EP2334835A1 - Echangeur de chaleur a epaisseur de composant reduit et son procede de fabrication - Google Patents

Echangeur de chaleur a epaisseur de composant reduit et son procede de fabrication

Info

Publication number
EP2334835A1
EP2334835A1 EP09783620A EP09783620A EP2334835A1 EP 2334835 A1 EP2334835 A1 EP 2334835A1 EP 09783620 A EP09783620 A EP 09783620A EP 09783620 A EP09783620 A EP 09783620A EP 2334835 A1 EP2334835 A1 EP 2334835A1
Authority
EP
European Patent Office
Prior art keywords
tubes
heat exchanger
components
thickness
spacers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09783620A
Other languages
German (de)
English (en)
Inventor
Yann Pichenot
Alain Bauerheim
Sylvain Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Constellium Issoire SAS
Original Assignee
Valeo Systemes Thermiques SAS
Alcan Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS, Alcan Rhenalu SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP2334835A1 publication Critical patent/EP2334835A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/206Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0211Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in cutting
    • B23K35/0216Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a heat exchanger comprising substantially aluminum components, with a bundle of tubes, spacers and at least one collector plate, and to its manufacturing process.
  • the heat exchangers conventionally comprise a bundle of tubes and two collector plates which are traversed by the ends of the tubes of the bundle of tubes.
  • Interlayers may be provided between the tubes of said bundle to improve heat exchange.
  • said spacers generally fins.
  • Interlayers may also be provided in tubes to allow a turbulence generation of the fluid flowing inside said tube, in this case we refer to the spacers generally turbulence generators or "turbulators" or "disruptive".
  • a first fluid circulates inside the tubes of the bundle of tubes, while a second fluid sweeps outside the bundle of tubes.
  • the variations in temperature of the fluid flowing inside the tubes may cause temperature differences that cause thermal expansion between the inlet, outlet and the center of the exchanger. This results in mechanical stresses in the tubes as well as in the collector plates. Such stresses can cause breaks and / or cracks in the exchanger, resulting in risks of leakage of the fluid.
  • the spacers mentioned above and in particular their thickness must be substantially chosen according to the dimensions and thickness of the tubes so as not to participate actively in mechanical stresses and to support the risk of rupture and / or cracking. Indeed, as detailed below, the mechanical stresses are directly related to the triple synergy tube thickness - heat exchanger model - thickness of interlayer.
  • SUBSTITUTE SHEET (RULE 26) Magnesium is known to strengthen the components of a heat exchanger. However, the use of magnesium deteriorates brazing quality when assembling heat exchanger components. In addition, the use of magnesium is incompatible with so-called flux soldering processes, because of the reactivity between magnesium and the fluorine still present in flux soldering processes.
  • the invention improves the situation.
  • the invention proposes a method for manufacturing a heat exchanger comprising essentially aluminum components, said components comprising a bundle of tubes, spacers between and / or in the tubes of said bundle and at least one collector plate .
  • the method of the invention comprises the following steps: to choose tubes consisting of an alloy core based on aluminum and comprising magnesium (Mg) of between 0.3% and 3.0% by weight, and other chemical elements, choosing a thickness of said tubes independently of the thickness of said spacers, coating at least one side of at least some of said components of an aluminum-based filler alloy, and assembling said components by soldering without flux in a controlled atmosphere at a temperature comprised between 58O 0 C and 62O 0 C followed by cooling (rapid and optionally, a tempering at a temperature between 8O 0 C and 250 0 C).
  • Mg magnesium
  • the core alloy has a composition by weight:
  • SUBSTITUTE SHEET Silicon (Si) between 0.5% and 0.7%; Iron (Fe) ⁇ 1.0%; Copper (Cu) of between 0.3% and 1.0%; Manganese (Mn) from 0.3% to 2.0%; Zinc (Zn) ⁇ 6.0%; Titanium (Ti) ⁇ 0.1%; Zirconium (Zr) ⁇ 0.3%; Crome (Cr) ⁇ 0.3%; Nickel (Ni) ⁇ 2.0%; Cobalt (Co) ⁇ 2.0%; Bismuth (Bi) ⁇ 0.5%; Yttrium (Y) ⁇ 0.5%; Magnesium (Mg) in the range of 0.3% to 3.0%; other elements ⁇ 0.05% each and 0.15 in total; Aluminum remains (Al), and the filler alloy has a composition by weight:
  • Silicon between 4.0% and 15.0%; at least one of Silver (Ag), Beryllium (Be), Bismuth (Bi), Cerium (Ce), Lanthanum (La), Lead (Pb), Palladium (Pd), Antimony (Sb), Yttrium ( Y) or mischmetal between 0.01% and 1.0%; Aluminum remains (Al).
  • the core alloy has a magnesium content (Mg) of 0.5%, a silicon (Si) of 0.5%, a copper content (Cu) of 0.5%, a Manganese content (Mn) of 1.65%, a titanium (Ti) content of 0.08% and a Bismuth content (Bi) of 0.15%.
  • the heat exchanger can be of the radiator type with a tube thickness ⁇ 200 ⁇ m.
  • the heat exchanger can be of the charge air cooler type with a tube thickness ⁇ 270 ⁇ m. This is usually a gas / gas type exchanger.
  • the method may comprise a step of using spacers of thickness selected in a range from about 50 ⁇ m to about 100 ⁇ m.
  • the invention also relates to a heat exchanger of the radiator type and a heat exchanger of charge air cooler type.
  • the heat exchanger comprising substantially aluminum (Al) components.
  • the components comprising a bundle of tubes, spacers between the tubes of said bundle and at least one collector plate, said spacers and said collector plates being separated by a minimum deviation of stress.
  • the thickness of the tubes is ⁇ 200 ⁇ m for the heat exchanger of the radiator type and is ⁇ 270 ⁇ m for the heat exchanger of the charge air cooler type.
  • the minimum distance of stress is ⁇ 3mm. This increases the heat exchange surface and therefore increases the performance of the exchanger.
  • the heat exchanger comprises spacers of thickness chosen in a range from about 50 ⁇ m to about 100 ⁇ m.
  • the tubes of the exchanger may consist of a core alloy of composition by weight:
  • Silicon between 0.5% and 0.7%; Iron (Fe) ⁇ 1.0%; Copper (Cu) of between 0.3% and 1.0%; Manganese (Mn) from 0.3% to 2.0%; Zinc (Zn) ⁇ 6.0%; Titanium (Ti) ⁇ 0.1%; Zirconium (Zr) ⁇ 0.3%; Crome (Cr) ⁇ 0.3%; Nickel (Ni) ⁇ 2.0%; Cobalt (Co)
  • At least one of the components may be coated on at least one side of a filler alloy composed essentially of aluminum of composition by weight: silicon (Si) of between 4.0% and 15.0%; at least one of the following Silver
  • Al Beryllium (Be), Bismuth (Bi), Cerium (Ce), Lanthanum (La), Lead (Pb), Palladium (Pd), Antimony (Sb), Yttrium (Y) or mischmetal between 0, 01% and 1.0%; Aluminum remains (Al).
  • the core alloy has a magnesium (Mg) content of 0.5%.
  • the tubes consist of a metal foil, comprising said core alloy and said supply alloy, folded on itself so as to define at least one fluid circulation channel, for example two channels, at least two parts of said folded sheet, provided vis-a-vis, being brazed along the longitudinal axis of said tube to seal said channel or channels.
  • FIG. 1 represents a schematic front view of a conventional heat exchanger
  • FIG. 2 schematically represents the thickness of the tubes and spacers
  • FIG. 3 relates to the prior art and graphically represents the breaking strength and the brazing ratio as a function of the magnesium content of an alloy. lady,
  • FIG. 4 shows a flowchart of one embodiment of the method of the invention
  • FIG. 5 relates to the invention and graphically represents the breaking strength and the brazing ratio as a function of the magnesium content of a core alloy
  • FIG. 6 is relative to the prior art and represents a graph relating the minimum and maximum distance between fins and collector plates for different classes of heat exchanger
  • FIG. 7 relates to the invention and shows a graph relating the minimum and maximum distance between fins and collector plates for different classes of heat exchanger.
  • Figure 1 shows a schematic front view of a conventional heat exchanger 1. It appears different components and in particular a bundle of tubes 2, spacers 3 between the tubes of said bundle and at least one manifold plate 4, said spacers 3 and said collector plates 4 being spaced a minimum deviation of stress d cont .
  • the minimum deviation of stress is intended to compensate for mechanical deformations in the vicinity of the collector plates. Indeed, the collector plates being particularly sensitive to mechanical deformations a minimum deviation of stress protects the tubes vis-à-vis cracks and / or breaks.
  • FIG. 1 distinguishes two types of spacers 3: fins-type spacers 31 located between the tubes 2 and whose main role is to increase the exchange surface between the fluids, and spacers of the same type. turbulence says
  • Tubes 31 and the turbulators 32 located inside the tubes 2 and whose main role is to homogenize the contact surface between the fluid flowing inside the tubes 2 and the tube walls.
