EP2333786B1 - Asymmetric slit diaphragm and device and method for producing same - Google Patents

Asymmetric slit diaphragm and device and method for producing same Download PDF

Info

Publication number
EP2333786B1
EP2333786B1 EP09178329A EP09178329A EP2333786B1 EP 2333786 B1 EP2333786 B1 EP 2333786B1 EP 09178329 A EP09178329 A EP 09178329A EP 09178329 A EP09178329 A EP 09178329A EP 2333786 B1 EP2333786 B1 EP 2333786B1
Authority
EP
European Patent Office
Prior art keywords
axis
rotational axis
movement
workpiece
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09178329A
Other languages
German (de)
French (fr)
Other versions
EP2333786A1 (en
Inventor
Kurt Dr. Rer. Nat. Osterloh
Uwe Dr. rer. nat. Zscherpel
Uwe Prof. Dr. Ewert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesanstalt fuer Materialforschung und Pruefung BAM
Original Assignee
Bundesanstalt fuer Materialforschung und Pruefung BAM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesanstalt fuer Materialforschung und Pruefung BAM filed Critical Bundesanstalt fuer Materialforschung und Pruefung BAM
Priority to EP09178329A priority Critical patent/EP2333786B1/en
Priority to AT09178329T priority patent/ATE545935T1/en
Priority to PCT/EP2010/067273 priority patent/WO2011069770A1/en
Publication of EP2333786A1 publication Critical patent/EP2333786A1/en
Application granted granted Critical
Publication of EP2333786B1 publication Critical patent/EP2333786B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays

Definitions

  • the invention relates to a slit diaphragm, in particular an asymmetrical slit diaphragm with extended opening angle for imaging radiating and backscattering objects, according to the preamble of claim 1, and an apparatus and a method for producing the same, according to the preambles of claims 8 and 13.
  • the radiation source can be, for example, the effective focal spot on the anode of an x-ray tube or surface-distributed radiating material.
  • the latter can be radioactive waste distributed over a room in a collecting bin, whereby alleged discrepancies between declaration and actual content must be clarified.
  • Further examples of radiation sources whose shape one wishes to image are deposits with uranium-containing ores or nuclear facilities, in which it is often of importance not only to determine the nature of the radiation, but also to determine the spatial structure of the radiation sources.
  • the thickness of the material for the pinhole diaphragm must be large, that is to say in relation to the half-value thickness of the intensity of the radiation used for imaging. Therefore, the achievable image quality is essentially determined by aperture diameter and material thickness and density. Often, therefore, one obtains at best a shadow image of the actual pinhole, wherein the pinhole, which is to serve for imaging, due to the wall thickness becomes a collimator, which can pass only a straight-line beam. Therefore, the aperture in the hole cameras is often trumpet-shaped with the narrow spot to the radiation source designed so as not to lose the imaging properties completely. In the case of high-energy radiation, the solutions known from the prior art have a considerable deviation from the ideal hole-camera principle due to the required material thickness.
  • the aperture can be realized with almost any material thickness without losing its imaging properties.
  • the diaphragm is suitable for limiting radiation originating from a radiation source, in particular high-energy radiation, and for directing it to an imaging region along an optical axis x according to the hole-camera principle.
  • the camera body is unwieldy and heavy; including the shield, the camera assembly typically weighs 200 to 300 kg.
  • Another disadvantage is the long exposure time; In particular when imaging backscattering objects, an exposure time of more than half an hour may be required due to the low intensity of the backscatter radiation.
  • the object of the invention is therefore to provide a slit diaphragm for a pinhole camera, which compared to that in the patent DE 10 2005 029 674 B4 disclosed aperture a more compact camera design and a higher intensity on the imaging surface and thus allows a shorter exposure time.
  • the object area to be imaged should be retained.
  • the object is achieved by means of a slit diaphragm, in particular an asymmetrical slit diaphragm with extended opening angle for imaging radiating and backscattering objects, with the features mentioned in claim 1.
  • An absorption element here is to be understood as an element which has at least one region which at least partially absorbs the radiation.
  • a gap is to be understood as meaning a region which absorbs the radiation to a small extent. It may be filled with air or other suitable material which absorbs the radiation less than the portions of the absorption elements at least partially absorbing the radiation, which material may be in the form of a separate insert or a coating applied to at least one of the non-planar surfaces ,
  • a ruled surface is an area in which there is a straight line at every point on the surface that lies completely within the surface. These completely in-plane straight lines are referred to as the generators of the control surface.
  • the Gaussian curvature of a surface at a point is the product of its two main features in the point; the principal curvatures of the area at a point are the minimum value and the maximum value of the curvatures of all curves resulting from intersecting the area with a plane containing the surface normal on the point.
  • the camera structure In order to increase the intensity on the imaging surface, the camera structure is to be brought closer to the object. Both the downsizing of the camera body and the closer approach to the object require an enlargement of the viewing angle. This becomes all the more necessary when small-area semiconductor-based flat panel detectors are to be used. These have the advantage of not only converting the image directly into digital signals, but also being available with very high sensitivity.
  • the enlargement of the viewing angle requires a corresponding adaptation of the diaphragm geometry in order to achieve a fan-shaped beam guidance.
  • a fan-shaped beam guide was also in the published patent application DE 10 2005 048 519 A1 revealed focal point oriented roller blind used. However, this is not based on the Lochtrekar, but directed in each position only one beam to the detector located in a focal point; a two-dimensional image is obtained only by turning the roller shutter and line by line scanning of the object.
  • the slit diaphragm according to the invention suitable to limit radiation emitted by a radiation source, in particular high-energy radiation and directed along an optical axis according to the Lochensekar on an imaging area, and comprises a first absorption element, which has a first non-planar outer surface of the at least one subregion lies on a control surface whose Gaussian curvature does not disappear in the subregion, and a second absorption element which has a second non-planar outer surface whose surface contour is at least partially complementary to the non-planar outer surface of the first absorption element is, wherein the two absorption elements are positioned or positioned so that between the two non-planar outer surfaces, a gap is present.
  • the diaphragm according to the invention is further characterized in that the distance in a direction perpendicular to the optical axis between the generatrices of the control surface decreases towards the imaging region. This ensures that the approximately along the generatrix of the control surface incident beam converge almost unhindered through the aperture, converge behind the aperture and meet as close to the aperture on an imaging range, which can be significantly smaller than the diaphragm body. It is preferred that, at least in a partial region of the first non-planar outer surface, the distance between the generatrices of the control surface and the imaging region decreases in each direction perpendicular to the optical axis. It is thereby achieved that the radiation bundles incident approximately along the generatrix of the control surface converge particularly strongly towards the imaging region.
  • the mapping rule is simplified, and with a suitable position of the diaphragm body, the area around the central axis can be used as the imaging area.
  • the diaphragm can be produced by means of a device according to claim 9 or a method according to claim 14.
  • the polar angles of the direction vectors of the generatrix of the control surface with respect to the central axis are linearly related to the intersection of the generatrix of the control surface with the central axis. This ensures that the mapping rule is approximately linear and the diaphragm can be produced by means of a device according to claim 10 or a method according to claim 15.
  • the set of all ruled surfaces in which the polar angles of the direction vectors of the generators of the ruled surface with respect to the central axis are not constantly linearly related to the intersection of the generatrices of the ruled surface with the central axis is a subset of the ruled surfaces whose Gaussian curvature does not disappear anywhere; that is, the feature that the polar angles of the direction vectors of the generatrix of the control surface with respect to the central axis in non-constant linear relationship with the intersection of the generatrix of the control surface with the central axis, resulting in a slit diaphragm according to the invention, without the additional requirement that the Gaussian curvature the ruled surface disappears nowhere.
  • the central axis is outside the diaphragm body. This ensures that the detector can be arranged in the vicinity of the central axis, so that an image can be recorded on the smallest possible area.
  • the absorption elements have a trapezoidal plan, which widens towards the radiation source. This ensures that the outer shape of the absorption elements corresponds to the area used for the fan-shaped beam guidance.
  • the opening of the gap on the radiation source facing side of the slit is greater than the opening of the gap on the imaging region side facing the slit. This ensures that the beams passing through the gap also converge in the direction perpendicular to the gap.
  • the slit diaphragm comprises, in addition to the one gap, at least one further gap, the shape of which in each case results essentially from an affine image from the shape of the one gap, as in German Patent Application No. 10 2008 025 109.7-54 described in more detail.
  • An affine image is an image of the three-dimensional space on itself, which maps each straight line to a straight line.
  • EP 2 062 705 A1 discloses an apparatus and a method for producing slit diaphragms, with which in the patent DE 10 2005 029 674 B4 disclosed slit diaphragm and in the published patent application DE 10 2005 048 519 A1 revealed focal point-oriented roller blind can be produced. It is a further object of the present invention to further develop this teaching in order to provide an apparatus and a method for producing a slit diaphragm according to the invention.
  • this object is achieved by means of a device and a method for producing a slit diaphragm according to the features mentioned in claim 8 or claim 13.
  • the apparatus for producing a slit includes a cutting tool adapted to cut along a straight line, and means adapted to effect relative movement between the cutting tool and a workpiece such that the cutting tool passes along the workpiece a line which corresponds to a beam path in the slit diaphragm to be produced.
  • the cutting tool is adapted to cut along a first direction.
  • the means comprise a holding element, on which a workpiece can be fastened and which is rotatably mounted about a first axis of rotation.
  • the means are adapted to effect a first rotational movement of the retaining element about the first axis of rotation and at the same time a translational movement of the retaining element along the first axis of rotation.
  • the first rotational movement and the translational movement of the retaining element are coupled.
  • This teaching is further developed by the present invention in that the means are further adapted to effect a second rotational movement of the holding member and the first axis of rotation about a second axis of rotation simultaneously with the first rotational movement and the translational movement, and the second rotational movement and translational movement of the retaining element are coupled. It is thereby achieved that the distance in the direction of the first axis of rotation between the cut beam paths decreases in the direction perpendicular to the first and second axes of rotation.
  • the first axis of rotation, the second axis of rotation and the line along which the cutting tool cuts have a common point of intersection.
  • the slit diaphragm produced by means of the device has the advantageous additional feature of claim 2.
  • the second axis of rotation is perpendicular to the cutting direction of the cutting tool and perpendicular to the first axis of rotation.
  • the translational movement and the first rotational movement are linearly coupled and the translational movement and the second rotational movement are linearly coupled. Such a linear coupling can be accomplished with particularly simple technical means.
  • the slit diaphragm produced by means of the device has the advantageous additional feature of claim 3.
  • the cutting tool is arranged immovably. It is thus preferred that the cutting tool is stationary and the workpiece is guided around it.
  • the starting point of this preferred embodiment is not to clamp the workpiece in a fixed support and to guide the tool, but conversely to move it in a controlled manner around a milling cutter or a cutting jet.
  • the means may comprise a first, a second and a third threaded shaft, wherein the first threaded shaft is parallel to the first axis of rotation, the second threaded shaft is located on the first axis of rotation and the third threaded shaft is located on the second axis of rotation.
  • a rotational movement of the three threaded shafts may be coupled by a gear system.
  • the first screw shaft may include a portion formed as a screw shaft through which a support arm to which the second screw shaft is connected is movable along the first rotation axis.
  • a relative movement between a cutting tool which is suitable for cutting along a straight line and a workpiece is carried out such that the cutting tool cuts the workpiece along a line corresponding to a beam path in the plane a first rotational movement of the workpiece about a first axis of rotation and simultaneously a translational movement of the workpiece along the first axis of rotation is performed and the first rotational movement and the translational movement of the workpiece are coupled.
  • This teaching is further developed by the present invention such that a second rotational movement of the workpiece and the first axis of rotation about a second axis of rotation is carried out simultaneously with the first rotational movement and the translation movement and the second rotational movement and the translational movement of the workpiece are coupled.
  • the first axis of rotation, the second axis of rotation and the line along which the cutting tool cuts have a common point of intersection. It is thereby achieved that the slit diaphragm produced by the method has the advantageous additional feature of claim 2. It is particularly preferred that the second axis of rotation is perpendicular to the cutting direction of the cutting tool and perpendicular to the first axis of rotation. It is also particularly preferred that the translational movement and the first rotational movement are linearly coupled and the translational movement and the second rotational movement are linearly coupled. Such a linear coupling can be accomplished with particularly simple technical means. Furthermore, it is achieved that the slit diaphragm produced by the method has the advantageous additional feature of claim 3.
  • any method known in the art may be used, including, for example, milling, fine milling, precision milling, blasting, jet milling or sawing.
  • FIG. 1 illustrates the Lochtreradaferat an imaging device 100.
  • a radiation source 102 for example, a test body
  • high-energy radiation 104 in particular X-rays or gamma rays
  • the radiation 104 strikes a diaphragm 110, by which it is delimited and directed along an optical axis x according to the hole-camera principle onto an imaging region 106.
  • the imaging region 106 is typically a projection surface on which an image of the test body 102 is created.
  • a receiving unit 108 which is sensitive to the radiation 104, in particular a detector or a camera.
  • FIG. 2 shows schematically a test arrangement.
  • a continuously radiating, powerful x-ray tube 112 generates radiation, which is masked out by an all-round shield, here a lead wall 114 with window.
  • the radiation passing through the window of the lead wall 114 is incident on an aluminum plate as scatter filter 116.
  • the actual test object 118 is arranged between the scatter filter 116 and the diaphragm 120 according to the invention, which is integrated in a shielding wall 122 made of lead.
  • an X-ray film or an image-forming film (English: phosphor imaging plate) in a cassette serves as the detector 124 on the projection surface 126.
  • the invention is not limited to this arrangement.
  • the invention can also be used for imaging backscattered radiation, for example for radiographic examination of objects for which only one-sided access is possible.
  • FIG. 3 shows a perspective view of a first embodiment of a slit 50 according to the invention according to claim 3.
  • the slit 50 comprises a first absorption element 52 having a first non-planar outer surface 54 and a second Absorption member 56 having a second non-planar outer surface 58. Between the two non-planar outer surfaces 54 and 58 is a gap 60.
  • the absorption elements have a trapezoidal plan, which widens towards the radiation source; the lateral brackets 62a and 62b have a corresponding complementary shape.
  • first non-planar outer surface 54 is in FIG. 3 drawn a Cartesian coordinate system, whose origin lies at the center of the first non-planar outer surface 54, the x- axis lies in the direction of the optical axis and the ⁇ -axis lies on the central axis through which all generators of the control surface on which the first not -plane outer surface 54 is, run.
  • the imaging area is behind the aperture 50 in the direction of the positive x-axis.
  • the height h 1 of the opening of the gap 60 at the front of the aperture 50 is greater than the height h 2 of the opening of the gap 60 at the back of the aperture 50.
  • the height h 1 can be 3 mm and the height h 2 1 mm .
  • the rear opening of the gap is steeper than the front opening of the gap due to the fan-shaped beam guide.
  • the width d of the front side of a lateral support may for example be 10 to 25 mm.
  • FIG. 4 shows an exploded view of in FIG. 3 shown slit diaphragm according to the invention.
  • two generators E 1 and E 2 of the control surface are drawn.
  • the portion of the generatrix E 2 extending on the first non-planar outer surface 54 is highlighted for clarity.
  • the distance in the y-direction, ie in the direction of the central axis, between the generatrices E 1 and E 2 decreases towards the imaging region.
  • the distance between the generatrix of the control surface in the z-direction, and thus in each direction perpendicular to the optical axis also decreases towards the imaging region.
  • FIG. 6 shows a perspective view of a second embodiment of a slit 70 according to the invention.
  • the slit 70 comprises a first absorption element 72 with a first non-planar outer surface and a second absorption element 76th with a second non-planar outer surface.
  • first absorption element 72 with a first non-planar outer surface
  • second absorption element 76th with a second non-planar outer surface.
  • the gap 80 is shown, not the complementary non-planar outer surfaces forming it, which are close together.
  • a slit 70 ' according to the patent DE 10 2005 029 674 B4 drawn with a first absorption element 72 ', a second absorption element 76' and a gap 80 ', wherein both diaphragms have the same central axis and are described in the same Cartesian coordinate system whose ⁇ -axis lies on the common central axis.
  • the absorption elements of the slit diaphragm of the second exemplary embodiment have a trapezoidal plan view.
  • the lines of intersection of the gaps with the outer boundary surfaces of the respective slit are shown, namely in each case the two outermost generatrices E 3 and E 4 or E 3 'and E 4 ', the opening of the slit on the side of the slit diaphragm, O 1, facing the radiation source or O 1 ', and the opening of the gap on the imaging region side facing the slit, O 2 and O 2 '.
  • the generatrices of the control surface, on which the first non-planar outer surface of the first absorption element of the slit diaphragm of the second embodiment lies, converge in the y-direction, ie in the direction of the central axis. Also, their z-coordinates approach each other in the range x ⁇ 0, in which the first non-planar outer surface lies.
  • the distance between the generatrix of the control surface and the imaging region decreases in each direction perpendicular to the optical axis.
  • the ⁇ -axis is outside the diaphragm body.
  • the detector can be arranged in the vicinity of the gamma axis at a small distance from the slit diaphragm on a particularly small area.
  • Such asymmetric design of the visor body has already been in the German patent application with the file number 10 2008 025 109.7-54 disclosed; However, in the present invention, not only the diaphragm body but also the (unlimited) control surface is asymmetrical with respect to the ⁇ -axis.
  • FIG. 7 shows a perspective view of a third embodiment of a slit 90 according to the invention, in which, as in the German patent application with the file reference 10 2008 025 109.7-54 described in more detail, in addition to the gap 92, a further gap 94 is arranged, the shape of which results from an affine image of the shape of the gap 92.
  • the affine mapping is a rotation about the central axis y about the angle ⁇ .
  • the angle ⁇ influences both the intensity distribution in the image field as well as the width of the reproduced image; he can be chosen freely. If required, additional columns can be added.
  • FIG. 8 shows a perspective view of an inventive apparatus for beam milling a slit of cube-shaped raw material (semi-finished) with half-milled block.
  • This device is suitable for manufacturing a slit diaphragm according to claim 3.
  • the drawn Cartesian coordinate system is to be understood as a body-fixed on the workpiece 10 related; it corresponds to the in the Figures 3 . 4 and 6 drawn Cartesian coordinate systems.
  • a first threaded shaft 16 is driven, which runs parallel to the ⁇ -axis.
  • the first threaded shaft 16 has a portion 18 which is formed as a worm shaft.
  • a holding arm 20 arranged parallel to the z axis is moved in a direction parallel to the ⁇ axis, whereby a second threaded shaft 22 connected to the holding arm 20 and arranged along the ⁇ axis and the workpiece 10 arranged thereon is moved linearly along the ⁇ -axis.
  • the device comprises a third threaded shaft 40, which runs along the z-axis.
  • the rotation of the three threaded shafts 16, 22 and 40 is synchronized, wherein the mechanical transmission via a gear system 24 is accomplished.
  • the gear system 24 consists of three gears (front or bevel gears) 26, 28 and 42, which are mounted on the three threaded shafts 16, 22 and 40, a perpendicular to the ⁇ -axis worm shaft 30 and a further threaded shaft 44, the one area 46, which is formed as a screw shaft.
  • the worm shaft 30 drives the gear 28 on the second threaded shaft 22, while also a transmission of Rotary movement between the mutually perpendicular gears 26, 32 takes place.
  • the threaded shaft 44 drives the gear 42 on the third threaded shaft 40 via the formed as a screw shaft portion 46, while also a transmission of the rotational movement between the two gears 26, 38 takes place.
  • the third threaded shaft 40 is fixed in space, and the entire device including the first and second threaded shaft is mounted so that it rotates upon rotation of the third threaded shaft 40 about this. Since the drawn coordinate system is to be understood as being body-fixed relative to the workpiece 10, the first threaded shaft 16 and the second threaded shaft 22 are still parallel to the ⁇ -axis after rotation about the third threaded shaft 40.
  • a slit is cut into the workpiece 10 by a cutting jet 12.
  • the cutting beam 12 extends in the illustrated position of the workpiece parallel to the x-axis and keeps this direction during the entire milling process at room, so does not participate in the rotation of the workpiece 10 and related to this body-fixed coordinate system. He follows the beam path through the produced aperture.
  • the workpiece 10 is symmetrically inserted into the holder 36 a, 36 b to the in FIG. 3 illustrated inventive slit diaphragm of the first embodiment produce.
  • the workpiece 10 is asymmetrical use, so that through the second threaded shaft 22 extending axis of rotation outside the diaphragm body comes to rest.
  • a plurality of milling operations may be performed, wherein the workpiece 10 is to be inserted in a respective position corresponding to the gap to be milled.
  • the workpiece 10 consists of a suitable collimator material, for example Densimet as mechanically processable tungsten alloy.
  • a suitable collimator material for example Densimet as mechanically processable tungsten alloy.
  • X-rays especially backscattered X-rays
  • lead is in principle also suitable, but difficult to process mechanically. Conceivable would be the production in the casting process.
  • a mold could be made with a blank of another suitable material.
  • the device according to the invention and the method according to the invention are suitable for producing a slit diaphragm according to the invention, using the example of the device according to claim 9, in particular according to claim 10, the method according to claim 14, in particular according to claim 15, and the slit diaphragm according to claim 2, in particular according to Claim 3, shown.
  • the beam paths cut by the device according to claim 9 and the method according to claim 14 are described in the above-introduced body-fixed coordinate system, ie the Cartesian coordinate system firmly connected to the workpiece.
  • the origin of the coordinate system lies in the common intersection of the two axes of rotation and the cutting line of the cutting tool, and the y- axis points along the first axis of rotation.
  • the x- axis and the z- axis lie so that they are in the in FIG. 8 represented, as a starting position considered position of the workpiece along the cutting line of the cutting tool or along the second axis of rotation.
  • the rotation about the second axis of rotation must first be applied and then only the rotation about the body-fixed first axis of rotation and the displacement along the same.
  • the slit diaphragm produced thus has a central axis in the y- axis, through which all cutting lines run, and thus has the additional feature of claim 2. If the two rotational movements and the translational motion are coupled linearly, there is a distance between the distance y 0 , which indicates the position of the intersection of the section line with the central axis, and the angles ⁇ and ⁇ , which are the polar angles of the direction vector (cos ⁇ cos ⁇ , sin ⁇ , cos ⁇ sin ⁇ ) with respect to the ⁇ -axis are a linear relationship.
  • the slit diaphragm produced has the additional feature of claim 3.
  • the direction vector of the section line forms the angle ⁇ / 2- ⁇ with the ⁇ -axis.
  • the slit diaphragm thus produced also has the characterizing part of claim 1.
  • the Gaussian curvature of the control surface of the slit diaphragm produced in this way results in a break with the counter - ⁇ cos 2 ⁇ , where ⁇ is the constant rate at which the angle ⁇ changes linearly along the central axis.
  • the Gaussian curvature does not vanish anywhere in the subarea of the ruled surface used for imaging.

