EP2328288B1 - System for detecting and localising impedance error adjustments - Google Patents

System for detecting and localising impedance error adjustments Download PDF

Info

Publication number
EP2328288B1
EP2328288B1 EP10015153.9A EP10015153A EP2328288B1 EP 2328288 B1 EP2328288 B1 EP 2328288B1 EP 10015153 A EP10015153 A EP 10015153A EP 2328288 B1 EP2328288 B1 EP 2328288B1
Authority
EP
European Patent Office
Prior art keywords
signal
spectrum
module
block
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10015153.9A
Other languages
German (de)
French (fr)
Other versions
EP2328288A1 (en
Inventor
Fernando Perez Gonzalez
Miguel Angel Conde Balado
José Luis Ledo Gavieiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sistemas Integrados de Servicios de Telecontrol SL
Original Assignee
Sistemas Integrados de Servicios de Telecontrol SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sistemas Integrados de Servicios de Telecontrol SL filed Critical Sistemas Integrados de Servicios de Telecontrol SL
Priority to PL10015153T priority Critical patent/PL2328288T3/en
Publication of EP2328288A1 publication Critical patent/EP2328288A1/en
Application granted granted Critical
Publication of EP2328288B1 publication Critical patent/EP2328288B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/12Arrangements for observation, testing or troubleshooting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/61Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast
    • H04H20/63Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast to plural spots in a confined site, e.g. MATV [Master Antenna Television]

Definitions

  • the present invention relates to a system for detecting and locating impedance mismatches in a SMATV network.
  • SMATV satellite master antenna television; community television antenna system
  • the distribution networks for TDT services and satellite television systems contain, depending on their structural design, a large number of impedance matching deficiencies (impedance mismatches) on the transmission lines on which high-frequency signals are transmitted from the head unit to the user socket.
  • the reflected waves appear in essentially all those discontinuities that are present in SMATV networks, that is, in connections between distributors, downcomers, sockets and in coaxial cables, due to the fact that the devices used in the network are not ideal. This can lead to echoes with short recognition times that are located in key points in the network; and another group of mismatches can occur, caused by defective or disconnected cables, by the poor condition of the distribution elements and also by faults during installation that are difficult to identify.
  • the effect of an impedance mismatch at a certain point in a SMATV network is that a reflection or an echo of the signal is generated at that point with a different amplitude and phase. Reflections can influence the signal distribution in the rest of the network in a constructive or destructive form due to the aforementioned change in amplitude and phase in the reflected signal. Hence, a network that has been inappropriately treated can show undesirable effects. As a result of these reflections, the signal can be significantly affected in its performance, so that some of the services cannot be provided to some users.
  • ISI inter-symbol interference
  • Reflectometry in the domain of time consists in transmitting a pulse to the device to be evaluated and in the interception of the reflected signal in the device.
  • U.S. 6,278,730B1 discloses a non-invasive digital cable test system.
  • an estimation of an "in-phase error correlation signal”, a “quadrature error correlation signal” and a “cross-correlation signal” is required.
  • the system has a complex design and includes, among other things, an equalizer (equalizer 236, 214, 752) and a demodulation unit (606).
  • US 6,687,632 B1 discloses a method for testing CATV systems. The method assumes the input of a pseudo-aleatoric signal (formed by the circuit 20) into the respective system.
  • the invention is based on the object of creating a system for detecting and locating impedance mismatches in a SMATV network, which is designed to be simple in terms of its hardware and software structure.
  • the present invention has a number of advantages.
  • An advantageous embodiment of the invention is formed by a system for the detection and localization of impedance mismatches in a SMATV network according to patent claim 1.
  • An advantageous exemplary embodiment of the invention is characterized in that the system is designed in such a way that the resolution of the room recognition, the bandwidth used and the rank of the room recognition are varied.
  • Another advantageous embodiment of the invention is characterized in that the system is designed in such a way that the results that were determined in different measurements at various points in the SMATV network are compared with one another. This has the advantage that the origin of the various impedance mismatches can be distinguished in the case of ambiguous situations.
  • Figure 1 is a block diagram showing details of the system and method for detecting and locating impedance mismatches.
  • the spectrum of the signal is obtained that is used to identify and localize the position of the mismatches.
  • X rec ( ⁇ ) corresponds to the Fourier transform of the signal received at a specific point in a SMATV network in which there are K impedance mismatches.
  • X ( ⁇ ) is the Fourier transform of the signal that is transferred to the SMATV network without being modified by the effect of the mismatches ( is the Hilbert transform)
  • ⁇ R k y ⁇ I k are the real or imaginary parts of each of the K reflection coefficients associated with the various impedance mismatches in the SMATV network
  • ⁇ k is the delay of each replica that is formed by this mismatch with respect to the direct signal X ( ⁇ ).
  • the maximum bandwidth of the signal used is limited to the corresponding rank of distribution or signals within a SMATV network, whereby it is possible to use a lower bandwidth.
  • Tc the period of the temporal sampling
  • B the bandwidth of the signal used.
  • the signal After the signal is formed at the output of block 1041, it is used as an input signal for block 1042, in which a transformation of the spectrum is carried out, which enables the signal transmitted via the SMATV network to be better decoupled from the effects of the network.
  • a non-limiting example is the use of a logarithmic function, a logarithm on the base 10, which enables the effect of the mismatch on the transmitted signal to be separated.
  • the Inverse Fourier Transform (IFT) of N points is formed (block 105).
  • the number N limits the rank of the detectable mismatches to N ⁇ D / 2, since the application of IIFT is applied to a real signal and one obtains a complex symmetrical signal so that one can exclude half of the points.
  • a process of the time response 106 is applied, which consists in obtaining the module 1061 of the resulting complex signal and the subsequent elevation to a known power 1062.
  • the result is converted into a A plurality of maxima whose time position corresponds to each of the delays ⁇ k , which corresponds to each impedance mismatch in the SMATV network.
  • a normalization 107 is formed, which enables a comparison between various measurements that are made in the entire SMATV network.
  • the resulting signal is similar to the signal shown in Figure 4 is reproduced where because of the periodicity of the input spectrum, as from Figure 8 it can be seen that false positives can occur that can easily be confused with actual impedance mismatches. These false positives can be easily detected by calculating the periodicity of the input spectrum and they can be removed by comparing the spectra formed at different points of the SMATV network and using the difference as the input of the system according to the invention, with results obtained in Figure 5 are shown.
  • the process of recognizing and localizing the impedance mismatches ends with the recognition of the maxima in the signal 108 and with the acquisition of the special position associated with the time delay of the different maxima of the signal.
  • FIG. 6 shows a simplified representation of a SMATV network in which the detection and localization of mismatches takes place.
  • the block 201 corresponds to a satellite signal receiving antenna which positions the signal received in the IF band in the range between 950 and 2150 MHz.
  • the signal from block 201 is mixed with a terrestrial TV signal and transmitted to distribution network 204.
  • the mismatches in the derivation components 203 and in the sockets 205 are added to the input signal in the network 204, they are transmitted via the coaxial cable 207 to the system 206 for detection and localization of the mismatches.
  • FIG. 7 shows a schematic representation of the system of detection and localization of mismatches.
  • the signal comes into the system via 301.
  • the block 302 is a device for detecting the energy (power detector), which is used to inform the module 308 that a signal is present at the input.
  • the module 308 is the heart of the system and its mission is to organize the steps that the other blocks that are part of the global system have to follow depending on user instructions displayed via the interface 309, as well as the steps of the Power detector 302.
  • the RF signal is converted to a known intermediate frequency by means of the oscillator 305 and the mixer 303.
  • the bandpass filter 304 has the task of limiting the bandwidth that is used in the formation of the spectrum, whereby the signal that corresponds to the neighboring frequencies is eliminated, so that only the band of interest that is digitized by the analog-to-digital converter 307 remains.
  • the gain level of the signal is adjusted in advance with a gain control 306 in order to cover the entire dynamic range of the analog-digital converter and thus to reduce the quantization errors.
  • the signal is passed to the system 311, in which the necessary samples are taken to obtain the spectrum of the frequency range that is being used. After the samples are acquired, their frequency response is obtained and this is communicated to system 308 using any suitable communication interface.
  • the system 311 is an FPGA (Field Programmable Gate Array).
  • the system 308 calculates the location of the impedance mismatches. Block 308 will also adjust the frequency of the signal to capture the signal and thus shape the spectrum of the satellite band, an example of a resulting spectrum is in FIG Figure 8 shown.
  • FIG. 8 shows, as an example, a system which determines the unknown distance to the fault location LF within a cable 505 of length Lc which is arranged in a SMATV network 507.
  • the network has a part 503, the topology of which is not known.
  • the cable 505 and the system 506 for the detection and localization of mismatches are connected to a switch (diverting element) 504.
  • This preferred embodiment which does not constitute a restriction on the implementation of the invention or the scope of the present invention, relates to a system for the detection and localization of impedance mismatches in SMATV networks.
  • the system according to the invention is designed in such a way that input signals in a SMATV network are signals that are not input from outside through or into the system. System-internal signals are used to identify and localize impedance mismatches.

