EP2336679B1 - Process and control system for a reversible heat pump including thermoelectric modules - Google Patents

Process and control system for a reversible heat pump including thermoelectric modules Download PDF

Info

Publication number
EP2336679B1
EP2336679B1 EP20100192654 EP10192654A EP2336679B1 EP 2336679 B1 EP2336679 B1 EP 2336679B1 EP 20100192654 EP20100192654 EP 20100192654 EP 10192654 A EP10192654 A EP 10192654A EP 2336679 B1 EP2336679 B1 EP 2336679B1
Authority
EP
European Patent Office
Prior art keywords
thermoelectric
voltage
heat
switches
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20100192654
Other languages
German (de)
French (fr)
Other versions
EP2336679A1 (en
Inventor
Mehdi Ait Ameur
Maxime Herbert
Jean-Claude Da Rocha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acome SCOP
Original Assignee
Acome SCOP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acome SCOP filed Critical Acome SCOP
Publication of EP2336679A1 publication Critical patent/EP2336679A1/en
Application granted granted Critical
Publication of EP2336679B1 publication Critical patent/EP2336679B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2107Temperatures of a Peltier element

Definitions

  • the present invention relates to heating or air conditioning installations, and relates to a control system of a reversible heat pump of the thermoelectric type, that is to say comprising thermoelectric modules also called Pelletier effect cells (CEP) .
  • thermoelectric modules also called Pelletier effect cells (CEP) .
  • the CEP each typically have two faces, one of which is of a first type called “cold” and the other of a second type called “hot", a heat transfer can be exerted from one side to the other depending on the direction of an electric current injected into the cell. It is understood that an inversion of the heat exchange allows a reversible operation of the heat pump, for example to cool a living room in summer by evacuating outward heat.
  • WO 2006/070096 describes a mode of power supply of the CEP, using a rectified AC low voltage rather than a DC voltage.
  • CEPs are electrically connected in series and must be activated with voltages whose value is set to obtain an operating point of the heat pump. The voltage is thus fixed for a thermoelectric unit, so that an operational performance coefficient (COP) greater than 1 can be obtained.
  • COP operational performance coefficient
  • This choice is predetermined according to the expected operating conditions. It is understood that the temperature difference between the cold face and the hot face of the CEP depends on the chosen voltage.
  • This document describes a control system according to the preamble of claim 1.
  • thermoelectric modules mainly concern the production of refrigeration for electronic devices or travel refrigerators, that is to say applications where the heat exchange power is much lower than that required for a domestic heating system. typically provides a heat input power of a few kilowatts to 25 kW.
  • COP real coefficient of performance
  • the object of the present invention is to propose a reversible thermoelectric heat pump control system which allows a better use of the thermoelectric modules.
  • the subject of the present invention is a control system of the aforementioned type, characterized in that the power supply unit comprises a plurality of devices for adjusting the voltage delivered by each of the output connections; setting comprising switches, at least a part of the adjusting devices being adapted to deliver a plurality of predetermined voltage levels according to the state of the switches of said adjusting device, and in that the control device is connected to the switches and adapted to control different switching arrangements of the switches for selectively supplying at least a portion of the plurality of thermoelectric units, and secondly, selecting the predetermined voltage level supplying the powered thermoelectric units.
  • the control device advantageously makes it possible to configure the switches of a switching device to increase or lower, or even cut, the power supply of some thermoelectric units that consume the most electricity when the heating or cooling requirements are low. Selecting and adjusting the voltage of the activated thermoelectric units makes it possible to operate their thermoelectric modules (PEC) as close as possible to the ideal operating bridge and thus to increase the overall COP of the heat pump.
  • PEC thermoelectric modules
  • an appropriate control can then be issued by the control device immediately to satisfy the demand: it can be to supply all the thermoelectric units to a maximum power level. and / or supply one or more thermoelectric units of greater power.
  • the system can be particularly simple and responsive through the use of the switching device.
  • control device is as defined in claim 2.
  • servocontrol can be achieved simply and economically, the control device for regulating the ambient temperature of one or more premises by minimizing the number of CEP and / or the supply voltage of these CEP.
  • a switch may also be provided upstream of the converter to completely cut the power supply.
  • control device is as defined in claim 5.
  • the control device avoids using a continuous power source, which is expensive and bulky, and it can be obtained a rectified low-voltage alternative power supply. .
  • thermoelectric units and the associated supply units can be further increased by such selective operation as required.
  • the second output connections are each associated with an inverter device of the direction of the current that can be actuated by the control device.
  • the reversible nature of the power supplied to one or more thermoelectric units in a simple way, to switch from heating mode to cooling mode. At least for one of these invert thermoelectric units power supply, it can provide a greater heating power.
  • the control mode may, as needed, be simplified for one of the cooling or heating modes, for example by providing in the cooling mode to control only the thermoelectric units which are connected to the second output connections.
  • Another object of the present invention is to propose a reversible thermoelectric heat pump whose electrical consumption is better adapted to the real needs in heat transfer.
  • thermoelectric heat pump comprising two heat exchange circuits using a coolant and a plurality of thermoelectric heat transfer units each comprising a predetermined number of thermoelectric modules adapted to transfer the heat transfer medium. heat between the two circuits, characterized in that it comprises the control system according to the invention.
  • a heat pump can be in the form of a device connecting to the urban electrical network and can be directly installed in a building by connecting to an existing central heating system or nine forming the first circuit, such as a floor heating system, and a heat exchange system with the external environment forming the second circuit.
  • the exchange system with the outside can be inter alia network type or tank buried in the ground, or exchange system with air or a body of water.
  • a first one of the thermoelectric units comprises two series of thermoelectric modules, each of the two series being powered independently of one another by one of the first output connections of the power supply unit.
  • a first and a second thermoelectric units comprise the same number of thermoelectric modules, the second power supply unit receiving a voltage at least twice the maximum voltage that can be delivered to said first power supply unit .
  • the second power supply unit can be selected in priority or by default as soon as the need for heat transfer exceeds a threshold, and deactivated in priority or by default when the need for heat transfer is below a threshold inferior.
  • a threshold for example takes into account a temperature outside the room heated / refreshed by the heat pump.
  • it can be provided several second thermoelectric units More generally, it is thus allowed to expand the range of operating points that can be obtained without too much use too many thermoelectric units.
  • the reversible thermoelectric heat pump comprises a device for reducing, at at least one of the thermoelectric units, the transfer of heat between the two heat exchange circuits in the heat exchange zone defined between two exchangers of a thermoelectric unit not electrically powered.
  • the device may comprise members reducing or cutting the circulation of heat transfer fluid in the thermoelectric units.
  • an actuator may be provided to modify the thermal conductivity to lower the thermal conductivity of the interface between the heat transfer fluid and the exchange surface, the actuator allowing for example to separate the heat exchange zones of the thermoelectric modules.
  • thermoelectric unit Two motor-valves can be provided per thermoelectric unit.
  • the valve motor (s) can thus advantageously form the device for reducing the heat transfer.
  • Another object of the present invention is to propose a method of controlling a reversible thermoelectric heat pump making it possible to adapt the level of electrical consumption to the actual needs in heat transfer.
  • the heat transfer between two exchangers of an electrically unpowered thermoelectric unit is reduced at least in a heating mode of the reversible thermoelectric heat pump.
  • This lowering can be obtained by stopping a circulation of the coolant at one or more of the thermoelectric units, for example those which are not electrically powered. In the heating mode of the heat pump, this minimizes the adverse heat loss by entropy. Indeed, heat is diffused from the fluid flowing in the thermoelectric units not electrically powered to the environment.
  • thermoelectric modules 3 for heat transfer.
  • the control system 2 has a power supply unit 10, corresponding here to a modular system with multiple DC outputs, connected for example to a source of alternating current typically 230V.
  • the thermoelectric modules 3 are arranged in groups of six in thermoelectric units 41, 42, 43, 44 respectively which define a heat exchanger system 4 of the heat pump.
  • the number of thermoelectric modules 3 is not fixed and may be variable, for example and not limited to between two and ten per thermoelectric unit 41, 42, 43, 44.
  • thermoelectric units 41, 42, 43, 44 shown in FIG. figure 1 include thermoelectric modules arranged in a single series 30, it should be understood that this assembly is only one option among others.
  • thermoelectric units 41, 42, 43, 44 thermoelectric modules 3 arranged differently or other kinds of thermoelectric units 40 as illustrated in FIG. figure 2 .
  • the thermoelectric unit 40 shown in FIG. figure 2 differs from the thermoelectric units 41, 42, 43, 44 in that it has two series 30 'of three thermoelectric modules 3, each connected to two similar outputs Sa, Sb of the power supply unit 10 of the heat pump.
  • the number of so-called cold plates may in this case be two per thermoelectric unit 40.
  • each of the outputs Sa, Sb of the power supply unit 10 may be associated with a rectified low-voltage supply circuit.
  • the power supply unit 10 thus delivers a rectified current in full alternation with an optimized power.
  • the frequency obtained may be of the order of 100 Hz for example.
  • thermoelectric units 41, 42, 43, 44 shown in FIG. figure 1 could be replaced by the thermoelectric unit 40 shown in FIG. figure 2 , with adaptation (it may be a simple doubling) of the corresponding rectified low-voltage supply circuit, present in the power supply unit 10.
  • the heat pump uses at least one circulation of a coolant (s) such as water.
  • a coolant such as water.
  • the thermoelectric unit 40 comprises a first exchanger 40a and a second exchanger 40b located above the first.
  • the respective heat transfer fluids circulate in channels to ensure heat exchange with the flat outer face of the corresponding exchanger 40a, 40b.
  • the first exchanger 40a has a fluid inlet E1 located on the right side of the thermoelectric unit 40 and an oppositely arranged output O1.
  • the second exchanger 40b has a fluid inlet E2 on the left side and an opposite outlet 02. This second exchanger 40b, with its exchange face facing downwards, may be identical in all respects to the first exchanger 40a.
  • a motor-valve V1 makes it possible to stop the circulation of the first fluid in the first exchanger 40a and a motor-valve V2 makes it possible to stop the circulation of the second fluid in the second exchanger 40b.
  • the figure 3 illustrates thus the use of motor-valves V1, V2 each adapted to selectively cut the circulation of coolant in circuit portions of a thermoelectric unit 40.
  • valve is usable, preferably with a control member of the opening / closing of the valve of the valve.
  • the motor-valves V1, V2 are each adapted to close the fluid communication with the exchanger 40a, 40b. It is understood that the circulation of the first and second fluids can, however, continue through other parts of a circuit. This can be achieved for example by using motor-valves V1, V2 which interrupt or short circuit only a sinuous circulation in the exchanger 40a, 40b, while a longitudinal or external circulation to the exchanger 40a, 40b is allowed.
  • thermoelectric unit 40 any one and preferably several of the thermoelectric units 41, 42, 43, 44 may be equipped similarly with at least one valve motor.
  • the advantage of short-circuiting circuit parts formed at the level of the thermoelectric units 40, 41, 42, 43, 44 is to satisfy as closely as possible the specific needs parameterized for the heat pump, with an optimization of the COP, in particular when in a dwelling or similar room equipped with the heat pump, the heat transfer needs vary from one place to another.
  • the motor-valves V1, V2 are closed in particular when there is no particular need for heat transfer by the corresponding heat exchange circuit.
  • the closing of the motor-valves V1, V2 is advantageous in the heating mode of the heat pump, in order to avoid thermal coupling between the faces of the thermoelectric modules 3 that are not powered, and therefore heat exchanges in the opposite direction to those desired. These entropy losses of the exchanger system can thus be avoided.
  • the heat pump may be equipped with any means for varying, at one or more of the thermoelectric units 40, 41, 42, 43, 44, a heat transfer coefficient between the two heat exchangers 40a, 40b.
  • a device provided with motor-valves V1, V2 or arranged differently thus makes it possible to modify the heat exchange conditions so as to lower the overall thermal conductivity.
  • the entropic effect is favorable since one seeks to evacuate heat from the ambient environment. Therefore, it is possible to use a thermal coupling / decoupling device configured to stop the heat-dissipating hydraulic circulation and / or locally increase the thermal resistance by other known means, in the heating mode, and to circulate the heat transfer fluid. and / or locally lowering the thermal resistance by any other known means, in the cooling mode.
  • the heat pump may be particularly suitable for low temperature heating and cooling applications for the home.
  • the heat pump may be in the form of a housing or apparatus with a front panel control panel (not shown).
  • a control interface 6 and the exchanger system 4 are for example arranged in the housing.
  • the heat pump is typically intended for heating residential or professional premises, but also to cool these premises through the use of thermoelectric modules 3.
  • the thermoelectric heat pump is therefore preferably reversible. Many parts of a living space can be heated, respectively refreshed, using heat exchange loops connected to the housing.
  • the living quarters in question are typically single-family dwellings ranging from a few-room apartment to a single-family house.
  • the power is typically provided between three and thirty kilowatts of maximum heating power, without the latter value is an upper limit.
  • thermoelectric module 3 which pumps heat is typically at a temperature colder than the face which evacuates heat.
  • a set temperature can be entered via a programming module or comparable device of the heat pump, which module is for example connected to the control interface 6 and is part of the control device.
  • the temperature of the face of the thermoelectric module 3 which pumps heat and the set temperature form a pair of parameters that are decisive for obtaining a maximum coefficient of performance (COP). Indeed, there is an optimum DC supply voltage for which a thermoelectric module 3 has a maximum COP.
  • the supply current is preferably a full-alternating rectified alternating current.
  • the optimum DC voltage is multiplied by a correction coefficient in order to determine the amplitude of the corresponding AC voltage. For example, for a sinusoidal alternating current, the optimal DC voltage is multiplied by a coefficient equal to ⁇ 2.
  • the thermal heating requirement is used here as a reference to determine the number of PECs or thermoelectric modules 3 required in the heat pump because this need is greater than that of the cooling thermal requirement, which would result in a smaller and therefore insufficient number of PELs. for heating.
  • thermoelectric units 41, 42, 43, 44 of the heat pump With reference to the figure 1 , there is shown a control diagram of the thermoelectric units 41, 42, 43, 44 of the heat pump.
  • the control system 2 comprises a connection 7 to an electric power source 8 and a power supply unit 10 adapted to supply said thermoelectric units 41, 42, 43, 44 from the electric power source 8.
  • the Power source Electric 8 provides an alternative power supply.
  • the current source can then be the urban network (at 230 V as is the case in many European countries in particular).
  • Several protection fuses F are provided in the power supply unit 10.
  • the number of thermoelectric modules 3 represented is twenty-four in the example illustrated in FIG. figure 1 but this number can of course be different, for example higher to meet the heating power requirements.
  • the control system 2 can select from one of a plurality of heating modes obtained by an adjustment of the power supply unit 10.
  • thermoelectric modules 3 a wide range of heating modes which can cover the variety of thermal needs in a dwelling or similar room, these modes being distinguishable relative to each other by a different number of active thermoelectric modules 3 and / or a supply voltage U1, U2, U3 , U4 different across the thermoelectric units 41, 42, 43, 44.
  • the power supply unit 10 has several output connections S1, S2, S3, S4 for transmitting a supply voltage to each of the thermoelectric units 41, 42, 43, 44.
  • a switching device 20 there is provided in association with the control device a switching device 20.
  • the control device comprises an electronic control unit ECU connected to the control interface 6 and making it possible to modify the state of the switches of the switching device 20.
  • the controller and the power supply unit 10 may be formed in respective housings connected to each other.
  • the configuration of the switching device 20 can be modified in various ways while remaining in a heating mode according to, on the one hand, the state of switches C01, CO2, CO3, CO4 for selecting the thermoelectric units 41, 42, 43, 44 respectively, and on the other hand, the state of switches C11, C12, C21, C22 serving to select the supply voltage level in two of the thermoelectric units.
  • the supply corresponds to a rectified low-voltage alternative.
  • a full-wave rectification bridge 51 for example in the form of a diode bridge, is here mounted between the output connection S1 and the two outputs defined by a transformer T1 or analog converter for adjusting the voltage.
  • the transformer T1 makes it possible to deliver a voltage which is a function of the state of the switches I1, I2 of the switch C11.
  • Servo feedback with the C11 switch can be implemented through a collection of information representative of a heating need by the electronic control unit ECU.
  • the information representative of the heating need is for example one or more characteristic temperatures of the two heat exchange circuits and the set temperature.
  • Such a control is for example present for each of the thermoelectric units 41, 42, 43, 44.
  • the switching device 20 comprises switches C01, C02, C03, C04, C11, C12, C21, C22 each comprising several switches.
  • This kind of switching device 20 is simple to operate because it is not necessary to make a fine and progressive adjustment of the current or voltage delivered.
  • the embodiment of the figure 1 provides a switching device 20 adapted to adjust output voltages U1 and U2 by means of switches C11, C12 each placed on the side of the secondary windings, between a transformer T1, T2 of step-down type and the bridge double recovery alternation 51, 52 associated, any other suitable configuration can be used.
  • the voltage-reducing type transformers T1, T2, or the like may alternatively or in a complementary manner be provided with switches which are adapted to short-circuit a number of turns of the primary windings.
  • the output connections S3, S4 may each be associated with a current-reversing device, for example located at the output of the transformer 53, 54 respectively associated with the output connection S3, S4.
  • This inverter device can be actuated by the control device.
  • the reversible nature of the power supplied to the thermoelectric units 43, 44 makes it easy to switch from the heating mode to the cooling mode. At least for one of these thermoelectric units 43, 44 with supply reversal, it is possible to provide a greater heating power.
  • switches C13, C14 in connection with the unit Electronic control ECU are provided to allow the current reversal.
  • the refresh mode may correspond to the closing of the switches I4 of the corresponding switch C13, C14 (the switches I3 being in an open state). Less power can also be obtained by using only one of the outputs S3, S4 to selectively power one or the other of the thermoelectric units 43, 44.
  • each of the full-wave rectification bridges 51, 52 corresponds to an output S1, S2 defined by two junctions of the rectifier bridge.
  • the switching device 20 comprises at least one switch C11, C12 configurable according to two positions or modes.
  • the converters here formed by the transformers T1, T2 have two outputs defined by four terminals. Two predetermined voltage levels, each much lower than the voltage level of the electric power source (8), are delivered at these outputs. In this nonlimiting example, it is the state of the switches C11, C12 of the switching device 20 that select respectively a predetermined output voltage level resulting from a combination between the two predetermined levels delivered by a converter.
  • the figure 1 represents a configuration of the switching device 20, wherein the ECU electronic control unit controls a power mode that uses only two of the power supply circuits, through switches C01, C02. It is understood that from the point of view of the ECU control unit, simple all or nothing commands can be used to parameterize the configuration of the switching device 20.
  • the pump has a control device adapted to configure the switching device 20 , so as to selectively activate the thermoelectric units 41, 42, 43, 44.
  • thermoelectric units 41, 42, 43, 44 can be powered with different non-zero voltage levels, given the structure of some of the power circuits present in the power supply unit 10. So, the The controller also selects a predetermined voltage level from a plurality of voltage levels.
  • the following example illustrates, in connection with the embodiment of the figure 1 , the variety of power modes that can be selected for the heat pump.
  • the ECU electronic control unit of the control device here provides on-off output commands for configuring the respective switches I0, I1, I2 of the power supply circuits associated with the thermoelectric units 41, 42, and the respective switches I0, I3, I4 of the power supply circuits associated with the thermoelectric units 41, 42.
  • thermoelectric units 41, 42 Uses of two thermoelectric units 41, 42 in six modes of supply in heating mode
  • the two tables above illustrate the selection of the different power modes according to the on-off commands of the electronic control unit ECU.
  • the figure 1 illustrates the mode of supply in which there are two thermoelectric units 41, 42 which are supplied at 35 VAC / 14 A (see column in bold), while the other two thermoelectric units 43, 44 are not powered. Conversely, in the sixth mode of supply indicated in the tables above, only the thermoelectric units 43, 44 are powered with 220V.
  • thermoelectric units 43, 44 Uses of the last two thermoelectric units 43, 44 in the six power modes in heating mode
  • thermoelectric units 43, 44 an inversion of the supply current is allowed for these two thermoelectric units 43, 44.
  • the closing of the switches 13 while leaving the switches 14 open can make it possible to supply a power supply adapted for a heating mode, while the reverse setting provides a refresh mode.
  • the output connections S3, S4 are each associated with an inverter device of the direction of the current that can be actuated by the electronic control unit ECU of the control device.
  • an inverter device may be used for any of the output connections S1, S2, S3, S4 of the power supply unit 10 and may more generally be in any suitable form.
  • the switching device 20 may comprise switches C11, C12 varying the supply voltage level by a factor of two or greater by two at the respective output connections S1, S2.
  • the feeding patterns shown above are only examples that can be completed and / or replaced by other modes of feeding.
  • the ECU electronic control unit can use different analog inputs, for example provided using first temperature sensors 31 and second temperature sensors 32.
  • the first sensors 31 deliver for example signals representative of characteristic temperatures of the two heat exchange circuits, such as the flow and return temperatures of the heat transfer fluid in the emitter circuit, the flow and return temperatures of the heat transfer fluid in the external circuit.
  • the second temperature sensors 32 make it possible to measure the temperature outside the dwelling or similar room equipped with the heat pump, as well as the ambient temperature of the dwelling. More generally, the set of temperature sensors 31, 32 is provided to provide sufficient information for an estimation of the conditions in which the heat transfer is carried out.
  • a CAN converter from the ECU electronic control unit is used to collect the different inputs.
  • the exploitation of the corresponding information can be performed at the electronic control unit ECU of the control device.
  • the temperature setpoint (it may be a desired ambient temperature) indicated by the user is taken into account so as to determine the temperature that should be reached in the heat transfer fluid circuits to meet the user's request.
  • the knowledge of the overall heat resistance of the exchanger and preferably the external temperature and the overall thermal resistance of the habitat can allow a correlation between a set temperature set directly by a user and the actual need for heat transfer.
  • servocontrol of a parameter representative of the heat transfer requirement for example an average water temperature obtained from the temperatures measured by two of the sensors 31, can be implemented by using a corresponding setpoint parameter.
  • This setpoint parameter takes into account the setpoint temperature set by the user.
  • the difference between the reference parameter and the corresponding parameter estimated in real time is calculated by using the measurements of the sensors 31, 32.
  • An algorithm of the ECU electronic control unit is provided. to perform this calculation and perform a correlation, according to said temperature setpoint and the signals delivered by all the first and second temperature sensors 31, 32, between heat transfer requirements and a single optimum operating point. For this, calculating the deviation from the setpoint parameter allows the room thermostat to deliver the heating or cooling command.
  • the operating point was thus determined using the algorithm of the electronic control unit ECU to maximize the coefficient of performance of the heat pump.
  • the algorithm typically calculates in this case two parameters such as the heating power and the average water temperature of that of the circuits which is heat emitter. This pair of parameters makes it possible, for example by using a correspondence table, to find the number of thermoelectric modules 3 that are optimal for the need as well as the optimal current for These thermoelectric modules 3. The choice of the power mode is then in the configuration that is closest to the optimization parameters thus determined.
  • the number of thermoelectric modules 3 in operation can advantageously evolve dynamically to meet a large number of pairs (amount of heat for heating / average temperature of the water of the emitter circuit) and (amount of heat for the cooling / average water temperature of the transmitter circuit). Since this torque varies as a function of time and the design of the overall system integrating the heat pump, the process of determination by the algorithm of the number of thermoelectric modules 3 in operation must be repeated regularly, with a simultaneous determination of the mode of operation. optimal supply of this determined number of modules 3 which satisfies the real need for the minimum power consumption.
  • the electronic control unit ECU shown on the figure 1 may include a parameterization module for setting a predetermined number of predetermined operating points of the heat pump, so as to define different configurations each to better correspond to a specific need for heat transfer.
  • the operating points are parameterized by the parameterization module as a function, on the one hand, of a number of thermoelectric modules 3 which are activated, and on the other hand of supply voltages each associated with the thermoelectric modules 3 which are enabled.
  • thermoelectric module 3 With reference to the figure 5 it is understood that increasing the supply voltage assigned to each thermoelectric module tends to lower the COP. That is why the control device can advantageously configure the switching device 20 so as to select a heating mode with a number of thermoelectric modules 3 sufficient to meet the needs for heat transfer, and to deliver a sufficient supply current just to optimize the COP. For a pair of temperature measurements in the two circuits, there is a single supply current for which a thermoelectric module 3 considered has a maximum COP. In other words, it is possible to associate at such a point of operation a single pair of heat flows for the heat transfer in the two circuits transmitter and receiver of heat.
  • the figure 5 thus shows that there is an optimum operating point depending on the power required for the PC heating required for different setpoint temperatures PC (20), PC (25) and PC (30).
  • the corresponding COP curves COP (20), COP (25) and COP (30) are indicated in relation to the y-axis placed to the left in the figure 5 .
  • This kind of modeling called "water law" in the case where the coolant is water allows to find the optimal supply voltage of the thermoelectric modules 3 according to the power requirements.
  • One of the advantages of the invention is to provide the operator with a means of optimizing the power consumption of the heat pump while using thermoelectric modules 3 which may be identical.
  • the optimization is automated to ensure efficient operation of the heat pump.
  • the speed of response and the flexibility of the control system (2) are also advantages of such a heat pump.
  • the power supply unit 10 may be relatively compact so as to be integrated with a microcontroller in a single control unit of the heat pump. It is understood that the voltage control devices provided in the power supply unit 10 may be in different forms from those presented in FIG. figure 1 , to provide a plurality of separate voltages, each assigned to one of the thermoelectric units 41, 42, 43, 44. One or more electrical connectors may be provided with control links to enable the power supply unit 10 to be connected to control device of the heat pump. The control connections of the electrical connector allowing in this case the selective activation of each of the thermoelectric units 41, 42, 43, 44, as well as the selection of the configurations of the switching device 20.
  • control system 2 is not limited to the particular examples described in connection with the figures 1 and 2 and can use different types of servo means for controlling a switching device 20, based on signals and / or data representative of one or more set temperatures and one or more measured temperatures.
  • the power supply unit 10 may be in various forms and may have physically separate power supplies and / or be connected to a plurality of power sources. For example, it is possible to use, depending on the operating conditions, at least one current of an urban network and / or the current supplied by additional equipment with photovoltaic cells or converting into electricity an external energy.
  • the thermal coupling / decoupling between the sources supplying the exchangers of the thermoelectric units 41, 42, 43, 44 can be used in a heat pump only in association with the selective supply of these units.
  • the adjustment of the voltage delivered by each of the output connections S1, S2, S3, S4 is therefore optional and can be suppressed.
  • the control device allows a selective setting of the number of thermoelectric modules 3 and activates a suitable configuration of the thermal coupling / decoupling device associated with the thermoelectric units 40, 41, 42, 43, 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Temperature (AREA)
  • Air Conditioning Control Device (AREA)

