EP2337059B1 - Gas discharge lamp with external electrode - Google Patents

Gas discharge lamp with external electrode Download PDF

Info

Publication number
EP2337059B1
EP2337059B1 EP10192074A EP10192074A EP2337059B1 EP 2337059 B1 EP2337059 B1 EP 2337059B1 EP 10192074 A EP10192074 A EP 10192074A EP 10192074 A EP10192074 A EP 10192074A EP 2337059 B1 EP2337059 B1 EP 2337059B1
Authority
EP
European Patent Office
Prior art keywords
gas discharge
discharge tube
light source
magnets
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10192074A
Other languages
German (de)
French (fr)
Other versions
EP2337059A1 (en
Inventor
Rolf Disch
Marcin Krajka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick AG
Original Assignee
Sick Maihak GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick Maihak GmbH filed Critical Sick Maihak GmbH
Publication of EP2337059A1 publication Critical patent/EP2337059A1/en
Application granted granted Critical
Publication of EP2337059B1 publication Critical patent/EP2337059B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour

Definitions

  • the invention relates to a gas discharge lamp according to the preamble of claim 1 and a light source with such a gas discharge lamp, which preferably serves as a mercury spectral lamp.
  • a generic gas discharge lamp with external electrodes is known.
  • the electrodes are formed as ring electrodes and each comprise a cylindrical portion of the discharge tube.
  • the ring electrodes are formed over a relatively large area in the manner of clamps.
  • Common to all known gas discharge lamps is the limited life, which results in particular by a blackening of the inside of the discharge tube. This applies in particular to mercury lamps, because Hg ions are presumably introduced into the quartz glass surface of the discharge tube and react there to form mercury oxide. This process is more effective the higher the rate at which ions strike the surface. This speed depends on the electric field perpendicular to the surface.
  • the gas discharge lamp according to the invention comprises a gas discharge tube having a cylindrical discharge region and two electrodes arranged on the outside of the gas discharge tube, each electrode having a flat disc-shaped holding section, each containing an opening, and wherein the cylindrical discharge region is positively received in the openings, wherein the cylinder axis of the cylindrical discharge area is perpendicular to the planar holding portions.
  • a material thickness of the holding sections of approximately 0.15 mm and a spacing of the holding sections of approximately 3 mm have proven to be particularly advantageous.
  • the invention also includes a light source with the gas discharge lamp according to the invention, wherein magnets are provided, between which a substantially homogeneous magnetic field can be generated.
  • a north pole of a magnet is arranged on one side of the gas discharge tube and a south pole of a second magnet is arranged on the opposite side and both the north pole and the south pole two partial magnets are formed, whose poles of the same name are opposite and form the north or south pole, wherein in each case between the opposite two north poles or opposite south poles, a gap is formed, which widens towards the gas discharge tube.
  • the gaps are each filled with an iron core, wherein preferably the shape of the end of the iron core, which faces the gas discharge tube, is concave.
  • the magnets are arranged on opposite sides of the gas discharge tube and designed as ring magnets, one pole of which lies on the inner edge and the other on the outer edge.
  • ring magnets are commercially available and stored in the light source in a structurally simple manner, so that the light source compared to the aforementioned embodiment can be constructed in a relatively simple manner.
  • the gas discharge tube preferably consists of a quartz glass.
  • a mercury spectral lamp is preferably used for measuring the mercury concentration of a gas.
  • a device 10 for measuring the content of mercury in a gas as shown schematically in FIG Fig. 1 has a light source 12 according to the invention for the emission of mercury spectral lines along an optical axis 14.
  • the light source 12 which in Fig. 2 more detailed but still shown schematically is formed as an electrodeless gas discharge lamp and includes a discharge tube 12-1, in which a gas discharge burns.
  • the light source is shown so that the optical axis 14 is perpendicular to the plane of the drawing.
  • the gas discharge tube 12-1 has a cylindrical discharge area 12-4 and a spherical portion 12-5.
  • a mercury supply in the spherical section 12-5 is a mercury supply, so that arise in the gas discharge, the mercury spectral lines.
  • the mercury is preferably mercury with a natural isotope distribution.
  • the gas discharge is ignited and maintained by two electrodes 12-2 and 12-3 disposed outside the discharge tube 12-1 on the cylindrical discharge portion 12-4.
  • electrodes 12-2 are at the electrodes and 12-3, a high frequency voltage of a frequency of about 200 to 250 MHz and an amplitude of 4 to 8V.
  • Each electrode 12-2 and 12-3 has a flat, disk-shaped holding portion 12-6 and 12-7, each having an opening 12-8 and 12-9.
  • the cylindrical discharge region 12-4 of the gas discharge tube 12-1 is held in a form-fitting manner.
  • the holding portions 12-6 and 12-7 are aligned parallel to each other, and the cylindrical discharge portion 12-4 lies with its cylinder axis perpendicular to the holding portions 12-6 and 12-7.
  • the holding portions 12-6 and 12-7 have a material thickness of about 0.15 mm and are spaced about 3 mm apart. They are preferably made of copper as a good electrical conductor.
  • the gas discharge tube 12-1 of the light source 12 is in a magnetic field as homogeneous as possible, which is generated by a magnet 15 and which is aligned at the location of light generation perpendicular to the optical axis.
  • the splitting of the spectral lines is large enough and the spectral lines remain sharp, so are spectrally shifted by the same amount at each location in the lamp, a sufficiently strong and homogeneous magnetic field must be generated.
  • the magnet 15 which generates the homogeneous magnetic field is constructed as a whole of four individual magnets 15-1 to 15-4, so that a north pole on one side of the gas discharge tube 12-1 (in FIG Fig. 4 above the gas discharge tube) and a south pole on the opposite side (in Fig. 4 below the gas discharge tube) is arranged.
  • the north pole of the magnet 15 is then formed by the two partial magnets 15-1 and 15-2, the north poles facing each other.
  • the south pole of the magnet 15 is formed by the two south poles of the partial magnets 15-3 and 15-4. Between The opposite two north poles of the partial magnets 15-1 and 15-2 and between the opposite south poles of the partial magnets 15-3 and 15-4, a gap is formed in each case, which widens toward the gas discharge tube 12-1 out. Both gaps are preferably filled in each case with an iron core 15-5 and 15-6, wherein the shape of the ends of the iron cores, which face the gas discharge tube 12-1, are concave in the illustrated cross section.
  • the magnets 15-1 to 15-4 are held by brackets 15-8 and 15-9, which are preferably formed of iron, to the magnetic field between the part of the magnets 15-1 and 15-4 or 15-2 and 15th -3 in a suitable manner.
  • the holder 15-9 has an opening 15-10 through which the light generated in the gas discharge tube 12-1 can pass outwardly and into the device 10 along the optical axis 14.
  • Fig. 6 shows a generated by the gas discharge lamp 12 mercury spectrum.
  • the spectral lines which are printed in bold, correspond to the ⁇ component, with the individual spectral lines of the ⁇ component corresponding to the different transitions of the different isotopes.
  • the individual lines are characterized by the respective mass number of the isotopes.
  • the spectral lines of the ⁇ + component and towards lower frequencies are the spectral lines of the ⁇ component.
  • the magnetic field at the location of the gas discharge is so strong that the spectral distributions of the ⁇ + and ⁇ - components do not overlap with the distribution of the ⁇ component.
  • the magnetic field is about 1 to 1.5 Tesla.
  • the spectral line of 199 Hg of the ⁇ component which is designated by the reference numeral 16 and corresponds to the spectral line with the highest energy of the ⁇ component, which is designated by the reference numeral 18, is shifted so far to lower frequencies in that it is clearly separated from the spectral line of the ⁇ component indicated by the reference numeral 20 and the spectral line corresponds to the lowest energy of the ⁇ component, ie the spectral line of 204 Hg.
  • the sufficient separation is important because the ⁇ component ultimately provides the measurand since the nondisplaced ⁇ component is absorbed and the shifted ⁇ components form a reference because the shifted spectral components are not absorbed, as is in principle already from the prior art ( US 3,914,054 ) is known.
  • FIG. 5 Yet another embodiment of the light source 12 according to the invention, for generating the Hg spectral lines.
  • the gas discharge tube 12-1 and the electrodes 12-2 and 12-3 are constructed as in the previous embodiment.
  • the magnets are now formed as ring magnets 150-1 and 150-2 and disposed on opposite sides of the gas discharge tube 12-1.
  • the north pole of one ring magnet 150-2 is located at the outer edge of the ring and the corresponding south pole is reversed at the inner and the other magnet 150-1.
  • Fig. 5 is not a true to scale representation, but is only schematically indicate the structure. In particular, the distances between the two ring magnets 150-1 and 150-2 to each other are not shown to scale.
  • the light generated in the light source 12 contains the Zeeman components of the mercury spectral lines accordingly Fig. 6 as already explained.
  • the light then passes through an optical separation device 22, which is here designed as a photoelastic modulator 24, in which, due to the birefringent properties of the modulator 24, the linearly polarized ⁇ component influences it differently becomes, as the perpendicular polarized ⁇ + and ⁇ - components.
  • This different influencing takes place in the rhythm of an AC voltage applied to a piezo 26, which is provided by a voltage supply 28.
  • the photoelastic modulator 24 with a polarizer, not shown in detail, the polarization of the ⁇ components is rotated on the one hand and at certain times only the ⁇ + and ⁇ components are transmitted and at certain other times only the ⁇ component.
  • a temporal separation of the ⁇ components on the one hand and ⁇ + and ⁇ components on the other hand takes place.
  • the light then passes through a measuring cell 30 with the mercury contamination to be measured contained therein.
  • the measuring cell optionally has a heater 32.
  • the unshifted spectral lines of the ⁇ component undergo absorption in the measuring cell 30 at the mercury atoms, whereas the shifted ⁇ + and ⁇ components do not undergo absorption due to the energy shift, so that the light of these lines can serve as the reference light.
  • the light is received on the light receiver 34 and fed to a lock-in amplifier 38, which is triggered by the alternating voltage supplied to the photoelastic modulator 24.
  • a signal is then obtained via the lock-in amplifier, as shown qualitatively in FIG Fig. 1 with the reference numeral 40 is shown.
  • the light receiver 34 thus alternately receives reference light and the non-absorbed part of the measuring light with the frequency of the modulator control voltage, so that the difference thereof, ie the amplitude of the curve 40, is a measure of the absorption in the measuring cell 30, and thus a measure for the mercury concentration, so that from this signal, the concentration of mercury in the gas to be examined can be determined.