Description

Die vorliegende Erfindung bezieht sich auf ein System zur Erkennung und Lokalisierung von Impedanz-Fehlanpassungen in einem SMATV-Netz.The present invention relates to a system for detecting and locating impedance mismatches in a SMATV network.

Die Erfindung betrifft den Bereich der Reflektometrie im Frequenzbereich, konkret den Bereich Erkennung und Lokalisierung von Impedanz-Fehlanpassungen innerhalb von SMATV-Netzen (SMATV = satellite master antenna television; Gemeinschaftsfernsehantennenanlage), wobei ausschließlich Signale aus diesen Netzen verwendet werden, ohne dass irgendein anderes Signal durch das erfindungsgemäße System eingefügt wird.The invention relates to the field of reflectometry in the frequency range, specifically the field of detection and localization of impedance mismatches within SMATV networks (SMATV = satellite master antenna television; community television antenna system), with only signals from these networks being used without any other signal is inserted by the system according to the invention.

Stand der TechnikState of the art

Die Verteilungsnetze für TDT-Dienste und Satellitenfernsehsysteme enthalten je nach ihrer konstruktiven Ausgestaltung eine Vielzahl von Impedanzanpassungsmängeln (Impedanz-Fehlanpassungen) auf den Übertragungsstrecken, auf denen Hochfrequenzsignale von der Kopfeinheit bis zu der Benutzersteckdose übertragen werden. Die reflektierten Wellen erscheinen im Wesentlichen in allen jenen Diskontinuitäten, die in SMATV-Netzen vorhanden sind, das heißt in Verbindungen zwischen Verteilern, Ableitungselementen, Steckdosen und in Koaxialkabeln, dies aufgrund der Tatsache, dass die im Netz verwendeten Geräte nicht ideal sind. Dies kann zu Echos geringer Erkennungszeit führen, die sich in Schlüsselpunkten des Netzes befinden; und es kann auch eine andere Gruppe von Fehlanpassungen auftreten, die durch defekte oder nicht angeschlossene Kabel entstanden sind, durch den schlechten Zustand der Verteilelemente und auch durch schwierig zu identifizierende Fehler bei der Installation.The distribution networks for TDT services and satellite television systems contain, depending on their structural design, a large number of impedance matching deficiencies (impedance mismatches) on the transmission lines on which high-frequency signals are transmitted from the head unit to the user socket. The reflected waves appear in essentially all those discontinuities that are present in SMATV networks, that is, in connections between distributors, downcomers, sockets and in coaxial cables, due to the fact that the devices used in the network are not ideal. This can lead to echoes with short recognition times that are located in key points in the network; and another group of mismatches can occur, caused by defective or disconnected cables, by the poor condition of the distribution elements and also by faults during installation that are difficult to identify.

