal selected from the metals of the platinum group or the transition metals.
Katalysatoren, die eine Legierung aus einem Metall der Platin-Gruppe sowie einem zweiten Metall enthalten, werden zum Beispiel in Brennstoffzellen eingesetzt. Der Katalysator wird dabei im Allgemeinen in Form einer katalytisch aktiven Schicht auf eine ionenleitende Membran aufgebracht. Üblicherweise werden derartige Katalysatorschichten auf beiden Seiten der Membran aufgebracht. Die mit den Katalysatorschichten versehene Membran wird zwischen zwei poröse Gasverteilerschichten positioniert. Durch die Gasverteilerschichten werden die jeweiligen Reaktionsgase bis nahe an die Membran geführt. Gleichzeitig dient die Gasverteilerschicht auch zur Zu- und Ableitung der von den Reaktanden aufgenommenen oder abgegebenen Elektronen. In der Katalysatorschicht, die sich zwischen der Membran und der Gasverteilerschicht befindet, findet die eigentliche Redukti- ons- oder Oxidationsreaktion statt. Die Membran wiederum stellt den ionischen Stromtransport in der Brennstoffzelle sicher. Eine weitere Aufgabe der Membran ist es, eine gasdichte Barriere zwischen den beiden Elektroden zu bilden.Catalysts containing an alloy of a metal of the platinum group and a second metal are used, for example, in fuel cells. The catalyst is generally applied to an ion-conducting membrane in the form of a catalytically active layer. Usually, such catalyst layers are applied to both sides of the membrane. The membrane provided with the catalyst layers is positioned between two porous gas distribution layers. Through the gas distribution layers, the respective reaction gases are conducted close to the membrane. At the same time, the gas distribution layer also serves to supply and discharge the electrons taken up or released by the reactants. In the catalyst layer, which is located between the membrane and the gas distribution layer, the actual reduction or oxidation reaction takes place. The membrane in turn ensures ionic current transport in the fuel cell. Another object of the membrane is to form a gas-tight barrier between the two electrodes.
Die Katalysatoren eignen sich zum Beispiel zur Verwendung als Kathodenkatalysatoren in Brennstoffzellen. Dabei ist sowohl eine Anwendung in sogenannten Niedertemperaturbrennstoffzellen, zum Beispiel Protonenaustauschmembran-Brennstoffzellen (PEMFC), als auch in Hochtemperaturbrennstoffzellen, zum Beispiel Phosphorsäurebrennstoffzellen (PAFC), möglich. Bei Einsatz in Direkt-Methanol-Brennstoffzellen (DMFC) müssen Kathodenkatalysatoren neben einer hohen Stromdichte für die Sauerstoffreduktion auch eine hohe Toleranz gegenüber Methanol aufweisen.The catalysts are suitable, for example, for use as cathode catalysts in fuel cells. Both application in so-called low-temperature fuel cells, for example proton exchange membrane fuel cells (PEMFC), and in high-temperature fuel cells, for example phosphoric acid fuel cells (PAFC), is possible. When used in direct methanol fuel cells (DMFC) cathode catalysts must also have a high tolerance to methanol in addition to a high current density for the oxygen reduction.
Temperaturbehandelte Porphyrin-Übergangsmetallkomplexe, wie sie z.B. aus J. Applied Electrochemistry (1998), Seiten 673-682, bekannt sind oder Übergangsmetallsulfide, beispielsweise ReRuS oder MoRuS-Systeme, wie sie z.B. aus J. Electrochem. Soc, 145 (10), 1998, Seiten 3463 -3471 , bekannt sind, weisen z.B. eine hohe Stromdichte für die Sauerstoffreduktion auf und zeigen eine gute Toleranz gegenüber Methanol. Allerdings erreichen diese Katalysatoren nicht die Aktivität von Pt-basierten Katalysatoren und sind auch nicht stabil genug, um im sauren Milieu einer Brennstoffzelle über längere Zeit hinweg eine ausreichende Stromdichte zu gewährleisten.Temperature-treated porphyrin-transition metal complexes, e.g. from J. Applied Electrochemistry (1998), pp. 673-682, or transition metal sulfides, for example ReRuS or MoRuS systems, as described e.g. from J. Electrochem. Soc, 145 (10), 1998, pages 3463-3471, see e.g. a high current density for the oxygen reduction and show a good tolerance to methanol. However, these catalysts do not achieve the activity of Pt-based catalysts and are also not stable enough to ensure a sufficient current density in the acidic environment of a fuel cell for a long time.
Aus US-A 2004/0161641 ist bekannt, dass Pt-Katalysatoren, die mit Übergangsmetallen legiert sind, eine gute Methanol-Toleranz aufweisen und eine ausreichend hohe Stromdich- te für die Sauerstoffreduktion gewährleisten. So ist aus US-A 2004/0161641 z.B. bekannt, dass ein aktiver Methanol-toleranter Kathodenkatalysator eine möglichst hohe Sauerstoff- Bindungsenergie bei gleichzeitig geringer Wasserstoff-Bindungsenergie besitzen sollte. Eine hohe Sauerstoff-Bindungsenergie gewährleistet eine hohe Stromdichte für die Sauerstoffreduktion, während eine geringe Wasserstoff-Bindungsenergie die elektro-oxidative Dehydrierung von Methanol zu Kohlenmonoxid dämpft und damit die Methanol-Toleranz erhöht. Diese Eigenschaften besitzen gemäß US-A 2004/0161641 Legierungen aus den Elementen Fe, Co, Ni, Rh, Pd, Pt, Cu, Ag, Au, Zn und Cd. Ein konkretes Beispiel für eine Legierungszusammensetzung, die als Methanol-toleranter Kathodenkatalysator geeignet ist, wird jedoch nicht gegeben.From US-A 2004/0161641 it is known that Pt catalysts which are alloyed with transition metals have a good methanol tolerance and ensure a sufficiently high current density for the oxygen reduction. For example, it is known from US-A 2004/0161641, that an active methanol-tolerant cathode catalyst should have the highest possible oxygen binding energy with simultaneously low hydrogen bonding energy. High oxygen-binding energy ensures high current density for oxygen reduction, while low hydrogen-binding energy attenuates the electro-oxidative dehydrogenation of methanol to carbon monoxide, thereby increasing methanol tolerance. These properties have according to US-A 2004/0161641 alloys of the elements Fe, Co, Ni, Rh, Pd, Pt, Cu, Ag, Au, Zn and Cd. However, a concrete example of an alloy composition suitable as a methanol-tolerant cathode catalyst is not given.
Alternativ zum Einsatz eines Methanol-toleranten Katalysators wird z.B. in Platinum Metals Rev. 2002, 46, (4), die Möglichkeit genannt, den Methanol-Durchtritt durch die Wahl einer geeigneteren Membran zu reduzieren. Hierzu können z.B. dickere Nafionmembranen eingesetzt werden. Der geringere Methanol-Durchtritt führt aber gleichzeitig zu einer Erhö- hung des Membranwiderstandes, was letztendlich zu einem Leistungsverlust der Brennstoffzelle führt.Alternatively to the use of a methanol-tolerant catalyst, e.g. in Platinum Metals Rev. 2002, 46, (4), the possibility of reducing the methanol throughput by choosing a more suitable membrane. For this, e.g. thicker Nafion membranes are used. At the same time, the lower methanol penetration leads to an increase in the membrane resistance, which ultimately leads to a loss of power of the fuel cell.
Die Herstellung von Katalysatoren, die Platin und Ruthenium enthalten, ist z.B. in AJ. Di- ckinson et. AI., „Preparation of a Pt-Ru/C Catalyst from carbonyl complexes for fuel cell applications", Elektrochimica Acta 47 (2002), Seiten 3733-3739, bekannt. Hierzu werden [Ru3(CO)i2] und [Pt(CO)2]x und Aktivkohle mit o-Xylol gemischt. Diese Mischung wurde 24 Stunden bei 143 0C unter konstantem mechanischen Rührens zum Rückfluss erhitzt. Anschließend wurde die Mischung abgekühlt und das o-Xylol durch Destillation entfernt. Das Erhitzen zum Rückfluss wurde unter Luft-Atmosphäre durchgeführt. Das beschriebene Ver- fahren führt zu einem Katalysator, der reich an Ruthenium ist.The preparation of catalysts containing platinum and ruthenium is eg in AJ. Dickinson et. AI, "Preparation of a Pt-Ru / C Catalyst from carbonyl complexes for fuel cell applications", Elektrochimica Acta 47 (2002), pages 3733-3739. [Ru 3 (CO) i 2 ] and [Pt ( CO) 2] mixed x and active carbon with o-xylene. This mixture was heated for 24 hours at 143 0 C under constant mechanical stirring to reflux. Subsequently, the mixture was cooled and the o-xylene removed by distillation. the refluxing was The process described leads to a catalyst rich in ruthenium.