Abstract

The source has a gas discharge tube (12-1) provided with a cylindrical discharge area (12-4) and comprising quartz glass. Electrodes (12-2, 12-3) are arranged on an outer side of the gas discharge tube. Each electrodes comprise even, disk shaped retaining sections (12-6, 12-7), which are provided with openings (12-8, 12-9). The discharge area is held in the openings in a form-fit manner, where a cylindrical axis of the discharge area lies perpendicular to the retaining sections. The retaining sections exhibit material thickness of 0.15 mm, and a gap is filled with iron cores.

Description

Die Erfindung betrifft eine Gasentladungslampe nach dem Oberbegriff des Anspruchs 1 sowie eine Lichtquelle mit einer solchen Gasentladungslampe, die vorzugsweise als Quecksilberspektrallampe dient.The invention relates to a gas discharge lamp according to the preamble of claim 1 and a light source with such a gas discharge lamp, which preferably serves as a mercury spectral lamp.

Aus der US 5,013,966 ist eine gattungsgemäße Gasentladungslampe mit externen Elektroden bekannt. Bei dieser sind die Elektroden als Ringelektroden ausgebildet und umfassen jeweils einen zylindrischen Abschnitt der Entladungsröhre. Die Ringelektroden sind dabei relativ großflächig nach Art von Schellen ausgebildet. Allen bekannten Gasentladungslampen gemeinsam ist die begrenzte Lebensdauer, die sich insbesondere durch eine Schwärzung der Innenseite der Entladungsröhre ergibt. Dies gilt insbesondere für Quecksilberlampen, denn vermutlich werden Hg-Ionen in die Quarzglasoberfläche der Entladungsröhre eingetragen und reagieren dort zu Quecksilberoxid. Dieser Vorgang ist umso effektiver, je höher die Geschwindigkeit ist, mit der die Ionen in die Oberfläche einschlagen. Diese Geschwindigkeit hängt ab vom elektrischen Feld senkrecht zur Oberfläche.From the US 5,013,966 a generic gas discharge lamp with external electrodes is known. In this case, the electrodes are formed as ring electrodes and each comprise a cylindrical portion of the discharge tube. The ring electrodes are formed over a relatively large area in the manner of clamps. Common to all known gas discharge lamps is the limited life, which results in particular by a blackening of the inside of the discharge tube. This applies in particular to mercury lamps, because Hg ions are presumably introduced into the quartz glass surface of the discharge tube and react there to form mercury oxide. This process is more effective the higher the rate at which ions strike the surface. This speed depends on the electric field perpendicular to the surface.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, eine verbesserte Gasentladungslampe mit externen Elektroden bereitzustellen, die eine höhere Lebensdauer hat.Starting from this prior art, it is an object of the invention to provide an improved gas discharge lamp with external electrodes, which has a longer life.