Abstract

The aperture has an absorption element (52) with a non-even outer surface (54), whose partial region lies on a ruled surface. Another absorption element (56) has another non-even outer surface (58), whose surface contour is formed partially complimentary to the outer surface of the former absorption element. The two absorption elements are positioned such that a gap is formed between the two outer surfaces. The distance in a direction (y) perpendicular to an optical axis (x) between generatrixes of the ruled surface reduces toward an imaging region. Independent claims are also included for the following: (1) a device for manufacturing a slot aperture (2) a method for manufacturing a slot aperture.

Description

Die Erfindung betrifft eine Schlitzblende, insbesondere eine asymmetrische Schlitzblende mit erweitertem Öffnungswinkel zur Abbildung strahlender und rückstreuender Objekte, gemäß dem Oberbegriff des Anspruchs 1, sowie eine Vorrichtung und ein Verfahren zur Herstellung derselben, gemäß den Oberbegriffen der Ansprüche 8 und 13.The invention relates to a slit diaphragm, in particular an asymmetrical slit diaphragm with extended opening angle for imaging radiating and backscattering objects, according to the preamble of claim 1, and an apparatus and a method for producing the same, according to the preambles of claims 8 and 13.

Häufig stellt sich das Problem, die Form verdeckter Quellen hochenergetischer, insbesondere ionisierender Strahlung jenseits des optischen Spektrums (insbesondere Röntgen- oder Gammastrahlung mit Photonenenergien über 20keV) mit unbekannter Struktur beziehungsweise räumlichem Aufbau zu ermitteln. Bei der Strahlenquelle kann es sich beispielsweise um den effektiven Brennfleck auf der Anode einer Röntgenröhre oder um flächig verteiltes strahlendes Material handeln. Letzteres können über einen Raum verteilte radioaktive Abfälle in einer Sammeltonne sein, wobei vermeintliche Diskrepanzen zwischen Deklarierung und tatsächlichem Inhalt zu klären sind. Weitere Beispiele für Strahlenquellen, deren Gestalt man abbilden möchte, sind Lagerstätten mit uranhaltigen Erzen oder kerntechnische Anlagen, bei denen es oftmals von Belang ist, nicht nur die Natur der Strahlung zu ermitteln, sondern auch die räumliche Struktur der Strahlenquellen zu bestimmen. Neben den genannten Quellen, welche die hochenergetische Strahlung direkt erzeugen, sind auch solche zu nennen, welche diese durch Röntgen- bzw. Gammarückstreuung erzeugen. Mit Hilfe der Abbildung rückgestreuter Strahlung können beispielsweise auch Objekte radiographisch untersucht werden, zu denen nur ein einseitiger Zugang möglich ist.Frequently the problem arises of determining the form of hidden sources of high-energy, in particular ionizing radiation beyond the optical spectrum (in particular X-ray or gamma radiation with photon energies above 20 keV) of unknown structure or spatial structure. The radiation source can be, for example, the effective focal spot on the anode of an x-ray tube or surface-distributed radiating material. The latter can be radioactive waste distributed over a room in a collecting bin, whereby alleged discrepancies between declaration and actual content must be clarified. Further examples of radiation sources whose shape one wishes to image are deposits with uranium-containing ores or nuclear facilities, in which it is often of importance not only to determine the nature of the radiation, but also to determine the spatial structure of the radiation sources. In addition to the sources mentioned, which generate the high-energy radiation directly, are also those that generate them by X-ray or Gammarückstreuung. With the help of the image of backscattered radiation, it is also possible, for example, to examine objects radiographically for which only one-sided access is possible.

Um die Gestalt solcher Strahlenquellen abzubilden, ist es naheliegend, das Prinzip einer Fotokamera anzuwenden. Es können dabei recht unterschiedliche Flächendetektoren eingesetzt werden: Filmmaterial, Speicherplatten, Speicherfolien, Halbleiter-Flachdetektoren, Vidicams, Bildverstärker oder Konverterfolien. Da solche Aufnahmen auch und vor allem in Umgebungen anfallen können, in die sich nach Möglichkeit Personen nicht hineinbegeben sollten, muss eine möglichst einfache Bedienbarkeit sichergestellt werden. Die einfachste Funktionalität und Handhabung wäre ein fernbedientes Platzieren eines entsprechenden Gerätes mit einer Rückholung nach der Expositionszeit ohne jegliche Betätigung irgendwelcher Bedienungselemente.To illustrate the shape of such radiation sources, it is obvious to apply the principle of a camera. Quite different area detectors can be used: film material, storage disks, storage foils, semiconductor flat detectors, vidicams, image intensifiers or converter foils. Since such recordings can also and especially occur in environments in which persons should not enter, if possible, the simplest operability must be ensured. The simplest functionality and handling would be to remotely place a corresponding device with retrieval after the exposure time without any operation of any controls.

Es ist bekannt, bei der Abbildung mit Hilfe energiereicher Strahlung das Lochkameraprinzip zu benutzen. Bei einer Lochkamera oder Camera obscura erzeugt ein kleines Loch auf einer Projektionsfläche ein Abbild von angestrahlten oder strahlenden Gegenständen. Dabei beschränkt der kleine Durchmesser der Blende die einfallenden Strahlenbündel auf einen kleinen Öffnungswinkel und verhindert so die vollständige Überlappung der Strahlen in der Abbildungsfläche. Strahlen von einem oberen Bereich eines strahlenden Körpers fallen auf den unteren Rand der Projektionsfläche, während umgekehrt Strahlen vom unteren Bereich auf den oberen Rand der Projektionsfläche abgebildet werden. Somit wird jeder Punkt des Gegenstandes als Scheibchen auf der Projektionsfläche abgebildet, so dass die Überlagerung der Scheibchenbilder ein Bild des strahlenden Körpers liefert, dessen Auflösung vom Abstand des strahlenden Körpers und der Form der Blende abhängt.It is known to use the Lochkameraprinzip when imaging with the help of high-energy radiation. In a pinhole camera or camera obscura , a small hole on a projection surface produces an image of illuminated or radiating objects. The small diameter of the diaphragm limits the incident beam to a small opening angle and thus prevents the complete overlap of the beams in the imaging surface. Radiation from an upper portion of a radiating body is incident on the lower edge of the projection surface while, conversely, rays are imaged from the lower portion to the upper edge of the projection surface. Thus, each point of the object is imaged as slices on the projection surface, so that the superimposition of the slice images provides an image of the radiating body whose resolution depends on the distance of the radiating body and the shape of the diaphragm.