Einen Überblick über Präparationstechniken für die Herstellung von Pt-Ru-Katalysatoren zum Einsatz in Direkt-Methanol-Brennstoffzellen liefert H. Liu et. al., „A review of anode catalysis in the direct methanol fuel cell", Journal of Power Sources, 155 (2006) Seiten 95- 110. Als geeignete Herstellungsverfahren werden einerseits die Imprägnierung von Kohlenstoffträgern mit metallhaltigen Prekursoren, das Aufbringen von kolloidalen Metalllegierungspartikeln auf Träger und die Synthese von hochdispersen Metallpartikeln in Mikro- emulsionen beschrieben. Das Aufbringen von kolloidalen Metalllegierungspartikeln auf Träger und die Synthese von hochdispersen Metallpartikeln in Mikroemulsionen erfordern den Einsatz sehr kostspieliger Ausgangsmaterialien, z.B. von Tensiden. Aus diesem Grund wird die Imprägnierung von Kohlenstoffträgern zur Herstellung von Katalysatoren am häufigsten eingesetzt. Nachteil der Imprägnierung ist jedoch, dass es im Allgemeinen schwierig ist, die Größe der Nanopartikel und deren Verteilung zu steuern. Zudem ist der Einsatz von hochsiedenden Lösungsmitteln, wie er häufig bei der Imprägnierung erfolgt, insbeson- dere bei der Herstellung technisch relevanter Katalysatormengen problematisch. Bei einem weiteren bekannten Verfahren wird zunächst in einem ersten Schritt ein Platinkatalysator hergestellt. Dieser wird nach Filtration, Wäsche und Trocknung erneut in einem flüssigen Reaktionsmedium, im Allgemeinen Wasser, dispergiert. Zu der Dispersion wird das einzulegierende Element in Form eines geeigneten löslichen Salzes hinzugefügt und mit einem geeigneten Fällungsmittel, bevorzugt Natriumcarbonat, ausgefällt. Die erhaltene Dispersion wird filtriert, der abgetrennte Feststoff gewaschen, getrocknet und anschließend einer Hochtemperatur-Behandlung unter reduzierender Atmosphäre unterzogen. Nachteil dieses Verfahrens ist es jedoch, dass ein bereits einmal filtriertes, gewaschenes und ge- trocknetes Produkt ein zweites mal dieser Sequenz von Bearbeitungsschritten unterzogen werden muss.An overview of preparation techniques for the preparation of Pt-Ru catalysts for use in direct methanol fuel cells is provided by H. Liu et. al., "A review of anode catalysis in the direct methanol fuel cell", Journal of Power Sources, 155 (2006) pages 95-110. Suitable methods of preparation include, on the one hand, the impregnation of carbon carriers with metal-containing precursors, the application of colloidal metal alloy particles The application of colloidal metal alloy particles to supports and the synthesis of highly dispersed metal particles in microemulsions require the use of very expensive starting materials, for example surfactants However, the disadvantage of impregnation is that it is generally difficult to control the size of the nanoparticles and their distribution, and in particular the use of high-boiling solvents, as is often the case during impregnation but problematic in the production of technically relevant amounts of catalyst. In another known method, a platinum catalyst is first prepared in a first step. This is again after filtration, washing and drying in a liquid reaction medium, generally water, dispersed. To the dispersion, the element to be incorporated is added in the form of a suitable soluble salt and precipitated with a suitable precipitant, preferably sodium carbonate. The resulting dispersion is filtered, the separated solid washed, dried and then subjected to a high temperature treatment under a reducing atmosphere. The disadvantage of this process, however, is that a product which has already been filtered, washed and dried must be subjected a second time to this sequence of processing steps.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Herstellung eines Katalysators bereitzustellen, das nicht die Nachteile der aus dem Stand der Technik bekannten Verfahren aufweist. Insbesondere ist es Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, durch das ein Katalysator mit einer reproduzierbaren Größe an Nanoparti- keln und Verteilung kontinuierlich hergestellt werden kann.It is therefore an object of the present invention to provide a process for the preparation of a catalyst which does not have the disadvantages of the processes known from the prior art. In particular, it is the object of the present invention to provide a process by means of which a catalyst having a reproducible size of nanoparticles and distribution can be produced continuously.
Gelöst wird die Aufgabe durch ein Verfahren zur Herstellung eines Katalysators, enthaltend eine Legierung aus einem Metall der Platin-Gruppe sowie mindestens einem zweiten Metall als Legierungsmetall, ausgewählt aus den Metallen der Platin-Gruppe oder der Übergangsmetalle, das folgende Schritte umfasst:The object is achieved by a method for producing a catalyst comprising an alloy of a metal of the platinum group and at least one second metal as alloying metal, selected from the metals of the platinum group or the transition metals, comprising the following steps:
(a) Vermengen eines Katalysators, der das Metall der Platin-Gruppe enthält, mit mindes- tens einer thermisch zersetzbaren Verbindung, jeweils enthaltend ein Legierungsmetall, zu einer Legierungsvorstufe,(a) blending a catalyst containing the metal of the platinum group with at least one thermally decomposable compound, each containing an alloying metal, to form an alloy precursor,
(b) Erhitzen der Legierungsvorstufe in einem kontinuierlich betriebenen Ofen zur Herstellung der Legierung.(b) heating the alloy precursor in a continuously operated furnace to produce the alloy.
Der erfindungsgemäß hergestellte Katalysator ist stabil gegen Säuren und besitzt eine hohe Stromdichte für die Sauerstoffreduktion, wie dies von Kathodenkatalysatoren in Brennstoffzellen gewünscht ist.The catalyst prepared according to the invention is stable to acids and has a high current density for the oxygen reduction, as desired by cathode catalysts in fuel cells.
Der Katalysator, der das Metall der Platin-Gruppe enthält, wird mit der mindestens einen Komplexverbindung, die das Legierungsmetall enthält, in Schritt (a) vorzugsweise zu einem trockenen oder feuchten Pulver gemischt. Hierdurch wird vermieden, dass der bereits gewaschene und getrocknete Katalysator, der das Metall der Platin-Gruppe enthält, erneut filtriert, gewaschen und getrocknet werden muss. Es folgt lediglich das Erhitzen in Schritt (b), um die Legierung zu erhalten. - A -The catalyst containing the metal of the platinum group is mixed with the at least one complex compound containing the alloy metal in step (a), preferably to a dry or wet powder. This avoids having to refilter, wash and dry the already washed and dried catalyst containing the metal of the platinum group. All that follows is heating in step (b) to obtain the alloy. - A -
AIs kontinuierlich betriebener Ofen, der zur Bildung der Legierung eingesetzt wird, wird vorzugsweise ein Drehrohrofen oder ein Bandkalzinierer eingesetzt. Insbesondere bei Verwendung eines Drehrohrofens lässt sich die Menge an gasförmigen Verbindungen, die bei der Herstellung der Legierung durch Zersetzung der Komplexverbindung entsteht, entfernen, so dass auch die Herstellung größerer Katalysatormengen möglich ist.As a continuously operated furnace used to form the alloy, a rotary kiln or a belt calciner is preferably used. In particular, when using a rotary kiln, the amount of gaseous compounds which is formed in the preparation of the alloy by decomposition of the complex compound, remove, so that the production of larger amounts of catalyst is possible.
Der Katalysator, der das Metall der Platingruppe enthält, liegt zum Beispiel als metallisches Pulver vor.The catalyst containing the platinum group metal is present, for example, as a metallic powder.
Um eine hinreichend gute katalytische Aktivität zu erzielen, ist es erforderlich, dass der Katalysator eine große spezifische Oberfläche aufweist. Dies wird vorzugsweise dadurch erzielt, dass der Katalysator einen Träger enthält, wobei die Legierung aus dem Metall der Platin-Gruppe und dem zweiten Metall auf den Träger aufgebracht ist. Zum Erzielen einer großen Oberfläche ist es bevorzugt, wenn der Träger porös ist.In order to achieve a sufficiently good catalytic activity, it is necessary that the catalyst has a large specific surface area. This is preferably achieved in that the catalyst contains a carrier, wherein the alloy of the metal of the platinum group and the second metal is applied to the carrier. To achieve a large surface area, it is preferred if the support is porous.
Wenn der Katalysator auf dem Träger aufgebracht ist, so sind im Allgemeinen einzelne Partikel aus dem Katalysatormaterial auf der Trägeroberfläche enthalten. Üblicherweise liegt der Katalysator nicht als durchgehende Schicht auf der Trägeroberfläche vor.When the catalyst is supported on the carrier, individual particles of the catalyst material are generally contained on the carrier surface. Usually, the catalyst is not present as a continuous layer on the support surface.
Zur Herstellung des den Träger enthaltenden Katalysators ist es bevorzugt, wenn bereits der Katalysator, der das Metall der Platin-Gruppe enthält, auch den Träger umfasst.For preparing the catalyst containing the carrier, it is preferable that the catalyst containing the metal of the platinum group already includes the carrier.