Description

La présente invention est relative aux installations de chauffage ou de climatisation, et concerne un système de contrôle d'une pompe à chaleur réversible du type thermoélectrique, c'est-à-dire comportant des modules thermoélectriques aussi appelés Cellules à effet Pelletier (CEP).The present invention relates to heating or air conditioning installations, and relates to a control system of a reversible heat pump of the thermoelectric type, that is to say comprising thermoelectric modules also called Pelletier effect cells (CEP) .

Les CEP présentent chacune typiquement deux faces dont l'une est d'un premier type dit « froid » et l'autre d'un second type dit « chaud », un transfert de chaleur pouvant s'exercer d'une face à l'autre en fonction du sens d'un courant électrique injecté dans la cellule. On comprend qu'une inversion de l'échange de chaleur permet un fonctionnement réversible de la pompe à chaleur, par exemple pour rafraîchir un local d'habitation en été en évacuant vers l'extérieur de la chaleur.The CEP each typically have two faces, one of which is of a first type called "cold" and the other of a second type called "hot", a heat transfer can be exerted from one side to the other depending on the direction of an electric current injected into the cell. It is understood that an inversion of the heat exchange allows a reversible operation of the heat pump, for example to cool a living room in summer by evacuating outward heat.

Plus particulièrement, l'invention se rapporte à un système de contrôle d'une pompe à chaleur thermoélectrique réversible présentant deux circuits d'échange de chaleur utilisant un fluide caloporteur et une pluralité d'unités thermoélectriques de transfert de chaleur comprenant chacune un nombre déterminé de modules thermoélectriques adaptés pour transférer de la chaleur entre les deux circuits, le système de contrôle comprenant :

  • une unité d'alimentation électrique destinée à être reliée à une source de courant électrique et présentant une pluralité de connexions de sortie permettant de délivrer une tension d'alimentation à chacune des unités thermoélectriques ;
  • un ensemble de capteurs de température adaptés pour délivrer notamment des signaux représentatifs de températures caractéristiques des deux circuits d'échange de chaleur ; et
  • un dispositif de commande relié à un dispositif d'entrée d'une température de consigne pour commander l'alimentation électrique de la pluralité d'unités thermoélectriques en fonction de ladite consigne de température et des signaux délivrés par ledit ensemble de capteurs de température.
More particularly, the invention relates to a control system of a reversible thermoelectric heat pump having two heat exchange circuits using a heat transfer fluid and a plurality of thermoelectric heat transfer units each comprising a determined number of thermoelectric modules adapted to transfer heat between the two circuits, the control system comprising:
  • a power supply unit for connection to a power source and having a plurality of output connections for supplying a supply voltage to each of the thermoelectric units;
  • a set of temperature sensors adapted to deliver in particular signals representative of characteristic temperatures of the two heat exchange circuits; and
  • a control device connected to an input device of a set temperature for controlling the power supply of the plurality of thermoelectric units according to said temperature setpoint and the signals delivered by said set of temperature sensors.