Bei hochenergetischer Strahlung tritt das Problem auf, dass wegen ihres hohen Durchdringungsvermögens die Dicke des Materials für die Lochblende groß, das heißt im Verhältnis zur Halbwertsdicke der Intensität der zur Abbildung benutzten Strahlung gewählt werden muss. Deshalb wird die erreichbare Abbildungsgüte im Wesentlichen durch Blendendurchmesser und Materialdicke und -dichte bestimmt. Oft erhält man daher bestenfalls ein Schattenbild der eigentlichen Lochblende, wobei die Lochblende, die zur Abbildung dienen soll, aufgrund der Wanddicke zum Kollimator wird, der nur ein gradliniges Strahlenbündel passieren lässt. Deshalb wird oftmals die Blende in den Lochkameras trompetenförmig mit der engen Stelle zur Strahlenquelle gestaltet, um die abbildenden Eigenschaften nicht vollends zu verlieren. Bei energiereicher Strahlung liegt bei den aus dem Stand der Technik bekannten Lösungen aufgrund der erforderlichen Materialdicke eine erhebliche Abweichung vom idealen Lochkameraprinzip vor.The problem with high-energy radiation is that, because of its high permeability, the thickness of the material for the pinhole diaphragm must be large, that is to say in relation to the half-value thickness of the intensity of the radiation used for imaging. Therefore, the achievable image quality is essentially determined by aperture diameter and material thickness and density. Often, therefore, one obtains at best a shadow image of the actual pinhole, wherein the pinhole, which is to serve for imaging, due to the wall thickness becomes a collimator, which can pass only a straight-line beam. Therefore, the aperture in the hole cameras is often trumpet-shaped with the narrow spot to the radiation source designed so as not to lose the imaging properties completely. In the case of high-energy radiation, the solutions known from the prior art have a considerable deviation from the ideal hole-camera principle due to the required material thickness.

In der Patentschrift DE 10 2005 029 674 B4 ist eine Blende offenbart, welche einige der beschriebenen Nachteile überwindet. Die Blende lässt sich mit nahezu beliebiger Materialschichtdicke verwirklichen, ohne dabei ihre abbildenden Eigenschaften zu verlieren. Die Blende ist geeignet, von einer Strahlungsquelle ausgehende, insbesondere hochenergetische, Strahlung zu begrenzen und entlang einer optischen Achse x nach dem Lochkameraprinzip auf einen Abbildungsbereich zu richten. Die Blende umfasst ein erstes Absorptionselement, welches eine erste nicht-ebene Außenfläche aufweist, deren Oberflächenkontur zumindest teilweise durch eine Funktion der Form z(x,y) = f(y) * x + n beschrieben werden kann, sowie ein zweites Absorptionselement, welches eine zweite nicht-ebene Außenfläche aufweist, deren Oberflächenkontur zumindest teilweise komplementär zu der nicht-ebenen Außenfläche des ersten Absorptionselements geformt ist, wobei die beiden Absorptionselemente derart positioniert oder positionierbar sind, dass zwischen den beiden nicht-ebenen Außenflächen ein Spalt vorhanden ist.In the patent DE 10 2005 029 674 B4 a shutter is disclosed which overcomes some of the disadvantages described. The aperture can be realized with almost any material thickness without losing its imaging properties. The diaphragm is suitable for limiting radiation originating from a radiation source, in particular high-energy radiation, and for directing it to an imaging region along an optical axis x according to the hole-camera principle. The diaphragm comprises a first absorption element, which has a first non-planar outer surface whose surface contour can be described at least partially by a function of the form z (x, y) = f (y) * x + n, and a second absorption element which a second non-planar outer surface whose surface contour is formed at least partially complementary to the non-planar outer surface of the first absorbent member, wherein the two absorption elements are positioned or positioned so that between the two non-planar outer surfaces, a gap is present.

Nachteilig ist an dieser Blende, dass der Kameraaufbau unhandlich und schwer ist; einschließlich der Abschirmung hat der Kameraaufbau typischerweise ein Gewicht von 200 bis 300 kg. Ein weiterer Nachteil liegt in der langen Expositionszeit; insbesondere bei der Abbildung rückstreuender Objekte kann aufgrund der geringen Intensität der Rückstreustrahlung eine Expositionszeit von mehr als einer halber Stunde erforderlich sein.The disadvantage of this panel that the camera body is unwieldy and heavy; including the shield, the camera assembly typically weighs 200 to 300 kg. Another disadvantage is the long exposure time; In particular when imaging backscattering objects, an exposure time of more than half an hour may be required due to the low intensity of the backscatter radiation.

Aufgabe der Erfindung ist es daher, eine Schlitzblende für eine Lochkamera anzugeben, welche gegenüber der in der Patentschrift DE 10 2005 029 674 B4 offenbarten Blende einen kompakteren Kameraaufbau sowie eine höhere Intensität auf der Abbildungsfläche und somit eine kürzere Expositionszeit ermöglicht. Der abzubildende Objektbereich soll dabei beibehalten werden.The object of the invention is therefore to provide a slit diaphragm for a pinhole camera, which compared to that in the patent DE 10 2005 029 674 B4 disclosed aperture a more compact camera design and a higher intensity on the imaging surface and thus allows a shorter exposure time. The object area to be imaged should be retained.

Erfindungsgemäß wird die Aufgabe mittels einer Schlitzblende, insbesondere einer asymmetrischen Schlitzblende mit erweitertem Öffnungswinkel zur Abbildung strahlender und rückstreuender Objekte, mit den im Anspruch 1 genannten Merkmalen gelöst.According to the invention the object is achieved by means of a slit diaphragm, in particular an asymmetrical slit diaphragm with extended opening angle for imaging radiating and backscattering objects, with the features mentioned in claim 1.

Unter einem Absorptionselement ist hier ein Element zu verstehen, das zumindest einen Bereich aufweist, welcher die Strahlung zumindest teilweise absorbiert. Unter einem Spalt ist ein die Strahlung gering absorbierender Bereich zu verstehen. Er kann mit Luft oder einem anderen geeigneten Material gefüllt sein, welches die Strahlung weniger absorbiert als die die Strahlung zumindest teilweise absorbierenden Bereiche der Absorptionselemente, wobei das Material in Form eines separaten Einsatzstückes oder einer auf mindestens eine der nicht-ebenen Oberflächen aufgebrachten Beschichtung vorliegen kann.An absorption element here is to be understood as an element which has at least one region which at least partially absorbs the radiation. A gap is to be understood as meaning a region which absorbs the radiation to a small extent. It may be filled with air or other suitable material which absorbs the radiation less than the portions of the absorption elements at least partially absorbing the radiation, which material may be in the form of a separate insert or a coating applied to at least one of the non-planar surfaces ,

Unter einer Regelfläche (engl.: ruled surface) ist eine Fläche zu verstehen, bei der zu jedem Punkt auf der Fläche eine Gerade existiert, die vollständig in der Fläche liegt. Diese vollständig in der Fläche liegenden Geraden werden als die Erzeugenden der Regelfläche bezeichnet. Die gaußsche Krümmung einer Fläche in einem Punkt ist das Produkt ihrer beiden Hauptkrünimungen in dem Punkt; die Hauptkrümmungen der Fläche in einem Punkt sind der minimale Wert und der maximale Wert der Krümmungen aller Kurven, die sich durch Schneiden der Fläche mit einer die Flächennormale auf dem Punkt enthaltenden Ebene ergeben.A ruled surface is an area in which there is a straight line at every point on the surface that lies completely within the surface. These completely in-plane straight lines are referred to as the generators of the control surface. The Gaussian curvature of a surface at a point is the product of its two main features in the point; the principal curvatures of the area at a point are the minimum value and the maximum value of the curvatures of all curves resulting from intersecting the area with a plane containing the surface normal on the point.

Ein Beispiel einer Regelfläche ist die in der Patentschrift DE 10 2005 029 674 B4 genutzte Fläche, die sich durch eine Funktion der Form z(x,y) = f(y) * x + n beschreiben lässt. Die Erzeugenden dieser Regelfläche haben die Geradengleichungen r = (0, y0, n) + λ(1,0, f(y0)), wobei jedem Wert des Parameters y0 genau eine Erzeugende entspricht. Insbesondere wird die Fläche, die durch die in der Patentschrift DE 10 2005 029 674 B4 offenbarte Funktion z(x,y) = C*y*x+n beschrieben wird, durch die Geraden mit den Geradengleichungen r-=(O,y0,n)+λ(1,0,Cy0) erzeugt. Ihre gaußsche Krümmung im Punkt (x,y,z(x,y)) beträgt κ = - C 2 1 + C 2 x 2 + y 2 2

Figure imgb0001
und ist somit auf der gesamten Fläche von Null verschieden.An example of a rule surface is that in the patent DE 10 2005 029 674 B4 used surface, which can be described by a function of the form z (x, y) = f (y) * x + n . The generators of this control surface have the straight line equations r = (0, y 0 , n) + λ (1,0, f (y 0 )), where each value of the parameter y 0 corresponds to exactly one generator. In particular, the area covered by the in the patent DE 10 2005 029 674 B4 the function z (x, y) = C * y * x + n described by the straight line equation r - = (O, y 0 , n) + λ (1.0, Cy 0 ) . Its Gaussian curvature at the point (x, y, z (x, y)) is κ = - C 2 1 + C 2 x 2 + y 2 2
Figure imgb0001
and is therefore different from zero over the entire area.

Um zu bestimmen, welche Regelflächen für eine Weiterentwicklung der in der Patentschrift DE 10 2005 029 674 B4 offenbarten Blende geeignet sein könnten, werden die Richtungen betrachtet, in denen Strahlenbündel ungehindert oder nahezu ungehindert einfallen können. Die Erzeugenden der Regelfläche liefern eine einparametrige Schar von Richtungen, entlang derer Strahlenbündel ungehindert einfallen können. Um eine zweidimensionale Abbildung zu erzeugen, muss jedoch eine zweidimensionale Mannigfaltigkeit von Strahlenbündeln die Blende passieren. Der erforderliche zweite Freiheitsgrad ergibt sich dadurch, dass Strahlenbündel, die in der Tangentialebene zu einem Punkt der Regelfläche einfallen, die Blende nahezu ungehindert passieren, wenn sie sich nicht zu sehr von der durch diesen Punkt verlaufenden Erzeugenden unterscheiden, da sich in diesem Fall lediglich eine geringfügige, in der Entfernung von dem betrachteten Punkt quadratische Abweichung von der Regelfläche ergibt.To determine which ruled surfaces for further development in the patent DE 10 2005 029 674 B4 disclosed apertures are considered, the directions in which beams can invade unhindered or almost unhindered. The generators of the control surface provide a one-parameter set of directions along which rays of light can enter unimpeded. However, to create a two-dimensional image, a two-dimensional manifold of rays must pass through the aperture. The required second degree of freedom results from the fact that bundles of rays incident on a plane of the control surface in the tangential plane pass through the diaphragm almost unhindered if they do not differ too much from the generator passing through this point, since in this case only one gives slight, at the distance from the point under consideration square deviation from the control surface.

Als Bedingung für das Zustandekommen einer zweidimensionalen Abbildung ergibt sich somit, dass die Richtungsänderung beim Durchlaufen der Erzeugendenschar und die Richtungsänderung beim Drehen der Erzeugenden in der Tangentialebene voneinander linear unabhängig sein müssen; nur in diesem Fall führen diese beiden Richtungsänderungen zu einer zweidimensionalen Mannigfaltigkeit ungehindert oder nahezu ungehindert durchgelassener Strahlenbündel.As a condition for the realization of a two-dimensional mapping thus results that the change in direction when passing through the generatrix and the change in direction when rotating the generators in the tangent plane from each other must be linearly independent; only in this case, these two changes in direction lead to a two-dimensional manifold unhindered or almost unhindered transmitted beams.

Aus der Differentialgeometrie ist bekannt, dass die gaußsche Krümmung einer Regelfläche in einem Punkt genau dann verschwindet, wenn die Ableitung des Richtungsvektors der Erzeugenden und die auf der Erzeugenden senkrechte Tangente kolinear sind. Es folgt, dass genau dann eine zweidimensionale Abbildung erzeugt wird, wenn die gaußsche Krümmung der Regelfläche in dem verwendeten Teilbereich der Regelfläche nirgends verschwindet.It is known from differential geometry that the Gaussian curvature of a rule surface disappears at a point just when the derivative of the direction vector of the generator and the tangent perpendicular to the generator are collinear. It It follows that a two-dimensional image is produced if and only if the Gaussian curvature of the control surface does not disappear anywhere in the used subarea of the control surface.

Aus der Patentschrift DD 240 091 A1 und der Offenlegungsschrift DE 40 00 507 A1 sind Blenden für hochenergetische Strahlung bekannt, in denen Teilbereiche von Regelflächen zur Bildung eines Spalts verwendet werden, und zwar von Kegeln beziehungsweise ebenen Flächen. In beiden Fällen verschwindet jedoch die gaußsche Krümmung auf der gesamten Regelfläche, die somit nicht zur Gewinnung zweidimensionaler Abbildungen geeignet ist.From the patent DD 240 091 A1 and the publication DE 40 00 507 A1 For example, panels for high-energy radiation are known in which partial areas of ruled surfaces are used to form a gap, ie of cones or flat areas. In both cases, however, the Gaussian curvature disappears over the entire control surface, which is thus not suitable for obtaining two-dimensional images.

Um die Intensität auf der Abbildungsfläche zu erhöhen, ist der Kameraaufbau näher an das Objekt heranzuführen. Sowohl die Verkleinerung des Kameragehäuses als auch das nähere Heranbringen an das Objekt erfordern eine Vergrößerung des Blickwinkels. Dies wird umso mehr notwendig, wenn kleinflächige Flachdetektoren auf Halbleiterbasis eingesetzt werden sollen. Diese besitzen den Vorteil, nicht nur das Abbild direkt in digitale Signale zu wandeln, sondern auch mit sehr hoher Empfindlichkeit zur Verfügung zu stehen. Die Vergrößerung des Blickwinkels erfordert eine entsprechende Anpassung der Blendengeometrie, um eine fächerförmige Strahlenführung zu erreichen.In order to increase the intensity on the imaging surface, the camera structure is to be brought closer to the object. Both the downsizing of the camera body and the closer approach to the object require an enlargement of the viewing angle. This becomes all the more necessary when small-area semiconductor-based flat panel detectors are to be used. These have the advantage of not only converting the image directly into digital signals, but also being available with very high sensitivity. The enlargement of the viewing angle requires a corresponding adaptation of the diaphragm geometry in order to achieve a fan-shaped beam guidance.