Als Träger dient hier im Allgemeinen ein katalytisch nicht aktives Material, auf das das ka- talytisch aktive Material aufgebracht ist, oder das das katalytisch aktive Material enthält. Geeignete, katalytisch nicht aktive Materialien, die als Träger eingesetzt werden können, sind zum Beispiel Kohlenstoff oder Keramiken. Weitere geeignete Trägermaterialien sind zum Beispiel Zinnoxid, vorzugsweise halbleitendes Zinnoxid, γ-Aluminiumoxid, das gegebenenfalls kohlenstoffbeschichtet ist, Titandioxid, Zirkondioxid oder Siliziumdioxid, wobei letztgenannte bevorzugt hochdispers vorliegen, wobei die Primärpartikel einen Durchmesser von 50 bis 200 nm aufweisen. Auch geeignet sind Wolframoxid und Molybdänoxid, die auch als Bronzen, d. h. als unterstöchiometrisches Oxid, vorliegen können. Ferner geeignet sind Carbide und Nitride von Metallen der IV. bis VII. Nebengruppe des Periodensystems der Elemente, bevorzugt des Wolframs und des Molybdäns.The carrier used here is generally a catalytically non-active material, to which the catalytically active material is applied, or which contains the catalytically active material. Suitable, non-catalytically active materials which can be used as carriers are, for example, carbon or ceramics. Other suitable support materials are, for example, tin oxide, preferably semiconducting tin oxide, γ-alumina, which is optionally carbon-coated, titanium dioxide, zirconium dioxide or silicon dioxide, the latter preferably being highly dispersed, the primary particles having a diameter of 50 to 200 nm. Also suitable are tungsten oxide and molybdenum oxide, which are also known as bronzes, d. H. may be present as substoichiometric oxide. Also suitable are carbides and nitrides of metals of IV. To VII. Subgroup of the Periodic Table of the Elements, preferably of tungsten and molybdenum.
Besonders bevorzugt als Trägermaterial ist jedoch Kohlenstoff. Ein Vorteil des Kohlenstoffs als Trägermaterial ist, dass dieser elektrisch leitfähig ist. Wenn der Katalysator als Elektro- katalysator in einer Brennstoffzelle, zum Beispiel als Kathode der Brennstoffzelle, eingesetzt wird, ist es erforderlich, dass diese elektrisch leitfähig ist, um die Funktion der Brenn- stoffzelle zu gewährleisten. Der als Träger eingesetzte Kohlenstoff kann zum Beispiel als Aktivkohle, Ruß, Graphit oder als nanostrukturierter Kohlenstoff vorliegen. Als Ruße eignen sich beispielsweise Vulcan XC72 oder Ketjen black EC300. Wenn der Kohlenstoff als nanostrukturierter Kohlenstoff vorliegt, so werden bevorzugt Kohlenstoff-Nanoröhrchen eingesetzt. Zur Herstellung des Katalysators wird das Metall der Platin-Gruppe mit dem Trä- germaterial verbunden.However, particularly preferred as a carrier material is carbon. An advantage of carbon as a carrier material is that it is electrically conductive. When the catalyst is used as an electrocatalyst in a fuel cell, for example as the cathode of the fuel cell, it is necessary for it to be electrically conductive in order to ensure the function of the fuel cell. The carbon used as a carrier may be, for example, as Activated carbon, carbon black, graphite or nanostructured carbon. Suitable carbon blacks are, for example, Vulcan XC72 or Ketjen black EC300. When the carbon is nanostructured carbon, carbon nanotubes are preferred. To prepare the catalyst, the metal of the platinum group is combined with the carrier material.
Wenn der Katalysator, der das Metall der Platin-Gruppe enthält, weiterhin einen Träger umfasst, wird üblicherweise zunächst das Metall der Platin-Gruppe auf dem Träger abgeschieden. Dies erfolgt im Allgemeinen in Lösung. Hierzu können z.B. Metallverbindungen in einem Lösungsmittel gelöst sein. Das Metall kann dabei kovalent, ionisch oder komplexiert gebunden sein. Weiterhin ist es auch möglich, dass das Metall reduktiv, als Precursor oder alkalisch durch Ausfällen des entsprechenden Hydroxids abgeschieden wird. Weitere Möglichkeiten zur Abscheidung des Metalls der Platin-Gruppe sind auch Imprägnierungen mit einer das Metall enthaltenden Lösung (Incipient Wetness), Chemical Vapour Deposition (CVD)- oder Physical Vapour Deposition (PVD)-Verfahren sowie alle weiteren, dem Fachmann bekannte Verfahren, mit denen ein Metall abgeschieden werden kann. Bevorzugt wird zunächst ein Salz des Metalls der Platin-Gruppe gefällt. Nach dem Fällen erfolgt eine Trocknung und eine Temperaturbehandlung zur Herstellung des Katalysators, der das Metall der Platin-Gruppe enthält.When the catalyst containing the metal of the platinum group further comprises a support, usually the metal of the platinum group is first deposited on the support. This is generally done in solution. For this, e.g. Metal compounds be dissolved in a solvent. The metal can be bound covalently, ionically or complexed. Furthermore, it is also possible that the metal is deposited reductively, as a precursor or alkaline by precipitation of the corresponding hydroxide. Further possibilities for the deposition of the metal of the platinum group are also impregnations with a metal-containing solution (Incipient Wetness), Chemical Vapor Deposition (CVD) or Physical Vapor Deposition (PVD) processes as well as all other processes known to the person skilled in the art where a metal can be deposited. Preferably, a salt of the metal of the platinum group is first precipitated. After precipitation, drying and temperature treatment are carried out to prepare the catalyst containing the metal of the platinum group.
Die Herstellung solcher geträgerten oder ungeträgerten Katalysatoren, die ein Metall der Platin-Gruppe enthalten, ist bekannt und entsprechende Katalysatoren können kommerziell bezogen werden.The preparation of such supported or unsupported catalysts containing a metal of the platinum group is known and corresponding catalysts can be obtained commercially.
Als Metall der Platin-Gruppe werden erfindungsgemäß Rhodium, Iridium, Nickel, Palladium, Platin, Kupfer, Silber und Gold bezeichnet. In einer bevorzugten Ausführungsform der Erfindung ist das Metall der Platin-Gruppe jedoch Platin oder Palladium, ganz besonders bevorzugt Platin.According to the invention, the metal of the platinum group is rhodium, iridium, nickel, palladium, platinum, copper, silver and gold. In a preferred embodiment of the invention, however, the platinum group metal is platinum or palladium, most preferably platinum.
Wenn der in Schritt (a) eingesetzte Katalysator, der das Metall der Platin-Gruppe enthält, ungeträgert vorliegt, so liegt das Metall der Platin-Gruppe vorzugsweise als Pulver mit einer Korngröße im Bereich von 1 bis 200 μm vor. In diesem Fall weist das Metall der Platin- Gruppe Primärpartikelgrößen im Bereich von 2 bis 20 nm auf. Das Pulver des Metalls der Platin-Gruppe kann weiterhin jedoch auch weitere, katalytisch inaktive Bestandteile enthal- ten. Diese dienen zum Beispiel als Trennmittel. Dafür eignen sich beispielsweise alle Materialien, die auch als Katalysatorträger eingesetzt werden können.If the catalyst used in step (a) containing the metal of the platinum group is unsupported, the metal of the platinum group is preferably present as a powder having a particle size in the range of 1 to 200 microns. In this case, the metal of the platinum group has primary particle sizes in the range of 2 to 20 nm. However, the powder of the metal of the platinum group can also contain further, catalytically inactive constituents. These serve, for example, as release agents. For example, all materials which can also be used as catalyst supports are suitable for this purpose.
Das mindestens eine Legierungsmetall, das in der thermisch zersetzbaren Verbindung, vorzugsweise einer Komplexverbindung, insbesondere einer metallorganischen Komplex- Verbindung, enthalten ist und ausgewählt ist aus den Metallen der Platin-Gruppe oder der Übergangsmetalle, ist bevorzugt ausgewählt aus der Gruppe bestehend aus Ruthenium, Cobalt, Nickel und Palladium.The at least one alloying metal contained in the thermally decomposable compound, preferably a complex compound, especially an organometallic complex compound, and is selected from the metals of the platinum group or the Transition metals, is preferably selected from the group consisting of ruthenium, cobalt, nickel and palladium.
Bevorzugt liegt das mindestens eine Legierungsmetall als metallorganische Komplexver- bindung vor. Bevorzugte Liganden zur Bildung der metallorganischen Komplexverbindung sind Olefine, vorzugsweise Dimethyloctadien, Aromaten, vorzugsweise Pyridin, 2,4- Pentandion. Weiterhin ist es auch bevorzugt, dass das mindestens eine Legierungsmetall in Form eines gemischten Cyclopentadienyl-Carbonyl-Komplexes oder als reiner oder gemischter Carbonyl-, Phosphan-, Cyano- oder Isocyano-Komplex vorliegt.Preferably, the at least one alloying metal is present as an organometallic complex compound. Preferred ligands for forming the organometallic complex compound are olefins, preferably dimethyloctadiene, aromatics, preferably pyridine, 2,4-pentanedione. Furthermore, it is also preferred that the at least one alloying metal is in the form of a mixed cyclopentadienyl-carbonyl complex or as a pure or mixed carbonyl, phosphine, cyano or isocyano complex.