Le document WO 2006/070096 , du même déposant, décrit un mode d'alimentation électrique des CEP, utilisant une très basse tension alternative redressée plutôt qu'une tension continue. Les CEP sont reliées électriquement en série et doivent être activées avec des tensions dont la valeur est fixée pour obtenir un point de fonctionnement de la pompe à chaleur. La tension est ainsi fixée pour une unité thermoélectrique, de façon à ce qu'un coefficient opérationnel de performance (COP) supérieur à 1 puisse être obtenu. Ce choix est prédéterminé en fonction des conditions de fonctionnement prévues. On comprend en effet que la différence de température entre la face froide et la face chaude de la CEP dépend de la tension choisie. Ce document décrit un système de contrôle selon le préambule de la revendication 1.The document WO 2006/070096 , of the same applicant, describes a mode of power supply of the CEP, using a rectified AC low voltage rather than a DC voltage. CEPs are electrically connected in series and must be activated with voltages whose value is set to obtain an operating point of the heat pump. The voltage is thus fixed for a thermoelectric unit, so that an operational performance coefficient (COP) greater than 1 can be obtained. This choice is predetermined according to the expected operating conditions. It is understood that the temperature difference between the cold face and the hot face of the CEP depends on the chosen voltage. This document describes a control system according to the preamble of claim 1.

Cependant, il n'y a à ce jour pas d'appareil de ce type concrètement disponible dans le commerce. Les applications actuelles des modules thermoélectriques concernent essentiellement la production de froid pour les appareils électroniques ou des réfrigérateurs de voyage, c'est-à-dire des applications où la puissance d'échange de chaleur est très inférieure à celle nécessaire pour un chauffage domestique qui fournit généralement une puissance d'apport de chaleur de quelques kilowatts à 25 kW.However, there is no device of this type currently commercially available. The current applications of thermoelectric modules mainly concern the production of refrigeration for electronic devices or travel refrigerators, that is to say applications where the heat exchange power is much lower than that required for a domestic heating system. typically provides a heat input power of a few kilowatts to 25 kW.

Un autre facteur limitant est le coefficient de performance (COP) réel qui se dégrade sensiblement quand les conditions de fonctionnement changent et notamment les températures des fluides respectifs circulant dans les deux circuits. Aussi, il n'est pas envisagé ce jour d'atteindre un COP supérieur à 4, contrairement aux dernières pompes à chaleur traditionnelles qui rencontrent un grand succès commercial. Pour rappel, ces pompes à chaleur traditionnelle utilisent un circuit fermé dans lequel un fluide frigorigène comme un hydrofluorocarbure subit un cycle de compression/détente entre un condenseur et un évaporateur.Another limiting factor is the real coefficient of performance (COP) which degrades substantially when the operating conditions change and in particular the temperatures of the respective fluids flowing in the two circuits. Also, it is not envisaged this day to reach a COP higher than 4, contrary to the last traditional heat pumps which meet a great commercial success. As a reminder, these traditional heat pumps use a closed circuit in which a refrigerant such as a hydrofluorocarbon undergoes a compression / expansion cycle between a condenser and an evaporator.

La présente invention a pour but de proposer un système de contrôle de pompe à chaleur thermoélectrique réversible qui permet une meilleure utilisation des modules thermoélectriques.The object of the present invention is to propose a reversible thermoelectric heat pump control system which allows a better use of the thermoelectric modules.

A cet effet, la présente invention a pour objet un système de contrôle du type précité, caractérisé en ce que l'unité d'alimentation électrique comprend une pluralité de dispositifs de réglage de la tension délivrée par chacune des connexions de sortie, lesdits dispositifs de réglage comprenant des commutateurs, au moins une partie des dispositifs de réglage étant adaptée pour délivrer plusieurs niveaux de tension prédéterminés selon l'état des commutateurs dudit dispositif de réglage, et en ce que le dispositif de commande est relié aux commutateurs et adapté pour commander différentes configurations de commutation des commutateurs pour, d'une part alimenter sélectivement au moins une partie de la pluralité d'unités thermoélectriques, et d'autre part, sélectionner le niveau de tension prédéterminé alimentant les unités thermoélectriques alimentées.For this purpose, the subject of the present invention is a control system of the aforementioned type, characterized in that the power supply unit comprises a plurality of devices for adjusting the voltage delivered by each of the output connections; setting comprising switches, at least a part of the adjusting devices being adapted to deliver a plurality of predetermined voltage levels according to the state of the switches of said adjusting device, and in that the control device is connected to the switches and adapted to control different switching arrangements of the switches for selectively supplying at least a portion of the plurality of thermoelectric units, and secondly, selecting the predetermined voltage level supplying the powered thermoelectric units.

Ainsi, il est permis d'ajuster la consommation électrique en fonction de paramètres représentatifs des besoins en transfert de chaleur. Le dispositif de commande permet avantageusement de configurer les commutateurs d'un dispositif de commutation pour accroître ou abaisser, voire couper, l'alimentation de certaines unités thermoélectriques les plus consommatrices d'électricité lorsque les besoins de chauffage ou de refroidissement sont peu élevés. Le fait de sélectionner et ajuster la tension des unités thermoélectriques activées, permet de faire fonctionner leurs modules thermoélectriques (CEP) au plus près du pont de fonctionnement idéal et ainsi d'augmenter le COP global de la pompe à chaleur.Thus, it is allowed to adjust the power consumption according to representative parameters of heat transfer requirements. The control device advantageously makes it possible to configure the switches of a switching device to increase or lower, or even cut, the power supply of some thermoelectric units that consume the most electricity when the heating or cooling requirements are low. Selecting and adjusting the voltage of the activated thermoelectric units makes it possible to operate their thermoelectric modules (PEC) as close as possible to the ideal operating bridge and thus to increase the overall COP of the heat pump.

En cas de besoins plus élevés en transfert de chaleur, une commande appropriée peut alors être délivrée par le dispositif de commande de façon immédiate pour satisfaire la demande : il peut s'agir d'alimenter toutes les unités thermoélectriques à un niveau maximum d'alimentation et/ou d'alimenter une ou plusieurs unités thermoélectriques de plus grande puissance. Le système peut être particulièrement simple et réactif grâce à l'utilisation du dispositif de commutation.In case of higher heat transfer requirements, an appropriate control can then be issued by the control device immediately to satisfy the demand: it can be to supply all the thermoelectric units to a maximum power level. and / or supply one or more thermoelectric units of greater power. The system can be particularly simple and responsive through the use of the switching device.

Selon une particularité, le dispositif de commande est tel que défini dans la revendication 2. Ainsi, un asservissement peut être réalisé de manière simple et économique, le dispositif de commande permettant de réguler la température ambiante d'un ou plusieurs locaux en minimisant le nombre de CEP et/ou la tension d'alimentation de ces CEP.According to a particularity, the control device is as defined in claim 2. Thus, servocontrol can be achieved simply and economically, the control device for regulating the ambient temperature of one or more premises by minimizing the number of CEP and / or the supply voltage of these CEP.

Selon une particularité spécifique, le dispositif de commande une table de conversion permettant d'associer à un premier des dispositifs de réglage de la tension et à un deuxième des dispositifs de réglage de la tension, un nombre déterminé de commandes de configuration qui se différencient entre elles par au moins l'un, et préférentiellement deux, des paramètres sélectionnés suivants :

  • l'état, représentatif d'une sélection de tout ou partie d'une unité thermoélectrique, de premiers commutateurs qui sont agencés entre la source de courant électrique et lesdits premier et deuxième dispositifs de réglage de la tension ; et
  • l'état, représentatif d'une sélection d'un niveau de tension, de deuxièmes commutateurs agencés au niveau des premier et deuxième dispositifs de réglage de la tension.
According to a specific feature, the control device a conversion table for associating with a first of the voltage adjusting devices and a second of the voltage adjusting devices, a determined number of configuration commands that differ between they by at least one, and preferably two, of the following selected parameters:
  • the state, representative of a selection of all or part of a thermoelectric unit, of first switches which are arranged between the power source and said first and second voltage control devices; and
  • the state, representative of a selection of a voltage level, of second switches arranged at the first and second voltage control devices.

Ainsi, il est permis de définir de façon simple (via des positions de commutateurs) une gamme de points de fonctionnement pour optimiser le COP.Thus, it is permissible to define in a simple way (via switch positions) a range of operating points to optimize the COP.

Selon une particularité, la source de courant électrique fournit une alimentation alternative et les dispositifs de réglage comprennent :

  • au moins un convertisseur à deux sorties définies par quatre bornes, adapté pour délivrer deux niveaux prédéterminés de tension très inférieurs chacun au niveau de tension de la source de courant électrique ; et
  • des commutateurs agencés en sortie du convertisseur pour délivrer un niveau de tension de sortie prédéterminé résultant d'une combinaison entre lesdits deux niveaux prédéterminés délivrés par le convertisseur.
According to one feature, the electric power source provides an AC power supply and the adjustment devices comprise:
  • at least one converter with two outputs defined by four terminals, adapted to deliver two predetermined voltage levels each much lower than the voltage level of the electric power source; and
  • switches arranged at the output of the converter for providing a predetermined output voltage level resulting from a combination between said two predetermined levels delivered by the converter.

Par combinaison de niveaux de tension, il faut évidemment comprendre qu'il s'agit d'une des combinaisons suivantes, connues en soit : superposition des niveaux de tension ou sélection d'un seul des niveaux de tension. Un commutateur peut aussi être prévu en amont du convertisseur pour couper complètement l'alimentation.By combining voltage levels, it is of course understood that it is one of the following combinations, known either: superposition of voltage levels or selection of only one of the voltage levels. A switch may also be provided upstream of the converter to completely cut the power supply.

Selon une particularité, le dispositif de commande est tel que défini dans la revendication 5. Ainsi, on évite d'utiliser une source d'alimentation continue, qui est couteuse et volumineuse, et il peut être obtenu une alimentation à très basse tension alternative redressée.According to a particularity, the control device is as defined in claim 5. Thus, it avoids using a continuous power source, which is expensive and bulky, and it can be obtained a rectified low-voltage alternative power supply. .

Dans divers modes de réalisation du système de contrôle selon l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :

  • l'unité d'alimentation électrique comprend des premières connexions de sortie à puissance définie de façon ajustable selon la configuration du dispositif de commutation, ainsi que des deuxièmes connexions de sortie à puissance prédéfinie indépendamment de la configuration des commutateurs ;
  • le dispositif de commande comprend une table de conversion permettant d'utiliser, soit une ou plusieurs des premières connexions de sortie, soit une ou plusieurs des deuxièmes connexions de sortie.
In various embodiments of the control system according to the invention, one or more of the following provisions may also be used:
  • the power supply unit comprises first power output connections that are adjustable in accordance with the configuration of the switching device, as well as second output connections with predefined power regardless of the configuration of the switches;
  • the controller includes a conversion table for using either one or more of the first output connections, or one or more of the second output connections.

On comprend que chacune des dispositions ci-dessus contribue à affiner l'ajustement du point de fonctionnement, sans complexifier la partie de transfert de chaleur de la pompe à chaleur thermoélectrique et en minimisant la puissance consommée. La durée de vie des unités thermoélectriques et des unités d'alimentation associées peut être en outre accrue par un tel fonctionnement sélectif selon les besoins.It is understood that each of the above provisions contributes to refine the adjustment of the operating point, without complicating the heat transfer part of the thermoelectric heat pump and minimizing the power consumed. The service life of the thermoelectric units and the associated supply units can be further increased by such selective operation as required.

Selon une autre particularité, les deuxièmes connexions de sortie sont chacune associées à un dispositif inverseur du sens du courant actionnable par le dispositif de commande. Le caractère réversible de l'alimentation fournie à une ou plusieurs unités thermoélectriques, de façon simple, de passer du mode chauffage au mode rafraîchissement. Au moins pour une de ces unités thermoélectriques à inversion d'alimentation, on peut prévoir une plus grande puissance de chauffage. Le mode de commande peut, en fonction des besoins, être simplifié pour l'un des modes rafraîchissement ou chauffage, par exemple en prévoyant dans le mode rafraîchissement de commander seulement les unités thermoélectriques qui sont raccordées aux deuxièmes connexions de sortie.According to another particularity, the second output connections are each associated with an inverter device of the direction of the current that can be actuated by the control device. The reversible nature of the power supplied to one or more thermoelectric units, in a simple way, to switch from heating mode to cooling mode. At least for one of these invert thermoelectric units power supply, it can provide a greater heating power. The control mode may, as needed, be simplified for one of the cooling or heating modes, for example by providing in the cooling mode to control only the thermoelectric units which are connected to the second output connections.

La présente invention a également pour but de proposer une pompe à chaleur thermoélectrique réversible dont la consommation électrique est mieux adaptée aux besoins réels en transfert de chaleur.Another object of the present invention is to propose a reversible thermoelectric heat pump whose electrical consumption is better adapted to the real needs in heat transfer.

A cet effet, il est proposé une pompe à chaleur thermoélectrique réversible, comprenant deux circuits d'échange de chaleur utilisant un fluide caloporteur et une pluralité d'unités thermoélectriques de transfert de chaleur comprenant chacune un nombre déterminé de modules thermoélectriques adaptés pour transférer de la chaleur entre les deux circuits, caractérisée en ce qu'elle comprend le système de contrôle selon l'invention. Une telle pompe à chaleur peut se présenter sous la forme d'un appareil se connectant sur le réseau électrique urbain et pouvant directement être installé dans un bâtiment moyennant le raccordement à un système de chauffage central existant ou neuf formant le premier circuit, comme par exemple un système de chauffage par plancher, et un système d'échange de chaleur avec le milieu extérieur formant le deuxième circuit. Le système d'échange avec l'extérieur peut être entre autre de type réseau ou cuve enterrée dans le sol, ou système d'échange avec l'air ou une masse d'eau.For this purpose, it is proposed a reversible thermoelectric heat pump, comprising two heat exchange circuits using a coolant and a plurality of thermoelectric heat transfer units each comprising a predetermined number of thermoelectric modules adapted to transfer the heat transfer medium. heat between the two circuits, characterized in that it comprises the control system according to the invention. Such a heat pump can be in the form of a device connecting to the urban electrical network and can be directly installed in a building by connecting to an existing central heating system or nine forming the first circuit, such as a floor heating system, and a heat exchange system with the external environment forming the second circuit. The exchange system with the outside can be inter alia network type or tank buried in the ground, or exchange system with air or a body of water.

Selon une particularité, une première des unités thermoélectriques comprend deux séries de modules thermoélectriques, chacune des deux séries étant alimentée indépendamment l'une de l'autre par l'une des premières connexions de sortie de l'unité d'alimentation électrique. Ainsi, un contrôle plus fin de la puissance peut être obtenu dans le but d'obtenir un point de fonctionnement optimal.According to one feature, a first one of the thermoelectric units comprises two series of thermoelectric modules, each of the two series being powered independently of one another by one of the first output connections of the power supply unit. Thus, a finer control of the power can be obtained in order to obtain an optimum operating point.