Eine fächerförmige Strahlenführung wurde auch bei der in der Offenlegungsschrift DE 10 2005 048 519 A1 offenbarten brennpunktorientierten Walzenblende verwendet. Diese beruht jedoch nicht auf dem Lochkameraprinzip, sondern richtet in jeder Position nur jeweils einen Strahl auf den in einem Brennpunkt befindlichen Detektor; eine zweidimensionale Abbildung wird dabei erst durch Drehen der Walzenblende und zeilenweises Abrastern des Objekts gewonnen.A fan-shaped beam guide was also in the published patent application DE 10 2005 048 519 A1 revealed focal point oriented roller blind used. However, this is not based on the Lochkameraprinzip, but directed in each position only one beam to the detector located in a focal point; a two-dimensional image is obtained only by turning the roller shutter and line by line scanning of the object.

Wie die in der Patentschrift DE 10 2005 029 674 B4 offenbarte Blende ist die erfindungsgemäße Schlitzblende geeignet, von einer Strahlungsquelle ausgehende, insbesondere hochenergetische, Strahlung zu begrenzen und entlang einer optischen Achse nach dem Lochkameraprinzip auf einen Abbildungsbereich zu richten, und umfasst ein erstes Absorptionselement, welches eine erste nicht-ebene Außenfläche aufweist, von der zumindest ein Teilbereich auf einer Regelfläche liegt, deren gaußsche Krümmung in dem Teilbereich nirgends verschwindet, sowie ein zweites Absorptionselement, welches eine zweite nicht-ebene Außenfläche aufweist, deren Oberflächenkontur zumindest teilweise komplementär zu der nicht-ebenen Außenfläche des ersten Absorptionselements geformt ist, wobei die beiden Absorptionselemente derart positioniert oder positionierbar sind, dass zwischen den beiden nicht-ebenen Außenflächen ein Spalt vorhanden ist.Like the one in the patent DE 10 2005 029 674 B4 disclosed aperture is the slit diaphragm according to the invention suitable to limit radiation emitted by a radiation source, in particular high-energy radiation and directed along an optical axis according to the Lochkameraprinzip on an imaging area, and comprises a first absorption element, which has a first non-planar outer surface of the at least one subregion lies on a control surface whose Gaussian curvature does not disappear in the subregion, and a second absorption element which has a second non-planar outer surface whose surface contour is at least partially complementary to the non-planar outer surface of the first absorption element is, wherein the two absorption elements are positioned or positioned so that between the two non-planar outer surfaces, a gap is present.

Die erfindungsgemäße Blende ist darüber hinaus dadurch gekennzeichnet, dass der Abstand in einer Richtung senkrecht zu der optischen Achse zwischen den Erzeugenden der Regelfläche sich zum Abbildungsbereich hin verringert. Dadurch wird erreicht, dass die ungefähr entlang der Erzeugenden der Regelfläche einfallenden Strahlenbündel, die nahezu ungehindert durch die Blende treten, hinter der Blende konvergieren und in möglichst geringem Abstand von der Blende auf einen Abbildungsbereich treffen, der deutlich kleiner als der Blendenkörper sein kann. Bevorzugt ist, dass sich zumindest in einem Teilbereich der ersten nicht-ebenen Außenfläche der Abstand zwischen den Erzeugenden der Regelfläche zum Abbildungsbereich hin in jeder Richtung senkrecht zu der optischen Achse verringert. Dadurch wird erreicht, dass die ungefähr entlang der Erzeugenden der Regelfläche einfallenden Strahlenbündel besonders stark zum Abbildungsbereich hin konvergieren.The diaphragm according to the invention is further characterized in that the distance in a direction perpendicular to the optical axis between the generatrices of the control surface decreases towards the imaging region. This ensures that the approximately along the generatrix of the control surface incident beam converge almost unhindered through the aperture, converge behind the aperture and meet as close to the aperture on an imaging range, which can be significantly smaller than the diaphragm body. It is preferred that, at least in a partial region of the first non-planar outer surface, the distance between the generatrices of the control surface and the imaging region decreases in each direction perpendicular to the optical axis. It is thereby achieved that the radiation bundles incident approximately along the generatrix of the control surface converge particularly strongly towards the imaging region.

In bevorzugter Ausführung der Erfindung existiert eine Zentralachse, die jede der Erzeugenden der Regelfläche schneidet. Dadurch vereinfacht sich die Abbildungsvorschrift, und bei geeigneter Lage des Blendenkörpers kann der Bereich um die Zentralachse als Abbildungsbereich verwendet werden. Zum anderen wird dadurch erreicht, dass die Blende mit Hilfe einer Vorrichtung gemäß Anspruch 9 bzw. eines Verfahrens gemäß Anspruch 14 hergestellt werden kann.In a preferred embodiment of the invention, there is a central axis which intersects each of the generators of the control surface. As a result, the mapping rule is simplified, and with a suitable position of the diaphragm body, the area around the central axis can be used as the imaging area. On the other hand, it is achieved that the diaphragm can be produced by means of a device according to claim 9 or a method according to claim 14.

Besonders bevorzugt ist, dass die Polarwinkel der Richtungsvektoren der Erzeugenden der Regelfläche bezüglich der Zentralachse in linearem Zusammenhang mit dem Schnittpunkt der Erzeugenden der Regelfläche mit der Zentralachse stehen. Dadurch wird erreicht, dass die Abbildungsvorschrift näherungsweise linear ist und die Blende mit Hilfe einer Vorrichtung gemäß Anspruch 10 bzw. eines Verfahrens gemäß Anspruch 15 hergestellt werden kann.It is particularly preferred that the polar angles of the direction vectors of the generatrix of the control surface with respect to the central axis are linearly related to the intersection of the generatrix of the control surface with the central axis. This ensures that the mapping rule is approximately linear and the diaphragm can be produced by means of a device according to claim 10 or a method according to claim 15.

Unter einem linearen Zusammenhang mit dem Schnittpunkt der Erzeugenden der Regelfläche mit der Zentralachse ist dabei ein linearer Zusammenhang mit dem Abstand des Schnittpunkts der Erzeugenden der Regelfläche mit der Zentralachse von einem beliebigen festen Punkt auf der Zentralachse zu verstehen. Wenn die Polarwinkel der Richtungsvektoren der Erzeugenden der Regelfläche bezüglich der Zentralachse in einem solchen linearen Zusammenhang mit dem Schnittpunkt der Erzeugenden der Regelfläche mit der Zentralachse stehen und dieser lineare Zusammenhang jeweils kein konstanter Zusammenhang ist, d.h. beide Polarwinkel mit dem Schnittpunkt variieren, dann verschwindet die gaußsche Krümmung der Regelfläche nirgends. Somit ist die Menge aller Regelflächen, bei denen die Polarwinkel der Richtungsvektoren der Erzeugenden der Regelfläche bezüglich der Zentralachse in nicht konstantem linearen Zusammenhang mit dem Schnittpunkt der Erzeugenden der Regelfläche mit der Zentralachse stehen, eine Teilmenge der Regelflächen, deren gaußsche Krümmung nirgends verschwindet; d.h. das Merkmal, dass die Polarwinkel der Richtungsvektoren der Erzeugenden der Regelfläche bezüglich der Zentralachse in nicht konstantem linearem Zusammenhang mit dem Schnittpunkt der Erzeugenden der Regelfläche mit der Zentralachse stehen, führt zu einer erfindungsgemäßen Schlitzblende, ohne dass zusätzlich gefordert werden muss, dass die gaußsche Krümmung der Regelfläche nirgends verschwindet.Under a linear relationship with the intersection of the generatrix of the control surface with the central axis is to understand a linear relationship with the distance of the intersection of the generatrix of the control surface with the central axis of any fixed point on the central axis. If the polar angles of the direction vectors of the generatrix of the control surface with respect to the central axis are in such a linear relationship with the intersection of the generatrix of the control surface with the central axis and this linear relationship is not constant In other words, ie both polar angles vary with the point of intersection, then the Gaussian curvature of the control surface does not disappear anywhere. Thus, the set of all ruled surfaces in which the polar angles of the direction vectors of the generators of the ruled surface with respect to the central axis are not constantly linearly related to the intersection of the generatrices of the ruled surface with the central axis is a subset of the ruled surfaces whose Gaussian curvature does not disappear anywhere; that is, the feature that the polar angles of the direction vectors of the generatrix of the control surface with respect to the central axis in non-constant linear relationship with the intersection of the generatrix of the control surface with the central axis, resulting in a slit diaphragm according to the invention, without the additional requirement that the Gaussian curvature the ruled surface disappears nowhere.

In weiterer bevorzugter Ausführung der Erfindung liegt die Zentralachse außerhalb des Blendenkörpers. Dadurch wird erreicht, dass der Detektor in der Nähe der Zentralachse angeordnet werden kann, so dass sich auf möglichst kleiner Fläche ein Bild aufnehmen lässt.In a further preferred embodiment of the invention, the central axis is outside the diaphragm body. This ensures that the detector can be arranged in the vicinity of the central axis, so that an image can be recorded on the smallest possible area.

In weiterer bevorzugter Ausführung der Erfindung weisen die Absorptionselemente einen trapezförmigen Grundriss auf, der sich zur Strahlungsquelle hin erweitert. Dadurch wird erreicht, dass die Außenform der Absorptionselemente dem für die fächerförmige Strahlenführung verwendeten Bereich entspricht.In a further preferred embodiment of the invention, the absorption elements have a trapezoidal plan, which widens towards the radiation source. This ensures that the outer shape of the absorption elements corresponds to the area used for the fan-shaped beam guidance.

In weiterer bevorzugter Ausführung der Erfindung ist die Öffnung des Spalts auf der der Strahlungsquelle zugewandten Seite der Schlitzblende größer als die Öffnung des Spalts auf der dem Abbildungsbereich zugewandten Seite der Schlitzblende. Dadurch wird erreicht, dass die durch den Spalt tretenden Strahlenbündel auch in der Richtung senkrecht zum Spalt konvergieren.In a further preferred embodiment of the invention, the opening of the gap on the radiation source facing side of the slit is greater than the opening of the gap on the imaging region side facing the slit. This ensures that the beams passing through the gap also converge in the direction perpendicular to the gap.

In weiterer bevorzugter Ausführung der Erfindung umfasst die Schlitzblende zusätzlich zu dem einen Spalt mindestens einen weiteren Spalt, dessen Form jeweils im Wesentlichen durch eine affine Abbildung aus der Form des einen Spalts hervorgeht, wie in der deutschen Patentanmeldung mit dem Aktenzeichen 10 2008 025 109.7-54 näher beschrieben. Dadurch wird eine bessere Abbildungsqualität und/oder ein größerer Abbildungsbereich und/oder eine höhere Strahlenausbeute erzielt. Dabei ist eine affine Abbildung eine Abbildung des dreidimensionalen Raumes auf sich selbst, welche jede Gerade auf eine Gerade abbildet.In a further preferred embodiment of the invention, the slit diaphragm comprises, in addition to the one gap, at least one further gap, the shape of which in each case results essentially from an affine image from the shape of the one gap, as in German Patent Application No. 10 2008 025 109.7-54 described in more detail. As a result, a better imaging quality and / or a larger imaging range and / or a higher beam yield is achieved. An affine image is an image of the three-dimensional space on itself, which maps each straight line to a straight line.

In der europäischen Patentanmeldung EP 2 062 705 A1 sind eine Vorrichtung und ein Verfahren zur Herstellung von Schlitzblenden offenbart, mit welchen sich die in der Patentschrift DE 10 2005 029 674 B4 offenbarte Schlitzblende und die in der Offenlegungsschrift DE 10 2005 048 519 A1 offenbarte brennpunktorientierte Walzenblende herstellen lassen. Es ist eine weitere Aufgabe der vorliegenden Erfindung, diese Lehre weiterzuentwickeln, um eine Vorrichtung und ein Verfahren zur Herstellung einer erfindungsgemäßen Schlitzblende anzugeben.In the European patent application EP 2 062 705 A1 discloses an apparatus and a method for producing slit diaphragms, with which in the patent DE 10 2005 029 674 B4 disclosed slit diaphragm and in the published patent application DE 10 2005 048 519 A1 revealed focal point-oriented roller blind can be produced. It is a further object of the present invention to further develop this teaching in order to provide an apparatus and a method for producing a slit diaphragm according to the invention.

Erfindungsgemäß wird diese Aufgabe mittels einer Vorrichtung und eines Verfahrens zur Herstellung einer Schlitzblende gemäß den in Anspruch 8 bzw. Anspruch 13 genannten Merkmalen gelöst.According to the invention this object is achieved by means of a device and a method for producing a slit diaphragm according to the features mentioned in claim 8 or claim 13.

Wie die in der europäischen Patentanmeldung EP 2 062 705 A1 offenbarte Vorrichtung umfasst die erfindungsgemäße Vorrichtung zur Herstellung einer Schlitzblende ein Schneidwerkzeug, welches geeignet ist, entlang einer geraden Linie zu schneiden, und Mittel, welche geeignet sind, eine relative Bewegung zwischen dem Schneidwerkzeug und einem Werkstück zu bewirken derart, dass das Schneidwerkzeug das Werkstück entlang einer Linie schneidet, die einem Strahlengang in der herzustellenden Schlitzblende entspricht. Das Schneidwerkzeug ist geeignet, entlang einer ersten Richtung zu schneiden. Die Mittel umfassen ein Halteelement, auf welchem ein Werkstück befestigbar ist und welches um eine erste Drehachse drehbar gelagert ist. Die Mittel sind dazu geeignet, eine erste Rotationsbewegung des Halteelements um die erste Drehachse und gleichzeitig eine Translationsbewegung des Halteelements entlang der ersten Drehachse zu bewirken. Die erste Rotationsbewegung und die Translationsbewegung des Halteelements sind gekoppelt.Like the one in the European patent application EP 2 062 705 A1 In the disclosed apparatus, the apparatus for producing a slit includes a cutting tool adapted to cut along a straight line, and means adapted to effect relative movement between the cutting tool and a workpiece such that the cutting tool passes along the workpiece a line which corresponds to a beam path in the slit diaphragm to be produced. The cutting tool is adapted to cut along a first direction. The means comprise a holding element, on which a workpiece can be fastened and which is rotatably mounted about a first axis of rotation. The means are adapted to effect a first rotational movement of the retaining element about the first axis of rotation and at the same time a translational movement of the retaining element along the first axis of rotation. The first rotational movement and the translational movement of the retaining element are coupled.