Besonders bevorzugt ist es, wenn das mindestens eine Legierungsmetall als metallorganische Komplexverbindung mit Acetylacetonat oder 2,4-Pentandion als Ligand vorliegt. Das mindestens eine Legierungsmetall liegt dabei vorzugsweise ionisch vor.It is particularly preferred if the at least one alloying metal is present as organometallic complex compound with acetylacetonate or 2,4-pentanedione as ligand. The at least one alloying metal is preferably ionic.
Um das mindestens eine Legierungsmetall, das aus den Metallen der Platin-Gruppe oder der Übergangsmetalle ausgewählt ist, mit dem Katalysator, der das Metall der Platin- Gruppe enthält, zu mischen, ist es bevorzugt, wenn die das mindestens eine Legierungsmetall enthaltende thermisch zersetzbare Verbindung trocken vorliegt. Alternativ ist es jedoch auch möglich, dass die thermisch zersetzbare Verbindung in einem Lösungsmittel gelöst ist. Das Lösungsmittel ist hierbei vorzugsweise ausgewählt aus der Gruppe bestehend aus Ethanol, Hexan, Cyclohexan, Toluol und Etherverbindungen. Bevorzugte Ether- verbindungen sind offenkettige Ether, zum Beispiel Diethylether, Di-n-propylether oder 2- Methoxypropan, sowie cyclische Ether wie Tetrahydrofuran oder 1 ,4-Dioxan.In order to mix the at least one alloy metal selected from the metals of the platinum group or the transition metals with the catalyst containing the metal of the platinum group, it is preferable that the thermally decomposable compound containing the at least one alloy metal dry. Alternatively, however, it is also possible that the thermally decomposable compound is dissolved in a solvent. The solvent here is preferably selected from the group consisting of ethanol, hexane, cyclohexane, toluene and ether compounds. Preferred ether compounds are open-chain ethers, for example diethyl ether, di-n-propyl ether or 2-methoxypropane, and also cyclic ethers, such as tetrahydrofuran or 1,4-dioxane.
Wenn die thermisch zersetzbare Verbindung, enthaltend das mindestens eine Legierungsmetall, in einem Lösungsmittel gelöst ist, wird die Mischung aus dem Katalysator, der das Metall der Platin-Gruppe enthält und der mindestens einen metallorganischen Verbindung bzw. dem mindestens einen Metallkomplex vor dem Tempern in Schritt (b) getrocknet. Das Trocknen kann dabei bei Umgebungstemperatur oder bei einer erhöhten Tempe- ratur erfolgen. Wenn das Trocknen bei erhöhter Temperatur erfolgt, so liegt die Temperatur vorzugsweise oberhalb der Siedetemperatur des Lösungsmittels. Die Trocknungsdauer wird so gewählt, dass nach dem Trocknen der Anteil an Lösungsmitteln in der Mischung aus dem Katalysator, der das Metall der Platin-Gruppe enthält, und der mindestens einen Komplexverbindung weniger als 5 Gew.-%, bevorzugt weniger als 2 Gew.-% beträgt.When the thermally decomposable compound containing the at least one alloying metal is dissolved in a solvent, the mixture of the catalyst containing the metal of the platinum group and the at least one organometallic compound or the at least one metal complex before annealing in step (b) dried. The drying can take place at ambient temperature or at an elevated temperature. When drying takes place at elevated temperature, the temperature is preferably above the boiling point of the solvent. The drying time is chosen such that, after drying, the proportion of solvents in the mixture of the catalyst containing the metal of the platinum group and the at least one complex compound is less than 5% by weight, preferably less than 2% by weight. % is.
Das Mischen des Katalysators, der das Metall der Platin-Gruppe enthält, und der mindestens einen Komplexverbindung, enthaltend das Legierungsmetall, erfolgt durch ein beliebiges, dem Fachmann bekanntes Verfahren zum Mischen von Feststoffen. Geeignete Feststoffmischer umfassen üblicherweise einen Behälter, in dem das zu mischende Material bewegt wird. Geeignete Feststoffmischer sind z.B. Schaufelmischer, Schraubenmischer, Silomischer oder pneumatische Mischer.The mixing of the catalyst containing the metal of the platinum group and the at least one complex compound containing the alloying metal is carried out by any method of mixing solids known to those skilled in the art. Suitable solids mixers usually comprise a container in which the material to be mixed is moved. Suitable solids mixers are, for example, blade mixers, screw mixers, silo mixers or pneumatic mixers.
Wenn die thermisch zersetzbare Verbindung in einem Lösungsmittel gelöst ist, so wird vor- zugsweise die Mischung des Katalysators, der das Metall der Platin-Gruppe enthält, und der mindestens einen gelösten Komplexverbindung durch ein dem Fachmann bekanntes, übliches Dispergierverfahren hergestellt. Hierzu wird z.B. ein Behälter eingesetzt, in dem schnell rotierende Messer bzw. Klingen enthalten sind. Ein derartiges Gerät ist z.B. ein Ultra-Turrax®.When the thermally decomposable compound is dissolved in a solvent, it is preferable that the mixture of the catalyst containing the metal of the platinum group and the at least one dissolved complex compound is prepared by a conventional dispersing method known to those skilled in the art. For this purpose, e.g. a container used in the fast rotating blades or blades are included. Such a device is e.g. an Ultra-Turrax®.
Besonders bevorzugt ist es jedoch, wenn der Katalysator, der das Metall der Platin-Gruppe enthält, noch rieselfähig ist. Dies ist im Allgemeinen der Fall, wenn der Katalysator eine Restfeuchte von bis zu 50 Gew.-% Wasser aufweist. Wenn der Katalysator nicht vollständig getrocknet werden soll, liegt der Restfeuchtegehalt des Katalysators, der das Metall der Platin-Gruppe enthält, vorzugsweise im Bereich von 20 bis 30 Gew.-% Wasser. Durch den geringen Wassergehalt bleibt die Mischung aus dem Katalysator, der das Metall der Platin- Gruppe enthält und der mindestens einen Komplexverbindung, enthaltend das Legierungsmetall, rieselfähig. Dies stellt insbesondere bei Verwendung eines Drehrohrofens als kontinuierlich betriebenem Ofen eine wesentliche Voraussetzung für dessen Betrieb dar. Die Restfeuchte des Katalysators, der das Metall der Platin-Gruppe enthält, wird zum Beispiel durch Lufttrocknen bei der Herstellung erhalten. Es kann jedoch selbstverständlich auch ein vollständig getrockneter Katalysator verwendet werden.However, it is particularly preferred if the catalyst containing the metal of the platinum group is still free-flowing. This is generally the case when the catalyst has a residual moisture of up to 50% by weight of water. When the catalyst is not to be completely dried, the residual moisture content of the catalyst containing the metal of the platinum group is preferably in the range of 20 to 30% by weight of water. Due to the low water content, the mixture of the catalyst containing the metal of the platinum group and the at least one complex compound containing the alloying metal remains free-flowing. This is an essential prerequisite for its operation, in particular when using a rotary kiln as a continuously operated furnace. The residual moisture of the catalyst containing the metal of the platinum group is obtained, for example, by air drying in the production. However, it is of course also possible to use a completely dried catalyst.
Um eine Legierung aus dem Metall der Platin-Gruppe und dem mindestens einen Legie- rungsmetall, ausgewählt aus den Metallen der Platin-Gruppe oder den Übergangsmetallen, herzustellen, wird das durch das Vermengen des Katalysators, der das Metall der Platin- Gruppe enthält, mit der mindestens einen thermisch zersetzbaren Verbindung, enthaltend das Legierungsmetall, in Schritt (a) hergestellte Pulver erhitzt. Hierzu wird die in Schritt (a) erzeugte Mischung in einem kontinuierlich betriebenen Ofen auf eine Temperatur im Be- reich von 90 bis 900 0C, bevorzugt im Bereich von 350 bis 900 0C, mehr bevorzugt im Bereich von 400 bis 850 0C und insbesondere im Bereich von 400 bis 650 0C gebracht. Durch das Erhitzen wird die mindestens eine Komplexverbindung zersetzt und das darin gebundene Metall freigesetzt. Das Metall verbindet sich mit dem Metall der Platin-Gruppe. Es entsteht eine Legierung, bei der jeweils Metall-Kristallite ungeordnet nebeneinanderliegen. Die einzelnen Metall-Kristallite haben dabei im Allgemeinen eine Größe im Bereich von 2 bis 7 nm.To produce an alloy of the metal of the platinum group and the at least one alloying metal selected from the metals of the platinum group or the transition metals, this is by mixing the catalyst containing the metal of the platinum group with the at least one thermally decomposable compound containing the alloying metal heats powders prepared in step (a). For this purpose, the mixture produced in step (a) in a continuously operated oven to a temperature in the range of 90 to 900 0 C, preferably in the range of 350 to 900 0 C, more preferably in the range of 400 to 850 0 C and in particular in the range of 400 to 650 0 C. Upon heating, the at least one complex compound is decomposed and the metal bound in it is liberated. The metal combines with the metal of the platinum group. The result is an alloy in which each metal crystallites are juxtaposed. The individual metal crystallites generally have a size in the range of 2 to 7 nm.