Selon une particularité, une première et une deuxième des unités thermoélectriques comprennent un même nombre de modules thermoélectriques, la deuxième unité d'alimentation électrique recevant une tension au moins deux fois supérieure à la tension maximale pouvant être délivrée à ladite première unité d'alimentation électrique. Ainsi, la deuxième unité d'alimentation électrique peut être sélectionnée en priorité ou par défaut dès que le besoin en transfert de chaleur dépasse un seuil, et désactivée en priorité ou par défaut lorsque le besoin en transfert de chaleur est en dessous d'un seuil inférieur. Un tel seuil prend par exemple en compte une température extérieure au local chauffé/rafraîchi par la pompe à chaleur. Bien sûr, il peut être prévu plusieurs deuxièmes unités thermoélectriques Plus généralement, il est ainsi permis d'élargir la gamme de points de fonctionnement que l'on peut obtenir sans trop utiliser un nombre trop élevé d'unités thermoélectriques.According to a feature, a first and a second thermoelectric units comprise the same number of thermoelectric modules, the second power supply unit receiving a voltage at least twice the maximum voltage that can be delivered to said first power supply unit . Thus, the second power supply unit can be selected in priority or by default as soon as the need for heat transfer exceeds a threshold, and deactivated in priority or by default when the need for heat transfer is below a threshold inferior. Such a threshold for example takes into account a temperature outside the room heated / refreshed by the heat pump. Of course, it can be provided several second thermoelectric units More generally, it is thus allowed to expand the range of operating points that can be obtained without too much use too many thermoelectric units.

Selon une particularité, la pompe à chaleur thermoélectrique réversible comprend un dispositif pour réduire, au niveau d'au moins une des unités thermoélectriques, le transfert de chaleur entre les deux circuits d'échange de chaleurs dans la zone d'échange de chaleur définie entre deux échangeurs d'une unité thermoélectrique non alimentée électriquement. Le dispositif peut comporter des organes réduisant ou coupant la circulation de fluide caloporteur dans les unités thermoélectriques. Alternativement, un actionneur peut être prévu pour modifier la conductivité thermique pour abaisser la conductivité thermique de l'interface entre le fluide caloporteur et la surface échangeuse, l'actionneur permettant par exemple d'écarter les zones échangeuses de chaleur des modules thermoélectriques.According to one feature, the reversible thermoelectric heat pump comprises a device for reducing, at at least one of the thermoelectric units, the transfer of heat between the two heat exchange circuits in the heat exchange zone defined between two exchangers of a thermoelectric unit not electrically powered. The device may comprise members reducing or cutting the circulation of heat transfer fluid in the thermoelectric units. Alternatively, an actuator may be provided to modify the thermal conductivity to lower the thermal conductivity of the interface between the heat transfer fluid and the exchange surface, the actuator allowing for example to separate the heat exchange zones of the thermoelectric modules.

Selon une autre particularité, chacune des unités thermoélectriques comprend :

  • un premier échangeur avec une partie de circuit appartenant à l'un desdits deux circuits ;
  • un second échangeur avec une partie de circuit appartenant à l'autre desdits deux circuits ; et
  • au moins une moto-vanne adaptée pour couper sélectivement la circulation de fluide caloporteur dans les dites parties de circuit de l'unité thermoélectrique.
According to another particularity, each of the thermoelectric units comprises:
  • a first exchanger with a circuit part belonging to one of said two circuits;
  • a second exchanger with a circuit part belonging to the other of said two circuits; and
  • at least one valve motor adapted to selectively cut the circulation of coolant in said circuit portions of the thermoelectric unit.

Ainsi, on peut éviter de faire circuler inutilement le fluide caloporteur dans des parties de circuit non activées par le dispositif de commande. Deux moto-vannes peuvent être prévues par unité thermoélectrique. La ou les moto-vannes peuvent former ainsi avantageusement le dispositif de réduction du transfert de chaleur.Thus, it is possible to avoid circulating the heat transfer fluid unnecessarily in circuit parts that are not activated by the control device. Two motor-valves can be provided per thermoelectric unit. The valve motor (s) can thus advantageously form the device for reducing the heat transfer.

La présente invention a également pour but de proposer un procédé de contrôle d'une pompe à chaleur thermoélectrique réversible permettant d'adapter le niveau de consommation électrique aux besoins réels en transfert de chaleur.Another object of the present invention is to propose a method of controlling a reversible thermoelectric heat pump making it possible to adapt the level of electrical consumption to the actual needs in heat transfer.

A cet effet, il est proposé un procédé tel que défini dans la revendication 13.For this purpose, there is provided a method as defined in claim 13.

Selon une particularité du procédé, on réduit le transfert de chaleur entre deux échangeurs d'une unité thermoélectrique non alimentée électriquement au moins dans un mode de chauffage de la pompe à chaleur thermoélectrique réversible. Cet abaissement peut être obtenu par l'arrêt d'une circulation du fluide caloporteur au niveau d'une ou plusieurs des unités thermoélectriques, par exemple celles qui ne sont pas alimentées électriquement. Dans le mode de chauffage de la pompe à chaleur, cela permet de minimiser la perte défavorable de chaleur par entropie. En effet, de la chaleur est diffusée depuis le fluide circulant dans les unités thermoélectriques non alimentées électriquement vers le milieu ambiant.According to one particularity of the process, the heat transfer between two exchangers of an electrically unpowered thermoelectric unit is reduced at least in a heating mode of the reversible thermoelectric heat pump. This lowering can be obtained by stopping a circulation of the coolant at one or more of the thermoelectric units, for example those which are not electrically powered. In the heating mode of the heat pump, this minimizes the adverse heat loss by entropy. Indeed, heat is diffused from the fluid flowing in the thermoelectric units not electrically powered to the environment.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante de plusieurs modes de réalisation, donnés à titre d'exemples non limitatifs, en regard des dessins joints dans lesquels :

  • la figure 1 est une vue schématique d'un système de contrôle d'une pompe à chaleur réversible à plusieurs unités thermoélectriques, selon un mode de réalisation de l'invention ;
  • les figures 2 et 3 sont des schémas illustrant un exemple d'unité thermoélectrique utilisable dans une pompe à chaleur selon l'invention ;
  • la figure 4 montre un diagramme d'étapes permettant de déterminer un mode de chauffage optimal ;
  • la figure 5 représente l'impact du choix de la tension d'alimentation d'un module thermoélectrique en vue d'obtenir un COP élevé.
Other features and advantages of the invention will become apparent from the following description of several embodiments, given by way of non-limiting examples, with reference to the accompanying drawings in which:
  • the figure 1 is a schematic view of a control system of a reversible heat pump with several thermoelectric units, according to one embodiment of the invention;
  • the Figures 2 and 3 are diagrams illustrating an example of thermoelectric unit usable in a heat pump according to the invention;
  • the figure 4 shows a diagram of steps to determine an optimal heating mode;
  • the figure 5 represents the impact of the choice of the supply voltage of a thermoelectric module in order to obtain a high COP.

Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.In the different figures, the same references designate identical or similar elements.

A la figure 1, est représenté un mode de réalisation d'un système de contrôle 2 pour gérer des Cellules à Effet Peltier (CEP) ou modules thermoélectriques 3 de transfert de chaleur. Le système de contrôle 2 présente une unité d'alimentation électrique 10, correspondant ici à un système modulaire à sorties multiples de courant continu, connecté par exemple à une source de courant alternatif typiquement de 230V. Plusieurs systèmes modulaires à sorties multiples de courant continu peuvent aussi être utilisés. Les modules thermoélectriques 3 sont agencés par groupe de six dans des unités thermoélectriques 41, 42, 43, 44 respectives qui définissent un système échangeur 4 de la pompe à chaleur. Bien entendu, le nombre de modules thermoélectriques 3 n'est pas figé et peut être variable, par exemple et de manière non limitative compris entre deux et dix par unité thermoélectrique 41, 42, 43, 44.To the figure 1 , there is shown an embodiment of a control system 2 for managing Peltier Effect Cells (PECs) or thermoelectric modules 3 for heat transfer. The control system 2 has a power supply unit 10, corresponding here to a modular system with multiple DC outputs, connected for example to a source of alternating current typically 230V. Several modular systems with multiple DC outputs can also be used. The thermoelectric modules 3 are arranged in groups of six in thermoelectric units 41, 42, 43, 44 respectively which define a heat exchanger system 4 of the heat pump. Of course, the number of thermoelectric modules 3 is not fixed and may be variable, for example and not limited to between two and ten per thermoelectric unit 41, 42, 43, 44.

Tandis que les unités thermoélectriques 41, 42, 43, 44 représentés à la figure 1 comprennent des modules thermoélectriques agencés dans une seule série 30, il doit être compris que cet assemblage n'est qu'une option parmi d'autres. Ainsi, il est permis d'utiliser aussi, alternativement ou en combinaison avec les unités thermoélectriques 41, 42, 43, 44, des modules thermoélectriques 3 agencés différemment ou d'autres genres d'unités thermoélectriques 40 comme illustré dans la figure 2. L'unité thermoélectrique 40 montrée à la figure 2 se différencie des unités thermoélectriques 41, 42, 43, 44 en ce qu'elle présente deux séries 30' de trois modules thermoélectriques 3, chacune raccordée à deux sorties similaires Sa, Sb de l'unité d'alimentation électrique 10 de la pompe à chaleur. Le nombre de plaques dites froides peut être dans ce cas de deux par unité thermoélectrique 40. A chacune des sorties Sa, Sb de l'unité d'alimentation électrique 10 peut être associé un circuit d'alimentation très basse tension redressée. L'unité d'alimentation électrique 10 délivre ainsi un courant redressé en double alternance avec une puissance optimisée. La fréquence obtenue peut être de l'ordre de 100 Hz par exemple.While the thermoelectric units 41, 42, 43, 44 shown in FIG. figure 1 include thermoelectric modules arranged in a single series 30, it should be understood that this assembly is only one option among others. Thus, it is also possible to use, alternatively or in combination with the thermoelectric units 41, 42, 43, 44, thermoelectric modules 3 arranged differently or other kinds of thermoelectric units 40 as illustrated in FIG. figure 2 . The thermoelectric unit 40 shown in FIG. figure 2 differs from the thermoelectric units 41, 42, 43, 44 in that it has two series 30 'of three thermoelectric modules 3, each connected to two similar outputs Sa, Sb of the power supply unit 10 of the heat pump. The number of so-called cold plates may in this case be two per thermoelectric unit 40. At each of the outputs Sa, Sb of the power supply unit 10 may be associated with a rectified low-voltage supply circuit. The power supply unit 10 thus delivers a rectified current in full alternation with an optimized power. The frequency obtained may be of the order of 100 Hz for example.

On comprend que chacune des unités thermoélectriques 41, 42, 43, 44 montrées à la figure 1 pourrait être remplacée par l'unité thermoélectrique 40 montrée à la figure 2, moyennant une adaptation (il peut s'agir d'un simple doublement) du circuit correspondant d'alimentation très basse tension redressée, présent dans l'unité d'alimentation électrique 10.It is understood that each of the thermoelectric units 41, 42, 43, 44 shown in FIG. figure 1 could be replaced by the thermoelectric unit 40 shown in FIG. figure 2 , with adaptation (it may be a simple doubling) of the corresponding rectified low-voltage supply circuit, present in the power supply unit 10.

La pompe à chaleur utilise au moins une circulation d'un fluide(s) caloporteur(s) tel que l'eau. En référence à la figure 3, l'unité thermoélectrique 40 comprend un premier échangeur 40a et un deuxième échangeur 40b situé au-dessus du premier. Les fluides caloporteurs respectifs circulent dans des canaux pour assurer un échange de chaleur avec la face externe plane de l'échangeur correspondant 40a, 40b. Le premier échangeur 40a présente une entrée de fluide E1 située du côté droit de l'unité thermoélectrique 40 et une sortie O1 agencée de façon opposée. Le second échangeur 40b, présente une entrée de fluide E2 du côté gauche et une sortie opposée 02. Ce second échangeur 40b, avec sa face d'échange orientée vers le bas, peut être en tout point identique au premier échangeur 40a.The heat pump uses at least one circulation of a coolant (s) such as water. With reference to the figure 3 , the thermoelectric unit 40 comprises a first exchanger 40a and a second exchanger 40b located above the first. The respective heat transfer fluids circulate in channels to ensure heat exchange with the flat outer face of the corresponding exchanger 40a, 40b. The first exchanger 40a has a fluid inlet E1 located on the right side of the thermoelectric unit 40 and an oppositely arranged output O1. The second exchanger 40b has a fluid inlet E2 on the left side and an opposite outlet 02. This second exchanger 40b, with its exchange face facing downwards, may be identical in all respects to the first exchanger 40a.

Une moto-vanne V1, permet d'arrêter la circulation du premier fluide dans le premier échangeur 40a et une moto-vanne V2 permet d'arrêter la circulation du deuxième fluide dans le second échangeur 40b. La figure 3 illustre ainsi l'utilisation de moto-vannes V1, V2 chacune adaptées pour couper sélectivement la circulation de fluide caloporteur dans des parties de circuit d'une unité thermoélectrique 40.A motor-valve V1 makes it possible to stop the circulation of the first fluid in the first exchanger 40a and a motor-valve V2 makes it possible to stop the circulation of the second fluid in the second exchanger 40b. The figure 3 illustrates thus the use of motor-valves V1, V2 each adapted to selectively cut the circulation of coolant in circuit portions of a thermoelectric unit 40.

Naturellement tout type de vanne est utilisable, avec de préférence un organe de commande de la l'ouverture/fermeture du clapet de la vanne. Ici, les moto-vannes V1, V2 sont chacune adaptées pour fermer la communication fluidique avec l'échangeur 40a, 40b. On comprend que la circulation des premier et second fluides peut cependant se poursuivre à travers d'autres parties d'un circuit. Ceci est réalisable par exemple en utilisant des moto-vannes V1, V2 qui interrompent ou court-circuitent uniquement une circulation sinueuse dans l'échangeur 40a, 40b, tandis qu'une circulation longitudinale ou externe à l'échangeur 40a, 40b est permise.Naturally any type of valve is usable, preferably with a control member of the opening / closing of the valve of the valve. Here, the motor-valves V1, V2 are each adapted to close the fluid communication with the exchanger 40a, 40b. It is understood that the circulation of the first and second fluids can, however, continue through other parts of a circuit. This can be achieved for example by using motor-valves V1, V2 which interrupt or short circuit only a sinuous circulation in the exchanger 40a, 40b, while a longitudinal or external circulation to the exchanger 40a, 40b is allowed.

Bien que la figure 3 se réfère à l'exemple de l'unité thermoélectrique 40, n'importe laquelle et préférentiellement plusieurs des unités thermoélectriques 41, 42, 43, 44 peuvent être équipées de façon analogue avec au moins une moto-vanne. L'intérêt de court-circuiter des parties de circuit formées au niveau des unités thermoélectriques 40, 41, 42, 43, 44 est de satisfaire au plus près les besoins spécifiques paramétrés pour la pompe à chaleur, avec une optimisation du COP, en particulier lorsque dans une habitation ou local similaire équipé avec la pompe à chaleur, les besoins de transfert de chaleur varient d'un lieu à l'autre. Les moto-vannes V1, V2 sont fermées en particulier lorsqu'il n'y a pas un besoin particulier de transfert de chaleur par le circuit d'échange de chaleur correspondant. La fermeture des moto-vannes V1, V2 est avantageuse dans le mode de chauffage de la pompe à chaleur, afin d'éviter un couplage thermique entre les faces des modules thermoélectriques 3 non alimentés, et donc des échanges de chaleur dans le sens opposé à ceux désirés. Ces pertes par entropie du système échangeur peuvent être ainsi évitées.Although the figure 3 refers to the example of the thermoelectric unit 40, any one and preferably several of the thermoelectric units 41, 42, 43, 44 may be equipped similarly with at least one valve motor. The advantage of short-circuiting circuit parts formed at the level of the thermoelectric units 40, 41, 42, 43, 44 is to satisfy as closely as possible the specific needs parameterized for the heat pump, with an optimization of the COP, in particular when in a dwelling or similar room equipped with the heat pump, the heat transfer needs vary from one place to another. The motor-valves V1, V2 are closed in particular when there is no particular need for heat transfer by the corresponding heat exchange circuit. The closing of the motor-valves V1, V2 is advantageous in the heating mode of the heat pump, in order to avoid thermal coupling between the faces of the thermoelectric modules 3 that are not powered, and therefore heat exchanges in the opposite direction to those desired. These entropy losses of the exchanger system can thus be avoided.