  • the fins 31 and the turbulators 32 optimize the performance of a heat exchanger.
  • Figure 2 schematically shows what is meant in this description by the thickness of the tubes e tub . and the thickness of the spacers e int ..
  • Figure 2 also shows what is meant here by Tube Height H tUb and Tubing Width Lg tub .
  • soldering is the assembly of components using a filler alloy (also called plating).
  • the filler alloy has a lower melting temperature than the components to be assembled.
  • soldering is done in an air oven, under a controlled atmosphere or under vacuum.
  • alloy core alloy there is at least one component made of a so-called alloy core alloy.
  • tubes made of a well-chosen core alloy see below.
  • alloys comprising magnesium are subject to problems when using flux soldering.
  • magnesium reacts with other chemical elements involved in flux brazing and in particular with fluorine, resulting in ineffective flux brazing from a magnesium content of about 0.3% by weight. weight in the composition of the components to be assembled. Beyond 0.3% magnesium, a greater amount of flux would be necessary, which would make the soldering operation more expensive and more difficult to control.
  • the document WO 2005/061743 has come to introduce a process for assembling aluminum alloy sheet comprising solder without flux under a controlled atmosphere, in which at least one sheet consists of a core alloy of well composition. chosen and in which at least one of the sheets is coated on at least one side of a brazing aluminum alloy of a well-chosen composition.
  • the resistance to mechanical stresses described above is directly related to the brazing rate.
  • the brazing rate corresponds to the percentage of assembly between the components to be assembled during the soldering operation.
  • brazing rate the higher the risk of mechanical deformations and cracking and / or rupture of the tubes when the heat exchanger is in operating condition. It therefore tends to a brazing rate ⁇ 95% to ensure satisfactory resistance to said constraints.
  • FIG. 3 relates to the prior art and shows a graph relating, on the one hand, the breaking strength (Rm) as a function of the magnesium percentage (Mg) in a core alloy on the one hand and of on the other hand, the relationship between the brazing rate and the percentage of magnesium (Mg) in a core alloy when using a Nocolok® brazing process.
  • the breaking strength (Rm) corresponds to the tensile stress from which the core alloy breaks in two parts, it is expressed in Mpa. It appears in Figure 3 that the breaking strength of a core alloy increases proportionally with the magnesium content (Mg) of said core alloy. However, with this increase in magnesium content (Mg) in the core alloy, the brazing rate is decreased until a brazing rate of less than 95% is reached at a content of approximately 0.3% by weight. . This is not satisfactory to ensure sufficient resistance to mechanical stresses occurring when the heat exchanger is in operation. To compensate for this lack of resistance to mechanical stresses, one solution is to increase the thickness of the material forming the tubes. But this would directly increase the cost of the process because of the surplus material.
  • the method of manufacturing a heat exchanger according to the invention makes it possible to increase the magnesium content (Mg) in the components of the heat exchanger, without disturbing the soldering rate.
  • Operation 400 comprises the provision of components to form a heat exchanger, namely including tubes, spacers and collector plates.
  • the tubes are substantially selected from a specific core alloy during a selection step 402 and whose magnesium content (Mg) is between 0.3% and
  • the thickness e tub is chosen between 170 ⁇ m and 230 ⁇ m, and preferably between 170 ⁇ m and 200 ⁇ m.
  • the thickness e tUb is chosen between 270 ⁇ m and 400 ⁇ m, and preferably about 270 ⁇ m.
  • Thickness selection operation 404 also includes the thickness selection of tabs.
  • the fins-type spacers are chosen between 50 .mu.m and 100 .mu.m, the interleaves of turbulators type are chosen between 70 .mu.m and 100 .mu.m.
  • a filler alloy deposition step 406 comprises depositing a filler alloy on at least one face of at least some of the components for solder assembly.
  • the filler alloy may have the following composition by weight: Silicon (Si) of between 4.0% and 15.0%; at least one of Silver (Ag), Beryllium (Be), Bismuth (Bi), Cerium (Ce), Lanthanum (La), Lead (Pb), Palladium (Pd), Antimony (Sb), Yttrium ( Y) or mischmetal (alloy between metals and rare earths) between 0.01% and 1.0%; Aluminum remains (Al).
  • the following assembly operation 408 comprises the mechanical positioning of the components of the heat exchanger for carrying out the final brazing operation 410.
  • FIG. 5 shows the relationship between fracture strength (Rm) and magnesium percentage (Mg) in a core alloy on the one hand and the relationship between the solder ratio and the solder ratio on the other hand.
  • the percentage of magnesium (Mg) in a core alloy when implementing the method of the invention as described above.
  • the method of the invention uses a core alloy whose magnesium content (Mg) can easily reach 0.5% by weight while maintaining a brazing rate greater than 95%.
  • the breaking strength of the alloy is then around 220 MPa.
  • Figure 6 relates to the prior art and shows the minimum gap ⁇ nt d and the maximum deviation of a type of intermediate fin of different classes of heat exchangers, which will not be detailed herein. Note that the minimum distance between fins and collector plates is 3mm. As mentioned above, this is
  • SUBSTITUTE SHEET (RULE 26) a minimum safety distance to minimize the risk of cracking and / or breaking during mechanical deformation in the vicinity of the collector plate.
  • FIG. 7 relates to the invention and also shows the minimum distance d ⁇ nt and the maximum gap of a fin type interlayer of different classes of heat exchangers when the heat exchanger is assembled by the method of the invention. It can be seen that the assembly of a heat exchanger with the method of the invention makes it possible to lower the minimum safety distance between the collector plates and the fins-type spacers. This makes it possible to increase the heat exchange surface and thus the performance of a heat exchanger.
  • the invention will be described with the aid of an exemplary embodiment. Advantages of the invention will emerge clearly in the light of the nonlimiting exemplary embodiment described below.
  • Cycled pressure test the exchangers are subjected to alternating internal cycled pressures in heated or unheated enclosure so as to show or not fatigue resistance problems and must meet a minimum number of cycles without rupture imposed by each client.
  • SUBSTITUTE SHEET (RULE 26) - heat exchangers radiator type the following models: 14mm; 18mm; 27mm and 34mm, and for
  • - charge air cooler type heat exchangers the following models: - 64mm; 80mm compact; 80mm mosaic and 100mm.
  • the models are mainly defined by the range of tubes used, in particular the width of the tubes Lg n ⁇ and the structure of the bundle, that is to say a combination between the number of tubes / spacers, and the lengths of said tubes. .
  • Bismuth (Bi) substantially equal to 0.15%.
  • the filler alloy covers the core alloy and is about 10% of the total thickness of the core alloy / filler alloy assembly.
  • the core alloy / alloy alloy assembly of the embodiment described is first hot-rolled and then cold-treated, and then subjected to a heat-treatment treatment.
  • the thickness of the tubes e tub is 270 .mu.m.
  • Three different thicknesses of fins were used, namely:
  • SUBSTITUTE SHEET (RULE 26) - 50 ⁇ m; 70 ⁇ m and 100 ⁇ m.
  • the thickness of the tubes is 400 ⁇ m.
  • the fin thickness was chosen constant, namely: 70 ⁇ m.
  • Two different thicknesses of turbulators have been used, namely:
  • the thickness of the fin or turbulator type spacers is 70 .mu.m.
  • Two different thicknesses of tubes have been used, namely:
  • the invention applies mainly to heat exchangers for motor vehicles, in particular engine cooling radiators and charge air coolers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Combustion & Propulsion (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention se rapporte à un échangeur de chaleur et son procédé de fabrication, L'échangeur comporte des composants essentiellement en aluminium (Al). Les composants comprenant un faisceau de tubes, des intercalaires entre et/ou dans les tubes dudit faisceau et au moins une plaque collectrice. Le procédé de l'invention comprend les étapes de choisir des tubes constitués d'un alliage d'âme à base d'aluminium et comportant du Magnésium (Mg) compris entre 0,3% et 3,0% en poids ainsi que d'autres éléments chimiques, choisir une épaisseur desdits tubes indépendamment de l'épaisseur desdites intercalaires, revêtir au moins une face de certains au moins desdits composants d'un alliage d'apport à base d'aluminium, et assembler lesdits composants par brasage sans flux sous atmosphère contrôlée à une température comprise entre 580°C et 620°C,