Diese Lehre wird durch die vorliegende Erfindung dahingehend weiterentwickelt, dass die Mittel ferner geeignet sind, gleichzeitig mit der ersten Rotationsbewegung und der Translationsbewegung eine zweite Rotationsbewegung des Halteelements und der ersten Drehachse um eine zweite Drehachse zu bewirken, und die zweite Rotationsbewegung und die Translationsbewegung des Halteelements gekoppelt sind. Dadurch wird erreicht, dass der Abstand in Richtung der ersten Drehachse zwischen den geschnittenen Strahlengängen sich in der Richtung senkrecht zu den ersten und zweiten Drehachsen verringert.This teaching is further developed by the present invention in that the means are further adapted to effect a second rotational movement of the holding member and the first axis of rotation about a second axis of rotation simultaneously with the first rotational movement and the translational movement, and the second rotational movement and translational movement of the retaining element are coupled. It is thereby achieved that the distance in the direction of the first axis of rotation between the cut beam paths decreases in the direction perpendicular to the first and second axes of rotation.

Vorzugsweise weisen die erste Drehachse, die zweite Drehachse und die Linie, entlang derer das Schneidwerkzeug schneidet, einen gemeinsamen Schnittpunkt auf. Dadurch wird erreicht, dass die mittels der Vorrichtung hergestellte Schlitzblende das vorteilhafte zusätzliche Merkmal des Anspruchs 2 aufweist. Besonders bevorzugt ist, dass die zweite Drehachse senkrecht zur Schneidrichtung des Schneidwerkzeugs und senkrecht zur ersten Drehachse verläuft. Besonders bevorzugt ist ferner, dass die Translationsbewegung und die erste Rotationsbewegung linear gekoppelt sind und die Translationsbewegung und die zweite Rotationsbewegung linear gekoppelt sind. Eine solche lineare Kopplung ist mit besonders einfachen technischen Mitteln zu bewerkstelligen. Ferner wird dadurch erreicht, dass die mittels der Vorrichtung hergestellte Schlitzblende das vorteilhafte zusätzliche Merkmal des Anspruchs 3 aufweist.Preferably, the first axis of rotation, the second axis of rotation and the line along which the cutting tool cuts have a common point of intersection. Thereby it is achieved that the slit diaphragm produced by means of the device has the advantageous additional feature of claim 2. It is particularly preferred that the second axis of rotation is perpendicular to the cutting direction of the cutting tool and perpendicular to the first axis of rotation. It is further preferred that the translational movement and the first rotational movement are linearly coupled and the translational movement and the second rotational movement are linearly coupled. Such a linear coupling can be accomplished with particularly simple technical means. Furthermore, it is achieved that the slit diaphragm produced by means of the device has the advantageous additional feature of claim 3.

In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass das Schneidwerkzeug unbeweglich angeordnet ist. Bevorzugt ist somit, dass das Schneidwerkzeug feststehend ist und das Werkstück daran herumgeführt wird. Ausgangspunkt dieser bevorzugten Ausführung ist, das Werkstück nicht in eine feste Halterung einzuspannen und das Werkzeug zu führen, sondern es umgekehrt kontrolliert beweglich um eine Fräse bzw. einen Schneidstrahl herumzuführen.In a preferred embodiment of the invention it is provided that the cutting tool is arranged immovably. It is thus preferred that the cutting tool is stationary and the workpiece is guided around it. The starting point of this preferred embodiment is not to clamp the workpiece in a fixed support and to guide the tool, but conversely to move it in a controlled manner around a milling cutter or a cutting jet.

Die Mittel können eine erste, eine zweite und eine dritte Gewindewelle umfassen, wobei die erste Gewindewelle parallel zu der ersten Drehachse verläuft, die zweite Gewindewelle auf der ersten Drehachse liegt und die dritte Gewindewelle auf der zweiten Drehachse liegt. Eine Rotationsbewegung der drei Gewindewellen kann durch ein Zahnradsystem gekoppelt sein.The means may comprise a first, a second and a third threaded shaft, wherein the first threaded shaft is parallel to the first axis of rotation, the second threaded shaft is located on the first axis of rotation and the third threaded shaft is located on the second axis of rotation. A rotational movement of the three threaded shafts may be coupled by a gear system.

Die erste Gewindewelle kann einen Bereich umfassen, welcher als Schneckenwelle ausgeformt ist, durch welchen ein Haltearm, mit welchem die zweite Gewindewelle verbunden ist, entlang der ersten Drehachse bewegbar ist.The first screw shaft may include a portion formed as a screw shaft through which a support arm to which the second screw shaft is connected is movable along the first rotation axis.

Wie in dem in der europäischen Patentanmeldung EP 2 062 705 A1 offenbarten Verfahren wird in dem erfindungsgemäßen Verfahren zur Herstellung einer Schlitzblende eine relative Bewegung zwischen einem Schneidwerkzeug, welches geeignet ist, entlang einer geraden Linie zu schneiden, und einem Werkstück ausgeführt derart, dass das Schneidwerkzeug das Werkstück entlang einer Linie schneidet, die einem Strahlengang in der herzustellenden Schlitzblende entspricht, das Werkstück entlang einer unveränderlichen ersten Richtung geschnitten wird, eine erste Rotationsbewegung des Werkstücks um eine erste Drehachse und gleichzeitig eine Translationsbewegung des Werkstücks entlang der ersten Drehachse ausgeführt wird und die erste Rotationsbewegung und die Translationsbewegung des Werkstücks gekoppelt werden.As in the European patent application EP 2 062 705 A1 In the method according to the invention for producing a slit, a relative movement between a cutting tool which is suitable for cutting along a straight line and a workpiece is carried out such that the cutting tool cuts the workpiece along a line corresponding to a beam path in the plane a first rotational movement of the workpiece about a first axis of rotation and simultaneously a translational movement of the workpiece along the first axis of rotation is performed and the first rotational movement and the translational movement of the workpiece are coupled.

Diese Lehre wird durch die vorliegende Erfindung dahingehend weiterentwickelt, dass gleichzeitig mit der ersten Rotationsbewegung und der Translationsbewegung eine zweite Rotationsbewegung des Werkstücks und der ersten Drehachse um eine zweite Drehachse ausgeführt wird und die zweite Rotationsbewegung und die Translationsbewegung des Werkstücks gekoppelt werden.This teaching is further developed by the present invention such that a second rotational movement of the workpiece and the first axis of rotation about a second axis of rotation is carried out simultaneously with the first rotational movement and the translation movement and the second rotational movement and the translational movement of the workpiece are coupled.

Vorzugsweise weisen die erste Drehachse, die zweite Drehachse und die Linie, entlang derer das Schneidwerkzeug schneidet, einen gemeinsamen Schnittpunkt auf. Dadurch wird erreicht, dass die mittels des Verfahrens hergestellte Schlitzblende das vorteilhafte zusätzliche Merkmal des Anspruchs 2 aufweist. Besonders bevorzugt ist, dass die zweite Drehachse senkrecht zur Schneidrichtung des Schneidwerkzeugs und senkrecht zur ersten Drehachse verläuft. Besonders bevorzugt ist ferner, dass die Translationsbewegung und die erste Rotationsbewegung linear gekoppelt werden und die Translationsbewegung und die zweite Rotationsbewegung linear gekoppelt werden. Eine solche lineare Kopplung ist mit besonders einfachen technischen Mitteln zu bewerkstelligen. Ferner wird dadurch erreicht, dass die mittels des Verfahrens hergestellte Schlitzblende das vorteilhafte zusätzliche Merkmal des Anspruchs 3 aufweist.Preferably, the first axis of rotation, the second axis of rotation and the line along which the cutting tool cuts have a common point of intersection. It is thereby achieved that the slit diaphragm produced by the method has the advantageous additional feature of claim 2. It is particularly preferred that the second axis of rotation is perpendicular to the cutting direction of the cutting tool and perpendicular to the first axis of rotation. It is also particularly preferred that the translational movement and the first rotational movement are linearly coupled and the translational movement and the second rotational movement are linearly coupled. Such a linear coupling can be accomplished with particularly simple technical means. Furthermore, it is achieved that the slit diaphragm produced by the method has the advantageous additional feature of claim 3.

Zum Schneiden des Schlitzes kann ein beliebiges aus dem Stand der Technik bekanntes Verfahren verwendet werden, darunter beispielsweise Fräsen, Feinfräsen, Präzisionsfräsen, Strahlen, Strahlfräsen oder Sägen.For cutting the slot, any method known in the art may be used, including, for example, milling, fine milling, precision milling, blasting, jet milling or sawing.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine bildgebende Einrichtung mit einer Blende;
Figur 2
(schematisch) eine Testanordnung;
Figur 3
eine Perspektivansicht eines ersten Ausführungsbeispiels einer erfindungs- gemäßen Schlitzblende;
Figur 4
eine Explosionsdarstellung der in Figur 3 gezeigten erfindungsgemäßen Schlitzblende;
Figur 5
eine Perspektivansicht des ersten Absorptionselements der in Figur 3 gezeigten erfindungsgemäßen Schlitzblende;
Figur 6
eine Perspektivansicht eines zweiten Ausführungsbeispiels einer erfindungsgemäßen Schlitzblende;
Figur 7
eine Perspektivansicht eines dritten Ausführungsbeispiels einer erfindungs- gemäßen Schlitzblende;
Figur 8
eine Perspektivansicht einer erfindungsgemäßen Vorrichtung zum Strahlfräsen einer Schlitzblende.
The invention will be explained in more detail in embodiments with reference to the accompanying drawings. Show it:
FIG. 1
an imaging device with a diaphragm;
FIG. 2
(schematically) a test arrangement;
FIG. 3
a perspective view of a first embodiment of a slit diaphragm according to the invention;
FIG. 4
an exploded view of in FIG. 3 shown slit diaphragm according to the invention;
FIG. 5
a perspective view of the first absorbent member of in FIG. 3 shown slit diaphragm according to the invention;
FIG. 6
a perspective view of a second embodiment of a slit diaphragm according to the invention;
FIG. 7
a perspective view of a third embodiment of a slit diaphragm according to the invention;
FIG. 8
a perspective view of a device according to the invention for beam milling a slit.

Figur 1 veranschaulicht das Lochkameraprinzip an einer bildgebenden Einrichtung 100. Von einer Strahlungsquelle 102, zum Beispiel einem Testkörper, wird hochenergetische Strahlung 104, insbesondere Röntgen- oder Gammastrahlung, emittiert. Die Strahlung 104 trifft auf eine Blende 110, durch welche sie begrenzt und entlang einer optischen Achse x nach dem Lochkameraprinzip auf einen Abbildungsbereich 106 gerichtet wird. Der Abbildungsbereich 106 ist typischerweise eine Projektionsfläche, auf welcher eine Abbildung des Testkörpers 102 erzeugt wird. Im Abbildungsbereich 106 befindet sich eine Empfangseinheit 108, welche für die Strahlung 104 empfindlich ist, insbesondere ein Detektor oder eine Kamera. FIG. 1 illustrates the Lochkameraprinzip at an imaging device 100. From a radiation source 102, for example, a test body, high-energy radiation 104, in particular X-rays or gamma rays, emitted. The radiation 104 strikes a diaphragm 110, by which it is delimited and directed along an optical axis x according to the hole-camera principle onto an imaging region 106. The imaging region 106 is typically a projection surface on which an image of the test body 102 is created. In the imaging area 106 is a receiving unit 108, which is sensitive to the radiation 104, in particular a detector or a camera.

Figur 2 zeigt schematisch eine Testanordnung. Eine kontinuierlich strahlende, leistungsstarke Röntgenröhre 112 erzeugt Strahlung, welche durch eine allseitige Abschirmung, hier eine Bleiwand 114 mit Fenster, ausgeblendet wird. Die durch das Fenster der Bleiwand 114 hindurchtretende Strahlung fällt auf eine Aluminiumplatte als Streufilter 116. Das eigentliche Testobjekt 118 ist zwischen dem Streufilter 116 und der erfindungsgemäßen Blende 120, welche in einer Abschirmwand 122 aus Blei integriert ist, angeordnet. Als Detektor 124 auf der Projektionsfläche 126 dient in diesem Fall ein Röntgenfilm oder eine Bildspeicherfolie (engl.: phosphor imaging plate) in einer Kassette. Die Erfindung ist nicht auf diese Anordnung beschränkt. Insbesondere ist die Erfindung auch zur Abbildung rückgestreuter Strahlung verwendbar, beispielsweise zur radiographischen Untersuchung von Objekten, zu denen nur ein einseitiger Zugang möglich ist. FIG. 2 shows schematically a test arrangement. A continuously radiating, powerful x-ray tube 112 generates radiation, which is masked out by an all-round shield, here a lead wall 114 with window. The radiation passing through the window of the lead wall 114 is incident on an aluminum plate as scatter filter 116. The actual test object 118 is arranged between the scatter filter 116 and the diaphragm 120 according to the invention, which is integrated in a shielding wall 122 made of lead. In this case, an X-ray film or an image-forming film (English: phosphor imaging plate) in a cassette serves as the detector 124 on the projection surface 126. The invention is not limited to this arrangement. In particular, the invention can also be used for imaging backscattered radiation, for example for radiographic examination of objects for which only one-sided access is possible.

Figur 3 zeigt eine Perspektivansicht eines ersten Ausführungsbeispiels einer erfindungsgemäßen Schlitzblende 50 gemäß Anspruch 3. Die Schlitzblende 50 umfasst ein erstes Absorptionselement 52 mit einer ersten nicht-ebenen Außenfläche 54 sowie ein zweites Absorptionselement 56 mit einer zweiten nicht-ebenen Außenfläche 58. Zwischen den beiden nicht-ebenen Außenflächen 54 und 58 befindet sich ein Spalt 60. Die Absorptionselemente weisen einen trapezförmigen Grundriss auf, der sich zur Strahlungsquelle hin erweitert; die seitlichen Halterungen 62a und 62b weisen eine entsprechende komplementäre Form auf. FIG. 3 shows a perspective view of a first embodiment of a slit 50 according to the invention according to claim 3. The slit 50 comprises a first absorption element 52 having a first non-planar outer surface 54 and a second Absorption member 56 having a second non-planar outer surface 58. Between the two non-planar outer surfaces 54 and 58 is a gap 60. The absorption elements have a trapezoidal plan, which widens towards the radiation source; the lateral brackets 62a and 62b have a corresponding complementary shape.