Diese Aufgabe wird gelöst durch eine Gasentladungslampe mit den Merkmalen des Anspruchs 1.This object is achieved by a gas discharge lamp having the features of claim 1.

Die erfindungsgemäße Gasentladungslampe umfasst eine Gasentladungsröhre mit einem zylindrischen Entladungsbereich und zwei Elektroden, die auf der Außenseite der Gasentladungsröhre angeordnet sind, wobei jede Elektrode einen ebenen, scheibenförmigen Halteabschnitt aufweist, der jeweils eine Öffnung enthält und wobei der zylindrische Entladungsbereich in den Öffnungen formschlüssig aufgenommen ist, wobei die Zylinderachse des zylindrischen Entladungsbereichs senkrecht zu den ebenen Halteabschnitten liegt.The gas discharge lamp according to the invention comprises a gas discharge tube having a cylindrical discharge region and two electrodes arranged on the outside of the gas discharge tube, each electrode having a flat disc-shaped holding section, each containing an opening, and wherein the cylindrical discharge region is positively received in the openings, wherein the cylinder axis of the cylindrical discharge area is perpendicular to the planar holding portions.

Es hat sich gezeigt, dass erheblich weniger Schwärzung auf der Innenseite der Gasentladungsröhre auftritt, wenn die Elektroden in der erfindungsgemäßen Weise ausgebildet sind und nur ein schmaler Bereich der Elektrode, nämlich die Innenseiten der Ränder der Öffnungen, an der Gasentladungsröhre anliegen. Dadurch erhöht sich auch die Lebensdauer erheblich. Versuche mit Quecksilberspektrallampen, in denen Vergleichsmessungen gemacht wurden mit identischen Gasentladungsröhren aber verschiedenen Elektrodenformen, nämlich einmal die bekannte nach dem Stand der Technik, in der die Elektroden schellenartig die zylindrische Gasentladungsröhre umfassen und einmal in der erfindungsgemäßen Ausgestaltung, haben ergeben, dass die Lebensdauer um mehr als einen Faktor 6 gesteigert werden konnte. Ein möglicher Teil der Erklärung für die lange Lebensdauer ist vermutlich, dass das elektromagnetische Feld, das sich zwischen den ebenen Halteabschnitten mit dieser speziellen Geometrie, also flache Scheiben, die parallel zueinander angeordnet sind, bildet und die Anordnung der Entladungsröhre senkrecht dazu, dazu beiträgt, dass eine geringere Schwärzung auftritt.It has been found that significantly less blackening occurs on the inside of the gas discharge tube when the electrodes are formed in the manner according to the invention and only a narrow region of the electrode, namely the insides of the edges of the openings, abuts against the gas discharge tube. This also significantly increases the service life. Experiments with mercury spectral lamps in which comparative measurements were made with identical gas discharge tubes but different electrode shapes, namely the known prior art in which the electrodes clamp the cylindrical gas discharge tube and once in the embodiment according to the invention, have shown that the lifetime is longer could be increased as a factor of 6. A possible part of the long life explanation is presumably that the electromagnetic field formed between the planar support sections of this particular geometry, that is to say flat disks arranged parallel to each other, and the arrangement of the discharge tube perpendicular thereto, contribute to that less blackening occurs.

In einer Ausführungsform haben sich eine Materialstärke der Halteabschnitte von ca. 0,15 mm und ein Abstand der Halteabschnitte von ca. 3mm als besonders vorteilhaft herausgestellt.In one embodiment, a material thickness of the holding sections of approximately 0.15 mm and a spacing of the holding sections of approximately 3 mm have proven to be particularly advantageous.

Insbesondere bei der Verwendung der Gasentladungslampe als Quecksilberspektrallampe werden häufig die Zeeman Komponenten der Spektrallinien benötigt, so dass die Erfindung auch eine Lichtquelle mit der erfindungsgemäßen Gasentladungslampe umfasst, wobei Magnete vorgesehen sind, zwischen denen ein weitgehend homogenes Magnetfeld erzeugbar ist.In particular, when using the gas discharge lamp as a mercury spectral lamp, the Zeeman components of the spectral lines are often required, so that the invention also includes a light source with the gas discharge lamp according to the invention, wherein magnets are provided, between which a substantially homogeneous magnetic field can be generated.

Damit das erzeugte Magnetfeld besonders homogen ist, ist in einer Ausführungsform der erfindungsgemäßen Lichtquelle vorgesehen, dass ein Nordpol eines Magneten auf einer Seite der Gasentladungsröhre angeordnet ist und ein Südpol eines zweiten Magneten auf der gegenüberliegenden Seite angeordnet ist und sowohl der Nordpol als auch der Südpol aus zwei Teilmagneten gebildet sind, deren gleichnamige Pole gegenüberliegen und den Nord- bzw. Südpol bilden, wobei jeweils zwischen den gegenüberliegenden beiden Nordpolen bzw. gegenüberliegenden Südpolen ein Spalt gebildet ist, der sich zur Gasentladungsröhre hin weitet. Weitere Erhöhung der Homogenität kann erreicht werden, wenn die Spalte jeweils mit einem Eisenkern ausgefüllt sind, wobei bevorzugt die Form des Endes des Eisenkerns, das der Gasentladungsröhre zugewandt ist, konkav ausgebildet ist.In order for the generated magnetic field to be particularly homogeneous, in one embodiment of the light source according to the invention it is provided that a north pole of a magnet is arranged on one side of the gas discharge tube and a south pole of a second magnet is arranged on the opposite side and both the north pole and the south pole two partial magnets are formed, whose poles of the same name are opposite and form the north or south pole, wherein in each case between the opposite two north poles or opposite south poles, a gap is formed, which widens towards the gas discharge tube. Further increase in homogeneity can be achieved if the gaps are each filled with an iron core, wherein preferably the shape of the end of the iron core, which faces the gas discharge tube, is concave.

In einer anderen Ausführungsform der Lichtquelle sind die Magnete auf gegenüberliegenden Seiten der Gasentladungsröhre angeordnet und als Ringmagnete ausgebildet, deren einer Pol am Innenrand und der andere am Außenrand liegen. Derartige Ringmagnete sind im Handel erhältlich und in der Lichtquelle in konstruktiv einfacher Weise zu lagern, so dass die Lichtquelle verglichen mit der vorgenannten Ausführungsform in relativ einfacher Weise aufgebaut sein kann.In another embodiment of the light source, the magnets are arranged on opposite sides of the gas discharge tube and designed as ring magnets, one pole of which lies on the inner edge and the other on the outer edge. Such ring magnets are commercially available and stored in the light source in a structurally simple manner, so that the light source compared to the aforementioned embodiment can be constructed in a relatively simple manner.