Description

Echanqeur de chaleur à épaisseur de composant réduit et son procédé de fabrication
L'invention se rapporte à un échangeur de chaleur comportant des composants essentiellement en aluminium, avec un faisceau de tubes, des intercalaires et au moins une plaque collectrice, ainsi qu'à son procédé de fabrication.
Généralement, les échangeurs de chaleur comportent classiquement un faisceau de tubes et deux plaques collectrices qui sont traversées par les extrémités des tubes du faisceau de tubes. Des intercalaires peuvent être prévus entre les tubes dudit faisceau pour améliorer l'échange de chaleur. Dans ce cas on se réfère auxdits intercalaires généralement par ailettes. Des intercalaires peuvent également être prévus dans des tubes pour permettre une génération de turbulence du fluide circulant à l'intérieur dudit tube, dans ce cas on se réfère aux intercalaires généralement par générateurs de turbulence ou encore « turbulateurs » ou « perturbateurs ».
Lorsqu'un échangeur est en fonctionnement, un premier fluide circule à l'intérieur des tubes du faisceau de tubes, tandis qu'un second fluide balaye extérieurement le faisceau de tubes. Les variations de température du fluide circulant à l'intérieur des tubes peuvent provoquer des écarts de température qui engendrent une dilatation thermique entre l'entrée, la sortie et le centre de l'échangeur. Il en résulte des contraintes mécaniques dans les tubes ainsi que dans les plaques collectrices. De telles contraintes peuvent causer des ruptures et/ou des fissures au sein de l'échangeur, d'où des risques de fuite du fluide.
Les intercalaires mentionnés plus haut et notamment leur épaisseur doit être sensiblement choisie en fonction des dimensions et épaisseur des tubes afin de ne pas participer activement aux contraintes mécaniques et d'appuyer le risque de rupture et/ou de fissure. En effet, comme détaillé plus loin, les contraintes mécaniques sont directement liées à la triple synergie épaisseur de tube - modèle d'échangeur de chaleur - épaisseur d'intercalaire.
Par ailleurs, pour limiter les coûts de fabrication des échangeurs de chaleur, on tend aujourd'hui de plus en plus vers une épaisseur de tubes relativement fine. Par conséquent, les tubes sont de moins en moins résistants aux chocs thermiques mentionnés ci-dessus et ainsi les risques de rupture/fissure augmentent.
Il convient donc de renforcer mécaniquement et/ou chimiquement les matériaux, constituant les composants des échangeurs de chaleur.
FEUILLE DE REMPLACEMENT (RÈGLE 26) Le magnésium est connu pour renforcer les composants d'un échangeur de chaleur. Toutefois, l'utilisation de magnésium détériore la qualité de brasage lors de l'assemblage des composants d'échangeurs de chaleur. De plus, l'utilisation de magnésium est incompatible avec les procédés de brasage dits à flux, ceci en raison de la réactivité entre magnésium et le fluor toujours présent dans les procédés de brasage à flux.
L'invention vient améliorer la situation.
L'utilisation de ce procédé et de ce matériau précités permet en l'occurrence de pouvoir, sur des échangeurs de chaleur de type Radiateurs de Refroidissement Moteur et Refroidisseurs d'Air de Suralimentation, diminuer très nettement les épaisseurs desdits tubes et desdits intercalaires.
À cet effet, l'invention propose un procédé de fabrication d'un échangeur de chaleur comportant des composants essentiellement en aluminium, lesdits composants comprenant un faisceau de tubes, des intercalaires entre et/ou dans les tubes dudit faisceau et au moins une plaque collectrice. Le procédé de l'invention comprend des étapes suivantes : choisir des tubes constitués d'un alliage d'âme à base d'aluminium et comportant du Magnésium (Mg) compris entre 0,3% et 3,0% en poids ainsi que d'autres éléments chimiques, choisir une épaisseur desdits tubes indépendamment de l'épaisseur desdites intercalaires, revêtir au moins une face de certains au moins desdits composants d'un alliage d'apport à base d'aluminium, et assembler lesdits composants par brasage sans flux sous atmosphère contrôlée à une température comprise entre 58O0C et 62O0C suivi d'un refroidissement (rapide et éventuellement, un revenu à une température comprise entre 8O0C et 2500C).
Le procédé permet l'obtention d'un échangeur de chaleur résistant aux contraintes mécaniques. Une haute teneur en magnésium (Mg) dans les tubes leur confère une forte résistance à la rupture. De plus, l'apport de magnésium permet l'utilisation de tubes d'épaisseur réduite. Selon un mode de réalisation de l'invention, l'alliage d'âme a une composition en poids :
FEUILLE DE REMPLACEMENT (RÈGLE 26) Silicium (Si) compris entre 0,5% et 0,7% ; Fer (Fe) < 1 ,0% ; Cuivre (Cu) compris entre 0,3% et 1 ,0% ; Manganèse (Mn) compris entre 0,3% et 2,0% ; Zinc (Zn) < 6,0% ; Titane (Ti) < 0,1% ; Zirconium (Zr) < 0,3% ; Crome (Cr) < 0,3% ; Nickel (Ni) < 2,0% ; Cobalt (Co) < 2,0% ; Bismuth (Bi) < 0,5% ; Yttrium (Y) < 0,5% ; Magnésium (Mg) compris entre 0,3% et 3,0% ; autres éléments < 0,05% chacun et 0,15 au total ; reste Aluminium (Al), et l'alliage d'apport a une composition en poids :
Silicium (Si) compris entre 4,0% et 15,0% ; l'un au moins des éléments suivants Argent (Ag), Béryllium (Be), Bismuth (Bi), Cérium (Ce), Lanthane (La), Plomb (Pb), Palladium (Pd), Antimoine (Sb), Yttrium (Y) ou de mischmetal compris entre 0,01% et 1 ,0% ; reste Aluminium (Al).
Selon un mode de réalisation, l'alliage d'âme comporte une teneur en Magnésium (Mg) de 0,5%, une Silicium (Si) de 0,5%, une teneur en Cuivre (Cu) de 0,5%, une teneur en Manganèse (Mn) de 1 ,65%, une teneur en Titane (Ti) de 0,08% et une teneur en Bismuth (Bi) de 0,15%. L'échangeur de chaleur peut être du type radiateur avec une épaisseur de tubes ≤200μm.
Il s'agit généralement d'un échangeur de type Gaz/Liquide.
L'échangeur de chaleur peut être du type refroidisseur d'air de suralimentation avec une épaisseur de tubes ≤270μm. Il s'agit généralement d'un échangeur de type Gaz/Gaz.
Le procédé peut comprendre une étape d'utilisation d'intercalaires d'épaisseur choisie dans une plage allant d'environ 50μm à environ 100μm.
L'invention vise également un échangeur de chaleur du type radiateur et un échangeur de chaleur de type refroidisseur à air de suralimentation. L'échangeur de chaleur comportant des composants essentiellement en aluminium (Al). Les composants comprenant un faisceau de tubes, des intercalaires entre les tubes dudit faisceau et au moins une plaque collectrice, lesdits intercalaires et lesdites plaques collectrices étant éloignés d'un écart minimal de contrainte. Selon l'invention l'épaisseur des tubes est ≤200μm pour l'échangeur de chaleur du type radiateur et est ≤270μm pour l'échangeur de chaleur de type refroidisseur à air de suralimentation.
Selon un mode de réalisation l'écart minimal de contrainte est ≤3mm. Ceci augmente la surface d'échange thermique et par conséquent accroît les performances de l'échangeur.
Selon un autre mode de réalisation l'échangeur de chaleur comprend des intercalaires d'épaisseur choisie dans une plage allant d'environ 50μm à environ 100μm.