Zur Beschreibung der ersten nicht-ebenen Außenfläche 54 ist in Figur 3 ein kartesisches Koordinatensystem eingezeichnet, dessen Ursprung im Mittelpunkt der ersten nicht-ebenen Außenfläche 54 liegt, dessen x-Achse in Richtung der optischen Achse liegt und dessen γ-Achse auf der Zentralachse liegt, durch die sämtliche Erzeugenden der Regelfläche, auf der die erste nicht-ebene Außenfläche 54 liegt, verlaufen. Der Abbildungsbereich liegt hinter der Blende 50 in Richtung der positiven x-Achse.For the description of the first non-planar outer surface 54 is in FIG. 3 drawn a Cartesian coordinate system, whose origin lies at the center of the first non-planar outer surface 54, the x- axis lies in the direction of the optical axis and the γ-axis lies on the central axis through which all generators of the control surface on which the first not -plane outer surface 54 is, run. The imaging area is behind the aperture 50 in the direction of the positive x-axis.

Die Höhe h1 der Öffnung des Spalts 60 an der Vorderseite der Blende 50 ist größer als die Höhe h2 der Öffnung des Spalts 60 an der Rückseite der Blende 50. Beispielsweise kann die Höhe h1 3 mm betragen und die Höhe h2 1 mm. Die hintere Öffnung des Spalts verläuft aufgrund der fächerförmigen Strahlenführung steiler als die vordere Öffnung des Spalts. Die Breite d der Vorderseite einer seitlichen Halterung kann beispielsweise 10 bis 25 mm betragen.The height h 1 of the opening of the gap 60 at the front of the aperture 50 is greater than the height h 2 of the opening of the gap 60 at the back of the aperture 50. For example, the height h 1 can be 3 mm and the height h 2 1 mm , The rear opening of the gap is steeper than the front opening of the gap due to the fan-shaped beam guide. The width d of the front side of a lateral support may for example be 10 to 25 mm.

Figur 4 zeigt eine Explosionsdarstellung der in Figur 3 gezeigten erfindungsgemäßen Schlitzblende. Exemplarisch sind zwei Erzeugende E1 und E2 der Regelfläche eingezeichnet. Der auf der ersten nicht-ebenen Außenfläche 54 verlaufende Teil der Erzeugenden E2 ist zur Verdeutlichung hervorgehoben. Der Abstand in γ-Richtung, d.h. in Richtung der Zentralachse, zwischen den Erzeugenden E1 und E2 nimmt zum Abbildungsbereich hin ab. In dem Teilbereich der ersten nicht-ebenen Außenfläche mit x < 0 verringert sich zum Abbildungsbereich hin auch der Abstand zwischen den Erzeugenden der Regelfläche in z-Richtung, und somit in jeder Richtung senkrecht zu der optischen Achse. FIG. 4 shows an exploded view of in FIG. 3 shown slit diaphragm according to the invention. As an example, two generators E 1 and E 2 of the control surface are drawn. The portion of the generatrix E 2 extending on the first non-planar outer surface 54 is highlighted for clarity. The distance in the y-direction, ie in the direction of the central axis, between the generatrices E 1 and E 2 decreases towards the imaging region. In the partial region of the first non-planar outer surface with x <0, the distance between the generatrix of the control surface in the z-direction, and thus in each direction perpendicular to the optical axis, also decreases towards the imaging region.

Figur 5 zeigt eine Perspektivansicht des ersten Absorptionselements der in Figur 3 gezeigten erfindungsgemäßen Blende mit exemplarischen Abmessungen, die beispielsweise die Werte h3 = 14 mm, h4 = 16 mm, h5 = 30 mm, h6 = 13 mm, h7 = 17 mm, b1 = 13 mm, b2 = 50 mm, t = 50 mm und α = 15° annehmen können. FIG. 5 shows a perspective view of the first absorbent member of in FIG. 3 shown inventive aperture with exemplary dimensions, for example, the values h 3 = 14 mm, h 4 = 16 mm, h 5 = 30 mm, h 6 = 13 mm, h 7 = 17 mm, b 1 = 13 mm, b 2 = 50 mm, t = 50 mm and α = 15 ° can assume.

Figur 6 zeigt eine Perspektivansicht eines zweiten Ausführungsbeispiels einer erfindungsgemäßen Schlitzblende 70. Die Schlitzblende 70 umfasst ein erstes Absorptionselement 72 mit einer ersten nicht-ebenen Außenfläche sowie ein zweites Absorptionselement 76 mit einer zweiten nicht-ebenen Außenfläche. Der übersichtlicheren Darstellung halber ist nur der Spalt 80 gezeigt und nicht die ihn bildenden, dicht beieinander liegenden komplementären nicht-ebenen Außenflächen. Zusätzlich ist zum Vergleich eine Schlitzblende 70' gemäß der Patentschrift DE 10 2005 029 674 B4 mit einem ersten Absorptionselement 72', einem zweiten Absorptionselement 76' und einem Spalt 80' eingezeichnet, wobei beide Blenden dieselbe Zentralachse aufweisen und im selben kartesischen Koordinatensystem beschrieben werden, dessen γ-Achse auf der gemeinsamen Zentralachse liegt. FIG. 6 shows a perspective view of a second embodiment of a slit 70 according to the invention. The slit 70 comprises a first absorption element 72 with a first non-planar outer surface and a second absorption element 76th with a second non-planar outer surface. For clarity, only the gap 80 is shown, not the complementary non-planar outer surfaces forming it, which are close together. In addition, for comparison, a slit 70 'according to the patent DE 10 2005 029 674 B4 drawn with a first absorption element 72 ', a second absorption element 76' and a gap 80 ', wherein both diaphragms have the same central axis and are described in the same Cartesian coordinate system whose γ-axis lies on the common central axis.

Wie bei der Schlitzblende des ersten Ausführungsbeispiels weisen die Absorptionselemente der Schlitzblende des zweiten Ausführungsbeispiels einen trapezförmigen Grundriss auf. Die Schnittlinien der Spalte mit den äußeren Grenzflächen der jeweiligen Schlitzblende sind eingezeichnet, nämlich jeweils die beiden äußersten Erzeugenden E3 und E4 bzw. E3' und E4', die Öffnung des Spalts auf der der Strahlungsquelle zugewandten Seite der Schlitzblende, O1 bzw. O1', und die Öffnung des Spalts auf der dem Abbildungsbereich zugewandten Seite der Schlitzblende, O2 bzw. O2'. Die Erzeugenden der Regelfläche, auf der die erste nicht-ebene Außenfläche des ersten Absorptionselements der Schlitzblende des zweiten Ausführungsbeispiels liegt, laufen in γ-Richtung, d.h. in Richtung der Zentralachse, aufeinander zu. Auch ihre z-Koordinaten nähern sich im Bereich x < 0, in dem die erste nicht-ebene Außenfläche liegt, einander an. In diesem Ausführungsbeispiel verringert sich somit auf der gesamten ersten nicht-ebenen Außenfläche der Abstand zwischen den Erzeugenden der Regelfläche zum Abbildungsbereich hin in jeder Richtung senkrecht zu der optischen Achse.As in the case of the slit diaphragm of the first exemplary embodiment, the absorption elements of the slit diaphragm of the second exemplary embodiment have a trapezoidal plan view. The lines of intersection of the gaps with the outer boundary surfaces of the respective slit are shown, namely in each case the two outermost generatrices E 3 and E 4 or E 3 'and E 4 ', the opening of the slit on the side of the slit diaphragm, O 1, facing the radiation source or O 1 ', and the opening of the gap on the imaging region side facing the slit, O 2 and O 2 '. The generatrices of the control surface, on which the first non-planar outer surface of the first absorption element of the slit diaphragm of the second embodiment lies, converge in the y-direction, ie in the direction of the central axis. Also, their z-coordinates approach each other in the range x <0, in which the first non-planar outer surface lies. Thus, in this embodiment, on the entire first non-planar outer surface, the distance between the generatrix of the control surface and the imaging region decreases in each direction perpendicular to the optical axis.

In diesem Ausführungsbeispiel liegt die γ-Achse außerhalb des Blendenkörpers. Dadurch kann in der Nähe der γ-Achse in geringem Abstand von der Schlitzblende auf besonders kleiner Fläche der Detektor angeordnet werden. Eine solche asymmetrische Gestaltung des Blendenkörpers wurde bereits in der deutschen Patentanmeldung mit dem Aktenzeichen 10 2008 025 109.7-54 offenbart; in der vorliegenden Erfindung ist jedoch nicht nur der Blendenkörper, sondern auch die (unbegrenzte) Regelfläche bezüglich der γ-Achse asymmetrisch.In this embodiment, the γ-axis is outside the diaphragm body. As a result, the detector can be arranged in the vicinity of the gamma axis at a small distance from the slit diaphragm on a particularly small area. Such asymmetric design of the visor body has already been in the German patent application with the file number 10 2008 025 109.7-54 disclosed; However, in the present invention, not only the diaphragm body but also the (unlimited) control surface is asymmetrical with respect to the γ-axis.

Figur 7 zeigt eine Perspektivansicht eines dritten Ausführungsbeispiels einer erfindungsgemäßen Schlitzblende 90, in der, wie in der deutschen Patentanmeldung mit dem Aktenzeichen 10 2008 025 109.7-54 näher beschrieben, zusätzlich zu dem Spalt 92 ein weiterer Spalt 94 angeordnet ist, dessen Form durch eine affine Abbildung aus der Form des Spalts 92 hervorgeht. In diesem Ausführungsbeispiel ist die affine Abbildung eine Rotation um die Zentralachse y um den Winkel β. Der Winkel β beeinflusst sowohl die Intensitätsverteilung im Bildfeld als auch die Breite des wiedergegebenen Bildes; er kann frei gewählt werden. Bei Bedarf können weitere Spalte hinzugefügt werden. Es ergeben sich keine Überschneidungen zwischen den verschiedenen Spalten, wenn die Zentralachse y außerhalb der Schlitzblende 90 oder, wie in diesem Ausführungsbeispiel gezeigt, auf der hinteren Grenzfläche der Schlitzblende 90 liegt. Zusätzlich zu der Schlitzblende 90 ist zur Verdeutlichung der Strahlengänge ein weiterer Blendenkörper 90' eingezeichnet, der jedoch nicht Teil der Schlitzblende 90 ist. FIG. 7 shows a perspective view of a third embodiment of a slit 90 according to the invention, in which, as in the German patent application with the file reference 10 2008 025 109.7-54 described in more detail, in addition to the gap 92, a further gap 94 is arranged, the shape of which results from an affine image of the shape of the gap 92. In this embodiment, the affine mapping is a rotation about the central axis y about the angle β. The angle β influences both the intensity distribution in the image field as well as the width of the reproduced image; he can be chosen freely. If required, additional columns can be added. There are no overlaps between the various columns when the central axis y lies outside the slit 90 or, as shown in this embodiment, on the rear interface of the slit 90. In addition to the slit 90, a further diaphragm body 90 'is shown to clarify the beam paths, but this is not part of the slit 90.

Figur 8 zeigt eine Perspektivansicht einer erfindungsgemäßen Vorrichtung zum Strahlfräsen einer Schlitzblende aus würfelförmigem Rohmaterial (Halbzeug) mit halb gefrästem Block. (Der Übersichtlichkeit halber sind Details der Aufhängung, des Antriebs und der Einspannung eines Rohlings nicht gezeigt.) Diese Vorrichtung eignet sich zur Fertigung einer Schlitzblende gemäß Anspruch 3. Dabei wird ein würfelförmiges Werkstück 10 sowohl mit einem linear fortschreitenden Vorschub als auch mit zwei gleichzeitig stattfindenden Drehungen fortbewegt. Diese drei Bewegungen sind miteinander gekoppelt. Im vorliegenden Ausführungsbeispiel stehen alle drei Bewegungen in einem festen linearen Zusammenhang, so dass sie mit einer einfachen mechanischen Übersetzung gekoppelt werden können. Das eingezeichnete kartesische Koordinatensystem ist als körperfest auf das Werkstück 10 bezogenes aufzufassen; es entspricht den in den Figuren 3, 4 und 6 eingezeichneten kartesischen Koordinatensystemen. FIG. 8 shows a perspective view of an inventive apparatus for beam milling a slit of cube-shaped raw material (semi-finished) with half-milled block. (For clarity, details of the suspension, the drive and the clamping of a blank are not shown.) This device is suitable for manufacturing a slit diaphragm according to claim 3. In this case, a cube-shaped workpiece 10 with both a linearly advancing feed and two simultaneously occurring Spins moved. These three movements are coupled together. In the present embodiment, all three movements are in a fixed linear relationship, so that they can be coupled with a simple mechanical translation. The drawn Cartesian coordinate system is to be understood as a body-fixed on the workpiece 10 related; it corresponds to the in the Figures 3 . 4 and 6 drawn Cartesian coordinate systems.