Bei Einsatz der erfindungsgemäßen Gasentladungslampe als Quecksilberspektrallampe besteht bevorzugt die Gasentladungsröhre aus einem Quarzglas. Eine solche Quecksilberspektrallampe wird bevorzugt eingesetzt zur Messung der Quecksilberkonzentration eines Gases.When using the gas discharge lamp according to the invention as a mercury spectral lamp, the gas discharge tube preferably consists of a quartz glass. Such a mercury spectral lamp is preferably used for measuring the mercury concentration of a gas.

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung im Einzelnen erläutert. In der Zeichnung zeigen:

Fig. 1
eine schematische Darstellung einer Vorrichtung zur Messung einer Kon- zentration eines Stoffes in einem Gas mit einer erfindungsgemäßen Licht- quelle;
Fig. 2
eine schematische und etwas detailliertere Darstellung der erfindungsge- mäßen Lichtquelle aus Fig. 1;
Fig. 3
eine erfindungsgemäße Gasentladungslampe in perspektivischer Ansicht;
Fig. 4
eine weitere detailliertere Darstellung der Lichtquelle mit Gasentladungs- lampe im Querschnitt;
Fig. 5
eine andere Ausführungsform der Lichtquelle mit Gasentladungslampe;
Fig. 6
ein Quecksilberspektrum der Lichtquelle.
In the following the invention with reference to an embodiment with reference to the drawings will be explained in detail. In the drawing show:
Fig. 1
a schematic representation of an apparatus for measuring a concentration of a substance in a gas with a light source according to the invention;
Fig. 2
a schematic and somewhat more detailed representation of the inventive light source Fig. 1 ;
Fig. 3
a gas discharge lamp according to the invention in a perspective view;
Fig. 4
a further detailed representation of the light source with gas discharge lamp in cross section;
Fig. 5
another embodiment of the light source with gas discharge lamp;
Fig. 6
a mercury spectrum of the light source.

Eine Vorrichtung 10 zur Messung des Quecksilbergehalts in einem Gas, wie sie schematisch in Fig. 1 dargestellt ist, weist eine erfindungsgemäße Lichtquelle 12 zur Aussendung von Quecksilberspektrallinien entlang einer optischen Achse 14 auf.A device 10 for measuring the content of mercury in a gas, as shown schematically in FIG Fig. 1 has a light source 12 according to the invention for the emission of mercury spectral lines along an optical axis 14.

Die erfindungsgemäße Lichtquelle 12, die in Fig. 2 detaillierter aber immer noch schematisch dargestellt ist, ist als elektrodenlose Gasentladungslampe ausgebildet und umfasst eine Entladungsröhre 12-1, in der eine Gasentladung brennt. In Fig. 2 ist die Lichtquelle so dargestellt, dass die optische Achse 14 senkrecht zur Zeichenebene liegt.The light source 12 according to the invention, which in Fig. 2 more detailed but still shown schematically is formed as an electrodeless gas discharge lamp and includes a discharge tube 12-1, in which a gas discharge burns. In Fig. 2 the light source is shown so that the optical axis 14 is perpendicular to the plane of the drawing.

Wie insbesondere in Fig. 3 erkennbar, weist die Gasentladungsröhre 12-1 einen zylindrischen Entladungsbereich 12-4 und einen kugelförmigen Abschnitt 12-5 auf. In dem kugelförmigen Abschnitt 12-5 befindet sich ein Quecksilbervorrat, so dass in der Gasentladung die Quecksilberspektrallinien entstehen. Bei dem Quecksilber handelt es sich bevorzugt um Quecksilber mit einer natürlichen Isotopenverteilung. Die Gasentladung wird gezündet und aufrechterhalten durch zwei Elektroden 12-2 und 12-3, die außerhalb der Entladungsröhre 12-1 an dem zylindrischen Entladungsbereich 12-4 angeordnet sind. Typischerweise liegt an den Elektroden 12-2 und 12-3 eine Hochfrequenzspannung einer Frequenz von etwa 200 bis 250 MHz und eine Amplitude von 4 bis 8 V an.As in particular in Fig. 3 As can be seen, the gas discharge tube 12-1 has a cylindrical discharge area 12-4 and a spherical portion 12-5. In the spherical section 12-5 is a mercury supply, so that arise in the gas discharge, the mercury spectral lines. The mercury is preferably mercury with a natural isotope distribution. The gas discharge is ignited and maintained by two electrodes 12-2 and 12-3 disposed outside the discharge tube 12-1 on the cylindrical discharge portion 12-4. Typically, electrodes 12-2 are at the electrodes and 12-3, a high frequency voltage of a frequency of about 200 to 250 MHz and an amplitude of 4 to 8V.

Jede Elektrode 12-2 und 12-3 weist erfindungsgemäß einen ebenen, scheibenförmigen Halteabschnitt 12-6 und 12-7 auf, die jeweils eine Öffnung 12-8 und 12-9 aufweisen. In den Öffnungen 12-8 und 12-9 ist der zylindrische Entladungsbereich 12-4 der Gasentladungsröhre 12-1 formschlüssig gehalten. Die Halteabschnitte 12-6 und 12-7 sind parallel zueinander ausgerichtet und der zylindrische Entladungsbereich 12-4 liegt mit seiner Zylinderachse senkrecht zu den Halteabschnitten 12-6 und 12-7.Each electrode 12-2 and 12-3 according to the invention has a flat, disk-shaped holding portion 12-6 and 12-7, each having an opening 12-8 and 12-9. In the openings 12-8 and 12-9, the cylindrical discharge region 12-4 of the gas discharge tube 12-1 is held in a form-fitting manner. The holding portions 12-6 and 12-7 are aligned parallel to each other, and the cylindrical discharge portion 12-4 lies with its cylinder axis perpendicular to the holding portions 12-6 and 12-7.

In dem Ausführungsbeispiel haben die Halteabschnitte 12-6 und 12-7 eine Materialstärke von ca. 0,15 mm und sind ca. 3 mm voneinander beabstandet. Sie bestehen bevorzugt aus Kupfer als gutem elektrischen Leiter.In the embodiment, the holding portions 12-6 and 12-7 have a material thickness of about 0.15 mm and are spaced about 3 mm apart. They are preferably made of copper as a good electrical conductor.