FEUILLE DE REMPLACEMENT (RÈGLE 26) Les tubes de l'échangeur peuvent être constitués d'un alliage d'âme de composition en poids :
Silicium (Si) compris entre 0,5% et 0,7% ; Fer (Fe) < 1 ,0% ; Cuivre (Cu) compris entre 0,3% et 1 ,0% ; Manganèse (Mn) compris entre 0,3% et 2,0% ; Zinc (Zn) < 6,0% ; Titane (Ti) < 0,1% ; Zirconium (Zr) < 0,3% ; Crome (Cr) < 0,3% ; Nickel (Ni) < 2,0% ; Cobalt (Co)
< 2,0% ; Bismuth (Bi) < 0,5% ; Yttrium (Y) < 0,5% ; Magnésium (Mg) compris entre 0,3% et 3,0% ; autres éléments < 0,05% chacun et 0,15 au total ; reste Aluminium (Al).
L'un au moins des composants peut être revêtu sur au moins une face d'un alliage d'apport essentiellement en aluminium de composition en poids : Silicium (Si) compris entre 4,0% et 15,0% ; l'un au moins des éléments suivants Argent
(Ag), Béryllium (Be), Bismuth (Bi), Cérium (Ce), Lanthane (La), Plomb (Pb), Palladium (Pd), Antimoine (Sb), Yttrium (Y) ou de mischmetal compris entre 0,01% et 1 ,0% ; reste Aluminium (Al).
Selon un mode de réalisation, l'alliage d'âme a une teneur en Magnésium (Mg) de 0,5%. A titre d'exemple, les tubes sont constitués d'une feuille métallique, comprenant ledit alliage d'âme et ledit alliage d'apport, pliée sur elle-même de façon à définir au moins un canal de circulation de fluide, par exemple deux canaux, deux parties au moins de ladite feuille pliée, prévues en vis-à-vis, étant brasées le long de l'axe longitudinal dudit tube pour rendre étanche le ou lesdits canaux. D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés sur lesquels :
- la figure 1 représente une vue schématique de face d'un échangeur de chaleur classique,
- la figure 2 représente schématiquement l'épaisseur des tubes et des intercalaires, - la figure 3 est relative à l'art antérieur et représente graphiquement la résistance à la rupture et le taux de brasage en fonction de la teneur en magnésium d'un alliage d'âme,
- la figure 4 montre un organigramme d'un mode de réalisation du procédé de l'invention,
- la figure 5 est relative à l'invention et représente graphiquement la résistance à la rupture et le taux de brasage en fonction de la teneur en magnésium d'un alliage d'âme,
FEUILLE DE REMPLACEMENT (RÈGLE 26) - la figure 6 est relative à l'art antérieur et représente un graphique mettant en relation la distance minimale et maximale entre ailettes et plaques collectrices pour différentes classes d'échangeur de chaleur,
- la figure 7 est relative à l'invention et représente un graphique mettant en relation la distance minimale et maximale entre ailettes et plaques collectrices pour différentes classes d'échangeur de chaleur.
Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant. La figure 1 représente une vue schématique de face d'un échangeur de chaleur 1 classique. Il apparaît différents composants et notamment un faisceau de tubes 2, des intercalaires 3 entre les tubes dudit faisceau et au moins une plaque collectrice 4, lesdits intercalaires 3 et lesdites plaques collectrices 4 étant éloignés d'un écart minimal de contrainte dcont. L'écart minimal de contrainte est prévu pour compenser les déformations mécaniques au voisinage des plaques collectrices. En effet, les plaques collectrices étant particulièrement sensibles aux déformations mécaniques un écart minimal de contrainte permet de protéger les tubes vis-à-vis de fissures et/ou ruptures.
Sur la figure 1 on distingue deux types d'intercalaires 3 : des intercalaires de type ailettes 31 se trouvant entre les tubes 2 et dont le rôle principale est d'augmenter la surface d'échange entre les fluides, et des intercalaires de type générateurs de turbulence dit
« turbulateurs » 32 se trouvant à l'intérieur des tubes 2 et dont le rôle principale est d'homogénéiser la surface de contact entre les fluide circulant à l'intérieur des tubes 2 et les parois de tubes. Les ailettes 31 et les turbulateurs 32 optimisent les performances d'un échangeur de chaleur. La figure 2 montre schématiquement ce que l'on entend dans la présente description par l'épaisseur des tubes etub. et l'épaisseur des intercalaires eint.. La figure 2 montre également ce que l'on entend ici par Hauteur de tube HtUbet Largeur de tube Lgtub.
On revient maintenant brièvement sur les techniques de brasage. On entend par brasage l'assemblage de composants à l'aide d'un alliage d'apport (encore appelé placage). L'alliage d'apport a une température de fusion inférieure à celle des composants à assembler. Généralement, l'assemblage par brasage se fait dans un four à air, sous atmosphère contrôlée ou sous vide.
FEUILLE DE REMPLACEMENT (RÈGLE 26) Dans le passé, le brasage était très couramment réalisé sous vide. Toutefois, ceci est associé à un coût très élevé en raison de la maintenance des fours sous vide. Une nouvelle technologie de brasage sous atmosphère contrôlée avec flux non corrosif, communément appelée Nocolok® (marque déposée), a remplacé par la suite le brasage de type brasage sous vide. On entend par flux un mélange de produits chimiques permettant d'assurer un mouillage satisfaisant de l'alliage d'apport sur les composants à assembler. Le bon mouillage est notamment dû à l'élimination des oxydes présents sur les composants à assembler, la protection des composants à assembler de l'oxydation pendant la durée d'une opération de brasage et en abaissant la tension superficielle de l'alliage d'apport.
Parmi les composants décrits ici, on trouve au moins un composant réalisé par un alliage dit alliage d'âme. Tout particulièrement il sera fait référence à des tubes constitués d'un alliage d'âme bien choisi (voir plus loin).
Le procédé Nocolok impose toutefois des contraintes strictes sur l'utilisation des alliages. En effet les alliages comprenant du magnésium (Mg) sont sujets à des problématiques lors de l'utilisation d'un brasage à flux. En effet, le magnésium réagit avec d'autres éléments chimiques intervenant dans les brasages à flux et notamment avec le fluor, d'où un brasage à flux ineffectif à partir d'une teneur de magnésium de l'ordre de 0 ,3 % en poids dans la composition des composants à assembler. Au-delà de 0,3 % de magnésium, une quantité plus importante de flux serait nécessaire, ce qui rendrait l'opération de brasage plus coûteuse et plus difficilement maîtrisable.
Le document WO 2005/061743 est venu introduire un procédé d'assemblage de tôle en alliage d'aluminium comportant un brasage sans flux sous atmosphère contrôlée dans lequel l'une au moins des tôles est constituée d'un alliage d'âme de composition bien choisie et dans lequel l'une au moins des tôles est revêtue sur au moins une face d'un alliage d'aluminium de brasage de composition bien choisie.
La Demanderesse a découvert non sans surprise, que l'utilisation d'un procédé de brasage avec des conditions de température précises et un choix en pourcentage de la composition chimique des composants distincts d'un échangeur de chaleur permettait de réduire considérablement l'épaisseur desdits composants et ainsi un assemblage dimensionnel innovant d'échangeurs de chaleur.