Die Wirkung einer Impedanzfehlanpassung an einer bestimmten Stelle eines SMATV-Netzes besteht darin, dass eine Reflexion oder ein Echo des Signals an diesem Punkt mit unterschiedlicher Amplitude und Phase generiert wird. Reflexionen können die Signalverteilung im restlichen Netz in konstruktiver oder destruktiver Form aufgrund der vorgenannten Änderung der Amplitude und Phase im reflektierten Signal beeinflussen. Daher kann ein Netz, das unangemessen behandelt hat unerwünschte Wirkungen zeigen. Als Ergebnis dieser Reflexionen kann das Signal in erheblichem Umfang in seiner Leistung beeinträchtigt werden, so dass einige der Dienstleistungen für einige Nutzer nicht erbracht werden können.The effect of an impedance mismatch at a certain point in a SMATV network is that a reflection or an echo of the signal is generated at that point with a different amplitude and phase. Reflections can influence the signal distribution in the rest of the network in a constructive or destructive form due to the aforementioned change in amplitude and phase in the reflected signal. Hence, a network that has been inappropriately treated can show undesirable effects. As a result of these reflections, the signal can be significantly affected in its performance, so that some of the services cannot be provided to some users.

Dies gilt im Fall der Signale digitaler terrestrische Übertragung, insbesondere im Fall von Satellitensignalen, bei dem die Existenz von Techniken zum Schutz gegen Fehler aufgrund von Inter-Symbol-Interferenzen (ISI) sehr eingeschränkt ist.This is true in the case of digital terrestrial transmission signals, particularly in the case of satellite signals, where the existence of techniques to protect against errors due to inter-symbol interference (ISI) is very limited.

Ein weiterer kritischer Fall besteht darin, wenn Daten über Koaxialkabel gesendet werden, wiederum weil Multipath-Phänomene zu Interferenzen zwischen Symbolen führen.Another critical case is when data is sent over coaxial cables, again because multipath phenomena lead to interference between symbols.

Obwohl die eigentliche Konstruktion dieser Netze gewöhnlich die Folgen der Existenz des Abprallens des Signals im restlichen Netz mildern kann, ist die Etappe notwendig, in der das Netz installiert wird, für den korrekten Empfang des Signals in diesen Netzen, um alle verzögerten Signale zu entdecken, die in der Etappe der Entwicklung bzw. des Aufbau vorgesehen sind oder nicht vorgesehen sind, und die ausgelöst wurden durch die nicht gesteuerten, zuvor kommentierten Motive.Although the actual construction of these networks can usually mitigate the consequences of the existence of the signal bouncing in the rest of the network, the stage at which the network is installed is necessary for the correct reception of the signal in these networks in order to detect any delayed signals, which are or are not intended in the stage of development or construction, and which were triggered by the uncontrolled, previously commented motifs.

Heute sehen die im Bereich der Erkennung von Impedanz-Fehlanpassungen verfügbaren Lösungen vor, dass die Position dieser Störungen durch das Einfügen eines bekannten Signals gewonnen wird, und durch den späteren Empfang (das Abfangen) des Signals, bewirkt durch die Abtrennung der Impedanzen. Logischerweise wird bei der Benutzung dieser Einrichtungen in SMATV-Netzen gearbeitet wo nicht ein anderes Signal eingefügt wird, das nicht ein Signal der eigentlichen Einrichtung ist. Es existieren verschiedene Szenarien, bei denen dies passiert. Die erste Situation ist diejenige, in der sich das Netz noch in der Phase der Installation befindet. In diesem Fall wird kein Signal an keinen der möglichen Benutzer des Netzes übertragen, so dass auch keine Möglichkeit besteht, störend auf die Bedürfnisse der Benutzer einzuwirken. Im zweiten Fall ist ein Netzwerk voll funktionsfähig, aber um die Reflexionen zu identifizieren ist es notwendig, das Signal der Kopfeinheit zu trennen, um nicht den Messvorgang zu beeinträchtigen. Natürlich ist dies eine unerwünschte Situation, weil sie bedingt, Dienstleistungen für verschiedene Benutzer, die mit dem SMATV-Netz verbunden sind, zu beenden.Today, the solutions available in the field of impedance mismatch detection envisage that the position of these disturbances is obtained by inserting a known signal, and by later receiving (intercepting) the signal caused by the separation of the impedances. Logically, when using these facilities, SMATV networks are used where no other signal is inserted that is not a signal from the actual facility. There are different scenarios in which this happens. The first situation is when the network is still in the installation phase. In this case, no signal is transmitted to any of the possible users of the network, so that there is also no possibility of interfering with the needs of the users. In the second case, a network is fully functional, but in order to identify the reflections it is necessary to separate the signal from the head unit so as not to interfere with the measurement process. Of course, this is an undesirable situation because it involves the termination of services for various users connected to the SMATV network.

Derzeit gibt es keine Technik, um die Herkunft der Impedanz-Fehlanpassungen im Netz zu erfassen, ohne dem Benutzer Dienstleistungen zu nehmen, die dieser nutzt. Daher wird es jedes Mal nötig, wenn man die Suche nach der Position der Abkopplungen oder Echos innerhalb eines SMATV Netzwerk beginnt, die Verbreitung des Signals einzustellen, womit der Empfang von Inhalten unterbrochen wird in jeder der Verteilsteckdosen, mit dem entsprechenden Nachteil für die Gruppe der Nutzer, die die angebotenen Dienste nutzen wollen.There is currently no technology available to determine the origin of the impedance mismatches in the network without depriving the user of services that he uses. Therefore, every time one begins to search for the position of the decoupling or echoes within a SMATV network, it becomes necessary to stop the propagation of the signal, which interrupts the reception of content in each of the distribution sockets, with the corresponding disadvantage for the group of Users who want to use the services offered.