Die Gasentladungsröhre 12-1 der Lichtquelle 12 befindet sich in einem möglichst homogenen Magnetfeld, das von einem Magneten 15 erzeugt wird und das am Ort der Lichterzeugung senkrecht zur optischen Achse ausgerichtet ist. Dadurch werden aufgrund des Zeeman-Effektes die σ+, σ- und die π polarisierten Zeeman Komponenten der Spektrallinien erzeugt.The gas discharge tube 12-1 of the light source 12 is in a magnetic field as homogeneous as possible, which is generated by a magnet 15 and which is aligned at the location of light generation perpendicular to the optical axis. As a result, the σ +, σ-, and π polarized Zeeman components of the spectral lines are generated due to the Zeeman effect.

Damit die Aufspaltung der Spektrallinien groß genug ist und die Spektrallinien scharf bleiben, also an jedem Ort in der Lampe um den gleichen Betrag spektral verschoben werden, muss ein ausreichend starkes und homogenes Magnetfeld erzeugt werden. Dafür ist der Magnet 15 in besonderer Weise ausgebildet, wie dies in Fig. 4 dargestellt ist. Der Magnet 15, der das homogene Magnetfeld erzeugt, ist insgesamt aus vier einzelnen Magneten 15-1 bis 15-4 aufgebaut, so dass ein Nordpol auf einer Seite der Gasentladungsröhre 12-1 (in Fig. 4 oberhalb der Gasentladungsröhre) und ein Südpol auf der gegenüberliegenden Seite (in Fig. 4 unterhalb der Gasentladungsröhre) angeordnet ist. Der Nordpol des Magneten 15 ist dann durch die beiden Teilmagnete 15-1 und 15-2 gebildet, deren Nordpole einander gegenüberliegen. In entsprechender Weise ist der Südpol des Magneten 15 gebildet durch die beiden Südpole der Teilmagnete 15-3 und 15-4. Zwischen den gegenüberliegenden beiden Nordpolen der Teilmagnete 15-1 und 15-2 sowie zwischen den gegenüberliegenden Südpolen der Teilmagnete 15-3 und 15-4 ist jeweils ein Spalt gebildet, der sich zur Gasentladungsröhre 12-1 hin weitet. Beide Spalte sind bevorzugt jeweils mit einem Eisenkern 15-5 und 15-6 ausgefüllt, wobei die Form der Enden der Eisenkerne, die der Gasentladungsröhre 12-1 zugewandt sind, im dargestellten Querschnitt konkav ausgebildet sind. Durch diese Ausführungsform des Magneten 15 mit seinen Teilmagneten und den Eisenkemen kann ein besonders homogenes Magnetfeld am Ort der Gasentladung, das durch gestrichelte Linien 15-7 angedeutet ist, erzeugt werden.Thus, the splitting of the spectral lines is large enough and the spectral lines remain sharp, so are spectrally shifted by the same amount at each location in the lamp, a sufficiently strong and homogeneous magnetic field must be generated. For the magnet 15 is formed in a special way, as in Fig. 4 is shown. The magnet 15 which generates the homogeneous magnetic field is constructed as a whole of four individual magnets 15-1 to 15-4, so that a north pole on one side of the gas discharge tube 12-1 (in FIG Fig. 4 above the gas discharge tube) and a south pole on the opposite side (in Fig. 4 below the gas discharge tube) is arranged. The north pole of the magnet 15 is then formed by the two partial magnets 15-1 and 15-2, the north poles facing each other. In a corresponding manner, the south pole of the magnet 15 is formed by the two south poles of the partial magnets 15-3 and 15-4. Between The opposite two north poles of the partial magnets 15-1 and 15-2 and between the opposite south poles of the partial magnets 15-3 and 15-4, a gap is formed in each case, which widens toward the gas discharge tube 12-1 out. Both gaps are preferably filled in each case with an iron core 15-5 and 15-6, wherein the shape of the ends of the iron cores, which face the gas discharge tube 12-1, are concave in the illustrated cross section. By means of this embodiment of the magnet 15 with its partial magnets and the iron cores, a particularly homogeneous magnetic field at the location of the gas discharge, which is indicated by dashed lines 15-7, can be generated.

Von außen werden die Magnete 15-1 bis 15-4 gehalten durch Halterungen 15-8 und 15-9, die bevorzugt aus Eisen ausgebildet sind, um das Magnetfeld zwischen den Teilmagneten 15-1 und 15-4 bzw. 15-2 und 15-3 in geeigneter Weise zu leiten. Die Halterung 15-9 weist eine Öffnung 15-10 auf, durch die das in der Gasentladungsröhre 12-1 erzeugte Licht nach außen und in die Vorrichtung 10 entlang der optischen Achse 14 treten kann.From the outside, the magnets 15-1 to 15-4 are held by brackets 15-8 and 15-9, which are preferably formed of iron, to the magnetic field between the part of the magnets 15-1 and 15-4 or 15-2 and 15th -3 in a suitable manner. The holder 15-9 has an opening 15-10 through which the light generated in the gas discharge tube 12-1 can pass outwardly and into the device 10 along the optical axis 14.

Fig. 6 zeigt ein von der Gasentladungslampe 12 erzeugtes Quecksilberspektrum. Die Spektrallinien, die fetter gedruckt sind, entsprechen der π Komponente, wobei die einzelnen Spektrallinien der π Komponente den verschiedenen Übergängen der verschiedenen Isotope entsprechen. Die einzelnen Linien sind durch die jeweilige Massenzahl der Isotope gekennzeichnet. Zu höheren Frequenzen hin liegen die Spektrallinien der σ+ Komponente und zu niedrigeren Frequenzen hin die Spektrallinien der σ- Komponente. Das Magnetfeld ist am Ort der Gasentladung so stark, dass die spektralen Verteilungen der σ+ und σ- Komponente sich nicht mit der Verteilung der π Komponente überschneiden. Typischerweise beträgt das Magnetfeld dafür etwa 1 bis 1,5 Tesla. Das bedeutet, dass beispielsweise die Spektrallinie von 199Hg der σ- Komponente, die mit der Bezugsziffer 16 gekennzeichnet ist und die der Spektrallinie mit der höchsten Energie der π Komponente entspricht, die mit der Bezugsziffer 18 gekennzeichnet ist, soweit zu niedrigeren Frequenzen hin verschoben ist, dass sie deutlich getrennt ist von der Spektrallinie der π Komponente, die mit der Bezugsziffer 20 gekennzeichnet ist und der Spektrallinie mit niedrigster Energie der π Komponente entspricht, also der Spektrallinie von 204Hg. Fig. 6 shows a generated by the gas discharge lamp 12 mercury spectrum. The spectral lines, which are printed in bold, correspond to the π component, with the individual spectral lines of the π component corresponding to the different transitions of the different isotopes. The individual lines are characterized by the respective mass number of the isotopes. At higher frequencies, the spectral lines of the σ + component and towards lower frequencies are the spectral lines of the σ component. The magnetic field at the location of the gas discharge is so strong that the spectral distributions of the σ + and σ- components do not overlap with the distribution of the π component. Typically, the magnetic field is about 1 to 1.5 Tesla. This means, for example, that the spectral line of 199 Hg of the σ component, which is designated by the reference numeral 16 and corresponds to the spectral line with the highest energy of the π component, which is designated by the reference numeral 18, is shifted so far to lower frequencies in that it is clearly separated from the spectral line of the π component indicated by the reference numeral 20 and the spectral line corresponds to the lowest energy of the π component, ie the spectral line of 204 Hg.