La résistance aux contraintes mécaniques décrites plus haut est directement liée au taux de brasage. Le taux de brasage correspond au pourcentage d'assemblage entre les composants à assembler lors de l'opération de brasage. Pour une bonne résistance aux
FEUILLE DE REMPLACEMENT (RÈGLE 26) contraintes mécaniques, il est particulièrement important d'avoir un bon assemblage entre intercalaires et tubes.
Moins le taux de brasage est élevé, plus haut sera le risque de déformations mécaniques et de fissure et/ou rupture des tubes lorsque l'échangeur de chaleur se trouve en état de fonctionnement. On tend donc vers un taux de brasage ≥95% pour assurer une résistance satisfaisante auxdites contraintes.
La figure 3 est relative à l'art antérieur et montre un graphique mettant en relation d'une part la résistance à la rupture (Rm) en fonction du pourcentage magnésium (Mg) dans un alliage d'âme d'une part et d'autre part la relation existant entre le taux de brasage et le pourcentage de magnésium (Mg) dans un alliage d'âme lorsqu'on utilise un procédé de brasage de type Nocolok®.
La résistance à la rupture (Rm) correspond à l'effort de traction à partir duquel l'alliage d'âme se brise en deux parties, il est exprimé en Mpa. Il apparaît sur la figure 3 que la résistance à la rupture d'un alliage d'âme augmente proportionnellement avec la teneur en magnésium (Mg) dudit alliage d'âme. Toutefois, avec cette augmentation en teneur en magnésium (Mg) dans l'alliage d'âme le taux de brasage se trouve diminué jusqu'à atteindre un taux de brasage inférieure à 95 % pour une teneur d'environ 0,3 % en poids. Cela n'est pas satisfaisant pour assurer une résistance suffisante aux contraintes mécaniques survenant lorsque l'échangeur de chaleur est en fonctionnement. Pour compenser cette insuffisance à la résistance aux contraintes mécaniques, une solution est d'augmenter l'épaisseur du matériau formant les tubes. Mais ceci augmenterait directement le coût du procédé en raison du surplus en matériau.
Le procédé de fabrication d'échangeur de chaleur selon l'invention permet d'augmenter la teneur en magnésium (Mg) dans les composants de l'échangeur de chaleur, et ce sans perturber le taux de brasage.
L'organigramme de la figure 4 montre un mode de réalisation du procédé de l'invention. L'opération 400 comprend la mise à disposition de composants pour former un échangeur de chaleur, à savoir notamment, des tubes, des intercalaires et des plaques collectrices. Les tubes sont sensiblement choisis d'un alliage d'âme spécifique lors d'une étape de sélection 402 et dont la teneur en magnésium (Mg) est comprise entre 0,3% et
3,0% en poids.
L'alliage d'âme des tubes peut avoir la composition en poids suivante : Silicium (Si) = 0,5% ; Fer (Fe) < 1 ,0% ; Cuivre (Cu) = 0,5% ; Manganèse (Mn) = 1 ,65% ; Zinc (Zn) <
FEUILLE DE REMPLACEMENT (RÈGLE 26) 6,0% ; Titane (Ti) = 0,08% ; Zirconium (Zr) < 0,3% ; Crome (Cr) < 0,3% ; Nickel (Ni) < 2,0% ; Cobalt (Co) < 2,0% ; Bismuth (Bi) < 0,5% ; Yttrium (Y) < 0,5% ; Magnésium (Mg) = 0,5% ; autres éléments < 0,05% chacun et 0,15 au total ; reste Aluminium (Al). Cette composition d'alliage est connue sous le nom de « alliage sans flux ». Lors d'une opération suivante de sélection d'épaisseur 404, l'épaisseur des tubes etub est choisie. Lorsqu'il s'agit d'échangeurs de chaleur de type radiateur l'épaisseur etub est choisie entre 170μm et 230μm, et préférentiellement entre 170μm et 200μm. Lorsqu'il s'agit d'échangeurs de chaleur de type refroidisseur à air de suralimentation l'épaisseur etUb est choisie entre 270μm et 400μm, et préférentiellement environ 270μm. L'opération de sélection d'épaisseur 404 comprend également la sélection d'épaisseur eιnt d'intercalaires. Les intercalaires de type ailettes sont choisis entre 50μm et 100μm, les intercalaires de type turbulateurs sont choisis entre 70μm et 100μm.
Une étape de dépôt d'alliage d'apport 406 comprend le dépôt d'un alliage d'apport sur au moins une face de certains au moins des composants en vue de l'assemblage par brasage. L'alliage d'apport peut avoir la composition en poids suivante : Silicium (Si) compris entre 4,0% et 15,0% ; l'un au moins des éléments suivants Argent (Ag), Béryllium (Be), Bismuth (Bi), Cérium (Ce), Lanthane (La), Plomb (Pb), Palladium (Pd), Antimoine (Sb), Yttrium (Y) ou de mischmetal (alliage entre métaux et terres rares) compris entre 0,01% et 1 ,0% ; reste Aluminium (Al). L'opération suivante d'assemblage 408 comprend le positionnement mécanique des composants de l'échangeur de chaleur pour la réalisation de l'opération finale de brasage 410.
La figure 5 montre la relation d'une part la résistance à la rupture (Rm) en fonction du pourcentage magnésium (Mg) dans un alliage d'âme d'une part et d'autre part la relation existant entre le taux de brasage et le pourcentage de magnésium (Mg) dans un alliage d'âme lorsqu'on met en œuvre le procédé le l'invention comme décrit ci-dessus. Selon le mode de réalisation décrit ici, le procédé de l'invention utilise un alliage d'âme dont la teneur en magnésium (Mg) peut atteindre sans difficultés 0,5 % en poids tout en conservant un taux de brasage supérieur à 95%. La résistance à la rupture de l'alliage se situe alors aux environs de 220 Mpa.
La figure 6 est relative à l'art antérieur et montre l'écart minimal d∞nt et l'écart maximal d'un intercalaire de type ailette de différentes classes d'échangeurs de chaleur, lesquels ne seront pas détaillés dans la présente description. On note que la distance minimale entre ailettes et plaques collectrices est de 3mm. Comme mentionné plus haut, il s'agit
FEUILLE DE REMPLACEMENT (RÈGLE 26) d'une distance minimale de sécurité pour minimiser le risque de fissure et/ou de rupture lors d'une déformation mécanique au voisinage de la plaque collectrice.
La figure 7 est relative à l'invention et montre également l'écart minimal d∞nt et l'écart maximal d'un intercalaire de type ailette de différentes classes d'échangeurs de chaleur lorsque l'échangeur de chaleur est assemblé par le procédé de l'invention. On constate que l'assemblage d'un échangeur de chaleur avec le procédé de l'invention permet d'abaisser l'écart minimal dcont de sécurité entre plaques collectrices et intercalaires de type ailettes. Ceci permet d'augmenter la surface d'échange thermique et ainsi la performance d'un échangeur de chaleur. Dans la suite, l'invention sera décrite à l'aide d'un exemple de réalisation. Des avantages de l'invention ressortiront clairement à la lumière de l'exemple de réalisation non limitatif décrit ci-dessous.
Exemple
Des tests mécaniques ont été réalisés, d'une part sur des échangeurs de chaleurs de type radiateur et de type refroidisseur à air de suralimentation, assemblés par un procédé de brasage classique type Nocolok et dont l'alliage d'âme (en particulier les tubes) ont une composition connue de type alliage classique de type Aluminium Série 3000 modifié, et d'autre part sur des échangeurs de chaleurs de type radiateur et de type refroidisseur à air de suralimentation, assemblés selon un mode de réalisation du procédé de l'invention (voir ci-dessous) et dont l'alliage d'âme (en particulier les tubes) est l'alliage sans flux décrit plus haut.