Wie bereits ausgeführt, beruht der derzeitige Fokus für die Bestimmung der Präsenz von Fehlanpassungen bei der Anpassung von Impedanzen im Wesentlichen auf das Einfügen eines bekannten Signals in das Netz und auf dem späteren Empfang (Abfangen) der Reflexionen, die in Abkopplungen des Netzes (Reflektometrie) ihren Ursprung haben. Je nach Art der Domäne, in der gearbeitet wird, das heißt Zeit oder Frequenzen, gibt es zwei mögliche Wege zur Lösung des Problems. Die Reflektometrie im Bereich der Zeit (TDR) besteht in der Übertragung eines Impulses zu dem Gerät, das bewertet werden soll, und in dem Abfangen des reflektierten Signals in dem Gerät. Diese Technik wird häufig verwendet, um die Parameter der verlustbehafteten Übertragungsleitungen zu studieren, wie zum Beispiel im amerikanischen Patent US 006437578B1 mit der Bezeichnung, "Kabelverlustkorrektur der Entfernung zur Fehlerstelle und Zeitbereichsreflektometer-Messungen." Die Abtastraten bei der Erfassung (Abfangen) des Signals auf dem Gebiet der Reflektometrie im Zeitbereich setzen den Gebrauch von zu hohen Uhren voraus, was die Komplexität der Erkennungstools erhöht. Aufgrund von Einschränkungen des TDR-Systems, die Existenz von Fehlern in Funktion in Abhängigkeit von der Frequenz in dem zu analysierenden System zu überprüfen, ergibt sich eine ganz andere Vorgehensweise. Dies besteht in der bekannten Reflektometrie, die im Frequenzbereich (FDR) arbeitet. Dies ist eine sehr häufig verwendete Strategie in Messgeräten bedingt durch die Notwendigkeit einer niedrigeren Abtastrate (daher weniger komplex) und der vermehrten Maßnahme, die spektrale Variation der Prozessparameter zu beobachten. Diese Technik erzeugt spektrales Rauschen, gewöhnlich mit einem Ton oder einer Reihe von Tönen, so dass die Wirkungen von Impedanz-Fehlanpassungen über der Frequenz durch die Reflexion dieser Sinusoide erhalten werden. Beispiele für die Verwendung dieser Technik sind die US-Patente US 006868357B2 mit dem Titel "Frequency Domain Reflectometry for testing wires and cables utilizing in situ-connectors, passive conectivity, cable fray detection, and live wire testing" und US 006691051B2 mit dem Titel "Transient distance to fault measurement".As already stated, the current focus for determining the presence of mismatches when matching impedances is essentially based on the insertion of a known signal into the network and on the subsequent reception (interception) of the reflections that result in decoupling of the network (reflectometry). have their origin. Depending on the type of domain that is being worked in, i.e. time or frequencies, there are two possible ways to solve the problem. Reflectometry in the domain of time (TDR) consists in transmitting a pulse to the device to be evaluated and in the interception of the reflected signal in the device. This technique is often used to study the parameters of lossy transmission lines, as for example in the American patent US 006437578B1 labeled, "Cable Loss Correction for Distance to Fault and Time Domain Reflectometer Measurements." The sampling rates in the acquisition (interception) of the signal in the field of reflectometry in the time domain require the use of clocks that are too high, which increases the complexity of the recognition tools. Due to the limitations of the TDR system to check the existence of errors in function as a function of the frequency in the system to be analyzed, a completely different procedure results. This consists in the well-known reflectometry, which works in the frequency domain (FDR). This is a very frequently used strategy in measuring devices due to the need for a lower sampling rate (therefore less complex) and the increased measure to observe the spectral variation of the process parameters. This technique creates spectral noise, usually with a tone or series of tones, so the effects of impedance mismatches versus frequency are obtained from the reflection of these sinusoids. Examples of the use of this technique are the US patents US 006868357B2 with the title "Frequency Domain Reflectometry for testing wires and cables utilizing in situ-connectors, passive connectivity, cable fray detection, and live wire testing" and US 006691051B2 entitled "Transient distance to fault measurement".

Im bekannten Frequenzbereich der Reflektometrie gibt es mehrere Varianten. So gibt es die Phasenerkennung FDR (PDFDR), die die Phasendifferenz zwischen den Wellen, die "stehende Wellen-Reflektometrie (Standing Wave Reflectometry SWR), die die Größe der stehenden Welle durch die Überlagerung der einfallenden und reflektierten Wellen produziert, berechnet die Größe der Wellen, die frequenzmodulierte kontinuierliche Welle (Frequenca-Modulated continuous wave, FMCW), die einen Satz von Sinusoiden verwendet, deren Frequenz linear erhöht wird, und die Mixed-Signal Reflectometry (MSR) wie im US Patent US007215126B2 dargestellt, mit dem Titel "Apparatus and method for testing a signal path from an injection point" und in " Mixed-Signal Reflectometer for Location o faults on Aging wiring", "Peijung Tsai et al, IEEE Sensors Journal, vol. 5, Nr. 6. Dezember 2005 , eine Technik, die die Summe von zwei Sinuswellen verwendet, einer einfallenden und einer reflektierten, und welche die DC-Komponente extrahiert, die das Ergebnis ist, das Quadrat dieser Operation zu erhalten.
Zusätzlich zu den beschriebenen Werkzeugen gibt es noch andere Möglichkeiten für den Nachweis von Signalreflexionen für die gemeinsame Nutzung von Reflectometrie in Zeit und Frequenz. Dieser dritte Weg heißt Time-Frequency Domain Reflectometry (TFDR), siehe das europäische Patent EP 1477820 A2 mit dem Titel "Wire fault detection" oder die Veröffentlichung IEEE Transactions on Instrumentation and measurement, Bd. 54, Nr. 6, Dezember 2005 mit dem Titel "Application of time-frequency domain reflectormety for detection an localization of an fault on a coxial cable" von Yong-Juni Shin, und Edward J. Powers , mit Beispielen für deren Verwendung.
There are several variants in the known frequency range of reflectometry. So there is the phase detection FDR (PDFDR), which the phase difference between the waves, the "standing wave reflectometry (Standing Wave Reflectometry SWR), which produces the size of the standing wave by the superposition of the incident and reflected waves, calculates the size of the Waves, the frequency-modulated continuous wave (FMCW), which uses a set of sinusoids whose frequency is increased linearly, and the mixed-signal reflectometry (MSR) as in the US patent US007215126B2 illustrated, entitled "Apparatus and method for testing a signal path from an injection point "and in" Mixed-Signal Reflectometer for Location or Faults on Aging Wiring "," Peijung Tsai et al, IEEE Sensors Journal, vol. 5, No. 6 December 2005 , a technique that uses the sum of two sine waves, one incident and one reflected, and which extracts the DC component that is the result of obtaining the square of this operation.
In addition to the tools described, there are other options for the detection of signal reflections for the common use of reflectometry in time and frequency. This third way is called Time-Frequency Domain Reflectometry (TFDR), see the European patent EP 1477820 A2 entitled "Wire fault detection" or the publication IEEE Transactions on Instrumentation and measurement, Vol. 54, No. 6, December 2005 entitled "Application of time-frequency domain reflectormety for detection an localization of an fault on a coxial cable" by Yong-Juni Shin, and Edward J. Powers , with examples of their use.