Mittels eines Motors (nicht gezeigt) wird eine erste Gewindewelle 16 angetrieben, welche parallel zur γ-Achse verläuft. Die erste Gewindewelle 16 weist einen Bereich 18 auf, der als Schneckenwelle ausgeformt ist. Durch mechanische Wechselwirkung mit dem Bereich 18 wird ein parallel zur z-Achse angeordneter Haltearm 20 in einer Richtung parallel zur γ-Achse fortbewegt, wodurch eine mit dem Haltearm 20 verbundene, entlang der γ-Achse angeordnete zweite Gewindewelle 22 und das darauf angeordnete Werkstück 10 linear entlang der γ-Achse bewegt wird. Ferner umfasst die Vorrichtung eine dritte Gewindewelle 40, welche entlang der z-Achse verläuft. Die Rotation der drei Gewindewellen 16, 22 und 40 erfolgt synchronisiert, wobei die mechanische Übertragung über ein Zahnradsystem 24 bewerkstelligt wird. Das Zahnradsystem 24 besteht aus drei Zahnrädern (Stirn- oder Kegelzahnräder) 26, 28 und 42, welche auf den drei Gewindewellen 16, 22 und 40 gelagert sind, einer senkrecht zur γ-Achse angeordneten Schneckenwelle 30 sowie einer weiteren Gewindewelle 44, die einen Bereich 46 aufweist, der als Schneckenwelle ausgeformt ist. Auf der Schneckenwelle 30 ist ein weiteres Zahnrad 32 gelagert, und auf der Gewindewelle 44 ist ein weiteres Zahnrad 38 gelagert. Die Schneckenwelle 30 treibt das Zahnrad 28 auf der zweiten Gewindewelle 22 an, während ebenfalls eine Übertragung der Drehbewegung zwischen den zueinander senkrecht angeordneten Zahnrädern 26, 32 erfolgt. In diesem Ausführungsbeispiel erfolgt an dieser Stelle eine Untersetzung der Geschwindigkeit von 2 : 1. Dadurch wird die Drehbewegung auf das Werkstück 10 übertragen, welches mittels einer Halterung 36a, 36b auf der zweiten Gewindewelle 22 angeordnet ist. Aufgrund der gleichzeitig ausgeführten linearen Abwärtsbewegung (entlang der γ-Achse) muss die Achse der zweiten Gewindewelle 22 mit der Halterung 36a, 36b des Werkstückes teleskopartig mit einem Rohr 34 so verbunden sein, dass die Drehung übertragen, die entlang der γ-Achse gerichtete Abwärtsbewegung gleichzeitig aber nicht behindert wird. Um einen Öffnungswinkel von γ = 60° zu überstreichen, während das Werkstück 10 über die Distanz d nach unten bewegt wird, muss bei dieser Anordnung das Zahnrad 28 einen Radius r von 3d/2π aufweisen, also von rund d/2.By means of a motor (not shown), a first threaded shaft 16 is driven, which runs parallel to the γ-axis. The first threaded shaft 16 has a portion 18 which is formed as a worm shaft. By mechanical interaction with the region 18, a holding arm 20 arranged parallel to the z axis is moved in a direction parallel to the γ axis, whereby a second threaded shaft 22 connected to the holding arm 20 and arranged along the γ axis and the workpiece 10 arranged thereon is moved linearly along the γ-axis. Furthermore, the device comprises a third threaded shaft 40, which runs along the z-axis. The rotation of the three threaded shafts 16, 22 and 40 is synchronized, wherein the mechanical transmission via a gear system 24 is accomplished. The gear system 24 consists of three gears (front or bevel gears) 26, 28 and 42, which are mounted on the three threaded shafts 16, 22 and 40, a perpendicular to the γ-axis worm shaft 30 and a further threaded shaft 44, the one area 46, which is formed as a screw shaft. On the worm shaft 30, a further gear 32 is mounted, and on the threaded shaft 44, a further gear 38 is mounted. The worm shaft 30 drives the gear 28 on the second threaded shaft 22, while also a transmission of Rotary movement between the mutually perpendicular gears 26, 32 takes place. In this embodiment, a reduction of the speed of 2: 1 takes place at this point. As a result, the rotational movement is transmitted to the workpiece 10, which is arranged on the second threaded shaft 22 by means of a holder 36a, 36b. Due to the concurrent linear down movement (along the γ-axis), the axis of the second threaded shaft 22 must be telescopically connected to the support 36a, 36b of the workpiece so as to transmit the rotation, the downward movement directed along the γ-axis but at the same time not hindered. In order to sweep an opening angle of γ = 60 °, while the workpiece 10 is moved downwards over the distance d, in this arrangement the gear wheel 28 must have a radius r of 3d / 2π, ie of around d / 2.

Ferner treibt die Gewindewelle 44 über den als Schneckenwelle ausgeformten Teil 46 das Zahnrad 42 auf der dritten Gewindewelle 40 an, während ebenfalls eine Übertragung der Drehbewegung zwischen den beiden Zahnrädern 26, 38 erfolgt. Die dritte Gewindewelle 40 ist raumfest gelagert, und die gesamte Vorrichtung einschließlich der ersten und zweiten Gewindewelle ist so gelagert, dass sie sich bei einer Drehung der dritten Gewindewelle 40 um diese dreht. Da das eingezeichnete Koordinatensystem als körperfest auf das Werkstück 10 bezogenes aufzufassen ist, liegen die erste Gewindewelle 16 und die zweite Gewindewelle 22 nach einer Drehung um die dritte Gewindewelle 40 weiterhin parallel zur γ-Achse.Further, the threaded shaft 44 drives the gear 42 on the third threaded shaft 40 via the formed as a screw shaft portion 46, while also a transmission of the rotational movement between the two gears 26, 38 takes place. The third threaded shaft 40 is fixed in space, and the entire device including the first and second threaded shaft is mounted so that it rotates upon rotation of the third threaded shaft 40 about this. Since the drawn coordinate system is to be understood as being body-fixed relative to the workpiece 10, the first threaded shaft 16 and the second threaded shaft 22 are still parallel to the γ-axis after rotation about the third threaded shaft 40.

Während der Rotationsbewegung des Werkstücks 10 um die zweite Gewindewelle 22 und die dritte Gewindewelle 40 und der gleichzeitig ausgeführten Translationsbewegung entlang der γ-Achse wird durch einen Schneidstrahl 12 ein Schlitz in das Werkstück 10 gefräst. Der Schneidstrahl 12 verläuft in der dargestellten Lage des Werkstücks parallel zur x-Achse und behält diese Richtung während des gesamten Fräsvorganges raumfest bei, nimmt also nicht an der Drehung des Werkstücks 10 und des auf dieses bezogenen körperfesten Koordinatensystems teil. Er folgt dabei dem Strahlengang durch die herzustellende Blende.During the rotational movement of the workpiece 10 about the second screw shaft 22 and the third screw shaft 40 and the simultaneous translational movement along the γ-axis, a slit is cut into the workpiece 10 by a cutting jet 12. The cutting beam 12 extends in the illustrated position of the workpiece parallel to the x-axis and keeps this direction during the entire milling process at room, so does not participate in the rotation of the workpiece 10 and related to this body-fixed coordinate system. He follows the beam path through the produced aperture.

In der Darstellung ist das Werkstück 10 symmetrisch in die Halterung 36a, 36b eingesetzt, um die in Figur 3 dargestellte erfindungsgemäße Schlitzblende des ersten Ausführungsbeispiels herzustellen. Um die in Figur 6 dargestellte Schlitzblende des zweiten Ausführungsbeispiels und die in Figur 7 dargestellte Schlitzblende des dritten Ausführungsbeispiels, bei denen die Zentralachse außerhalb des Blendenkörpers verläuft, herzustellen, ist das Werkstück 10 asymmetrisch einzusetzen, so dass die durch die zweite Gewindewelle 22 verlaufende Drehachse außerhalb des Blendenkörpers zu liegen kommt. Um eine Schlitzblende mit mehreren Spalten wie im dritten Ausführungsbeispiel herzustellen, können mehrere Fräsvorgänge durchgeführt werden, wobei das Werkstück 10 jeweils in einer dem zu fräsenden Spalt entsprechenden Lage einzusetzen ist.In the illustration, the workpiece 10 is symmetrically inserted into the holder 36 a, 36 b to the in FIG. 3 illustrated inventive slit diaphragm of the first embodiment produce. To the in FIG. 6 shown slit diaphragm of the second embodiment and in FIG. 7 shown slit diaphragm of the third embodiment, in which the central axis extends outside the diaphragm body to produce, the workpiece 10 is asymmetrical use, so that through the second threaded shaft 22 extending axis of rotation outside the diaphragm body comes to rest. In order to produce a slit diaphragm having a plurality of columns as in the third embodiment, a plurality of milling operations may be performed, wherein the workpiece 10 is to be inserted in a respective position corresponding to the gap to be milled.

Das Werkstück 10 besteht aus einem geeigneten Kollimatormaterial, beispielsweise Densimet als mechanisch verarbeitbare Wolframlegierung. Für Röntgenstrahlung, insbesondere rückgestreute Röntgenstrahlung, ist Blei prinzipiell auch geeignet, aber nur schwer mechanisch verarbeitbar. Denkbar wäre die Herstellung im Gussverfahren. Eine Form hierzu könnte mit einem Rohling aus einem anderen geeigneten Material gefertigt werden.The workpiece 10 consists of a suitable collimator material, for example Densimet as mechanically processable tungsten alloy. For X-rays, especially backscattered X-rays, lead is in principle also suitable, but difficult to process mechanically. Conceivable would be the production in the casting process. A mold could be made with a blank of another suitable material.

Dass die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren geeignet sind, eine erfindungsgemäße Schlitzblende herzustellen, wird am Beispiel der Vorrichtung gemäß Anspruch 9, insbesondere gemäß Anspruch 10, des Verfahrens gemäß Anspruch 14, insbesondere gemäß Anspruch 15, und der Schlitzblende gemäß Anspruch 2, insbesondere gemäß Anspruch 3, gezeigt.The device according to the invention and the method according to the invention are suitable for producing a slit diaphragm according to the invention, using the example of the device according to claim 9, in particular according to claim 10, the method according to claim 14, in particular according to claim 15, and the slit diaphragm according to claim 2, in particular according to Claim 3, shown.

Die durch die Vorrichtung gemäß Anspruch 9 und das Verfahren gemäß Anspruch 14 geschnittenen Strahlengänge werden in dem oben eingeführten körperfesten, d.h. mit dem Werkstück fest verbundenen kartesischen Koordinatensystem beschrieben. Der Ursprung des Koordinatensystems liegt in dem gemeinsamen Schnittpunkt der beiden Drehachsen und der Schnittlinie des Schneidwerkzeugs, und die y-Achse zeigt entlang der ersten Drehachse. Die x-Achse und die z-Achse liegen so, dass sie in der in Figur 8 dargestellten, als Ausgangslage betrachteten Lage des Werkstücks entlang der Schnittlinie des Schneidwerkzeugs bzw. entlang der zweiten Drehachse liegen. Die Geradengleichung der Schnittlinie des Schneidwerkzeugs wird nun in diesem Koordinatensystem beschrieben. In der Ausgangslage hat sie die Form r = 0 0 0 + λ 1 0 0 .

Figure imgb0002
The beam paths cut by the device according to claim 9 and the method according to claim 14 are described in the above-introduced body-fixed coordinate system, ie the Cartesian coordinate system firmly connected to the workpiece. The origin of the coordinate system lies in the common intersection of the two axes of rotation and the cutting line of the cutting tool, and the y- axis points along the first axis of rotation. The x- axis and the z- axis lie so that they are in the in FIG. 8 represented, as a starting position considered position of the workpiece along the cutting line of the cutting tool or along the second axis of rotation. The line equation of the cutting line of the cutting tool will now be described in this coordinate system. In the starting position it has the form r = 0 0 0 + λ 1 0 0 ,
Figure imgb0002

Da die erste Drehachse sich mit dem Werkstück mitdreht und somit in dem körperfesten Koordinatensystem eine feste Richtung aufweist, während die zweite Drehachse bei einer Drehung um die erste Drehachse ihre Richtung in dem körperfesten Koordinatensystem ändert, ist zunächst die Drehung um die zweite Drehachse anzuwenden und dann erst die Drehung um die körperfeste erste Drehachse und die Verschiebung entlang derselben. Eine Drehung um einen Winkel ϑ um die in der Ausgangslage in z-Richtung liegende zweite Drehachse ergibt r = 0 0 0 + λ cosϑ sin ϑ 0 .

Figure imgb0003
Since the first axis of rotation rotates with the workpiece and thus has a fixed direction in the body-fixed coordinate system, while the second axis of rotation changes its direction in the body-fixed coordinate system when rotating about the first axis of rotation, the rotation about the second axis of rotation must first be applied and then only the rotation about the body-fixed first axis of rotation and the displacement along the same. A rotation by an angle θ results in the initial position in the z-direction lying second axis of rotation r = 0 0 0 + λ cos sin θ 0 ,
Figure imgb0003

Eine Drehung um einen Winkel ϕ um die körperfest in γ-Richtung liegende erste Drehachse ergibt dann r = 0 0 0 + λ cosϑ cosϕ sin ϑ cosϑ sin ϕ ,

Figure imgb0004

und eine Verschiebung um eine Strecke y0 entlang der körperfest in γ-Richtung liegenden ersten Drehachse führt schließlich auf r = 0 y 0 0 + λ cosϑ cosϕ sin ϑ cosϑ sin ϕ .
Figure imgb0005
A rotation by an angle φ around the body fixed in γ-direction first rotation axis then yields r = 0 0 0 + λ cosθ cosφ sin θ cosθ sin φ .
Figure imgb0004

and a displacement by a distance y 0 along the first axis of rotation lying body-fixed in the γ-direction finally leads r = 0 y 0 0 + λ cosθ cosφ sin θ cosθ sin φ ,
Figure imgb0005

Die hergestellte Schlitzblende hat also in der y-Achse eine Zentralachse, durch die alle Schnittlinien verlaufen, und weist somit das zusätzliche Merkmal des Anspruchs 2 auf. Werden die beiden Rotationsbewegungen und die Translationsbewegung linear gekoppelt, so besteht zwischen der Strecke y 0, die die Lage des Schnittpunkts der Schnittlinie mit der Zentralachse angibt, und den Winkeln ϑ und ϕ, die die Polarwinkel des Richtungsvektors (cosϑ cosϕ,sinϑ, cosϑ sinϕ) bezüglich der γ-Achse sind, ein linearer Zusammenhang. Somit weist in diesem Fall die hergestellte Schlitzblende das zusätzliche Merkmal des Anspruchs 3 auf. Der Richtungsvektor der Schnittlinie bildet mit der γ-Achse den Winkel π/2-ϑ. Da dieser Winkel in linearem Zusammenhang mit der γ-Koordinate des Schnittpunkts mit der Zentralachse steht, nimmt (bei geeigneter Wahl des Drehsinns) der Abstand in γ-Richtung der Schnittlinien zum Abbildungsbereich hin ab. Somit weist die solchermaßen hergestellte Schlitzblende auch das Kennzeichen des Anspruchs 1 auf.The slit diaphragm produced thus has a central axis in the y- axis, through which all cutting lines run, and thus has the additional feature of claim 2. If the two rotational movements and the translational motion are coupled linearly, there is a distance between the distance y 0 , which indicates the position of the intersection of the section line with the central axis, and the angles θ and φ, which are the polar angles of the direction vector (cosθ cosφ, sinθ, cosθ sinφ ) with respect to the γ-axis are a linear relationship. Thus, in this case, the slit diaphragm produced has the additional feature of claim 3. The direction vector of the section line forms the angle π / 2-θ with the γ-axis. Since this angle is linearly related to the γ-coordinate of the point of intersection with the central axis, (with a suitable choice of the direction of rotation) the distance in the γ-direction of the cutting lines decreases towards the imaging region. Thus, the slit diaphragm thus produced also has the characterizing part of claim 1.