Description des tests mécaniques réalisés :
1. Test de Pression Puisée Cyclées : les échangeurs sont soumis à des alternances de pressions internes cyclées en enceinte chauffée ou non de manière à faire apparaître ou non des problèmes de tenue en fatigue et doivent répondre à un nombre minimum de cycles sans rupture imposé par chaque client.
2. Test de Choc Thermique : les échangeurs sont soumis à une circulation de fluide interne à des températures alternées ayant pour but de mettre en évidence les phénomènes de dilatation différentielle entre les différents composants dudit échangeur. Le nombre de cycle minimum de température alternée sans rupture est là aussi imposé par le cahier des charges du client.
Les tests mécaniques ont été réalisés sur différents modèles d'échangeurs de chaleurs, à savoir pour :
FEUILLE DE REMPLACEMENT (RÈGLE 26) - les échangeurs de chaleurs de type radiateur les modèles suivants : 14mm ; 18mm ; 27mm et 34mm, et pour
- les échangeurs de chaleurs de type refroidisseur à air de suralimentation les modèles suivants : - 64mm ; 80mm compact ; 80mm mosaïque et 100mm.
Les modèles se définissent principalement par la gamme de faisceau de tubes utilisé, notamment la largeur des tubes Lgn^ et la structure du faisceau, c'est-à-dire une combinaison entre le nombre de tubes/intercalaires, et la longueurs desdits tubes.
Dans le mode de réalisation de l'exemple décrit ici, il a été utilisé un alliage d'apport du type 4000 standard et plus précisément 4045 (10% de Silicium) avec une teneur en
Bismuth (Bi) sensiblement égale à 0,15%. L'alliage d'apport recouvre l'alliage d'âme et représente environ 10% de l'épaisseur totale consistant en l'ensemble alliage d'âme/alliage d'apport.
L'ensemble alliage d'âme/alliage d'apport de l'exemple de réalisation décrit est d'abord laminé à chaud, puis à froid pour ensuite être soumis à un traitement de restauration de
10 h environ à 26O0C. Un traitement de dégraissage de 10 min à 2400C est appliqué sur l'ensemble alliage d'âme/alliage d'apport à braser. Aucune autre préparation de surface n'est appliquée et en particulier aucun Flux n'est déposé. Le brasage se fait dans un four en verre à double paroi qui permet de suivre activement l'avancement de l'assemblage. Le cycle thermique est composé d'une phase de montée en température jusqu'à 600°C avec une vitesse d'environ 200C à 30°C/min, d'un maintien de 2 min à 600°C, et d'une descente à environ 60°C/min. Le procédé de l'exemple de réalisation décrit se fait sous balayage continu d'azote.
On note que les conditions opératoires pour assembler par brasage les conditions ci- dessus doivent être sensiblement respectées pour offrir un taux de brasage satisfaisant
(>95%)
Dans une première série de tests mécaniques, différentes épaisseurs d'intercalaires éint ont été agencées sur les échangeurs de chaleurs.
Pour la première série de tests mécaniques sur les échangeurs de chaleurs de type radiateur, l'épaisseur des tubes etub est de 270μm. Trois épaisseurs différentes d'ailettes ont été utilisées, à savoir :
FEUILLE DE REMPLACEMENT (RÈGLE 26) - 50μm ; 70μm et 100μm.
Pour la première série de tests mécaniques sur les échangeurs de chaleurs de type refroidisseur à air de suralimentation, l'épaisseur des tubes est de 400μm. L'épaisseur d'ailette a été choisie constante, à savoir : 70μm. Deux épaisseurs différentes de turbulateurs on été utilisés, à savoir :
- 70μm et 100μm.
Les résultats de la première série de tests mécaniques sur les échangeurs de chaleurs de type radiateur sont montrés dans le tableau 1.
Les résultats de la première série de tests mécaniques sur les échangeurs de chaleurs de type refroidisseur à air de suralimentation sont montrés dans le tableau 2.
Tableau 1. « + » : résistance aux contraintes mécaniques assurée ; « - » : résistance modérément aux contraintes mécaniques ; « 0 » : non-résistance aux contraintes mécaniques.
On entend par résistance mécanique dans ces tableaux le fait que le produit (dans la configuration donnée) passe les tests mécaniques précédemment cités sans aucune rupture constatée.
FEUILLE DE REMPLACEMENT (RÈGLE 26)
Tableau 2. « + » : résistance aux contraintes mécaniques assurée ; « - » : résistance modérément aux contraintes mécaniques ; « 0 » : non-résistance aux contraintes mécaniques.
Les résultats de la première série de tests mécaniques sur les échangeurs de chaleurs montrent que le procédé de l'invention permet l'obtention d'échangeurs de chaleurs stables et robustes tout en utilisant une épaisseur de tube etUb réduite, et ce indépendamment du modèle d'échangeur de chaleur. Ceci s'explique par la teneur élevée en magnésium dans les tubes. Par conséquent, comme le montrent les tableaux 1 et 2, l'épaisseur des intercalaires eιnt peut être réduite pour des modèles d'échangeurs dont la largeur des tubes Lgtub est grande (environ 27mm ou 34mm).
Dans une seconde série de tests mécaniques, différentes épaisseurs de tubes étub ont été agencées sur les échangeurs de chaleurs. Pour la seconde série de tests mécaniques sur les échangeurs de chaleurs de type radiateur, l'épaisseur des intercalaires eιnt de type ailette est de 70μm. Trois épaisseurs différentes de tubes etUb on été utilisées, à savoir :
- 180μm ; 200μm et 230μm.
Pour la seconde série de tests mécaniques sur les échangeurs de chaleurs de type refroidisseur à air de suralimentation, l'épaisseur des intercalaires de type ailette ou turbulateur est de 70μm. Deux épaisseurs différentes de tubes on été utilisées, à savoir :
- 270μm et 400μm.
FEUILLE DE REMPLACEMENT (RÈGLE 26) Les résultats de la seconde série de tests mécaniques sur les échangeurs de chaleurs de type radiateur sont montrés dans le tableau 3.
Les résultats de la seconde série de tests mécaniques sur les échangeurs de chaleurs de type refroidisseur à air de suralimentation sont montrés dans le tableau 4.
FEUILLE DE REMPLACEMENT (RÈGLE 26)
Tableau 3. « + » : résistance aux contraintes mécaniques assurée ; « - » : résistance modérément aux contraintes mécaniques ; « 0 » : non-résistance aux contraintes mécaniques.
Tableau 4. « + » : résistance aux contraintes mécaniques assurée ; « - » : résistance modérément aux contraintes mécaniques ; « 0 » : non-résistance aux contraintes mécaniques. « ? » : non-testé.
FEUILLE DE REMPLACEMENT (RÈGLE 26) Les résultats de la seconde série de tests mécaniques sur les échangeurs de chaleurs confirment que le procédé de l'invention permet l'utilisation de tubes d'épaisseur réduite. Par conséquent on économise du matériel de construction, ce qui est de grand intérêt économique.
L'invention s'applique principalement aux échangeurs de chaleur pour véhicules automobiles, en particulier aux radiateurs de refroidissement du moteur et aux refroidisseurs d'air de suralimentation.
FEUILLE DE REMPLACEMENT (RÈGLE 26)