In einer bevorzugten Ausführungsform erfolgt das Erhitzen in zwei Temperaturstufen, wobei die Temperatur der ersten Temperaturstufe niedriger ist als die Temperatur der zweiten Temperaturstufe. Auch ist es möglich, dass das Erhitzen in mehr als zwei Temperaturstu- fen erfolgt. Dabei ist vorzugsweise jeweils die Temperatur der nachfolgenden Temperaturstufe höher als die Temperatur der vorhergehenden Temperaturstufe. Bevorzugt ist es jedoch, dass das Erhitzen in zwei Temperaturstufen erfolgt.In a preferred embodiment, the heating takes place in two temperature stages, wherein the temperature of the first temperature stage is lower than the temperature of the second temperature stage. It is also possible that the heating takes place in more than two temperature stages. fen. In each case, the temperature of the subsequent temperature stage is preferably higher than the temperature of the preceding temperature stage. However, it is preferred that the heating takes place in two temperature stages.
Wenn das Erhitzen der Legierungsvorstufe in Schritt (b) in zwei Temperaturstufen erfolgt, so ist es bevorzugt, wenn die Temperatur der ersten Temperaturstufe im Bereich von 300 bis 500 0C, bevorzugt im Bereich von 350 bis 480 0C und insbesondere im Bereich von 370 bis 460 0C liegt, und die Temperatur der zweiten Temperaturstufe im Bereich von 500 bis 700 0C, mehr bevorzugt im Bereich von 550 bis 680 0C und insbesondere im Bereich von 570 bis 660 0C. Die Temperatur der zweiten Temperaturstufe ist dabei vorzugsweise mindestens 100 0C, bevorzugt mindestens 150 0C, höher als die Temperatur der ersten Tem- peraturstufe.If the heating of the alloy precursor in step (b) is carried out in two temperature stages, it is preferred that the temperature of the first temperature stage in the range of 300 to 500 0 C., preferably in the range 350-480 0 C and in particular in the range of 370 to 460 0 C, and the temperature of the second temperature stage in the range of 500 to 700 0 C, more preferably in the range of 550 to 680 0 C and in particular in the range of 570 to 660 0 C. The temperature of the second temperature stage is preferably at least 100 0 C, preferably at least 150 0 C, higher than the temperature of the first tem- peraturstufe.
Die Verweilzeit im kontinuierlich betriebenen Ofen in Schritt (b) liegt vorzugsweise im Be- reich von 30 min bis 10 h, mehr bevorzugt im Bereich von 45 min bis 5 h und insbesondere im Bereich von 1 bis 2 h.The residence time in the continuously operated furnace in step (b) is preferably in the range of 30 minutes to 10 hours, more preferably in the range of 45 minutes to 5 hours and in particular in the range of 1 to 2 hours.
Das Erhitzen der Legierungsvorstufe in Schritt (b) erfolgt vorzugsweise unter einer reduzierenden Atmosphäre. Die reduzierende Atmosphäre enthält vorzugsweise Wasserstoff. Der Anteil des Wasserstoffs ist dabei abhängig von der Zusammensetzung des herzustellenden Katalysators. Der Anteil an Wasserstoff in der reduzierenden Atmosphäre kann dabei bis zu 100 Vol.-% betragen. Bevorzugt wird eine Formiergasatmosphäre eingesetzt, wobei die Konzentration an Wasserstoff üblicherweise kleiner als 30 Vol.-%, im Allgemeinen kleiner als 20 Vol.-% ist. Besonders bevorzugt ist der Anteil an Wasserstoff in der reduzieren- den Atmosphäre kleiner als 10 Vol.-% und insbesondere bei ungefähr 5 Vol.-%. Insbesondere bei der Herstellung eines Pt-Ni-Katalysators oder eines Pt-Co-Katalysators liegt der Anteil an Wasserstoff in der reduzierenden Atmosphäre, vorzugsweise im Bereich von 4 bis 10 Vol.-%, insbesondere bei ungefähr 5 Vol.-%.The heating of the alloy precursor in step (b) is preferably carried out under a reducing atmosphere. The reducing atmosphere preferably contains hydrogen. The proportion of hydrogen is dependent on the composition of the catalyst to be prepared. The proportion of hydrogen in the reducing atmosphere can be up to 100% by volume. Preferably, a Formiergasatmosphäre is used, wherein the concentration of hydrogen is usually less than 30 vol .-%, generally less than 20 vol .-%. Particularly preferably, the proportion of hydrogen in the reducing atmosphere is less than 10% by volume and in particular about 5% by volume. In particular, in the production of a Pt-Ni catalyst or a Pt-Co catalyst, the proportion of hydrogen in the reducing atmosphere, preferably in the range of 4 to 10 vol .-%, in particular about 5 vol .-%.
Neben Wasserstoff enthält die reduzierende Atmosphäre vorzugsweise mindestens ein inertes Gas. Vorzugsweise enthält die reduzierende Atmosphäre Stickstoff. Alternativ ist es jedoch auch möglich, dass anstelle des Stickstoffs zum Beispiel Argon eingesetzt wird. Auch ist es möglich, eine Mischung aus Stickstoff und Argon zu verwenden. Bevorzugt ist jedoch Stickstoff.In addition to hydrogen, the reducing atmosphere preferably contains at least one inert gas. Preferably, the reducing atmosphere contains nitrogen. Alternatively, however, it is also possible that argon is used instead of the nitrogen, for example. It is also possible to use a mixture of nitrogen and argon. However, nitrogen is preferred.
Insbesondere ist es bevorzugt, wenn die reduzierende Atmosphäre neben dem Wasserstoff und dem inerten Gas keine weiteren Bestandteile enthält. Hierbei soll jedoch nicht ausgeschlossen werden, dass zum Beispiel aufgrund der Gasherstellung noch Spuren weiterer Gase enthalten sind. Nach dem Erhitzen zur Bildung der Legierung in Schritt (b) wird vorzugsweise eine Passi- vierung durchgeführt. Hierzu wird die hergestellte Legierung zum Beispiel auf Umgebungstemperatur unter einer inerten Atmosphäre abkühlt. Die inerte Atmosphäre ist dabei vorzugsweise eine Stickstoffatmosphäre oder eine Argonatmosphäre. Auch ist es möglich, eine Mischung aus Stickstoff und Argon einzusetzen. Auch kann die in Schritt (b) hergestellte Legierung nach Verlassen des kontinuierlich betriebenen Ofens zur Passivierung zum Beispiel in eine Wasservorlage eingebracht werden.In particular, it is preferred if the reducing atmosphere contains no further constituents in addition to the hydrogen and the inert gas. However, it should not be ruled out that, for example due to gas production, traces of other gases are still present. After heating to form the alloy in step (b), passivation is preferably carried out. For this purpose, the produced alloy is cooled, for example, to ambient temperature under an inert atmosphere. The inert atmosphere is preferably a nitrogen atmosphere or an argon atmosphere. It is also possible to use a mixture of nitrogen and argon. Also, the alloy produced in step (b) may be introduced, for example, into a water blanket after leaving the continuously operated furnace for passivation.