Der gemeinsame Punkt aller bisher beschriebenen Technologien ist die Anwendung eines Signals, das intern erzeugt wird, um die Messungen durchzuführen, und gelegentlich die Verwendung anderer Geräte, um die vorgeschlagenen Maßnahmen korrekt durchzuführen. Das Einfügen des Netzwerk-Signals und das Abfangen der Reflexionen ist an demselben physikalischen Punkt durchzuführen, dies mit Hardware-Komplexität, die notwendig ist, ein Gerät zu verwenden, um das reflektierte Signal von dem übertragenen Signal zu trennen. Dieser Ansatz ist nicht willkürlich, denn wenn das Signal an einer anderen Stelle im Netzwerk generiert wird, die ungleich der Stelle ist, an dem die Reflexion abgefangen wird, ist es wünschenswert, nicht nur die verschiedenen Komponenten der Erkennung, den Sender und den Empfänger mit Synchronisationsmechanismen zu versehen, sondern unerlässlich ist auch, das Netzwerk bis ins letzte Detail zu analysieren, um, ausgehend von beiden Signalen, die Wirkung und die Position der verzögerten Komponenten des Haupt-Signals vorhersagen zu können. Die Tatsache des Einfügens eines bekannten Signals im Netz und des Erfassens der Reflexion an der gleichen Stelle, stellt direkt Anforderungen an das Hardware-Design des betreffenden Gerätes und erhöht erheblich dessen Komplexität. Darüber hinaus erfordert die Lokalisierung des Ursprungs der reflektierten Wellen die Abtastung des Signals mit einer Geschwindigkeit, die hoch genug zu sein hat, um sehr nahe Echos zu unterscheiden. Je größer die räumliche Genauigkeit gewünscht ist, um so höher hat die Abtastrate zu sein. Darüber hinaus besteht ein weiterer der vielen Mängel der aktuellen Fehlanpassung-Erkennungseinrichtungen darin, wie man gesehen hat, dass es für das Gerät notwendig ist, ein bekanntes Signal in das Netzwerk einzugeben, und es ist angebracht, die zu erbringenden Dienste zeitweilig auszusetzen, was ohne jeden Zweifel ein Nachteil für den Benutzer ist.
Wenn schließlich das technische Personal, das für die Durchführung dieser Aufgaben verantwortlich ist, wünscht, die Suche nach Verzögerungen auf einen bestimmten Bereich des SMATV-Netzwerkes zu beschränken, hat eine physische Abschaltung der entsprechenden Netzbestandteile zu erfolgen, womit die Dienste, die die Benutzer dieser Netze eingeschränkt werden.
The common point of all the technologies described so far is the use of a signal generated internally to perform the measurements and, occasionally, the use of other equipment to correctly perform the proposed actions. The insertion of the network signal and the interception of the reflections must be done at the same physical point, with the hardware complexity necessary to use a device to separate the reflected signal from the transmitted signal. This approach is not arbitrary because if the signal is generated somewhere else on the network that is not the same as where the reflection is intercepted, it is desirable not only to include the various components of the detection, the transmitter and the receiver It is also essential to analyze the network down to the last detail in order to be able to predict the effect and position of the delayed components of the main signal based on both signals. The fact of inserting a known signal in the network and capturing the reflection at the same point places direct demands on the hardware design of the device in question and significantly increases its complexity. In addition, locating the origin of the reflected waves requires that the signal be sampled at a speed high enough to distinguish very close echoes. The greater the spatial accuracy is desired, the higher the sampling rate has to be. In addition, another of the many shortcomings of current mismatch detectors is, as has been seen, the need for the device to enter a known signal into the network, and it is appropriate to do so temporarily suspend providing services, which is undoubtedly a disadvantage for the user.
Finally, if the technical staff who are responsible for performing these tasks wish to limit the search for delays to a certain area of the SMATV network, the corresponding network components must be physically disconnected, thereby reducing the services offered to the users of these Networks are restricted.

US 6,278,730B1 offenbart ein nicht-invasives digitales Kabeltestsystem. In diesem System ist eine Schätzung eines "in-phase error correlation signal", eines "quadrature error correlation signal" und eines "cross-correlation signal" erforderlich. Das System ist komplex ausgestaltet und umfasst unter anderen einen Entzerrer (Equalizer 236, 214, 752) und eine Demodulationseinheit (606). U.S. 6,278,730B1 discloses a non-invasive digital cable test system. In this system, an estimation of an "in-phase error correlation signal", a "quadrature error correlation signal" and a "cross-correlation signal" is required. The system has a complex design and includes, among other things, an equalizer (equalizer 236, 214, 752) and a demodulation unit (606).