Plus généralement, la pompe à chaleur peut être équipée de tous moyens permettant de faire varier, au niveau d'une ou plusieurs des unités thermoélectriques 40, 41, 42, 43, 44, un coefficient de transfert de chaleur entre les deux échangeurs 40a, 40b. En mode de chauffage, un dispositif pourvu des moto-vannes V1, V2 ou agencé différemment permet ainsi de modifier les conditions d'échange thermique de façon à faire baisser globalement la conductivité thermique.More generally, the heat pump may be equipped with any means for varying, at one or more of the thermoelectric units 40, 41, 42, 43, 44, a heat transfer coefficient between the two heat exchangers 40a, 40b. In heating mode, a device provided with motor-valves V1, V2 or arranged differently thus makes it possible to modify the heat exchange conditions so as to lower the overall thermal conductivity.

Dans le mode de rafraîchissement, l'effet entropique est favorable puisque l'on cherche à évacuer la chaleur du milieu ambiant. Par conséquent, on peut utiliser un dispositif de couplage/découplage thermique configuré pour stopper la circulation hydraulique dissipatrice de chaleur et/ou augmenter localement la résistance thermique par d'autres moyens connus, dans le mode de chauffage, et pour laisser circuler le fluide caloporteur et/ou baisser localement la résistance thermique par tout autre moyen connu, dans le mode de rafraîchissement.In the cooling mode, the entropic effect is favorable since one seeks to evacuate heat from the ambient environment. Therefore, it is possible to use a thermal coupling / decoupling device configured to stop the heat-dissipating hydraulic circulation and / or locally increase the thermal resistance by other known means, in the heating mode, and to circulate the heat transfer fluid. and / or locally lowering the thermal resistance by any other known means, in the cooling mode.

La pompe à chaleur peut être plus particulièrement destinée aux applications de chauffage basse température et de rafraîchissement pour l'habitat. La pompe à chaleur peut se présenter sous la forme d'un boîtier ou d'un appareil avec en façade un panneau de commande (non représenté). Une interface de commande 6 et le système échangeur 4 sont par exemple agencés dans le boîtier. La pompe à chaleur est typiquement destinée à chauffer des locaux d'habitation ou professionnels, mais aussi à rafraîchir ces locaux grâce à l'utilisation des modules thermoélectriques 3. La pompe à chaleur thermoélectrique est donc préférentiellement réversible. Plusieurs pièces d'un local d'habitation peuvent être chauffées, respectivement rafraîchies, à l'aide de boucles d'échanges de chaleur raccordées au boîtier. Les locaux d'habitation en question sont typiquement des habitations individuelles allant d'un appartement de quelques pièces à une maison individuelle. La puissance est donc typiquement prévue entre trois et trente kilowatts de puissance de chauffage maximale, sans que cette dernière valeur constitue une limite supérieure.The heat pump may be particularly suitable for low temperature heating and cooling applications for the home. The heat pump may be in the form of a housing or apparatus with a front panel control panel (not shown). A control interface 6 and the exchanger system 4 are for example arranged in the housing. The heat pump is typically intended for heating residential or professional premises, but also to cool these premises through the use of thermoelectric modules 3. The thermoelectric heat pump is therefore preferably reversible. Many parts of a living space can be heated, respectively refreshed, using heat exchange loops connected to the housing. The living quarters in question are typically single-family dwellings ranging from a few-room apartment to a single-family house. The power is typically provided between three and thirty kilowatts of maximum heating power, without the latter value is an upper limit.

La circulation de fluide(s) caloporteur(s) est réalisée à travers des canalisations en contact thermique avec les faces de même type des modules thermoélectriques de même type. On comprend que le transfert de chaleur entre les deux circuits peut être réalisé en utilisant toute configuration adaptée de circuit caloporteur. Quelle que soit la configuration adoptée, la face du module thermoélectrique 3 qui pompe de la chaleur se trouve typiquement à une température plus froide que la face qui évacue de la chaleur. Une température de consigne peut être entrée par l'intermédiaire d'un module de programmation ou dispositif comparable de la pompe à chaleur, lequel module est par exemple relié à l'interface de commande 6 et fait partie du dispositif de commande. La température de la face du module thermoélectrique 3 qui pompe de la chaleur et la température de consigne forment un couple de paramètres déterminant pour l'obtention d'un coefficient de performance (COP) maximal. En effet, il existe une tension d'alimentation continue optimale pour laquelle un module thermoélectrique 3 a un COP maximal. Ceci est valable aussi bien dans le mode de chauffage que dans le mode de rafraîchissement. Dans le cas présent, le courant d'alimentation est de préférence un courant alternatif redressé double alternance Pour approcher le COP maximal, la tension continue optimale est multipliée par un coefficient correcteur afin de déterminer l'amplitude de la tension alternative correspondante. Par exemple, pour un courant alternatif sinusoïdal on multiplie la tension continue optimale par un coefficient égal à √2.The circulation of heat transfer fluid (s) is carried out through pipes in thermal contact with the faces of the same type of thermoelectric modules of the same type. It is understood that the heat transfer between the two circuits can be achieved using any suitable heat transfer circuit configuration. Whatever the configuration adopted, the face of the thermoelectric module 3 which pumps heat is typically at a temperature colder than the face which evacuates heat. A set temperature can be entered via a programming module or comparable device of the heat pump, which module is for example connected to the control interface 6 and is part of the control device. The temperature of the face of the thermoelectric module 3 which pumps heat and the set temperature form a pair of parameters that are decisive for obtaining a maximum coefficient of performance (COP). Indeed, there is an optimum DC supply voltage for which a thermoelectric module 3 has a maximum COP. This is valid both in the heating mode and in the cooling mode. In the present case, the supply current is preferably a full-alternating rectified alternating current. To approach the maximum COP, the optimum DC voltage is multiplied by a correction coefficient in order to determine the amplitude of the corresponding AC voltage. For example, for a sinusoidal alternating current, the optimal DC voltage is multiplied by a coefficient equal to √2.

Le besoin thermique en chauffage sert ici de référence pour déterminer le nombre de CEP ou modules thermoélectriques 3 nécessaires dans la pompe à chaleur car ce besoin est supérieur à celui du besoin thermique en rafraîchissement, lequel aboutirait à un nombre de CEP plus petit et donc insuffisant pour le chauffage.The thermal heating requirement is used here as a reference to determine the number of PECs or thermoelectric modules 3 required in the heat pump because this need is greater than that of the cooling thermal requirement, which would result in a smaller and therefore insufficient number of PELs. for heating.

En référence à la figure 1, il est montré un schéma de contrôle des unités thermoélectriques 41, 42, 43, 44 de la pompe à chaleur. Le système de contrôle 2 comprend une connexion 7 à une source de courant électrique 8 et une unité d'alimentation électrique 10 adaptée pour alimenter lesdites unités thermoélectriques 41, 42, 43, 44 à partir de la source de courant électrique 8. Ici, la source de courant électrique 8 fournit une alimentation alternative. Dans ce cas, la source de courant peut alors être le réseau urbain (à 230 V comme c'est le cas dans de nombreux pays d'Europe notamment). Plusieurs fusibles de protection F sont prévus dans l'unité d'alimentation électrique 10. Le nombre de modules thermoélectriques 3 représenté est de vingt-quatre dans l'exemple illustré à la figure 1 mais ce nombre peut bien entendu être différent, par exemple supérieur pour satisfaire les besoins en puissance de chauffage. Il est ici prévu de choisir un point de fonctionnement adapté pour obtenir la température souhaitée dans des locaux d'habitation ou locaux similaires, le point de fonctionnement choisi étant celui qui correspond au coefficient de performance (COP) optimal. Afin d'optimiser ce coefficient COP, quel que soit le point de fonctionnement de la pompe à chaleur (ce point de fonctionnement variant avec la température du ou des fluides caloporteurs et la puissance thermique de chauffage ou de rafraîchissement), le système de contrôle 2 peut effectuer une sélection d'un mode de chauffage parmi une pluralité de modes de chauffage obtenus par un réglage de l'unité d'alimentation électrique 10. En d'autres termes, il est prévu une large gamme de modes de chauffage susceptibles de couvrir la variété de besoins thermiques dans une habitation ou local similaire, ces modes pouvant se distinguer l'un par rapport à l'autre par à un nombre différent de modules thermoélectriques 3 actifs et/ou à une tension d'alimentation U1, U2, U3, U4 différente aux bornes des unités thermoélectriques 41, 42, 43, 44.With reference to the figure 1 , there is shown a control diagram of the thermoelectric units 41, 42, 43, 44 of the heat pump. The control system 2 comprises a connection 7 to an electric power source 8 and a power supply unit 10 adapted to supply said thermoelectric units 41, 42, 43, 44 from the electric power source 8. Here, the Power source Electric 8 provides an alternative power supply. In this case, the current source can then be the urban network (at 230 V as is the case in many European countries in particular). Several protection fuses F are provided in the power supply unit 10. The number of thermoelectric modules 3 represented is twenty-four in the example illustrated in FIG. figure 1 but this number can of course be different, for example higher to meet the heating power requirements. Here it is intended to choose an operating point adapted to obtain the desired temperature in similar living quarters or premises, the operating point chosen being that which corresponds to the optimal coefficient of performance (COP). In order to optimize this COP coefficient, whatever the point of operation of the heat pump (this operating point varies with the temperature of the heat transfer fluid (s) and the thermal power of heating or cooling), the control system 2 can select from one of a plurality of heating modes obtained by an adjustment of the power supply unit 10. In other words, a wide range of heating modes is provided which can cover the variety of thermal needs in a dwelling or similar room, these modes being distinguishable relative to each other by a different number of active thermoelectric modules 3 and / or a supply voltage U1, U2, U3 , U4 different across the thermoelectric units 41, 42, 43, 44.

Dans le mode de réalisation non limitatif de la figure 1, l'unité d'alimentation électrique 10 présente plusieurs connexions de sortie S1, S2, S3, S4 permettant de transmettre une tension d'alimentation à chacune des unités thermoélectriques 41, 42, 43, 44. Ici pour maximiser le COP associé à chacun des modules thermoélectriques 3, il est prévu en association avec le dispositif de commande un dispositif de commutation 20. Le dispositif de commande comprend une unité de contrôle électronique ECU reliée à l'interface de commande 6 et permettant de modifier l'état des commutateurs du dispositif de commutation 20. Le dispositif de commande et l'unité d'alimentation électrique 10 peuvent être formés dans des boîtiers respectifs connectés entre eux.In the non-limiting embodiment of the figure 1 , the power supply unit 10 has several output connections S1, S2, S3, S4 for transmitting a supply voltage to each of the thermoelectric units 41, 42, 43, 44. Here to maximize the COP associated with each thermoelectric modules 3, there is provided in association with the control device a switching device 20. The control device comprises an electronic control unit ECU connected to the control interface 6 and making it possible to modify the state of the switches of the switching device 20. The controller and the power supply unit 10 may be formed in respective housings connected to each other.

Dans l'exemple de la figure 1, la configuration du dispositif de commutation 20 peut être modifiée de différentes façons tout en restant dans un mode de chauffage selon, d'une part, l'état de commutateurs C01, C02, C03, C04 de sélection des unités thermoélectriques 41, 42, 43, 44 respectives, et d'autre part, l'état de commutateurs C11, C12, C21, C22 servant à la sélection du niveau de tension d'alimentation dans deux des unités thermoélectriques. En particulier pour ces deux unités thermoélectriques 41, 42, l'alimentation correspond à une très basse tension alternative redressée. Un pont de redressement double alternance 51, par exemple sous la forme d'un pont de diodes, est ici monté entre la connexion de sortie S1 et les deux sorties définies par un transformateur T1 ou convertisseur analogue permettant de régler la tension. Le transformateur T1 permet de délivrer une tension qui est fonction de l'état des interrupteurs I1, I2 du commutateur C11. Un asservissement avec rétroaction sur le commutateur C11 peut être mis en oeuvre grâce une collecte d'informations représentatives d'un besoin de chauffe par l'unité de contrôle électronique ECU. Ici, les informations représentatives du besoin de chauffe sont par exemple une ou plusieurs températures caractéristiques des deux circuits d'échange de chaleur et la température de consigne. Un tel asservissement est par exemple présent pour chacune des unités thermoélectriques 41, 42, 43, 44.In the example of the figure 1 , the configuration of the switching device 20 can be modified in various ways while remaining in a heating mode according to, on the one hand, the state of switches C01, CO2, CO3, CO4 for selecting the thermoelectric units 41, 42, 43, 44 respectively, and on the other hand, the state of switches C11, C12, C21, C22 serving to select the supply voltage level in two of the thermoelectric units. In particular for these two thermoelectric units 41, 42, the supply corresponds to a rectified low-voltage alternative. A full-wave rectification bridge 51, for example in the form of a diode bridge, is here mounted between the output connection S1 and the two outputs defined by a transformer T1 or analog converter for adjusting the voltage. The transformer T1 makes it possible to deliver a voltage which is a function of the state of the switches I1, I2 of the switch C11. Servo feedback with the C11 switch can be implemented through a collection of information representative of a heating need by the electronic control unit ECU. Here, the information representative of the heating need is for example one or more characteristic temperatures of the two heat exchange circuits and the set temperature. Such a control is for example present for each of the thermoelectric units 41, 42, 43, 44.

Dans le mode de réalisation de la figure 1, le dispositif de commutation 20 comprend des commutateurs C01, C02, C03, C04, C11, C12, C21, C22 regroupant chacun plusieurs interrupteurs. Ce genre de dispositif de commutation 20 est simple à actionner car il n'est pas nécessaire de procéder à un ajustement fin et progressif du courant ou de la tension délivrée. Bien que le mode de réalisation de la figure 1 prévoit un dispositif de commutation 20 adapté pour ajuster des tensions de sorties U1 et U2 à l'aide de commutateurs C11, C12 placés chacun du côté des bobinages secondaires, entre un transformateur T1, T2 de type abaisseur de tension et le pont de redressement double alternance 51, 52 associé, toute autre configuration adaptée peut être utilisée. Par exemple dans un mode de réalisation de moindre préférence, les transformateurs T1, T2, du type abaisseur de tension ou analogue, peuvent alternativement ou de manière complémentaire être pourvus de commutateurs qui sont adaptés pour court-circuiter un certain nombre de spires des bobinages primaires du transformateur T1, T2.In the embodiment of the figure 1 , the switching device 20 comprises switches C01, C02, C03, C04, C11, C12, C21, C22 each comprising several switches. This kind of switching device 20 is simple to operate because it is not necessary to make a fine and progressive adjustment of the current or voltage delivered. Although the embodiment of the figure 1 provides a switching device 20 adapted to adjust output voltages U1 and U2 by means of switches C11, C12 each placed on the side of the secondary windings, between a transformer T1, T2 of step-down type and the bridge double recovery alternation 51, 52 associated, any other suitable configuration can be used. For example, in a less preferred embodiment, the voltage-reducing type transformers T1, T2, or the like, may alternatively or in a complementary manner be provided with switches which are adapted to short-circuit a number of turns of the primary windings. transformer T1, T2.