Wie weiter unten erläutert wird, ist die ausreichende Trennung deswegen wichtig, weil die π Komponente letztendlich die Messgröße liefert, da die unverschobene π Komponente absorbiert wird und die verschobenen σ Komponenten eine Referenzgröße bilden, da die verschobenen Spektralkomponenten nicht absorbiert werden, wie das prinzipiell bereits aus dem Stand der Technik ( US 3,914,054 ) bekannt ist.As will be explained below, the sufficient separation is important because the π component ultimately provides the measurand since the nondisplaced π component is absorbed and the shifted σ components form a reference because the shifted spectral components are not absorbed, as is in principle already from the prior art ( US 3,914,054 ) is known.

Schließlich zeigt Fig. 5 noch eine andere Ausführungsform der erfindungsgemäßen Lichtquelle 12, zur Erzeugung der Hg Spektrallinien. Die Gasentladungsröhre 12-1 sowie die Elektroden 12-2 und 12-3 sind wie in dem vorherigen Ausführungsbeispiel aufgebaut. Die Magnete allerdings sind jetzt als Ringmagnete 150-1 und 150-2 ausgebildet und auf gegenüberliegenden Seiten der Gasentladungsröhre 12-1 angeordnet. Der Nordpol des einen Ringmagnets 150-2 befindet sich am äußeren Rand des Rings und der entsprechende Südpol am inneren und bei dem anderen Magnet 150-1 umgekehrt. Auf diese Weise entsteht mit Hilfe zweier einfacher Ringmagnete am Ort der Gasentladung ein relativ homogenes Magnetfeld. Fig. 5 stellt keine maßstabsgetreue Darstellung dar, sondern soll lediglich schematisch den Aufbau andeuten. Insbesondere die Abstände der beiden Ringmagnete 150-1 und 150-2 zueinander sind nicht maßstabsgerecht gezeigt.Finally shows Fig. 5 Yet another embodiment of the light source 12 according to the invention, for generating the Hg spectral lines. The gas discharge tube 12-1 and the electrodes 12-2 and 12-3 are constructed as in the previous embodiment. However, the magnets are now formed as ring magnets 150-1 and 150-2 and disposed on opposite sides of the gas discharge tube 12-1. The north pole of one ring magnet 150-2 is located at the outer edge of the ring and the corresponding south pole is reversed at the inner and the other magnet 150-1. In this way, with the help of two simple ring magnets at the site of the gas discharge, a relatively homogeneous magnetic field. Fig. 5 is not a true to scale representation, but is only schematically indicate the structure. In particular, the distances between the two ring magnets 150-1 and 150-2 to each other are not shown to scale.

Zum vollständigen Verständnis wird im Folgenden der Einsatz der erfindungsgemäßen Gasentladungslampe in der Vorrichtung 10 zum Bestimmen des Quecksilbergehaltes eines Gases im Einzelnen erläutert.For a full understanding, the use of the gas discharge lamp according to the invention in the device 10 for determining the mercury content of a gas is explained in detail below.

Das in der Lichtquelle 12 erzeugte Licht enthält die Zeeman Komponenten der Quecksilberspektrallinien entsprechend Fig. 6, wie dies bereits erläutert wurde.The light generated in the light source 12 contains the Zeeman components of the mercury spectral lines accordingly Fig. 6 as already explained.

Das Licht durchläuft dann eine optische Trennvorrichtung 22, die hier als photoelastischer Modulator 24 ausgebildet ist, in dem aufgrund der doppelbrechenden Eigenschaften des Modulators 24 die linear polarisierte π Komponente anders beeinflusst wird, als die senkrecht dazu polarisierten σ+ und σ- Komponenten. Diese unterschiedliche Beeinflussung erfolgt im Rhythmus einer an einen Piezo 26 angelegten Wechselspannung, die durch eine Spannungsversorgung 28 bereitgestellt wird. In Kombination des photoelastischen Modulators 24 mit einem im Einzelnen nicht dargestellten Polarisator wird einerseits die Polarisation der σ Komponenten gedreht und zu bestimmten Zeiten nur die σ+ und σ- Komponenten durchgelassen und zu bestimmten anderen Zeiten nur die π Komponente. Somit erfolgt mit Hilfe des photoelastischen Modulators 24 eine zeitliche Auftrennung der π Komponenten einerseits und σ+ und σ- Komponenten andererseits.The light then passes through an optical separation device 22, which is here designed as a photoelastic modulator 24, in which, due to the birefringent properties of the modulator 24, the linearly polarized π component influences it differently becomes, as the perpendicular polarized σ + and σ- components. This different influencing takes place in the rhythm of an AC voltage applied to a piezo 26, which is provided by a voltage supply 28. In combination of the photoelastic modulator 24 with a polarizer, not shown in detail, the polarization of the σ components is rotated on the one hand and at certain times only the σ + and σ components are transmitted and at certain other times only the π component. Thus, with the aid of the photoelastic modulator 24, a temporal separation of the π components on the one hand and σ + and σ components on the other hand takes place.

Danach durchläuft das Licht eine Messzelle 30 mit der darin enthaltenen, zu messenden Quecksilberverunreinigung. Die Messzelle weist gegebenenfalls eine Heizung 32 auf. Die unverschobenen Spektrallinien der π Komponente erfahren in der Messzelle 30 eine Absorption an den Quecksilberatomen, wohingegen die verschobenen σ+ und σ- Komponenten keine Absorption aufgrund der Energieverschiebung erfahren, so dass das Licht dieser Linien als Referenzlicht dienen kann.The light then passes through a measuring cell 30 with the mercury contamination to be measured contained therein. The measuring cell optionally has a heater 32. The unshifted spectral lines of the π component undergo absorption in the measuring cell 30 at the mercury atoms, whereas the shifted σ + and σ components do not undergo absorption due to the energy shift, so that the light of these lines can serve as the reference light.