US 6,687,632 B1 offenbart ein Verfahren zum Testen von CATV-Systemen. Das Verfahren setzt die Eingabe eines pseudo-aleatorischen Signals (gebildet durch die Schaltung 20) in das jeweilige System voraus. US 6,687,632 B1 discloses a method for testing CATV systems. The method assumes the input of a pseudo-aleatoric signal (formed by the circuit 20) into the respective system.

BESCHREIBUNGDESCRIPTION

Der Erfindung liegt die Aufgabe zugrunde, ein System zur Erkennung und Ortung von Impedanz-Fehlanpassungen in einem SMATV-Netz zu schaffen, welches hinsichtlich seiner Hard- und Softwarestruktur einfach ausgestaltet ist.The invention is based on the object of creating a system for detecting and locating impedance mismatches in a SMATV network, which is designed to be simple in terms of its hardware and software structure.

Diese Aufgabe wird durch ein System gelöst, das in den Ansprüchen definiert ist. Dabei wird lediglich die Spektralform der in einem SMATV-Netz übertragenen Kanäle genutzt, um eine Information über die Impedanz-Fehlanpassungen in diesem System, insbesondere wie in den Ansprüchen definiert, zu erhalten.This object is achieved by a system which is defined in the claims. Only the spectral shape of the channels transmitted in a SMATV network is used in order to obtain information about the impedance mismatches in this system, in particular as defined in the claims.

Die vorliegende Erfindung hat eine Vielzahl von Vorteilen.The present invention has a number of advantages.

Ein vorteilhaftes Ausführungsbeispiel der Erfindung wird durch ein System zur Erkennung und zur Lokalisierung von Impedanz-Fehlanpassungen in einem SMATV-Netz gemäß Patentanspruch 1 gebildet.An advantageous embodiment of the invention is formed by a system for the detection and localization of impedance mismatches in a SMATV network according to patent claim 1.

Damit wird der Vorteil erzielt, dass kein Signal in das SMATV-Netz einzugeben ist, was auch mit dem weiteren Vorteil geringerer Komplexität und geringerer Kosten für das System verbunden ist.This has the advantage that no signal has to be entered into the SMATV network, which is also associated with the further advantage of lower complexity and lower costs for the system.

Ein vorteilhaftes Ausführungsbeispiel der Erfindung ist dadurch gekennzeichnet, dass das System in der Weise ausgestaltet ist, dass die Auflösung der Raumerkennung, die verwendete Bandbreite und der Rang der Raumerkennung variiert werden.An advantageous exemplary embodiment of the invention is characterized in that the system is designed in such a way that the resolution of the room recognition, the bandwidth used and the rank of the room recognition are varied.

Ein weiteres vorteilhaftes Ausführungsbeispiel der Erfindung ist dadurch gekennzeichnet, dass das System in der Weise ausgestaltet ist, dass die Ergebnisse, die in unterschiedlichen Messungen an diversen Punkten des SMATV-Netzes ermittelt wurden, miteinander verglichen werden. Damit wird der Vorteil erzielt, dass die Herkunft der verschiedenen Impedanz-Fehlanpassungen im Fall nicht eindeutiger Situationen unterschieden werden kann.Another advantageous embodiment of the invention is characterized in that the system is designed in such a way that the results that were determined in different measurements at various points in the SMATV network are compared with one another. This has the advantage that the origin of the various impedance mismatches can be distinguished in the case of ambiguous situations.

Im Folgenden werden die Vorteile und die Eigenschaften der Erfindung anhand der folgenden Beschreibung erläutert, in der auf die beigefügten Figuren Bezug genommen wird.
Figur 1 zeigt ein Blockdiagramm, das Einzelheiten des Systems und des Verfahrens zur Erkennung und zur Lokalisierung von Impedanz-Fehlanpassungen zeigt. Im Punkt 101 wird das Spektrum des Signals gewonnen, das zur Erkennung und zur Lokalisierung der Position der Fehlanpassungen verwendet wird. Das gewonnene Spektrum enthält eine Information über das Vorliegen von Impedanz-Fehlanpasungen im Netz entsprechend der folgenden Gleichung: X rec ω = X ω + k = 1 K ρ R k X ω + ρ I k X ω e jωτ k

Figure imgb0001
In the following, the advantages and the properties of the invention are explained on the basis of the following description, in which reference is made to the accompanying figures.
Figure 1 Figure 12 is a block diagram showing details of the system and method for detecting and locating impedance mismatches. At point 101, the spectrum of the signal is obtained that is used to identify and localize the position of the mismatches. The spectrum obtained contains information about the presence of impedance mismatches in the network according to the following equation: X rec ω = X ω + k = 1 K ρ R. k X ω + ρ I. k X ω e jωτ k
Figure imgb0001

In der vorgenannten Gleichung entspricht Xrec (ω) der Fouriertransformation des an einem konkreten Punkt eines SMATV-Netzes empfangenen Signals, in dem K Impedanz-Fehlanpassungen bestehen. X(ω) ist die Fouriertransformierte des Signals, das dem SMATV-Netz übergeben wird, ohne dass eine Modifikation durch die Wirkung der Fehlanpassungen vorliegt (