Les connexions de sortie S3, S4 peuvent être chacune associées à un dispositif inverseur du sens du courant, par exemple situé à la sortie du transformateur 53, 54 respectivement associé à la connexion de sortie S3, S4. Ce dispositif inverseur peut être actionné par le dispositif de commande. Le caractère réversible de l'alimentation fournie aux unités thermoélectriques 43, 44 permet, de façon simple, de passer du mode chauffage au mode rafraîchissement. Au moins pour une de ces unités thermoélectriques 43, 44 à inversion d'alimentation, on peut prévoir une plus grande puissance de chauffage. Ici des commutateurs C13, C14 en liaison avec l'unité de contrôle électronique ECU sont prévus pour permettre l'inversion de courant. Le mode de rafraîchissement peut correspondre à la fermeture des interrupteurs I4 du commutateur correspondant C13, C14 (les interrupteurs I3 étant dans un état ouvert). Une puissance moindre peut aussi être obtenue en utilisant seulement l'une des sorties S3, S4 pour alimenter sélectivement l'une ou l'autre des unités thermoélectriques 43, 44.The output connections S3, S4 may each be associated with a current-reversing device, for example located at the output of the transformer 53, 54 respectively associated with the output connection S3, S4. This inverter device can be actuated by the control device. The reversible nature of the power supplied to the thermoelectric units 43, 44 makes it easy to switch from the heating mode to the cooling mode. At least for one of these thermoelectric units 43, 44 with supply reversal, it is possible to provide a greater heating power. Here switches C13, C14 in connection with the unit Electronic control ECU are provided to allow the current reversal. The refresh mode may correspond to the closing of the switches I4 of the corresponding switch C13, C14 (the switches I3 being in an open state). Less power can also be obtained by using only one of the outputs S3, S4 to selectively power one or the other of the thermoelectric units 43, 44.

Dans l'exemple de la figure 1, à chacun des ponts de redressement double alternance 51, 52 correspond une sortie S1, S2 définie par deux jonctions du pont de redressement. Le dispositif de commutation 20 comprend au moins un commutateur C11, C12 configurable suivant deux positions ou modes. L'un de ces modes (I1=0 et I2=1), correspondant au cas de la figure 1 permet de délivrer une première tension avec les quatre bornes à la sortie du transformateur T1, T2 ou convertisseur équivalent reliées à deux jonctions du pont de redressement 51, 52. L'autre de ces modes (I1=1 et I2=0) permet de délivrer une deuxième tension plus élevée que la première tension avec deux des quatre bornes à la sortie du convertisseur reliées à deux jonctions du pont de redressement.In the example of the figure 1 each of the full-wave rectification bridges 51, 52 corresponds to an output S1, S2 defined by two junctions of the rectifier bridge. The switching device 20 comprises at least one switch C11, C12 configurable according to two positions or modes. One of these modes (I1 = 0 and I2 = 1), corresponding to the case of the figure 1 allows to deliver a first voltage with the four terminals at the output of the transformer T1, T2 or equivalent converter connected to two junctions of the rectifier bridge 51, 52. The other of these modes (I1 = 1 and I2 = 0) allows to delivering a second voltage higher than the first voltage with two of the four terminals at the output of the converter connected to two junctions of the rectifier bridge.

En référence à la figure 1, le ou les convertisseurs, ici formés par les transformateurs T1, T2, présentent deux sorties définies par quatre bornes. Deux niveaux prédéterminés de tension, très inférieurs chacun au niveau de tension de la source de courant électrique (8), sont délivrés au niveau de ces sorties. Dans cet exemple non limitatif, c'est l'état des commutateurs C11, C12 du dispositif de commutation 20 qui permettent de sélectionner respectivement un niveau de tension de sortie prédéterminé résultant d'une combinaison entre les deux niveaux prédéterminés délivrés par un convertisseur.With reference to the figure 1 , or the converters, here formed by the transformers T1, T2, have two outputs defined by four terminals. Two predetermined voltage levels, each much lower than the voltage level of the electric power source (8), are delivered at these outputs. In this nonlimiting example, it is the state of the switches C11, C12 of the switching device 20 that select respectively a predetermined output voltage level resulting from a combination between the two predetermined levels delivered by a converter.

La figure 1 représente une configuration du dispositif de commutation 20, dans lequel l'unité de contrôle électronique ECU commande un mode d'alimentation qui utilise exclusivement deux des circuits d'alimentation, grâce aux commutateurs C01, C02. On comprend que du point de vue de l'unité de contrôle ECU, de simples commandes tout ou rien permettent de paramétrer la configuration du dispositif de commutation 20. Autrement dit, la pompe présente un dispositif de commande adapté pour configurer le dispositif de commutation 20, de façon à activer sélectivement les unités thermoélectriques 41, 42, 43, 44.The figure 1 represents a configuration of the switching device 20, wherein the ECU electronic control unit controls a power mode that uses only two of the power supply circuits, through switches C01, C02. It is understood that from the point of view of the ECU control unit, simple all or nothing commands can be used to parameterize the configuration of the switching device 20. In other words, the pump has a control device adapted to configure the switching device 20 , so as to selectively activate the thermoelectric units 41, 42, 43, 44.

De plus, l'une au moins des unités thermoélectriques 41, 42, 43, 44 peut être alimentée avec différents niveaux non nuls de tension, compte tenu de la structure de certains des circuits d'alimentation présents dans l'unité d'alimentation 10. Ainsi, le dispositif de commande permet également de sélectionner un niveau de tension prédéterminé parmi plusieurs niveaux de tension. L'exemple qui suit illustre, en liaison avec le mode de réalisation de la figure 1, la variété de modes d'alimentation pouvant être sélectionnés pour la pompe à chaleur. L'unité ce contrôle électronique ECU du dispositif de commande délivre ici des commandes de sortie tout ou rien pour configurer les interrupteurs respectifs I0, I1, I2 des circuits d'alimentation associés aux unités thermoélectriques 41, 42, ainsi que les interrupteurs respectifs I0, I3, I4 des circuits d'alimentation associés aux unités thermoélectriques 41, 42. Des commandes de sortie tout ou rien sont également délivrées par l'unité de contrôle électronique ECU pour fixer l'état des moto-vannes associées aux unités thermoélectriques 41, 42, 43, 44. Cet état est référencé V dans le tableau qui suit, avec V=1 signifiant que la ou les vannes correspondantes sont ouvertes.In addition, at least one of the thermoelectric units 41, 42, 43, 44 can be powered with different non-zero voltage levels, given the structure of some of the power circuits present in the power supply unit 10. So, the The controller also selects a predetermined voltage level from a plurality of voltage levels. The following example illustrates, in connection with the embodiment of the figure 1 , the variety of power modes that can be selected for the heat pump. The ECU electronic control unit of the control device here provides on-off output commands for configuring the respective switches I0, I1, I2 of the power supply circuits associated with the thermoelectric units 41, 42, and the respective switches I0, I3, I4 of the power supply circuits associated with the thermoelectric units 41, 42. On-off output controls are also provided by the electronic control unit ECU for setting the status of the motor-valves associated with the thermoelectric units 41, 42 , 43, 44. This state is referenced V in the following table, with V = 1 meaning that the corresponding valve or valves are open.

Utilisations de deux unités thermoélectrique 41, 42 dans six modes d'alimentation en mode chauffageUses of two thermoelectric units 41, 42 in six modes of supply in heating mode

Première unitéFirst unit Première unité 14A/35VACFirst unit 14A / 35VAC Deux Unités 14A/35VACTwo Units 14A / 35VAC Première unité 7A/70VACFirst unit 7A / 70VAC Deux unités 7A-14ATwo units 7A-14A Deux Unités 7A/70VACTwo Units 7A / 70VAC Deux Unités 220VACTwo 220VAC Units I0I0 11 11 11 11 11 00 I1I1 00 00 11 11 11 00 I2I2 11 11 00 00 00 00 VV 11 11 11 11 11 00 Deuxième unitéSecond unit Première unité 14A/35VACFirst unit 14A / 35VAC Deux Unités 14A/35VACTwo Units 14A / 35VAC Première unité 7A/70VACFirst unit 7A / 70VAC Deux unités 7A-14ATwo units 7A-14A Deux Unités 7A/70VACTwo Units 7A / 70VAC Deux Unités 220VACTwo 220VAC Units I0I0 00 11 00 11 11 00 I1I1 00 00 00 00 11 00 I2I2 00 11 00 11 00 00 VV 00 11 00 11 11 00

Les deux tableaux ci-dessus illustrent la sélection des différents modes d'alimentation en fonction des commandes tout ou rien de l'unité électronique de contrôle ECU. La figure 1 illustre le mode d'alimentation dans lequel on a les deux unités thermoélectriques 41, 42 qui sont alimentées à 35 VAC / 14 A (cf. colonne en caractère gras), tandis que les deux autres unités thermoélectriques 43, 44 ne sont pas alimentées. A l'inverse dans le sixième mode d'alimentation indiqué dans les tableaux ci-dessus, seules les unités thermoélectriques 43, 44 sont alimentées avec du 220V.The two tables above illustrate the selection of the different power modes according to the on-off commands of the electronic control unit ECU. The figure 1 illustrates the mode of supply in which there are two thermoelectric units 41, 42 which are supplied at 35 VAC / 14 A (see column in bold), while the other two thermoelectric units 43, 44 are not powered. Conversely, in the sixth mode of supply indicated in the tables above, only the thermoelectric units 43, 44 are powered with 220V.

Utilisations de deux dernières unités thermoélectrique 43, 44 dans les six modes d'alimentation en mode chauffageUses of the last two thermoelectric units 43, 44 in the six power modes in heating mode

Deux dernières unitésLast two units Première unité 14A/35VACFirst unit 14A / 35VAC Deux Unités 14A/35VACTwo Units 14A / 35VAC Première unité 7A/70VACFirst unit 7A / 70VAC Deux unités 7A-14ATwo units 7A-14A Deux Unités 7A/70VACTwo Units 7A / 70VAC Deux Unités 220VACTwo 220VAC Units I0I0 00 00 00 00 00 11 I3I3 00 00 00 00 00 11 I4I4 00 00 00 00 00 11 VV 00 00 00 00 00 11

On peut noter qu'une inversion du courant d'alimentation est permise pour ces deux unités thermoélectrique 43, 44. Par exemple, la fermeture des interrupteurs 13 en laissant ouverts les interrupteurs I4 peut permettre de fournir une alimentation adaptée pour un mode de chauffage, tandis que le paramétrage inverse permet d'obtenir un mode de rafraîchissement. Ici, les connexions de sortie S3, S4 sont chacune associées à un dispositif inverseur du sens du courant actionnable par l'unité de contrôle électronique ECU du dispositif de commande. Naturellement, un tel dispositif inverseur peut être utilisé pour n'importe quelle des connexions de sortie S1, S2, S3, S4 de l'unité d'alimentation électrique 10 et peut plus généralement se présenter sous toute forme adaptée. Le dispositif de commutation 20 peut comprendre des commutateurs C11, C12 faisant varier le niveau de tension d'alimentation d'un facteur égal à deux ou supérieur à deux au niveau des connexions de sortie S1, S2 respectives. Bien entendu, les modes d'alimentation ci-dessus présentés ne sont que des exemples pouvant être complétés et/ou remplacés par d'autres modes d'alimentation.It may be noted that an inversion of the supply current is allowed for these two thermoelectric units 43, 44. For example, the closing of the switches 13 while leaving the switches 14 open can make it possible to supply a power supply adapted for a heating mode, while the reverse setting provides a refresh mode. Here, the output connections S3, S4 are each associated with an inverter device of the direction of the current that can be actuated by the electronic control unit ECU of the control device. Naturally, such an inverter device may be used for any of the output connections S1, S2, S3, S4 of the power supply unit 10 and may more generally be in any suitable form. The switching device 20 may comprise switches C11, C12 varying the supply voltage level by a factor of two or greater by two at the respective output connections S1, S2. Of course, the feeding patterns shown above are only examples that can be completed and / or replaced by other modes of feeding.

Le dispositif de commande dispose d'une table de conversion ou de moyens similaires associant à la paire de premières unités thermoélectriques 41, 42 un nombre déterminé de commandes qui ici se différencient entre elles par les deux paramètres sélectionnés suivants :

  • l'état, représentatif d'une sélection de tout ou partie d'une unité thermoélectrique 41, 42, des commutateurs C01, C02 du dispositif de commutation 20 qui sont agencés entre la source de courant électrique 8 des transformateurs T1, T2 ; et
  • l'état, représentatif d'une sélection d'un niveau de tension, des commutateurs C11, C12 du dispositif de commutation 20.
The control device has a conversion table or similar means associating with the pair of first thermoelectric units 41, 42 a given number of commands which here are differentiated from each other by the following two selected parameters:
  • the state, representative of a selection of all or part of a thermoelectric unit 41, 42, switches C01, C02 of the switching device 20 which are arranged between the electric power source 8 of the transformers T1, T2; and
  • the state, representative of a selection of a voltage level, of the switches C11, C12 of the switching device 20.

Pour le choix des commandes de sortie, l'unité de contrôle électronique ECU peut utiliser différentes entrées analogiques, par exemple fournies à l'aide de premiers capteurs de température 31 et de deuxièmes capteurs de température 32. Les premiers capteurs 31 délivrent par exemple des signaux représentatifs de températures caractéristiques des deux circuits d'échange de chaleur, comme les températures de départ et de retour du fluide caloporteur dans le circuit émetteur, les températures de départ et de retour du fluide caloporteur dans le circuit extérieur. Les deuxièmes capteurs de température 32 permettent de mesurer la température extérieure à l'habitation ou local similaire équipé avec la pompe à chaleur, ainsi que la température ambiante de l'habitation. Plus généralement, l'ensemble de capteurs de température 31, 32 est prévu pour fournir des informations suffisantes pour une estimation des conditions dans lesquelles est réalisé le transfert de chaleur.For the choice of the output controls, the ECU electronic control unit can use different analog inputs, for example provided using first temperature sensors 31 and second temperature sensors 32. The first sensors 31 deliver for example signals representative of characteristic temperatures of the two heat exchange circuits, such as the flow and return temperatures of the heat transfer fluid in the emitter circuit, the flow and return temperatures of the heat transfer fluid in the external circuit. The second temperature sensors 32 make it possible to measure the temperature outside the dwelling or similar room equipped with the heat pump, as well as the ambient temperature of the dwelling. More generally, the set of temperature sensors 31, 32 is provided to provide sufficient information for an estimation of the conditions in which the heat transfer is carried out.