Claims

Revendications
1. Procédé de fabrication d'un échangeur (1 ) de chaleur comportant des composants essentiellement en aluminium (Al), lesdits composants comprenant un faisceau de tubes (2), des intercalaires (3) entre et/ou dans les tubes (2) dudit faisceau et au moins une plaque collectrice (4), caractérisé en ce que le procédé comprend les étapes suivantes :
- choisir des tubes (2) constitués d'un alliage d'âme à base d'aluminium et comportant du Magnésium (Mg) compris entre 0,3% et 3,0% en poids ainsi que d'autres éléments chimiques,
- choisir une épaisseur desdits tubes (etUb) indépendamment de l'épaisseur desdites intercalaires (eint),
- revêtir au moins une face de certains au moins desdits composants d'un alliage d'apport à base d'aluminium, et - assembler lesdits composants par brasage sans flux sous atmosphère contrôlée à une température comprise entre 580cC et 6200C suivi d'un refroidissement.
2. Procédé selon la revendication 1 , caractérisé en ce que l'alliage d'âme a une composition en poids : Silicium (Si) compris entre 0,5% et 0,7% ; Fer (Fe) < 1 ,0% ; Cuivre (Cu) compris entre
, 0,3% et 1 ,0% ; Manganèse (Mn) compris entre 0,3% et 2,0% ; Zinc (Zn) < 6,0% ; Titane
(Ti) < 0,1% ; Zirconium (Zr) < 0,3% ; Crome (Cr) < 0,3% ; Nickel (Ni) < 2,0% ; Cobalt (Co)
< 2,0% ; Bismuth (Bi) < 0,5% ; Yttrium (Y) < 0,5% ; Magnésium (Mg) compris entre 0,3% et 3,0% ; autres éléments < 0,05% chacun et 0,15 au total ; reste Aluminium (Al).
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'alliage d'apport a une composition en poids :
Silicium (Si) compris entre 4,0% et 15,0% ; l'un au moins des éléments suivants Argent (Ag), Béryllium (Be), Bismuth (Bi), Cérium (Ce), Lanthane (La), Plomb (Pb), Palladium
FEUILLE DE REMPLACEMENT (RÈGLE 26) (Pd), Antimoine (Sb)1 Yttrium (Y) ou de mischmetal compris entre 0,01% et 1 ,0% ; reste Aluminium (Al).
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'échangeur de chaleur (1) est du type radiateur et en ce que l'épaisseur desdits tubes (2) est ≤200μm.
5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'échangeur de chaleur (1 ) est du type refroidisseur d'air de suralimentation et en ce que l'épaisseur desdits tubes etUb est ≤270μm.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur desdits intercalaires (eint) est choisie dans une plage allant d'environ 50μm à environ 100μm.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en Magnésium (Mg) de l'alliage d'âme est de 0,5%.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en Silicium (Si) de l'alliage d'âme est de 0,5%.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en Cuivre (Cu) de l'alliage d'âme est de 0,5%.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en Manganèse (Mn) de l'alliage d'âme est de 1 ,65%.
11. Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en Titane (Ti) de l'alliage d'âme est de 0,08%.
FEUILLE DE REMPLACEMENT (RÈGLE 26)
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en Bismuth (Bi) de l'alliage d'apport est de 0,15%.
13. Échangeur de chaleur (1) du type radiateur comportant des composants essentiellement en aluminium (Al), lesdits composants comprenant un faisceau de tubes (2), des intercalaires (3) entre les tubes (2) dudit faisceau et au moins une plaque collectrice (4), lesdits intercalaires (3) et lesdites plaques collectrices (4) étant éloignés d'un écart minimal de contrainte caractérisé en ce que l'épaisseur desdits tubes (2) est ≤200μm.
14. Échangeur de chaleur (1 ) de type refroidisseur à air de suralimentation comportant des composants essentiellement en aluminium (Al), lesdits composants comprenant un faisceau de tubes (2), des intercalaires (3) entre les tubes (2) dudit faisceau et au moins une plaque collectrice (4), lesdits intercalaires (3) et lesdites plaques collectrices (4) étant éloignés d'un écart minimal de contrainte (dcont). caractérisé en ce que l'épaisseur desdits tubes est <270μm.
15. Échangeur de chaleur (1 ) selon la revendication 13 ou 14, caractérisé en ce les intercalaires (3) et la ou les plaques collectrices (4) sont éloignés d'un écart minimal de contrainte (d∞nt) ≤3mm.
16. Échangeur de chaleur (1 ) selon l'un des revendications 13 à 15, caractérisé en ce que l'épaisseur desdits intercalaires (eint) est choisie dans une plage allant d'environ 50μm à environ 100μm.
17. Échangeur de chaleur (1 ) selon l'une des revendications 13 à 16, caractérisé en ce que les tubes (2) sont constitués d'un alliage d'âme de composition en poids :
Silicium (Si) compris entre 0,5% et 0,7% ; Fer (Fe) < 1 ,0% ; Cuivre (Cu) compris entre 0,3% et 1 ,0% ; Manganèse (Mn) compris entre 0,3% et 2,0% ; Zinc (Zn) < 6,0% ; Titane
FEUILLE DE REMPLACEMENT (RÈGLE 26) (Ti) < 0,1% ; Zirconium (Zr) < 0,3% ; Crome (Cr) < 0,3% ; Nickel (Ni) < 2,0% ; Cobalt (Co) < 2,0% ; Bismuth (Bi) < 0,5% ; Yttrium (Y) < 0,5% ; Magnésium (Mg) compris entre 0,3% et 3,0% ; autres éléments < 0,05% chacun et 0,15 au total ; reste Aluminium (Al), l'un au moins desdits composants étant revêtu sur au moins une face d'un alliage d'apport essentiellement en aluminium de composition en poids :
Silicium (Si) compris entre 4,0% et 15,0% ; l'un au moins des éléments suivants Argent (Ag), Béryllium (Be), Bismuth (Bi), Cérium (Ce), Lanthane (La), Plomb (Pb), Palladium (Pd), Antimoine (Sb), Yttrium (Y) ou de mischmetal compris entre 0,01% et 1 ,0% ; reste Aluminium (Al).
18. Échangeur de chaleur (1 ) selon l'une des revendications 13 à 17, caractérisé en ce que la teneur en Magnésium (Mg) de l'alliage d'âme est de 0,5%.
FEUILLE DE REMPLACEMENT (RÈGLE 26)
EP09783620A 2008-10-01 2009-10-01 Echangeur de chaleur a epaisseur de composant reduit et son procede de fabrication Withdrawn EP2334835A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0805415A FR2936597A1 (fr) 2008-10-01 2008-10-01 Echangeur de chaleur a epaisseur de composant reduit et son procede de fabrication
PCT/EP2009/062729 WO2010037803A1 (fr) 2008-10-01 2009-10-01 Echangeur de chaleur a epaisseur de composant reduit et son procede de fabrication