Figure imgb0002
ist die Hilbert-Transformierte), ρRk y ρIk sind die Real- bzw. Imaginärteile eines jeden der K Reflexionskoeffizienten, die den verschiedenen Impedanz-Fehlanpassungen im SMATV-Netz zugeordnet sind und τk ist die Verzögerung einer jeden Replik, die durch dieses Fehlanpassungen bezüglich des direkten Signals X(ω) gebildet ist.
Die maximale Bandbreite des verwendeten Signals ist begrenzt auf den entsprechenden Rang der Verbreitung oder Signale innerhalb eines SMATV-Netzes, wobei es möglich ist, eine geringere Bandbreite zu verwenden. Die verwendete Bandbreite ist direkt verbunden mit der Zeitauflösung, die verwendet wird bei der Erkennung der Reflexionen entsprechend der Gleichung Tc = 1/B, wobei Tc die Periode des zeitlichen Abtastens und B die Bandbreite des verwendeten Signals ist. So weisen die Raumauflösung der vorliegenden Erfindung und die Zeitauflösung eine proportionale Beziehung auf, abgeleitet aus der Gleichung D = vp·Tc, wobei D die Raumauflösung und vp die Geschwindigkeit der charakteristischen Ausbreitung des Koaxialkabels ist. Nachdem das Spektrum des Signals gewonnen ist, gewinnt man das Modul dieses Spektrums im Block 102. Nachdem das Spektrum des ausgewählten Signals gewonnen ist, wird im Block 103 eine Reduktion des Geräusches vorgenommen, das in dem Spektrum vorliegt. Das resultierende Signal ist Gegenstand von Spektraltransformationen im Block 104, wo die Erhebung des Signalmoduls um einen Faktor n im Block 1041 erfolgt, wobei der Wert n = 2 lediglich ein nicht einschränkendes Beispiel eines auszuwählenden Faktors dargestellt. So ergibt sich am Ausgang dieses Blockes X rec ω 2 = X ω 2 H ω 2
Figure imgb0003
mit H ω 2 = 1 + k = 1 K ρ R k + ρ I k e j π 2 e jωτ k 2
Figure imgb0004
In the aforementioned equation, X rec ( ω ) corresponds to the Fourier transform of the signal received at a specific point in a SMATV network in which there are K impedance mismatches. X ( ω ) is the Fourier transform of the signal that is transferred to the SMATV network without being modified by the effect of the mismatches (
Figure imgb0002
is the Hilbert transform), ρ R k y ρ I k are the real or imaginary parts of each of the K reflection coefficients associated with the various impedance mismatches in the SMATV network and τ k is the delay of each replica that is formed by this mismatch with respect to the direct signal X ( ω ).
The maximum bandwidth of the signal used is limited to the corresponding rank of distribution or signals within a SMATV network, whereby it is possible to use a lower bandwidth. The bandwidth used is directly related to the time resolution used in detecting the reflections according to the equation Tc = 1 / B, where Tc is the period of the temporal sampling and B is the bandwidth of the signal used. Thus, the spatial resolution of the present invention and the time resolution have a proportional relationship derived from the equation D = vp * Tc, where D is the spatial resolution and vp is the velocity of the characteristic propagation of the coaxial cable. After the spectrum of the signal has been obtained, the module of this spectrum is obtained in block 102. After the spectrum of the selected signal has been obtained, in block 103 made a reduction in the noise present in the spectrum. The resulting signal is the subject of spectral transformations in block 104, where the signal module is raised by a factor n in block 1041, the value n = 2 merely representing a non-limiting example of a factor to be selected. So it results at the exit of this block X rec ω 2 = X ω 2 H ω 2
Figure imgb0003
With H ω 2 = 1 + k = 1 K ρ R. k + ρ I. k e - j π 2 e jωτ k 2
Figure imgb0004

In der letztgenannten Gleichung ergibt sich, wenn das Quadrat des Moduls entwickelt wird, die folgende Gleichung: H ω 2 = 1 + k = 1 K A k cos ωτ k + 2 k = 1 K 1 r = k K B k cos ω τ k τ r + k = 1 K α k 2

Figure imgb0005
wobei Ak und Bk Konstanten sind, die den Einfluss eines jeden Koeffizienten der Impedanz-Fehlanpassungen umfassen, die in dem SMATV-Netz vorhanden sind hinsichtlich einer jeden Verzögerung τk , die durch eine konkrete Fehlanpassung gebildet ist. Auf diese Weise ergibt sich, dass die Wirkung der Fehlanpassungen auf das Spektrum des in dem SMATV-Netzes übertragenen Signals sich umsetzt in deren Multiplikation durch die Summe einer Reihe von Signalen, die aus Sinusoiden abgeleitet sind.
Nachdem das Signal am Ausgang des Blockes 1041 gebildet ist, dient dieses als Eingangssignal für den Block 1042, in dem eine Transformation des Spektrums vorgenommen wird, das ermöglicht, das über das SMATV-Netz übertragene Signal von den Wirkungen des Netzes besser abzukoppeln. Ein nicht einschränkendes Beispiel ist die Anwendung einer logarithmischen Funktion, ein Logarithmus auf der Basis 10, was ermöglicht, die Wirkung der Fehlanpassung auf das übertragende Signal abzutrennen.In the latter equation, expanding the square of the module gives the following equation: H ω 2 = 1 + k = 1 K A. k cos ωτ k + 2 k = 1 K - 1 r = k K B. k cos ω τ k - τ r + k = 1 K α k 2
Figure imgb0005
where A k and B k are constants comprising the influence of each coefficient of the impedance mismatches present in the SMATV network with respect to each delay τ k formed by a particular mismatch. This means that the effect of the mismatches on the spectrum of the signal transmitted in the SMATV network is converted into its multiplication by the sum of a series of signals derived from sinusoids.
After the signal is formed at the output of block 1041, it is used as an input signal for block 1042, in which a transformation of the spectrum is carried out, which enables the signal transmitted via the SMATV network to be better decoupled from the effects of the network. A non-limiting example is the use of a logarithmic function, a logarithm on the base 10, which enables the effect of the mismatch on the transmitted signal to be separated.