L'unité de contrôle électronique ECU reçoit aussi des entrées tout ou rien, numériques dans un mode de réalisation préféré, pouvant correspondre à l'un au moins des ordres suivants :

  • Commande de mise en marche de la pompe à chaleur, avec par exemple une mise sous tension de l'automate (cet ordre est typiquement manuel et donné par l'utilisateur en appuyant sur un bouton en façade) ;
  • Commande de mise en marche du mode chauffage (cet ordre est également typiquement manuel) ;
  • Commande de mise en marche du mode rafraîchissement (cet ordre est également typiquement manuel) ; et
  • L'ordre de chauffage ou de rafraîchissement par le thermostat d'ambiance en fonction de l'écart de température entre la température ambiance et la consigne dans l'habitat.
The electronic control unit ECU also receives digital all or nothing inputs in a preferred embodiment, which can correspond to at least one of the following commands:
  • Start-up control of the heat pump, with for example a power-up of the PLC (this order is typically manual and given by the user by pressing a button on the front);
  • Heating mode start command (this order is also typically manual);
  • Refresh mode start command (this order is also typically manual); and
  • The order of heating or cooling by the room thermostat as a function of the temperature difference between the room temperature and the set point in the habitat.

Un convertisseur CAN de l'unité de contrôle électronique ECU permet de collecter les différentes entrées. L'exploitation des informations correspondantes peut être réalisée au niveau de l'unité de contrôle électronique ECU du dispositif de commande. On comprend que la température de consigne (il peut s'agir d'une température ambiante souhaitée) indiquée par l'utilisateur est prise ainsi en compte de façon à déterminer la température qu'il faudrait atteindre dans les circuits de fluide caloporteur pour répondre à la demande de l'utilisateur. La connaissance de la résistance thermique globale de l'échangeur et préférentiellement de la température extérieure et la résistance thermique globale de l'habitat peuvent permettre une corrélation entre une température de consigne paramétrée directement par un utilisateur et le besoin réel en transfert de chaleur.A CAN converter from the ECU electronic control unit is used to collect the different inputs. The exploitation of the corresponding information can be performed at the electronic control unit ECU of the control device. It is understood that the temperature setpoint (it may be a desired ambient temperature) indicated by the user is taken into account so as to determine the temperature that should be reached in the heat transfer fluid circuits to meet the user's request. The knowledge of the overall heat resistance of the exchanger and preferably the external temperature and the overall thermal resistance of the habitat can allow a correlation between a set temperature set directly by a user and the actual need for heat transfer.

Ainsi, un asservissement d'un paramètre représentatif du besoin en transfert de chaleur, par exemple une température moyenne d'eau obtenue à partir des températures mesurées par deux des capteurs 31, peut être mis en oeuvre par utilisation d'un paramètre de consigne correspondant. Ce paramètre de consigne prend ici en compte la température de consigne paramétrée par l'utilisateur. Dans un mode de réalisation de l'invention, l'écart entre le paramètre de consigne et le paramètre correspondant estimé en temps réel est calculé par exploitation des mesures des capteurs 31, 32. Un algorithme de l'unité de contrôle électronique ECU est prévu pour effectuer ce calcul et réaliser une corrélation, en fonction de ladite consigne de température et des signaux délivrés par l'ensemble des premiers et deuxièmes capteurs de température 31, 32, entre des besoins de transfert de chaleur et un unique point de fonctionnement optimal. Pour cela, le calcul de l'écart au paramètre de consigne permet au thermostat d'ambiance de délivrer l'ordre de chauffage ou de rafraîchissement.Thus, servocontrol of a parameter representative of the heat transfer requirement, for example an average water temperature obtained from the temperatures measured by two of the sensors 31, can be implemented by using a corresponding setpoint parameter. . This setpoint parameter takes into account the setpoint temperature set by the user. In one embodiment of the invention, the difference between the reference parameter and the corresponding parameter estimated in real time is calculated by using the measurements of the sensors 31, 32. An algorithm of the ECU electronic control unit is provided. to perform this calculation and perform a correlation, according to said temperature setpoint and the signals delivered by all the first and second temperature sensors 31, 32, between heat transfer requirements and a single optimum operating point. For this, calculating the deviation from the setpoint parameter allows the room thermostat to deliver the heating or cooling command.

Dans l'exemple de la figure 1, qui correspond à un mode de fonctionnement par chauffage en utilisant les deux unités thermoélectriques 41, 42, le point de fonctionnement a ainsi été déterminé à l'aide de l'algorithme de l'unité de contrôle électronique ECU pour maximiser le coefficient de performance de la pompe à chaleur. De manière non limitative, l'algorithme calcule typiquement dans ce cas deux paramètres tels que la puissance de chauffage et la température moyenne d'eau de celui des circuits qui est émetteur de chaleur. Ce couple de paramètres permet, par exemple par utilisation d'une table de correspondance, de trouver le nombre de modules thermoélectriques 3 optimal pour le besoin ainsi que le courant optimal pour ces modules thermoélectriques 3. Le choix du mode d'alimentation se fait alors dans la configuration qui se rapproche le plus des paramètres d'optimisation ainsi déterminés.In the example of the figure 1 , which corresponds to a mode of operation by heating using the two thermoelectric units 41, 42, the operating point was thus determined using the algorithm of the electronic control unit ECU to maximize the coefficient of performance of the heat pump. In a nonlimiting manner, the algorithm typically calculates in this case two parameters such as the heating power and the average water temperature of that of the circuits which is heat emitter. This pair of parameters makes it possible, for example by using a correspondence table, to find the number of thermoelectric modules 3 that are optimal for the need as well as the optimal current for These thermoelectric modules 3. The choice of the power mode is then in the configuration that is closest to the optimization parameters thus determined.

On comprend que le nombre de modules thermoélectriques 3 en fonctionnement peut avantageusement évoluer de façon dynamique pour répondre à un large nombre de couples (Quantité de chaleur pour le chauffage/Température moyenne de l'eau du circuit émetteur) et (Quantité de chaleur pour le rafraîchissement/Température moyenne de l'eau du circuit émetteur). Comme ce couple varie en fonction du temps et de la conception du système global intégrant la pompe à chaleur, le processus de détermination par l'algorithme du nombre de modules thermoélectriques 3 en fonctionnement doit être répété régulièrement, avec une détermination simultanée du mode d'alimentation optimal de ce nombre déterminée de modules 3 qui satisfait le besoin réel pour la consommation électrique minimale.It is understood that the number of thermoelectric modules 3 in operation can advantageously evolve dynamically to meet a large number of pairs (amount of heat for heating / average temperature of the water of the emitter circuit) and (amount of heat for the cooling / average water temperature of the transmitter circuit). Since this torque varies as a function of time and the design of the overall system integrating the heat pump, the process of determination by the algorithm of the number of thermoelectric modules 3 in operation must be repeated regularly, with a simultaneous determination of the mode of operation. optimal supply of this determined number of modules 3 which satisfies the real need for the minimum power consumption.

L'unité de contrôle électronique ECU montrée sur la figure 1 peut comporter un module de paramétrage pour paramétrer un nombre défini de points de fonctionnement prédéterminés de la pompe à chaleur, de façon à définir des configurations chacune différentes afin de mieux correspondre à un besoin spécifique en transfert de chaleur. Les points de fonctionnement sont paramétrés par le module de paramétrage en fonction, d'une part, d'un nombre de modules thermoélectriques 3 qui sont activés, et d'autre part, de tensions d'alimentation chacune associées aux modules thermoélectriques 3 qui sont activés.The electronic control unit ECU shown on the figure 1 may include a parameterization module for setting a predetermined number of predetermined operating points of the heat pump, so as to define different configurations each to better correspond to a specific need for heat transfer. The operating points are parameterized by the parameterization module as a function, on the one hand, of a number of thermoelectric modules 3 which are activated, and on the other hand of supply voltages each associated with the thermoelectric modules 3 which are enabled.

En référence à la figure 5, on comprend que l'augmentation de la tension d'alimentation affectée à chaque module thermoélectrique a tendance à abaisser le COP. C'est pourquoi le dispositif de commande peut avantageusement configurer le dispositif de commutation 20 de façon à sélectionner un mode de chauffage avec un nombre de modules thermoélectriques 3 suffisant pour répondre aux besoins de transfert de chaleur, et délivrer un courant d'alimentation juste suffisant pour optimiser le COP. Pour un couple de températures mensurées dans les deux circuits, il existe un courant d'alimentation unique pour lequel un module thermoélectrique 3 considéré possède un COP maximal. Autrement dit, on peut associer à un tel point de fonctionnement un couple unique de flux de chaleur pour le transfert de chaleur dans les deux circuits émetteur et récepteur de chaleur.With reference to the figure 5 it is understood that increasing the supply voltage assigned to each thermoelectric module tends to lower the COP. That is why the control device can advantageously configure the switching device 20 so as to select a heating mode with a number of thermoelectric modules 3 sufficient to meet the needs for heat transfer, and to deliver a sufficient supply current just to optimize the COP. For a pair of temperature measurements in the two circuits, there is a single supply current for which a thermoelectric module 3 considered has a maximum COP. In other words, it is possible to associate at such a point of operation a single pair of heat flows for the heat transfer in the two circuits transmitter and receiver of heat.

La figure 5 montre ainsi qu'il existe un point de fonctionnement optimal en fonction de la puissance pour le chauffage PC requise pour différentes températures de consigne PC(20), PC(25) et PC(30). Les courbes du COP correspondantes COP(20), COP(25) et COP(30) sont indiquées en liaison avec l'axe des ordonnées placé à gauche dans la figure 5. Ce genre de modélisation appelé « loi d'eau » dans le cas où le fluide caloporteur est de l'eau permet de retrouver la tension d'alimentation optimale des modules thermoélectriques 3 en fonction des besoins requis en puissance.The figure 5 thus shows that there is an optimum operating point depending on the power required for the PC heating required for different setpoint temperatures PC (20), PC (25) and PC (30). The corresponding COP curves COP (20), COP (25) and COP (30) are indicated in relation to the y-axis placed to the left in the figure 5 . This kind of modeling called "water law" in the case where the coolant is water allows to find the optimal supply voltage of the thermoelectric modules 3 according to the power requirements.

En référence à la figure 4, la pompe à chaleur peut être contrôlée en procédant comme suit :

  • on connecte dans une étape préliminaire la pompe à chaleur à la source de courant électrique 8 ;
  • on programme lors d'une première étape de paramétrage 61 au moins une consigne de température ;
  • on délivre à la suite d'une étape de mesure 62, par les capteurs de température 31, 32, des signaux représentatifs de températures caractéristiques des deux circuits d'échange de chaleur ;
  • on alimente à partir de la source de courant électrique 8, les unités thermoélectriques 41, 42, 43, 44 par l'unité d'alimentation électrique 10 ;
  • on règle la tension délivrée au niveau de chacune des connexions de sortie S1, S2, S3, S4 de l'unité d'alimentation électrique 10 ;
  • lors d'une étape 63 de détermination des besoins en transfert de chaleur, on utilise l'algorithme de l'unité contrôle électronique ECU et on calcule en fonction de la consigne de température et des signaux délivrés par l'ensemble de capteurs de température 31, 32 des paramètres représentatifs d'un besoin de transfert de chaleur (pouvant inclure la puissance de chauffage ou de rafraîchissement et une température caractéristique dans le circuit émetteur d'un tel chauffage ou rafraîchissement) ;
  • dans une étape 64 mis en oeuvre par l'algorithme de l'unité contrôle électronique ECU, on détermine le nombre de module thermoélectriques 3 suffisant ainsi qu'un courant d'alimentation optimal de ces modules thermoélectriques 3 ;
  • lors d'une étape de sélection 65, on sélectionne une configuration du dispositif de commutation 20 en fonction, de l'étape précédente 64 (i.e. en correspondance avec le point de fonctionnement choisi) ; et
  • on commande ensuite l'alimentation électrique des unités thermoélectriques 41, 42, 43, 44 en utilisant les niveaux de tension d'alimentation des modules thermoélectriques 3 qui permettent d'atteindre ou de s'approcher au plus près du COP optimal pour chacun des modules thermoélectriques 3.
With reference to the figure 4 , the heat pump can be controlled by proceeding as follows:
  • in a preliminary step, the heat pump is connected to the source of electric current 8;
  • in a first parameterization step 61, at least one temperature setpoint is programmed;
  • after the measurement step 62, the temperature sensors 31, 32 transmit signals representative of the characteristic temperatures of the two heat exchange circuits;
  • the thermoelectric units 41, 42, 43, 44 are supplied from the electric power source 8 by the power supply unit 10;
  • regulating the voltage delivered at each of the output connections S1, S2, S3, S4 of the power supply unit 10;
  • during a step 63 for determining the heat transfer requirements, the algorithm of the electronic control unit ECU is used and is calculated as a function of the temperature setpoint and the signals delivered by the set of temperature sensors 31 Parameters representative of a heat transfer requirement (which may include heating or cooling power and a characteristic temperature in the emitter circuit of such heating or cooling);
  • in a step 64 implemented by the algorithm of the electronic control unit ECU, the number of thermoelectric modules 3 is determined as well as an optimum supply current of these thermoelectric modules 3;
  • during a selection step 65, selecting a configuration of the switching device 20 according to the previous step 64 (ie in correspondence with the selected operating point); and
  • the power supply of the thermoelectric units 41, 42, 43, 44 is then controlled by using the supply voltage levels of the thermoelectric modules 3 which make it possible to reach or approach as close as possible to the optimal COP for each of the modules thermoelectric 3.

Un des avantages de l'invention est de fournir à l'opérateur un moyen d'optimiser la consommation électrique de la pompe à chaleur tout en utilisant des modules thermoélectriques 3 qui peuvent être identiques. L'optimisation est automatisée pour assurer un fonctionnement performant de la pompe à chaleur. La rapidité de réponse et la flexibilité du système de contrôle (2) sont également des avantages d'une telle pompe à chaleur.One of the advantages of the invention is to provide the operator with a means of optimizing the power consumption of the heat pump while using thermoelectric modules 3 which may be identical. The optimization is automated to ensure efficient operation of the heat pump. The speed of response and the flexibility of the control system (2) are also advantages of such a heat pump.

L'unité d'alimentation électrique 10 peut être relativement compacte de façon à être intégré avec un microcontrôleur dans un simple boîtier de commande de la pompe à chaleur. On comprend que les dispositifs de réglage de la tension prévus dans l'unité d'alimentation électrique 10 peuvent se présenter sous des formes différentes de celles présentées à la figure 1, en vue de fournir plusieurs tensions séparées, affectées chacune à une des unités thermoélectriques 41, 42, 43, 44. Un ou plusieurs connecteurs électriques peuvent être prévus avec des liaisons de commande pour permettre de connecter l'unité d'alimentation électrique 10 au dispositif de commande de la pompe à chaleur. Les liaisons de commande du connecteur électrique permettant dans ce cas l'activation sélective de chacune des unités thermoélectriques 41, 42, 43, 44, ainsi que la sélection des configurations du dispositif de commutation 20.The power supply unit 10 may be relatively compact so as to be integrated with a microcontroller in a single control unit of the heat pump. It is understood that the voltage control devices provided in the power supply unit 10 may be in different forms from those presented in FIG. figure 1 , to provide a plurality of separate voltages, each assigned to one of the thermoelectric units 41, 42, 43, 44. One or more electrical connectors may be provided with control links to enable the power supply unit 10 to be connected to control device of the heat pump. The control connections of the electrical connector allowing in this case the selective activation of each of the thermoelectric units 41, 42, 43, 44, as well as the selection of the configurations of the switching device 20.