Der nach dem erfindungsgemäßen Verfahren hergestellte Katalysator eignet sich zum Bei- spiel zur Verwendung als Elektrodenmaterial in einer Brennstoffzelle. Typische Brennstoffzellen, in denen der Katalysator eingesetzt werden kann sind zum Beispiel Protonenaus- tauschermembran-Brennstoffzellen (PEMFC), Direkt-Methanol-Brennstoffzellen (DMFC), Direkt-Ethanol-Brennstoffzellen (DEFC) und Phosphorsäure-Brennstoffzellen (PAFC). Insbesondere eignet sich der nach dem erfindungsgemäßen Verfahren hergestellte Katalysa- tor als Kathodenkatalysator, d.h. als Katalysator zur Sauerstoffreduktion. Weitere geeignete Anwendungsbereiche sind die Elektrooxidation von Methanol oder Wasserstoff auch außerhalb von Brennstoffzellen, die Elektroreduktion von Sauerstoff, Chloralkali-Elektrolyse und Wasser-Elektrolyse. Auch lässt sich der nach dem erfindungsgemäßen Verfahren hergestellte Katalysator z.B. in der Autoabgaskatalyse, beispielsweise als 3-Wege-Katalysator oder Dieseloxidationskatalysator, oder zur katalytischen Hydrierung bzw. Dehydrierung in der chemischen Industrie einsetzen. Hierunter fallen z.B. Hydrierungen von ungesättigten aliphatischen, aromatischen und heterocyclischen Verbindungen. Dehydrierung von Car- bonyl-, Nitril-, Nitrogruppen und von Carbonsäuren und deren Estern, aminierende Hydrierungen, Hydrierungen von Mineralölen und Kohlenmonoxid. Als Beispiel für Dehydrierun- gen sind die Dehydrierung von Paraffinen, von Naphtenen, von Alkylaromaten und von Alkoholen genannt. Die Hydrierung bzw. Dehydrierung kann dabei sowohl in der Gasphase als auch in der Flüssigphase durchgeführt werden.The catalyst prepared by the process according to the invention is suitable, for example, for use as electrode material in a fuel cell. Typical fuel cells in which the catalyst can be used are, for example, proton exchange membrane fuel cells (PEMFC), direct methanol fuel cells (DMFC), direct ethanol fuel cells (DEFC), and phosphoric acid fuel cells (PAFC). In particular, the catalyst prepared by the process according to the invention is suitable as a cathode catalyst, i. as a catalyst for oxygen reduction. Other suitable applications are the electro-oxidation of methanol or hydrogen outside of fuel cells, the electroreduction of oxygen, chlor-alkali electrolysis and water electrolysis. Also, the catalyst prepared by the process of the present invention can be e.g. in automotive exhaust gas catalysis, for example as a 3-way catalyst or diesel oxidation catalyst, or for catalytic hydrogenation or dehydrogenation in the chemical industry. These include e.g. Hydrogenations of unsaturated aliphatic, aromatic and heterocyclic compounds. Dehydrogenation of carbonyl, nitrile, nitro groups and of carboxylic acids and their esters, aminating hydrogenations, hydrogenations of mineral oils and carbon monoxide. Dehydrogenation of paraffins, of naphthenes, of alkylaromatics and of alcohols is mentioned as an example of dehydrogenation. The hydrogenation or dehydrogenation can be carried out both in the gas phase and in the liquid phase.
BeispieleExamples
Vergleichsbeispiel 1Comparative Example 1
Zur Herstellung eines kohlenstoffgeträgerten Platinkatalysators werden zunächst 100 g eines kommerziell erhältlichen Ruß-Trägers (CABOT XC72) mit Hilfe eines Ultra-Turrax®- Dispergiergerätes in 4 I Wasser eindispergiert. Zu der Suspension werden 57,14 g Pt(NO3)2, gelöst in 250 ml H2O zugegeben. Danach werden 4250 ml Ethanol zur Mischung gegeben und diese zum Sieden erhitzt. Die Suspension wird für 5 h am Rückfluss gekocht, auf 60 0C abgekühlt, über einen Büchnertrichter mit Papierfilter abgenutscht und mit 10 I kaltem H2O NO3-frei gewaschen. Der so hergestellte kohlenstoffgeträgerte Platinkatalysator wird als feuchter gewaschener Filterkuchen anschließend wieder in 3 I H2O aufgeschlämmt. Mit ca. 20 Tropfen 65%iger HNO3 wird der pH-Wert der Suspension auf 2,1 eingestellt. Zur Suspension werden 48,86 g Ni(NO3) 6H2O, gelöst in 400 ml H2O, zugegeben. Anschließend wird 10 min gut durch- mischt und mit ca. 290 ml 10%iger Na2CO3-Lösung wird der pH-Wert auf 8,5 erhöht. Die Suspension wird 1 h bei 75 0C und dem pH-Wert von 8,5 nachgerührt. Anschließend wird eine 6,3%ige Formaldehyd-Lösung, die durch Verdünnung von 18 ml 35%iger Formalde- hydlösung auf 100 ml hergestellt wird, zugegeben und erneut 1 h bei 75 0C nachgerührt.For preparing a carbon-supported platinum catalyst 100 g of a commercially available carbon black are first carrier (CABOT XC72) using an Ultra-Turrax ® - dispersing dispersed into 4 liters of water. 57.14 g of Pt (NO 3 ) 2 dissolved in 250 ml of H 2 O are added to the suspension. Thereafter, 4250 ml of ethanol are added to the mixture and heated to boiling. The suspension is boiled for 5 h at reflux, cooled to 60 0 C, filtered through a Buchner funnel with paper filter and washed with 10 l cold H 2 O NO 3 -free. The carbon-supported platinum catalyst thus prepared is then reslurried as a wet washed filter cake in 3 IH 2 O. With about 20 drops of 65% HNO 3 , the pH of the suspension is adjusted to 2.1. To the suspension is 48.86 g Ni (NO 3) 6H 2 O dissolved in 400 ml H 2 O was added. The mixture is then thoroughly mixed for 10 minutes, and the pH is increased to 8.5 with about 290 ml of 10% strength Na 2 CO 3 solution. The suspension is stirred for 1 h at 75 0 C and the pH of 8.5. Subsequently, a 6.3% formaldehyde solution, which is prepared by dilution of 18 ml of 35% formaldehyde solution to 100 ml, was added and stirred at 75 0 C again for 1 h.
Nach Reaktionsende wird die Suspension auf ca. 60 0C abgekühlt und der Katalysator über einen Büchnertrichter mit Papierfilter abgenutscht und mit 15 I kaltem H2O NO3-frei gewaschen. In einem Drehrohrofen wird der Katalysator anschließend für ca. 48 h bei 80 0C Ofentemperatur unter Stickstoffatmosphäre getrocknet.After the reaction, the suspension is cooled to about 60 0 C and the catalyst filtered off by suction through a Buchner funnel with paper filter and washed with 15 liters of cold H 2 O NO 3 -free. In a rotary kiln, the catalyst is then dried for about 48 h at 80 0 C oven temperature under a nitrogen atmosphere.
Zur Ausbildung der PtNi-Legierung wird das erhaltene Produkt in einer Wasserstoff/Argon- Atmosphäre mit 15 Vol.-% Wasserstoff mit einer Rate von 5 °C/min auf 500 0C aufgeheizt, 30 min bei dieser Temperatur gehalten und anschließend ebenfalls mit einer Rate von 5 °C/min bis auf 850 0C aufgeheizt, erneut 30 min bei dieser Temperatur gehalten, anschließend auf Raumtemperatur abgekühlt und in Stickstoff, dam schrittweise Luft zugesetzt wird, bis Luftatmosphäre vorhanden ist, passiviert.To form the PtNi alloy, the product obtained is heated in a hydrogen / argon atmosphere with 15 vol .-% hydrogen at a rate of 5 ° C / min to 500 0 C, held for 30 min at this temperature and then also with a Rate of 5 ° C / min heated to 850 0 C, held again for 30 min at this temperature, then cooled to room temperature and in nitrogen, dam stepwise air is added until air atmosphere is present, passivated.
Der Platingehalt des so hergestellten Katalysators liegt bei 23,2 Gew.-%, der Nickelgehalt bei 6,8 Gew.-% und der Wassergehalt bei weniger als 0,5 Gew.-%. Die PtNi-Kristallitgröße liegt bei 9,0 nm und die Gitterkonstante bei 3,810 Ä.The platinum content of the catalyst thus prepared is 23.2 wt .-%, the nickel content at 6.8 wt .-% and the water content at less than 0.5 wt .-%. The PtNi crystallite size is 9.0 nm and the lattice constant is 3.810 Å.
Vergleichsbeispiel 2Comparative Example 2
Zur Herstellung eines geträgerten Platinkatalysators werden 75,8 g eines kommerziell er- hältlichen Ruß-Trägers (CABOT XC72) mit Hilfe eines Ultra-Turrax®-Dispergiergerätes in 3 I Wasser eindispergiert. Zu der Lösung werden 1 I einer 4%igen Platinnitratlösung gegeben. Anschließend werde 4,25 I Ethanol zugefügt und die Mischung für 5 h unter Rückfluss zum Sieden erhitzt. Die erhaltene Katalysatordispersion wird über eine Nute abfiltriert und der erhaltene Filterkuchen an der Luft trocknen gelassen, bis er eine Restfeuchte von 22 Gew.-% aufweist. Abschließend wird der getrocknete Filterkuchen über ein 0,4 mm-Sieb zerkleinert.For preparing a supported platinum catalyst 75.8 g of a commercially receives at union carbon black carrier are (CABOT XC72) using an Ultra-Turrax ® -Dispergiergerätes dispersed in 3 I water. To the solution is added 1 liter of a 4% platinum nitrate solution. Then 4.25 l of ethanol are added and the mixture is heated to reflux for 5 h under reflux. The resulting catalyst dispersion is filtered off via a groove and allowed to dry the filter cake obtained in the air until it has a residual moisture content of 22 wt .-%. Finally, the dried filter cake is comminuted over a 0.4 mm sieve.