Als gaußsche Krümmung der Regelfläche der solchermaßen hergestellten Schlitzblende ergibt sich ein Bruch mit dem Zähler - ϕ̇cos2ϑ, wobei ϕ̇ die konstante Rate ist, mit der sich der Winkel ϕ entlang der Zentralachse linear ändert. Die Winkel υ = ±π/2, bei denen diese Krümmung verschwindet, werden nicht verwendet, da der Strahlengang in diesem Fall entlang der Zentralachse verlaufen und nicht in Richtung des Abbildungsbereichs führen würde. Bei von Null verschiedener Änderungsrate ϕ̇ des Winkels ϕ verschwindet somit die gaußsche Krümmung nirgends in dem für die Abbildung verwendeten Teilbereich der Regelfläche.The Gaussian curvature of the control surface of the slit diaphragm produced in this way results in a break with the counter - φ̇cos 2 θ, where φ̇ is the constant rate at which the angle φ changes linearly along the central axis. The angles υ = ± π / 2, at which this curvature disappears, are not used, since the beam path in this case run along the central axis and would not lead in the direction of the imaging area. With a non-zero rate of change φ̇ of the angle φ, the Gaussian curvature does not vanish anywhere in the subarea of the ruled surface used for imaging.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
Werkstückworkpiece
1212
Schneidwerkzeugcutting tool
1616
erste Gewindewellefirst thread shaft
1818
Schneckenwelleworm shaft
2020
Haltearmholding arm
2222
zweite Gewindewellesecond threaded shaft
2424
Zahnradsystemgear system
2626
Zahnradgear
2828
Zahnradgear
3030
Schneckenwelleworm shaft
3232
Zahnradgear
3434
Rohrpipe
36a, b36a, b
Halterungbracket
3838
Zahnradgear
4040
dritte Gewindewellethird thread shaft
4242
Zahnradgear
4444
Gewindewellethreaded shaft
4646
Schneckenwelleworm shaft
5050
Schlitzblendeslit
5252
erstes Absorptionselementfirst absorption element
5454
erste nicht-ebene Außenflächefirst non-flat outer surface
5656
zweites Absorptionselementsecond absorption element
5858
zweite nicht-ebene Außenflächesecond non-planar outer surface
6060
Spaltgap
62a, b62a, b
Halterungenbrackets
70, 70'70, 70 '
Schlitzblendeslit
72, 72'72, 72 '
erstes Absorptionselementfirst absorption element
76, 76'76, 76 '
zweites Absorptionselementsecond absorption element
80, 80'80, 80 '
Spaltgap
9090
Schlitzblendeslit
90'90 '
weiterer Blendenkörperfurther visor body
9292
Spaltgap
9494
weiterer Spaltanother gap
100100
bildgebende EinrichtungImaging device
102102
Strahlungsquelleradiation source
104104
Strahlungradiation
106106
Abbildungsbereichimaging area
108108
Empfangseinheitreceiver unit
110110
Blendecover
112112
RöntgenröhreX-ray tube
114114
Bleiwandlead wall
116116
StreufilterLight diffuser
118118
Testobjekttest object
120120
Blendecover
122122
Abschirmwandshielding
124124
Detektordetector
126126
Projektionsflächeprojection
E1, E2 E 1 , E 2
Erzeugendegenerating
E3, E4, E3', E4'E 3 , E 4 , E 3 ', E 4 '
äußerste Erzeugendeutmost generators
O1, O2, O1', O2'O 1 , O 2 , O 1 ', O 2 '
Öffnung des SpaltsOpening of the gap

Claims (15)

  1. Slit aperture (50, 70, 90), particularly for an imaging apparatus (100), which is suitable for delimiting radiation (104), more particularly high-energy radiation, emitted from a radiation source (102) and for directing it, according to the pinhole camera principle, onto an imaging region (106) along an optical axis (x),
    wherein the slit aperture (50, 70, 90) comprises a first absorption element (52, 72), which has a first non-planar external face (54), of which at least one part lies on a ruled surface, the Gaussian curvature of which does not vanish anywhere in the part,
    wherein the slit aperture (50, 70, 90) comprises a second absorption element (56, 76), which has a second non-planar external face (58), the surface contour of which is formed at least in part complementary to the non-planar external face (54) of the first absorption element (52, 72), and wherein the two absorption elements (52, 72; 56, 76) are or can be positioned such that there is a gap (60, 80, 92) between the two non-planar external faces (54, 58),
    characterized in that
    the distance in one direction (y) perpendicular to the optical axis (x) between the generatrices of the ruled surface reduces towards the imaging region (106).
  2. Slit aperture (50, 70, 90) according to Claim 1,
    characterized in that
    there is a central axis (y) that intersects every generatrix of the ruled surface.
  3. Slit aperture (50, 70, 90) according to Claim 2,
    characterized in that
    the polar angles of the directional vectors of the generatrices of the ruled surface are, in respect of the central axis (y), linearly related to the intersection of the generatrices of the ruled surface with the central axis (y).
  4. Slit aperture (70, 90) according to Claim 2 or 3,
    characterized in that
    the central axis (y) is situated outside of the aperture frame.
  5. Slit aperture (50, 70) according to one of the preceding claims,
    characterized in that
    the absorption elements (52, 72; 56, 76) have a trapezoidal outline, which expands towards the radiation source (102).
  6. Slit aperture (50) according to one of the preceding claims,
    characterized in that
    the opening (h1) of the gap (60) on the side of the slit aperture (50) facing the radiation source (102) is greater than the opening (h2) of the gap (60) on the side of the slit aperture (50) facing the imaging region (106).
  7. Slit aperture (90) according to one of the preceding claims,
    characterized in that
    the slit aperture (90), in addition to the one gap (92), comprises at least one further gap (94), the shape of which substantially emerges from an affine transformation of the shape of the one gap (92).
  8. Device for producing a slit aperture (50, 70, 90), comprising
    a cutting tool (12) that is suitable for cutting along a straight line, and
    means that are suitable for bringing about a relative movement between the cutting tool (12) and a workpiece (10) such that the cutting tool (12) cuts the workpiece (10) along a line that corresponds to a beam path in the slit aperture (50, 70, 90) to be produced,
    wherein
    the cutting tool (12) is suitable for cutting along a first direction (x);
    the means comprise a holding element (36a, 36b) onto which a workpiece (10) can be attached and which is mounted such that it can rotate about a first rotational axis (22);
    the means are suitable for bringing about a first rotational movement of the holding element (36) about the first rotational axis (22) and, simultaneously, bringing about a translational movement of the holding element (36) along the first rotational axis (22); and
    the first rotational movement and the translational movement of the holding element (36) are coupled,
    characterized in that
    the means are furthermore suitable for bringing about a second rotational movement of the holding element (36) and of the first rotational axis (22) about a second rotational axis (40), simultaneously with the first rotational movement and the translational movement, and
    the second rotational movement and the translational movement of the holding element (36) are coupled.
  9. Device according to Claim 8,
    characterized in that
    the second rotational axis (40) runs along a second direction (z) that is perpendicular to the cutting direction (x) of the cutting tool (12) and perpendicular to the first rotational axis (22) and
    the first rotational axis (22), the second rotational axis (40) and the line along which the cutting tool (12) cuts, have a common point of intersection.
  10. Device according to Claim 8 or 9,
    characterized in that
    the translational movement and the first rotational movement are coupled linearly and the translational movement and the second rotational movement are coupled linearly.
  11. Device according to one of Claims 8 to 10,
    characterized in that
    the means comprise a first (16), a second (22) and a third (40) threaded shaft,
    wherein the first threaded shaft (16) runs parallel to the first rotational axis (22), the second threaded shaft (22) lies on the first rotational axis (22) and the third threaded shaft (40) lies on the second rotational axis (40) and wherein a rotational movement of the three threaded shafts (16, 22, 40) is coupled by a gearwheel system (24).
  12. Device according to Claim 11,
    characterized in that
    the first threaded shaft (16) comprises a region (18), which is embodied as a worm drive, by means of which a holding arm (20), to which the second threaded shaft (22) is connected, can be moved along the first rotational axis (22).
  13. Method for producing a slit aperture,
    wherein a relative movement between a cutting tool (12), which is suitable for cutting along a straight line, and a workpiece (10) is carried out such that the cutting tool (12) cuts the workpiece (10) along a line that corresponds to a beam path in the slit aperture to be produced;
    the workpiece (10) is cut along an unchangeable first direction (x);
    a first rotational movement of the workpiece (10) about a first rotational axis (22) and, simultaneously, a translational movement of the workpiece (10) along the first rotational axis (22) are carried out; and
    the first rotational movement and the translational movement of the workpiece (10) are coupled,
    characterized in that
    a second rotational movement of the workpiece (10) and of the first rotational axis (22) about a second rotational axis (40) is carried out simultaneously with the first rotational movement and the translational movement and
    the second rotational movement and the translational movement of the workpiece (10) are coupled.
  14. Method according to Claim 13,
    characterized in that
    the second rotational axis (40) runs along a second direction (z) that is perpendicular to the cutting direction (x) of the cutting tool (12) and perpendicular to the first rotational axis (22) and
    the first rotational axis (22), the second rotational axis (40) and the line along which the cutting tool (12) cuts, have a common point of intersection.
  15. Method according to Claim 13 or 14,
    characterized in that
    the translational movement and the first rotational movement are coupled linearly and the translational movement and the second rotational movement are coupled linearly.
EP09178329A 2009-12-08 2009-12-08 Asymmetric slit diaphragm and device and method for producing same Not-in-force EP2333786B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09178329A EP2333786B1 (en) 2009-12-08 2009-12-08 Asymmetric slit diaphragm and device and method for producing same
AT09178329T ATE545935T1 (en) 2009-12-08 2009-12-08 ASYMMETRICAL SLIT PANEL AND DEVICE AND METHOD FOR PRODUCING THE SAME
PCT/EP2010/067273 WO2011069770A1 (en) 2009-12-08 2010-11-11 Asymmetrical slot aperture and device and method for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09178329A EP2333786B1 (en) 2009-12-08 2009-12-08 Asymmetric slit diaphragm and device and method for producing same

Publications (2)

Publication Number Publication Date
EP2333786A1 EP2333786A1 (en) 2011-06-15
EP2333786B1 true EP2333786B1 (en) 2012-02-15

Family

ID=42103049

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09178329A Not-in-force EP2333786B1 (en) 2009-12-08 2009-12-08 Asymmetric slit diaphragm and device and method for producing same

Country Status (3)

Country Link
EP (1) EP2333786B1 (en)
AT (1) ATE545935T1 (en)
WO (1) WO2011069770A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015000037B1 (en) 2012-07-05 2021-06-29 American Science and Engineering, Inc SYSTEM FOR PRODUCING A DIRECTABLE RADIATION PENCIL BEAM AND A TARGET IRRADIATION METHOD WITH A COLLIMATE RADIATION PENCIL BEAM
DE102014103833B3 (en) * 2014-03-20 2015-07-09 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Slit diaphragm for radiography applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD240091A1 (en) 1985-08-07 1986-10-15 Akad Wissenschaften Ddr LOCH CAMERA FOR ENORGY QUANTITY RADIATION
DE4000507A1 (en) 1990-01-10 1991-07-11 Philips Patentverwaltung ARRANGEMENT FOR EXAMINING A TEST OBJECT WITH GAMMA OR X-RAY RADIATION
DE102005029674B4 (en) * 2005-06-20 2008-08-21 BAM Bundesanstalt für Materialforschung und -prüfung Diaphragm for an imaging device limits high-energy radiation from a radiation source so as to orientate it along an optical axis towards an imaging area based on a pin camera principle
DE102005048519A1 (en) 2005-10-06 2007-04-19 BAM Bundesanstalt für Materialforschung und -prüfung Focused aperture
DE102007057261B3 (en) 2007-11-26 2009-08-06 BAM Bundesanstalt für Materialforschung und -prüfung Apparatus and method for producing slit diaphragms

Also Published As

Publication number Publication date
WO2011069770A1 (en) 2011-06-16
EP2333786A1 (en) 2011-06-15
ATE545935T1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
DE19619913C2 (en) X-ray diagnostic device for tomosynthesis
EP1749190B1 (en) Method for measuring an object using a coordinate measuring machine including a computer tomograph
EP2269042B1 (en) X-ray computer tomograph and method for investigating a component by means of x-ray computer tomography
DE102010062192B3 (en) 2D collimator for a radiation detector and method of making such a 2D collimator
EP1772874B1 (en) Focal point oriented aperture
DE102005010077B4 (en) Detector with a scintillator and imaging device, comprising such a detector
EP3177114B1 (en) Method for adjusting the primary side of an x-ray diffractometer
EP1215482A2 (en) Object examination device
DE19619915A1 (en) Process for creating tomosynthesis images
DE102005029674B4 (en) Diaphragm for an imaging device limits high-energy radiation from a radiation source so as to orientate it along an optical axis towards an imaging area based on a pin camera principle
WO2008119555A1 (en) Method and measuring arrangement for producing three-dimensional images of measuring objects by means of invasive radiation
EP2175456A2 (en) X-ray analysis instrument with mobile aperture window
DE102005009817B4 (en) A shadow mask for an X-ray detector, computed tomography apparatus, comprising a shadow mask and method for adjusting a shadow mask
DE102008048917B4 (en) X-ray diffraction apparatus with a Debye-Scherrer optical system and X-ray diffraction measurement method for this apparatus
DE102005011467B4 (en) Adjustable focal length collimator, directed method and X-ray inspection system
DE10337935A1 (en) Device for recording structural data of an object
DE2816218A1 (en) IMPROVED SCANNER FOR COMPUTER TOMOGRAPHY
DE2609925A1 (en) ARRANGEMENT FOR DETERMINING THE SPATIAL DISTRIBUTION OF THE ABSORPTION OF A BODY
DE102008025109B4 (en) Aperture for an imaging device
EP2333786B1 (en) Asymmetric slit diaphragm and device and method for producing same
CH630176A5 (en) Method of producing a tomogram and device for tomographically investigating an object
DE2548531C2 (en)
DE102014116595A1 (en) Device and method for using multiple detectors in the dimensional measurement with a computed tomography sensor
DE102011110109A1 (en) Method for illuminating wheels by means of X-ray radiation and radiation protection cabin therefor
EP3754328A2 (en) Device for adjusting and changing beam catchers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G21K 1/02 20060101AFI20110715BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 545935

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002797

Country of ref document: DE

Effective date: 20120419

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120215

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002797

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002797

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120515

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002797

Country of ref document: DE

Effective date: 20121116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120526

BERE Be: lapsed

Owner name: BAM BUNDESANSTALT FUR MATERIALFORSCHUNG UND -PRUF

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120515

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121208

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141230

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 545935

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009002797

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701