Il doit être évident pour les personnes versées dans l'art que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine d'application de l'invention comme revendiqué. On comprend notamment que le système de contrôle 2 n'est pas limité aux exemples particuliers décrits en liaison avec les figures 1 et 2 et peut utiliser différents types de moyens d'asservissement permettant de commander un dispositif de commutation 20, en fonction de signaux et/ou données représentatives d'une ou plusieurs températures de consigne et d'une ou plusieurs températures mesurées.It should be obvious to those skilled in the art that the present invention allows embodiments in many other specific forms without departing from the scope of the invention as claimed. It is understood in particular that the control system 2 is not limited to the particular examples described in connection with the figures 1 and 2 and can use different types of servo means for controlling a switching device 20, based on signals and / or data representative of one or more set temperatures and one or more measured temperatures.

L'unité d'alimentation électrique 10 peut se présenter sous différentes formes et peut comporter des dispositifs d'alimentation électrique physiquement séparés et/ou être raccordée à plusieurs sources de courant. Par exemple on peut utiliser, en fonction des conditions de fonctionnement, au moins un courant d'un réseau urbain et/ou et le courant fourni par un équipement additionnel à cellules photovoltaïques ou convertissant en électricité une énergie extérieure.The power supply unit 10 may be in various forms and may have physically separate power supplies and / or be connected to a plurality of power sources. For example, it is possible to use, depending on the operating conditions, at least one current of an urban network and / or the current supplied by additional equipment with photovoltaic cells or converting into electricity an external energy.

Par ailleurs, le couplage/découplage thermique entre les sources alimentant les échangeurs des unités thermoélectriques 41, 42, 43, 44. peut être utilisé dans une pompe à chaleur seulement en association avec l'alimentation sélective de ces unités thermoélectriques 41, 42, 43, 44. Dans un tel mode de réalisation, le réglage de la tension délivrée par chacune des connexions de sortie S1, S2, S3, S4 est donc optionnel et peut être supprimé. Dans ce cas, même en l'absence de fonctions d'ajustement des niveaux de tension, on obtient avantageusement une pompe à chaleur d'un coût moindre et permettant de s'adapter efficacement aux besoins en s'approchant d'un point de fonctionnement optimal : le dispositif de commande permet un paramétrage sélectif du nombre de modules thermoélectriques 3 et active une configuration adéquate du dispositif de couplage/découplage thermique associé aux unités thermoélectriques 40, 41, 42, 43, 44.Furthermore, the thermal coupling / decoupling between the sources supplying the exchangers of the thermoelectric units 41, 42, 43, 44 can be used in a heat pump only in association with the selective supply of these units. In such an embodiment, the adjustment of the voltage delivered by each of the output connections S1, S2, S3, S4 is therefore optional and can be suppressed. In this case, even in the absence of voltage level adjustment functions, it is advantageous to obtain a heat pump at a lower cost and making it possible to adapt effectively to the needs while approaching a point of operation. optimal: the control device allows a selective setting of the number of thermoelectric modules 3 and activates a suitable configuration of the thermal coupling / decoupling device associated with the thermoelectric units 40, 41, 42, 43, 44.

Claims (14)

  1. A control system (2) for a reversible thermoelectric heat pump having two heat exchange circuits using a heat transfer fluid and a plurality of thermoelectric units (40, 41, 42, 43, 44) for the transfer of heat, each comprising a specific number of thermoelectric modules (3) suitable for transferring heat between the two circuits, the control system comprising:
    - an electricity supply unit (10) intended to be connected to a source of electrical current (8) and having a plurality of output connections (S1, S2, S3, S4) which can deliver a supply voltage to each of the thermoelectric units;
    - a set of temperature sensors (31, 32) intended to deliver in particular signals representative of the characteristic temperatures of the two heat exchange circuits; and
    - a control device (6, ECU) connected to a set temperature input device to control the electricity supply to the plurality of thermoelectric units in relation to the set temperature and signals delivered by the set of temperature sensors (31, 32);
    characterised in that the electricity supply unit (10) comprises a plurality of devices to control the voltage delivered by each of the output connections (S1, S2, S3, S4), the control devices comprising switches, at least some of the control devices being intended to deliver several predetermined voltages according to the status of the switches in the control device, and in that the control device is connected to the switches and is intended to control different switching configurations of the switches, partly to provide a selective power supply to at least some of the plurality of thermoelectric units (40, 41, 42, 43, 44), and also to select the pre-set voltage fed to the powered thermoelectric units.
  2. A control system according to claim 1, in which the control device (6, ECU) comprises an electronic control unit (ECU) comprising:
    - a parametering module to parameter a specific number of predetermined operating points for the heat pump, each operating point corresponding to a number of powered thermoelectric modules (3) and a pre-set supply voltage for each of the powered thermoelectric units (40, 41, 42, 43, 44); and
    - an algorithm intended to provide a correlation between the needs for heat transfer and a signal operating point in relation to the set temperature and the signals delivered by the set of temperature sensors (31, 32) in such a way as to select the operating point maximising the performance coefficient of the heat pump.
  3. A control system according to either of claims 1 and 2, in which the control device (6, ECU) comprises a conversion table through which a specific number of configuration commands are associated with a first voltage control device and a second voltage control device and are distinguished from each other by at least one and preferably two of the following selected parameters:
    - the status, representative of a selection of all or part of a thermoelectric unit, of the first switches (C01, C02) connected between the source of electrical current (8) and the first and second voltage control devices; and
    - the status, representative of a selected voltage level, of the second switches (C11, C12) connected to the first and second voltage control devices.
  4. A control system according to any one of claims 1 to 3, in which the source of electrical current (8) provides an alternative power supply and the control devices comprise:
    - at least one converter (T1, T2) with two outputs defined by four terminals intended to deliver two predetermined voltage levels each very much lower than the voltage level of the source of electrical current (8); and
    - switches (C11, C12) connected to the output of the converter to deliver a pre-set output voltage resulting from a combination of the two pre-set levels delivered by the converter.
  5. A control system according to claim 4, in which the said control devices comprise a full wave rectifier bridge (51, 52) and an output defined by two junctions of the rectifier bridge (51, 52), at least one of the switches (C11, C12) being configurable in two positions, one of which makes it possible to deliver a first voltage using four terminals at the output from the converter (T1, T2) connected to two junctions of the rectifier bridge (51, 52) and the other makes it possible to deliver a second voltage higher than the first voltage using only two of the four terminals at the output from the converter (T1, T2) connected to two junctions of the rectifier bridge (51, 52).
  6. A control system according to any one of claims 1 to 5, in which the electricity supply unit (10) comprises:
    - first output connections (S1, S2) at a power adjustably defined according to the configuration of the switches; and
    - second output connections (S3, S4) of a power predetermined independently of the configuration of the switching device (20).
  7. A control system according to claim 6, in which the control device (6, ECU) comprises a conversion table through which either one or more of the first output connections (S1, S2) or one or more of the second output connections (S3, S4) can be used.
  8. A control system according to one of claims 6 and 7, in which the second output connections (S3, S4) are each associated with a device (I3, I4) inverting the current direction, which can be operated by the control device (6, ECU).
  9. A reversible thermoelectric heat pump comprising two heat exchange circuits using a heat transfer fluid and a plurality of thermoelectric units (40, 41, 42, 43, 44) for the transfer of heat each comprising a specific number of thermoelectric modules (3) intended to transfer heat between the two circuits, characterised in that it comprises the control system (2) according to one of claims 1 to 8.
  10. A reversible thermoelectric heat pump according to claim 9, in which a first thermoelectric unit (40) comprises two sets (30') of thermoelectric modules (3), each of the two sets being powered independently of the other through one of the output connections (S1, S2, S3, S4) of the electricity supply unit.
  11. A reversible thermoelectric heat pump according to claim 9 or 10, comprising a device to reduce, in at least one of the thermoelectric units (40, 41, 42, 43, 44), heat transfer between the two heat exchange circuits in the heat exchange zone defined between two exchangers of one thermoelectric unit that is not electrically powered.
  12. A reversible thermoelectric heat pump according to claim 11, in which each of the thermoelectric units (40) comprises:
    - a first exchanger (40a) with a part of the circuit belonging to one of the stated two circuits;
    - a second exchanger (40b) with a part of the circuit belonging to the other of the two circuits; and
    - at least one motorised valve (V1, V2) intended to selectively cut off the circulation of heat transfer fluid in these parts of the circuit of the thermoelectric unit, the motorised valve forming the heat transfer reduction device.
  13. A process for the control of a reversible thermoelectric heat pump, in which a heat transfer fluid is caused to circulate in two heat exchange circuits of a reversible thermoelectric heat pump comprising a plurality of thermoelectric units (40, 41, 42, 43, 44) for the transfer of heat, each comprising a specific number of thermoelectric modules (3) intended to transfer heat between the two circuits, the process comprising stages essentially consisting of:
    - connecting the heat pump to a source of electrical current (8);
    - powering the said thermoelectric units (40, 41, 42, 43, 44) from the source of electrical current via at least one electricity supply unit (10) having a plurality of output connections (S1, S2, S3, S4, S5);
    - entering a set temperature;
    - delivering signals representative of temperature characteristics of the two heat exchange circuits through a set of temperature sensors (31, 32); and
    characterised in that it also comprises the following stages:
    - adjustment of the voltage delivered by each of the output connections (S1, S2, S3, S4) through a plurality of control devices provide with switches, it being possible for several predetermined voltage levels to be delivered to at least part of the control devices according to the state of the switches; and
    - controlling the switching configurations of the switches to provide power selectively to at least some of the plurality of thermoelectric units (40, 41, 42, 43, 44) and selecting the pre-set voltage supplied to the powered thermoelectric units.
  14. A control process according to claim 13, in which heat transfer between two exchangers of a thermoelectric unit (40, 41, 42, 43, 44) which is not electrically powered is reduced in at least one heating mode of the reversible thermoelectric heat pump, preferably by stopping the circulation of heat transfer fluid in the thermoelectric unit which is not electrically powered.
EP20100192654 2009-12-18 2010-11-26 Process and control system for a reversible heat pump including thermoelectric modules Active EP2336679B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0959196A FR2954476A1 (en) 2009-12-18 2009-12-18 METHOD AND SYSTEM FOR CONTROLLING A REVERSIBLE HEAT PUMP WITH THERMOELECTRIC MODULES

Publications (2)

Publication Number Publication Date
EP2336679A1 EP2336679A1 (en) 2011-06-22
EP2336679B1 true EP2336679B1 (en) 2012-07-04

Family

ID=42308337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100192654 Active EP2336679B1 (en) 2009-12-18 2010-11-26 Process and control system for a reversible heat pump including thermoelectric modules

Country Status (2)

Country Link
EP (1) EP2336679B1 (en)
FR (1) FR2954476A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540344A (en) * 2015-07-06 2017-01-18 Evontix Ltd Control system
WO2022228925A1 (en) * 2021-04-26 2022-11-03 Valeo Systemes Thermiques Method for controlling a thermoelectric module, thermal actuator and control system
CN116007226B (en) * 2022-12-05 2024-07-02 武汉理工大学 Room temperature solid-state refrigeration device and method based on thermoelectric magnetic coupling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2004790A1 (en) * 1970-01-28 1971-08-05 Siemens Ag Heating and cooling device with a heat pump
US4463569A (en) * 1982-09-27 1984-08-07 Mclarty Gerald E Solid-state heating and cooling apparatus
GB0217524D0 (en) * 2002-07-29 2002-09-04 Bookham Technology Plc TEC drive control and monitoring
FR2879728B1 (en) * 2004-12-22 2007-06-01 Acome Soc Coop Production AUTONOMOUS HEATING AND REFRESHING MODULE

Also Published As

Publication number Publication date
FR2954476A1 (en) 2011-06-24
EP2336679A1 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US8200373B2 (en) Energy production and consumption matching system
EP3404334B2 (en) Method and facility for energy storage using a water heater
CH703162A1 (en) energy recovery system renewable.
EP3676541B1 (en) Heating apparatus comprising a battery and a power inverter for introducing energy from the battery to the electrical supply source
EP2336679B1 (en) Process and control system for a reversible heat pump including thermoelectric modules
FR2921471A1 (en) Distributor casing for use in heating/air-conditioning installation, has control unit controlling two-way on or off stop valves to select one of combination schemes for distributing heat transfer fluid
WO2013004972A1 (en) Heat exchange system and method for regulating a heat power developed by such a heat exchange system
FR3029326A1 (en) METHOD AND SYSTEM FOR ENERGY MANAGEMENT
CA3044348C (en) Electric radiator type heating apparatus including a voltage converter
EP2699854A2 (en) Heat-exchange device for a reversible thermoelectric heat pump
EP3225937A1 (en) Construction device including an element for storing fluid to be recharged thermally
EP3816524B1 (en) Device for heating water
EP2567160B1 (en) Method and system for controlling a heat pump having thermoelectric modules
FR3085201A1 (en) AIR CONDITIONING SYSTEM AND POWER DISTRIBUTION UNIT
JP5745911B2 (en) Heat supply system
JP2015190695A (en) Cogeneration system
EP4308859A1 (en) System for managing a variable-power dc current source
FR2976631A1 (en) Method for generating electricity using solar power plant, involves controlling Stirling engine to operate at selected operating point so that engine responds to predetermined change in required electric power over time less than threshold
FR3035484A1 (en) HOT WATER PRODUCTION SYSTEM
WO2022228925A1 (en) Method for controlling a thermoelectric module, thermal actuator and control system
FR3012873A1 (en) METHOD AND DEVICE FOR TRANSFERRING THERMAL ENERGY IN THE URBAN ENVIRONMENT
JP5745912B2 (en) Heat supply system
FR3138682A1 (en) Method for optimizing the production of domestic hot water as well as device and system implementing said process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20111212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 21/04 20060101AFI20120109BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 565326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ACOME SOCIETE COOPERATIVE ET PARTICIPATIVE SOCIETE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010002099

Country of ref document: DE

Effective date: 20120830

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 565326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120704

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121104

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121015

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: ACOME SOC. COOPERATIVE DE PRODUCTION, SOCIETE ANO

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

26N No opposition filed

Effective date: 20130405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010002099

Country of ref document: DE

Effective date: 20130405

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101126

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151109

Year of fee payment: 6

Ref country code: IT

Payment date: 20151118

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010002099

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20171114

Ref country code: FR

Ref legal event code: CD

Owner name: ACOME SOCIETE COOPERATIVE ET PARTICIPATIVE SOC, FR

Effective date: 20171114

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: THERMACOME, FR

Effective date: 20180112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230316

Year of fee payment: 13