Publications (1)

Publication Number Publication Date
EP2334835A1 true EP2334835A1 (fr) 2011-06-22

Family

ID=40447305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09783620A Withdrawn EP2334835A1 (fr) 2008-10-01 2009-10-01 Echangeur de chaleur a epaisseur de composant reduit et son procede de fabrication

Country Status (3)

Country Link
EP (1) EP2334835A1 (fr)
FR (1) FR2936597A1 (fr)
WO (1) WO2010037803A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2699702B1 (fr) 2011-04-20 2018-05-16 Aleris Rolled Products Germany GmbH Matériau de tôle à ailettes
EP2514555A1 (fr) * 2011-04-21 2012-10-24 Aleris Aluminum Koblenz GmbH Produit de tube d'alliage en aluminium extrudé
CN103722305B (zh) * 2013-12-31 2015-09-23 中国电子科技集团公司第二十研究所 一种铝基非晶钎料及其制备方法
CN105274405A (zh) * 2015-11-04 2016-01-27 绍兴市质量技术监督检测院 一种稀土铝合金及其制备方法
FR3069919B1 (fr) * 2017-08-04 2019-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Element intercalaire en alliage d'aluminium de fonderie pour un echangeur de chaleur
MX2020012465A (es) 2018-05-22 2021-02-09 Aleris Rolled Prod Germany Gmbh Termopermutador con soldadura fuerte.
CN110340565B (zh) * 2019-07-24 2021-03-09 上海交通大学 一种电弧增材制造用铝硅基焊丝及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672472B1 (fr) * 1993-12-17 1997-11-05 Ford Motor Company Méthode de fabrication d'un ensemble de tubes pour échangeur de chaleur
AU2004207223A1 (en) * 2003-01-27 2004-08-12 Showa Denko K.K. Heat exchanger and process for fabricating same
JP2005037062A (ja) * 2003-07-15 2005-02-10 Toyo Radiator Co Ltd アルミニューム製熱交換器
US7226669B2 (en) * 2003-08-29 2007-06-05 Aleris Aluminum Koblenz Gmbh High strength aluminium alloy brazing sheet, brazed assembly and method for producing same
CA2531316C (fr) * 2003-08-29 2012-11-13 Corus Aluminium Walzprodukte Gmbh Feuille de brasage en alliage d'aluminium a haute resistance, ensemble brase et procede de production de ladite feuille
FR2862894B1 (fr) * 2003-11-28 2007-02-16 Pechiney Rhenalu Bande en alliage d'alluminium pour brasage
FR2862984B1 (fr) * 2003-11-28 2006-11-03 Pechiney Rhenalu Bande en alliage d'aluminium pour brasage
US20100147500A1 (en) * 2005-08-31 2010-06-17 Showa Denko K.K. Clad plate and process for production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010037803A1 *

Also Published As

Publication number Publication date
FR2936597A1 (fr) 2010-04-02
WO2010037803A1 (fr) 2010-04-08

Similar Documents

Publication Publication Date Title
EP2710162B1 (fr) Ensemble plaqué en alliages d&#39;aluminium pour tube d&#39;echangeur thermique a placage interne protecteur et a perturbateur brase
EP2334835A1 (fr) Echangeur de chaleur a epaisseur de composant reduit et son procede de fabrication
EP1687456B1 (fr) Procede de brasage de bandes en alliage d&#39;aluminium
EP3113902B1 (fr) Tôle de brasage à placages multiples
EP2296844B1 (fr) Bandes en alliage d&#39;aluminium pour tubes d&#39;échangeurs thermiques brasés
EP1687115B1 (fr) Bande en alliage d&#39;aluminium pour brasage
FR2889469A1 (fr) Liaison avec phase liquide provisoire de metaux dissemblables
FR2802294A1 (fr) Montage d&#39;echangeur de chaleur a barriere de magnesium
EP0904881B1 (fr) Procédé d&#39;assemblage ou de rechargement par brasage-diffusion de pièces en aluminiure de titane
EP1446511B1 (fr) Bandes en alliage d&#39;aluminium pour echangeurs thermiques
FR3080058A1 (fr) Tole de brasage multicouche
FR3028436A1 (fr) Procede d&#39;elaboration d&#39;une piece de turbomachine
EP2601008B1 (fr) Poudre composite pour l&#39;assemblage ou le rechargement par brasage-diffusion de pièces en superalliages
FR2967765A1 (fr) Composant brasable et echangeur de chaleur le comportant
EP2059364B2 (fr) Procede de brasage avec application de flux de brasage sur un cote d&#39; une tranche d&#39;un tube plat pour un echangeur de chaleur
EP4076834A1 (fr) Bande ou tole en alliages d&#39;aluminium pour brasage sans flux ou avec flux reduit
WO2020178507A1 (fr) Bande en alliage d&#39;aluminium pour la fabrication d&#39;échangeurs de chaleur brasés
EP3934908A1 (fr) Bande en alliage d&#39;aluminium pour la fabrication d&#39;échangeurs de chaleur brasés
WO2023203296A1 (fr) Echangeur de chaleur a base d&#39;un alliage d&#39;aluminium obtenu par brasage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENRY, SYLVAIN

Inventor name: BAUERHEIM, ALAIN

Inventor name: PICHENOT, YANN

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501