Schließlich wird das Licht auf dem Lichtempfänger 34 empfangen und einem Lock-In Verstärker 38 zugeführt, der mit der dem photoelastischen Modulator 24 zugeführten Wechselspannung getriggert ist. Im Ergebnis wird dann über den Lock-In Verstärker ein Signal erhalten, wie dies qualitativ in Fig. 1 mit der Bezugsziffer 40 gezeigt ist. Der Lichtempfänger 34 empfängt also abwechselnd Referenzlicht und den nicht absorbierten Teil des Messlichts mit der Frequenz der Modulator-steuerspannung, so dass die Differenz hiervon, also die Amplitude der Kurve 40, ein Maß für die Absorption in der Messzelle 30 ist, und damit ein Maß für die Quecksilberkonzentration, so dass aus diesem Signal sich die Konzentration des Quecksilbers in dem zu untersuchenden Gas bestimmen lässt.Finally, the light is received on the light receiver 34 and fed to a lock-in amplifier 38, which is triggered by the alternating voltage supplied to the photoelastic modulator 24. As a result, a signal is then obtained via the lock-in amplifier, as shown qualitatively in FIG Fig. 1 with the reference numeral 40 is shown. The light receiver 34 thus alternately receives reference light and the non-absorbed part of the measuring light with the frequency of the modulator control voltage, so that the difference thereof, ie the amplitude of the curve 40, is a measure of the absorption in the measuring cell 30, and thus a measure for the mercury concentration, so that from this signal, the concentration of mercury in the gas to be examined can be determined.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Vorrichtungcontraption
1212
Lichtquelle, GasentladungslampeLight source, gas discharge lamp
12-112-1
Entladungsröhredischarge tube
12-2 und 12-312-2 and 12-3
Elektrodeelectrode
12-412-4
zylindrischer Entladungsbereichcylindrical discharge area
12-512-5
kugelförmige Abschnittspherical section
12-6 und 12-712-6 and 12-7
scheibenförmigen Halteabschnittdisc-shaped holding section
12-8 und 12-912-8 and 12-9
Öffnungopening
1414
optische Achseoptical axis
1515
Magnetmagnet
15-1 bis 15-415-1 to 15-4
Teilmagnetepart magnets
15-5 bis 15-615-5 to 15-6
Eisenkerneiron cores
15-715-7
Magnetfeldlinienmagnetic field lines
15-8 und 15-915-8 and 15-9
Halterungenbrackets
15-1015-10
Öffnungopening
16, 18, 2016, 18, 20
Spektrallinienspectral
2222
optische Trennvorrichtungoptical separator
2424
Modulatormodulator
2626
Piezopiezo
2828
Spannungsversorgungpower supply
3030
Messzellecell
3232
Heizungheater
3434
Lichtempfängerlight receiver
3838
Lock-In VerstärkerLock-in amplifier
4040
Signalsignal
150-1 und 150-2150-1 and 150-2
Ringmagnetering magnets

Claims (7)

  1. Gas discharge lamp having a gas discharge tube (12-1) with a cylindrical discharge region (12-4), with two electrodes (12-2, 12-3) which are arranged on the outside of the gas discharge tube (12-1), and whereby each electrode (12-2, 12-3) comprises a holding section (12-6, 12-7) each of which contains an opening (12-8, 12-9) and whereby the cylindrical discharge region (12-4) is received by the openings (12-8, 12-9) in a form-fitting way, characterized in that the holding sections are planar and disc-shaped, and the cylinder axis of the cylindrical discharge region (12-4) is located perpendicular to the planar holding sections (12-6, 12-7).
  2. Gas discharge lamp according to any preceding claim, characterized in that the holding section (12-6, 12-7) has a thickness of approximately 0.15 mm and the holding sections (12-6, 12-7) of the two electrodes (12-2, 12-3) are spaced apart by approximately 3 mm.
  3. Light source with a gas discharge lamp (12) according to any one of the preceding claims, characterized in that magnets (15, 15-1 to 15-4, 150) are provided between which a substantially homogeneous magnetic field (15-7) can be generated.
  4. Light source according to claim 3, characterized in that a north pole of a magnet is arranged on one side of the gas discharge tube and a south pole of a second magnet is arranged on the opposite side, and both, the north pole and the south pole are composed of two sub-magnets (15-1 and 15-2; 15-3 and 15-4) which correspondent poles lie opposite to each other and form the north and the south pole respectively, whereby a gap is formed between the opposing two north poles and between the opposing south poles respectively, and the gap widens towards the gas discharge tube (12-1).
  5. Light source according to claim 4, characterized in that each gap is filled with an iron core (15-5, 15-6), whereby the shape of the end of the iron core which faces the gas discharge tube (12-1) is preferably concave .
  6. Light source according to claim 3, characterized in that the magnets are arranged on opposite sides of the gas discharge tube (12-1) and are designed as ring magnets (150-1 and 150-2) which one pole is located at the inner edge and the other is located at the outer edge.
  7. Spectroscopic mercury lamp with a light source according to any one of claims 3 to 6, characterized in that the gas discharge tube (12-1) consists of a quartz glass and contains mercury.
EP10192074A 2009-12-18 2010-11-22 Gas discharge lamp with external electrode Active EP2337059B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009059705A DE102009059705A1 (en) 2009-12-18 2009-12-18 Gas discharge lamp

Publications (2)

Publication Number Publication Date
EP2337059A1 EP2337059A1 (en) 2011-06-22
EP2337059B1 true EP2337059B1 (en) 2012-04-04

Family

ID=43728980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10192074A Active EP2337059B1 (en) 2009-12-18 2010-11-22 Gas discharge lamp with external electrode

Country Status (7)

Country Link
US (1) US8482201B2 (en)
EP (1) EP2337059B1 (en)
JP (1) JP5525431B2 (en)
KR (1) KR101665925B1 (en)
CN (1) CN102122603B (en)
AT (1) ATE552608T1 (en)
DE (1) DE102009059705A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11608458B2 (en) 2019-12-19 2023-03-21 Prc-Desoto International, Inc. Adhesion-promoting interlayer compositions containing organic titanates/zirconates and methods of use
US11173692B2 (en) 2019-12-19 2021-11-16 Prc-Desoto International, Inc. Free radical polymerizable adhesion-promoting interlayer compositions and methods of use
US11624007B2 (en) 2020-01-29 2023-04-11 Prc-Desoto International, Inc. Photocurable adhesion-promoting compositions and methods of use
CN113725052A (en) * 2021-07-28 2021-11-30 枝江久熠照明电器有限公司 Ultraviolet lamp tube processing is with integrative device of tensile notes mercury