1 1 ,5 g des so hergestellten Kohlenstoffgeträgerten Platinkatalysators werden mit 4,47 g1 1, 5 g of the carbon-supported platinum catalyst thus prepared are 4.47 g
Nickel Acetylacetonat vermengt und in einem diskontinuierlich betreibbaren Drehrohrofen eingefüllt. Zunächst wird die Mischung für 2 h bei 100 0C unter Durchleiten von Stickstoff getrocknet. Anschließen wird auf einen Strom aus 0,8 l/h Wasserstoff und 15 l/h Stickstoff umgestellt und stufenweise bis auf 600 0C aufgeheizt. Anschließend wird der so hergestellte Katalysator abgekühlt und bei Raumtemperatur mit Luft/Stickstoff passiviert.Nickel acetylacetonate blended and filled in a batch operated rotary kiln. First, the mixture for 2 h at 100 0 C while passing nitrogen dried. Connecting is converted to a stream of 0.8 l / h of hydrogen and 15 l / h of nitrogen and gradually heated up to 600 0 C. Subsequently, the catalyst thus prepared is cooled and passivated at room temperature with air / nitrogen.
Der hergestellte Katalysator hat einen Platingehalt von 21 ,6 Gew.-%, einen Nickelgehalt von 8,7 Gew.-% und einen Wassergehalt von 0,5 Gew.-%. Die Kristallitgröße der PtNi- Kristallite liegt bei 2,4 nm und die Gitterkonstante der PtNi-Legierung bei 3,742 Ä.The prepared catalyst has a platinum content of 21, 6 wt .-%, a nickel content of 8.7 wt .-% and a water content of 0.5 wt .-%. The crystallite size of the PtNi crystallites is 2.4 nm and the lattice constant of the PtNi alloy is 3.742 Å.
Beispielexample
Ein kohlenstoffgeträgerter Platinkatalysator wird wie in Vergleichsbeispiel 2 beschrieben hergestellt.A carbon supported platinum catalyst is prepared as described in Comparative Example 2.
28,8 g des so hergestellten kohlenstoffgeträgerten Platinkatalysators werden mit 1 1 ,2 g Nickel-acetylacetonat vermengt und in den Vorlagebehälter eines kontinuierlich betreibbaren Drehrohrofens eingefüllt. Der Drehrohrofen verfügt über drei Heizzonen, wobei die erste Heizzone auf 400 0C und die zweite und dritte Heizzone jeweils auf 600 0C eingeregelt werden. Die Gas-Atmosphäre im Drehrohrofen besteht aus einem Gemisch aus 5 Vol.-% Wasserstoff in 95 Vol.-% Stickstoff. Die Förderleistung des Drehrohrofens wird so einge- stellt, dass pro Stunde 50 g Katalysator durch den Drehrohrofen gefördert werden. Die Verweilzeit des Produktes in der beheizten Zone des Drehrohrofens beträgt 1 h.28.8 g of the carbon-supported platinum catalyst thus prepared are mixed with 1 1, 2 g of nickel acetylacetonate and filled into the reservoir of a continuously operable rotary kiln. The rotary kiln has three heating zones, the first heating zone at 400 0 C and the second and third heating zones are adjusted respectively to 600 0 C. The gas atmosphere in the rotary kiln consists of a mixture of 5 vol .-% hydrogen in 95 vol .-% nitrogen. The capacity of the rotary kiln is adjusted so that per hour 50 g of catalyst are conveyed through the rotary kiln. The residence time of the product in the heated zone of the rotary kiln is 1 h.
Das erhaltene Produkt wird nach dem Verlassen des Drehrohrofens in einer Vorlage gesammelt und abschließend außerhalb des Drehrohrofens im Luft-/Stickstoffstrom passi- viert.The product obtained is collected after leaving the rotary kiln in a receiver and finally passivated out of the rotary kiln in an air / nitrogen stream.
Der so hergestellte Katalysator weist einen Platingehalt von 17,8 Gew.-%, einen Nickelgehalt von 7,9 Gew.-% und einen Wassergehalt von 0,6 Gew.-% auf. Die Kristallitgröße der PtNi-Kristallite liegt bei 2,4 nm und die Gitterkonstante der PtNi-Legierung bei 3,762 Ä. The catalyst thus prepared has a platinum content of 17.8% by weight, a nickel content of 7.9% by weight and a water content of 0.6% by weight. The crystallite size of the PtNi crystallites is 2.4 nm and the lattice constant of the PtNi alloy is 3.762 Å.

Claims

Patentansprüche claims
1. Verfahren zur kontinuierlichen Herstellung eines Katalysators, enthaltend eine Legierung aus einem Metall der Platin-Gruppe sowie mindestens einem zweiten Metall als Legierungsmetall ausgewählt aus den Metallen der Platin-Gruppe oder der Übergangsmetalle, folgende Schritte umfassend:A process for the continuous production of a catalyst comprising an alloy of a metal of the platinum group and at least one second metal as alloying metal selected from the metals of the platinum group or of the transition metals, comprising the following steps:
(a) Vermengen eines Katalysators, der das Metall der Platin-Gruppe enthält, mit mindestens einer thermisch zersetzbaren Verbindung, jeweils enthaltend ein Legierungsmetall, zu einer Legierungsvorstufe,(a) blending a catalyst containing the metal of the platinum group with at least one thermally decomposable compound, each containing an alloying metal, to form an alloy precursor,
(b) Erhitzen der Legierungsvorstufe in einem kontinuierlich betriebenen Ofen zur Herstellung der Legierung.(b) heating the alloy precursor in a continuously operated furnace to produce the alloy.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass der kontinuierlich betriebene Ofen ein Drehrohrofen oder ein Bandkalzinierer ist.2. The method according to claim 1, characterized in that the continuously operated furnace is a rotary kiln or a belt calciner.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Erhitzen in Schritt (b) unter einer reduzierenden Atmosphäre erfolgt.3. The method according to claim 1 or 2, characterized in that the heating in step (b) takes place under a reducing atmosphere.
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass die reduzierende Atmosphäre Wasserstoff enthält.4. The method according to claim 3, characterized in that the reducing atmosphere contains hydrogen.
5. Verfahren gemäß Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Anteil an Wasserstoff in der reduzierenden Atmosphäre kleiner als 30 Vol.-% ist.5. The method according to claim 3 or 4, characterized in that the proportion of hydrogen in the reducing atmosphere is less than 30 vol .-%.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Temperatur, auf die die Legierungsvorstufe im Schritt (b) erhitzt wird, im Bereich von 90 bis 900 0C liegt.6. The method according to any one of claims 1 to 5, characterized in that the temperature to which the alloy precursor is heated in step (b) in the range of 90 to 900 0 C.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Erhitzen in zwei Temperaturstufen erfolgt, wobei die Temperatur der ersten Temperaturstufe niedriger ist als die Temperatur der zweiten Temperaturstufe.7. The method according to any one of claims 1 to 6, characterized in that the heating takes place in two temperature stages, wherein the temperature of the first temperature level is lower than the temperature of the second temperature level.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass die Temperatur der ersten Temperaturstufe im Bereich von 300 bis 500 0C und die Temperatur der zweiten Temperaturstufe im Bereich von 500 bis 700 0C liegt, wobei die Temperatur der zweiten Temperaturstufe mindestens 100 0C höher ist als die Temperatur der ersten Temperaturstufe. 8. The method according to claim 7, characterized in that the temperature of the first temperature stage in the range of 300 to 500 0 C and the temperature of the second temperature level in the range of 500 to 700 0 C, wherein the temperature of the second temperature stage at least 100 0 C. is higher than the temperature of the first temperature stage.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Verweilzeit im kontinuierlich betriebenen Ofen im Bereich von 30 min bis 10 h liegt.9. The method according to any one of claims 1 to 8, characterized in that the residence time in the continuously operated oven is in the range of 30 minutes to 10 hours.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Katalysator, der das Metall der Platin-Gruppe enthält, als metallisches Pulver vorliegt oder weiterhin einen Träger umfasst.10. The method according to any one of claims 1 to 9, characterized in that the catalyst containing the metal of the platinum group is present as a metallic powder or further comprises a carrier.
1 1. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass der Träger ein Kohlenstoffträger ist.1 1. A method according to claim 10, characterized in that the carrier is a carbon carrier.
12. Verfahren gemäß einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass der Katalysator, der das Metall der Platin-Gruppe enthält, eine Restfeuchte von bis zu 50 Gew.-% Wasser aufweist.12. The method according to any one of claims 1 to 11, characterized in that the catalyst containing the metal of the platinum group, a residual moisture content of up to 50 wt .-% water.
13. Verfahren gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Metall der Platin-Gruppe Platin ist.13. The method according to any one of claims 1 to 12, characterized in that the metal of the platinum group is platinum.
14. Verfahren gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Legierungsmetall ausgewählt ist aus der Gruppe bestehend aus Ruthenium, Cobalt, Nickel und Palladium.14. The method according to any one of claims 1 to 13, characterized in that the alloying metal is selected from the group consisting of ruthenium, cobalt, nickel and palladium.