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914054A (en) 1972-09-13 1975-10-21 Us Energy Zeeman effect absorption spectrometer
GB1420044A (en) * 1972-09-13 1976-01-07 Us Energy Research Dev Adminis Zeeman effect absorption spectrometer
US4457623A (en) * 1981-02-23 1984-07-03 The Perkin-Elmer Corporation Atomic absorption spectrophotometer providing background correction using the Zeeman effect
US5013966A (en) 1988-02-17 1991-05-07 Mitsubishi Denki Kabushiki Kaisha Discharge lamp with external electrodes
US5889368A (en) * 1997-08-11 1999-03-30 Osram Sylvania Inc. High intensity electrodeless discharge lamp with particular metal halide fill
EP0948030A3 (en) * 1998-03-30 1999-12-29 Toshiba Lighting & Technology Corporation Rare gaseous discharge lamp, lighting circuit, and lighting device
JP4091166B2 (en) * 1998-05-27 2008-05-28 オスラム・メルコ株式会社 Light source device
US6674250B2 (en) * 2000-04-15 2004-01-06 Guang-Sup Cho Backlight including external electrode fluorescent lamp and method for driving the same
JP3080172U (en) * 2001-03-09 2001-09-14 ドン パク スン Discharge device and plasma gas generator using the same
JP2003017005A (en) 2001-06-27 2003-01-17 Harison Toshiba Lighting Corp Low-pressure discharge lamp
EP1296357A2 (en) * 2001-09-19 2003-03-26 Matsushita Electric Industrial Co., Ltd. Light source device and liquid crystal display employing the same
JP3927107B2 (en) * 2002-09-25 2007-06-06 ハリソン東芝ライティング株式会社 Low pressure discharge lamp
JP4027849B2 (en) * 2003-06-19 2007-12-26 ハリソン東芝ライティング株式会社 Low pressure discharge lamp
JP4249689B2 (en) 2003-11-25 2009-04-02 Necライティング株式会社 External electrode type discharge lamp and manufacturing method thereof
KR20060132883A (en) * 2004-01-22 2006-12-22 마츠시타 덴끼 산교 가부시키가이샤 External-electrode discharge lamp, external-electrode discharge lamp manufacturing method, and back light unit
CN100426092C (en) * 2006-03-01 2008-10-15 友达光电股份有限公司 Back light module and light source structure thereof
WO2008129481A2 (en) * 2007-04-24 2008-10-30 Koninklijke Philips Electronics N.V. Low-pressure gas discharge lamp
KR101386573B1 (en) * 2007-11-23 2014-04-18 엘지디스플레이 주식회사 Fluorescent lamp and liquid crystal display device having the same
KR20090078155A (en) * 2008-01-14 2009-07-17 삼성코닝정밀유리 주식회사 Tube type lamp and backlight unit having the same
JP2011513909A (en) * 2008-02-25 2011-04-28 イェヒ−オル ライト クリエーション リミテッド High efficiency gas filling lamp

Also Published As

Publication number Publication date
KR20110070827A (en) 2011-06-24
US8482201B2 (en) 2013-07-09
JP5525431B2 (en) 2014-06-18
EP2337059A1 (en) 2011-06-22
ATE552608T1 (en) 2012-04-15
KR101665925B1 (en) 2016-10-13
DE102009059705A1 (en) 2011-06-22
JP2011129524A (en) 2011-06-30
US20110148294A1 (en) 2011-06-23
CN102122603A (en) 2011-07-13
CN102122603B (en) 2014-11-12

Similar Documents

Publication Publication Date Title
EP2753907B1 (en) Ionization vacuum measuring cell
DE112009001895B4 (en) Ion gate of a dual polarity ion mobility spectrometer and method therefor
EP2337059B1 (en) Gas discharge lamp with external electrode
DE3605911A1 (en) GLIMMENT CHARGE LAMP AND ITS USE
CH615532A5 (en)
DE102007056584B4 (en) Excitation of the ions in an ICR cell with structured trapping electrodes
CH707685A1 (en) Ionization vacuum measuring cell with shielding.
DE2628422C3 (en) Methods of mass spectroscopy
DE19861106A1 (en) Ionization chamber for an ion mobility spectrometer (IMS)
DE2433781C2 (en) Electron source
DE102012008249A1 (en) Improved resolution for ion mobility spectrometer
EP2778630A1 (en) Nuclear magnetic resonance flow meter
DE3522340A1 (en) LENS ARRANGEMENT FOR FOCUSING ELECTRICALLY CHARGED PARTICLES AND MASS SPECTROMETER WITH SUCH A LENS ARRANGEMENT
DE1498935C3 (en) Mass spectrometer for gases of low mass number
EP0150389A1 (en) Device for measuring the internal pressure of an industrial built-in vacuum switch
EP0601370A1 (en) Dielectric resonator
EP0221339A1 (en) Ion cyclotron resonance spectrometer
DE2048862A1 (en) Device for spectrophotometri see analysis
EP2336748A1 (en) Method and device for measuring the mercury content of a gas
DE2701395C3 (en) Ion source for the chemical ionization of atoms and molecules
EP3062332A1 (en) Method and device for chemical ionization of a gas mixture
DE2949851C2 (en) Device for magnetizing a convergence device for inline color picture tubes
DE2329190A1 (en) X-RAY SPECTROMETERS
DE10105773C1 (en) Fourier transformation mass spectrometer has detector electrode adjacent reversal point of ion trajectory between 2 coaxial ion mirrors
DE102011010138B4 (en) Penning type cold cathode pressure gauge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20110628

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 65/04 20060101ALI20111005BHEP

Ipc: H01J 61/067 20060101AFI20111005BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 552608

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SICK AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010000600

Country of ref document: DE

Effective date: 20120606

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120404

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010000600

Country of ref document: DE

Owner name: SICK AG, DE

Free format text: FORMER OWNER: SICK MAIHAK GMBH, 79183 WALDKIRCH, DE

Effective date: 20120628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 552608

Country of ref document: AT

Kind code of ref document: T

Owner name: SICK AG, DE

Effective date: 20120719

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120804

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120705

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

26N No opposition filed

Effective date: 20130107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010000600

Country of ref document: DE

Effective date: 20130107

BERE Be: lapsed

Owner name: SICK MAIHAK G.M.B.H.

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 552608

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 14

Ref country code: DE

Payment date: 20231120

Year of fee payment: 14