15. Verfahren gemäß einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die mindestens eine thermisch zersetzbare Verbindung eine metallorganische Verbindung oder ein Metallkomplex ist.15. The method according to any one of claims 1 to 14, characterized in that the at least one thermally decomposable compound is an organometallic compound or a metal complex.
16. Verfahren gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass das mindestens eine Legierungsmetall als Metallkomplex mit einem Olefin, vorzugsweise Dimethyloctadien, einem Aromaten, vorzugsweise Pyridin, 2,4-Pentandion als Liganden, als gemischter Cyclopentadienyl-Carbonyl-Komplex odre als reiner oder ge- mischter Carbonyl-, Phosphan-, Cyano- oder Isocyano-Komplex vorliegt.16. The method according to any one of claims 1 to 15, characterized in that the at least one alloy metal or metal complex with an olefin, preferably dimethyloctadiene, an aromatic, preferably pyridine, 2,4-pentanedione as ligands, as a mixed cyclopentadienyl-carbonyl complex or is present as a pure or mixed carbonyl, phosphine, cyano or Isocyano complex.
17. Verfahren gemäß einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das mindestens eine Legierungsmetall als Metallkomplex mit Acetylacetonat oder 2,4- Pentandion als Ligand vorliegt.17. The method according to any one of claims 1 to 16, characterized in that the at least one alloying metal is present as a metal complex with acetylacetonate or 2,4-pentanedione as a ligand.
18. Verfahren gemäß einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die mindestens eine metallorganische Verbindung oder der mindestens eine Metallkomplex, enthaltend das mindestens eine Legierungsmetall, als Pulver oder gelöst in einem Lösungsmittel vorliegt. 18. The method according to any one of claims 15 to 17, characterized in that the at least one organometallic compound or the at least one metal complex containing the at least one alloying metal, as a powder or dissolved in a solvent.
19. Verfahren gemäß einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass nach dem Erhitzen zur Bildung der Legierung in Schritt (b) eine Passivierung durchgeführt wird. 19. The method according to any one of claims 1 to 18, characterized in that after heating to form the alloy in step (b) passivation is performed.
EP09781982A 2008-08-26 2009-08-19 Method for continuously producing a catalyst Withdrawn EP2337630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09781982A EP2337630A1 (en) 2008-08-26 2009-08-19 Method for continuously producing a catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08163000 2008-08-26
EP09781982A EP2337630A1 (en) 2008-08-26 2009-08-19 Method for continuously producing a catalyst
PCT/EP2009/060710 WO2010026046A1 (en) 2008-08-26 2009-08-19 Method for continuously producing a catalyst

Publications (1)

Publication Number Publication Date
EP2337630A1 true EP2337630A1 (en) 2011-06-29

Family

ID=41507869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09781982A Withdrawn EP2337630A1 (en) 2008-08-26 2009-08-19 Method for continuously producing a catalyst

Country Status (6)

Country Link
US (1) US8569196B2 (en)
EP (1) EP2337630A1 (en)
JP (1) JP5665743B2 (en)
KR (1) KR101649384B1 (en)
CN (1) CN102164668B (en)
WO (1) WO2010026046A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010139596A2 (en) * 2009-06-02 2010-12-09 Basf Se Catalyst for electrochemical applications
KR101231006B1 (en) * 2010-11-26 2013-02-07 현대자동차주식회사 Preparing method of Alloy Catalyst using Conductive polymer coating
JP5829418B2 (en) * 2011-03-31 2015-12-09 大阪瓦斯株式会社 Metal catalyst production equipment
US9272334B2 (en) * 2011-04-12 2016-03-01 GM Global Technology Operations LLC Synthesis of platinum-alloy nanoparticles and supported catalysts including the same
EP2687483A1 (en) 2012-07-16 2014-01-22 Basf Se Graphene containing nitrogen and optionally iron and/or cobalt
US9543569B2 (en) 2012-12-21 2017-01-10 Lawrence Livermore National Security, Llc Graphene-supported metal oxide monolith
KR101492102B1 (en) 2013-05-02 2015-02-10 한국에너지기술연구원 Method of preparing alloy catalyst for fuel cell and alloy catalyst prepared thereby
KR101912251B1 (en) * 2016-09-19 2018-10-29 한국과학기술연구원 Catalyst for dehydrogenation reaction of formic acid and method for preparing the same
KR20210078497A (en) * 2018-09-28 2021-06-28 덴마크스 텍니스케 유니버시테트 Alloy Nanoparticle Production Process

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163746A (en) * 1986-01-13 1987-07-20 Nippon Engeruharudo Kk Platinum alloy electrode catalyst and electrode for acidic electrolyte fuel cell using same
JPS6312349A (en) * 1986-07-03 1988-01-19 Fuji Electric Co Ltd Production of pt alloy catalyst for fuel cell
JPS6344940A (en) * 1986-08-13 1988-02-25 Fuji Electric Co Ltd Alloy supported catalyst
JP2556874B2 (en) * 1988-02-18 1996-11-27 田中貴金属工業株式会社 Method for alloying metal on support
JPH01227361A (en) * 1988-03-07 1989-09-11 Fuji Electric Co Ltd Manufacture of anode for fuel cell
JP3908314B2 (en) * 1996-12-24 2007-04-25 千代田化工建設株式会社 Dehydrogenation catalyst
JP2003272641A (en) * 2002-03-20 2003-09-26 Toyota Motor Corp Anode catalyst for fuel cell
KR100506091B1 (en) 2003-02-19 2005-08-04 삼성에스디아이 주식회사 Catalyst for cathode of fuel cell
DE10349095A1 (en) 2003-10-17 2005-05-19 Basf Ag Process for the preparation of amines
US7208437B2 (en) 2004-01-16 2007-04-24 T/J Technologies, Inc. Catalyst and method for its manufacture
US7335245B2 (en) * 2004-04-22 2008-02-26 Honda Motor Co., Ltd. Metal and alloy nanoparticles and synthesis methods thereof
DE102004059282A1 (en) * 2004-10-13 2006-04-27 Basf Ag selective hydrogenation catalyst
JP4713959B2 (en) * 2005-06-23 2011-06-29 株式会社東芝 Fuel cell supported catalyst and fuel cell
CN101505869A (en) * 2006-07-14 2009-08-12 双向电池公司 Multilayer catalysts for fuel cell oxygen electrodes
KR20100065160A (en) * 2007-08-24 2010-06-15 바스프 에스이 Catalyst and method for the production and use thereof
CN101990462A (en) 2007-11-09 2011-03-23 巴斯夫欧洲公司 Method for producing a catalyst and use as an electrocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2012500720A (en) 2012-01-12
US20110177938A1 (en) 2011-07-21
CN102164668B (en) 2015-01-21
US8569196B2 (en) 2013-10-29
KR20110045087A (en) 2011-05-03
WO2010026046A1 (en) 2010-03-11
JP5665743B2 (en) 2015-02-04
CN102164668A (en) 2011-08-24
KR101649384B1 (en) 2016-08-19

Similar Documents

Publication Publication Date Title
EP2481113B1 (en) Catalyst having metal oxide doping for fuel cells
WO2009060019A1 (en) Method for producing a catalyst and use as an electrocatalyst
EP2337630A1 (en) Method for continuously producing a catalyst
DE60205061T2 (en) Noble metal-supported supported catalyst and process for its preparation
DE3643332C2 (en)
DE69927793T2 (en) CATALYST
DE3623686C2 (en)
EP0994520B1 (en) Catalyst for fuel cell comprising a Pt/Rh/Fe alloy and its manufacturing method
DE102013225764B4 (en) Catalyst particles with a layered core-shell-shell structure and process for their preparation
DE60124974T2 (en) Electrode catalyst and electrochemical devices
DE4426973C1 (en) Method for producing a platinum alloy catalyst that can be used as a fuel cell electrode
EP2185280A1 (en) Catalyst and method for the production and use thereof
DE102014226464B4 (en) Metal borides doped with nitrogen for water splitting and oxygen reduction
DE102016125396A1 (en) ELECTRODE CATALYST FOR FUEL CELL AND METHOD FOR PRODUCING THE ELECTRODE CATALYST FOR FUEL CELL
CH647163A5 (en) CATALYST, ELECTROCHEMICAL CELL WITH SUCH A CATALYST AND USE OF THE CATALYST.
DE2926613A1 (en) FUEL CELL CATODE
EP1487572A1 (en) Method for in situ immobilization of water-soluble nanodispersed metal oxide colloids
DE202015106071U1 (en) Electrochemical cell, electrode and electrocatalyst for an electrochemical cell
EP1079452B1 (en) Electrocatalyst for fuel cell
DE102021119761A1 (en) Process for the selective catalytic hydrogenation of organic compounds and electrode and electrochemical cell for this process
DE102010042932A1 (en) New electrocatalyst (comprising a carrier that is organic compound with polycyclic aromatic structure functionalized with e.g. dicarboxylic anhydride group and active material) useful as catalyst for cathodic oxygen reduction in fuel cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170915

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180126