Wendet man diese Transformation auf die vorhergehenden Gleichungen an, so ergibt sich folgende Gleichung 10 log 10 X rec ω 2 = 10 log 10 X ω 2 H ω 2 = 10 log 10 X ω 2 + 10 log 10 H ω 2

Figure imgb0006
wobei 10 log 10 H ω 2 = 10 log 10 1 + 2 k = 1 K A k cos ωτ k + 2 k = 1 K 1 r = k K B k cos ω τ k τ r + k = 1 K α k 2
Figure imgb0007
Applying this transformation to the previous equations results in the following equation 10 log 10 X rec ω 2 = 10 log 10 X ω 2 H ω 2 = 10 log 10 X ω 2 + 10 log 10 H ω 2
Figure imgb0006
in which 10 log 10 H ω 2 = 10 log 10 1 + 2 k = 1 K A. k cos ωτ k + 2 k = 1 K - 1 r = k K B. k cos ω τ k - τ r + k = 1 K α k 2
Figure imgb0007

Berücksichtigt man die Taylorapproximation der Neperiano-Logartihmusfunktion ln 1 + x = n = 1 1 n + 1 n x n

Figure imgb0008
und die entsprechende Beziehung mit dem Logarithmus auf Basis 10 log 10 x = ln x ln 10 ,
Figure imgb0009
impliziert das Ergebnis, den Logarithmus auf das Signal |Xrec (ω)|2 anzuwenden, die Umwandlung des Produkts |X(ω)|2 y |H(ω)|2 in eine Summe zu der Zeit, die diese letzte Funktion fortführt, wobei diese gebildet wird durch eine Kombination der Signale, die aus Sinussoiden abgeleitet ist.Taking into account the Taylor approximation of the Neperiano Logartihmus function ln 1 + x = n = 1 - 1 n + 1 n x n
Figure imgb0008
and the corresponding relationship with the logarithm based on 10 log 10 x = ln x ln 10 ,
Figure imgb0009
implies the result, the logarithm on the signal | X rec ( ω ) | 2 apply the transformation of the product | X ( ω ) | 2 y | H ( ω ) | 2 into a sum at the time this last function continues, this being formed by a combination of the signals derived from sinusoids.

Nachdem diese Transformationen angewendet worden sind, wird die Inverse Fouriertransformierte (IFT) von N Punkten (Block 105) gebildet. Die Zahl N begrenzt den Rang der erkennbaren Fehlanpassungen auf N·D/2, da die Anwendung von IIFT auf ein wirkliches Signal angewendet wird und man eine komplexes symmetrisches Signal erhält, so dass man die Hälfte der Punkte ausschließen kann.After these transformations have been applied, the Inverse Fourier Transform (IFT) of N points is formed (block 105). The number N limits the rank of the detectable mismatches to N · D / 2, since the application of IIFT is applied to a real signal and one obtains a complex symmetrical signal so that one can exclude half of the points.

Als Ergebnis dieses Blockes wendet man einen Prozess der Zeitantwort 106 an, der darin besteht, das Modul 1061 des sich ergebenden komplexen Signals zu gewinnen und die spätere Erhebung auf eine bekannte Potenz 1062. Das Ergebnis wird umgesetzt in eine Mehrzahl von Maxima, deren Zeitposition jeder der Verzögerungen τk entspricht, die jeder Impedanz-Fehlanpassung im SMATV-Netz entspricht.
Nachdem die Ergebnisse der vorerwähnten Blöcke gebildet worden sind, wird eine Normierung 107 gebildet, die einen Vergleich zwischen verschiedenen Messungen ermöglicht, die im gesamten SMATV-Netz vorgenommen werden.
As a result of this block, a process of the time response 106 is applied, which consists in obtaining the module 1061 of the resulting complex signal and the subsequent elevation to a known power 1062. The result is converted into a A plurality of maxima whose time position corresponds to each of the delays τ k , which corresponds to each impedance mismatch in the SMATV network.
After the results of the aforementioned blocks have been formed, a normalization 107 is formed, which enables a comparison between various measurements that are made in the entire SMATV network.

Das sich ergebende Signal ist ähnlich dem Signal, das in Figur 4 wiedergegeben ist, wo wegen der Periodizität des Eingangsspektrums, wie aus Figur 8 zu ersehen ist, falsche Positiva auftreten können, die leicht mit tatsächlichen Impedanz-Fehlanpassungen verwechselt werden können. Diese falschen Positiva können in einfacher Weise erkannt werden durch Berechnung der Periodizität des Eingangsspektrums und sie können entfernt werden, durch Vergleich der Spektren, die an verschiedenen Punkten des SMATV-Netzes gebildet wurden und wobei die Differenz als Eingang des Systems gemäß der Erfindung verwendet wird, wobei Ergebnisse erzielt werden die in Figur 5 dargestellt sind.The resulting signal is similar to the signal shown in Figure 4 is reproduced where because of the periodicity of the input spectrum, as from Figure 8 it can be seen that false positives can occur that can easily be confused with actual impedance mismatches. These false positives can be easily detected by calculating the periodicity of the input spectrum and they can be removed by comparing the spectra formed at different points of the SMATV network and using the difference as the input of the system according to the invention, with results obtained in Figure 5 are shown.

Der Prozess der Erkennung und der Lokalisierung der Impedanz-Fehlanpassungen endet mit der Erkennung der Maxima in dem Signal 108 und mit der Gewinnung der Spezialposition, die mit der zeitlichen Verzögerung der verschieden Maxima des Signals verbunden ist.The process of recognizing and localizing the impedance mismatches ends with the recognition of the maxima in the signal 108 and with the acquisition of the special position associated with the time delay of the different maxima of the signal.

Beschreibung der FigurenDescription of the figures

Figur 1Figure 1
Erkennung von Impedanz-FehlanpassungenDetection of impedance mismatches
101, OE101, OE
Bildung (Gewinnung) des SpektrumsFormation (acquisition) of the spectrum
102102
Block der Bildung des SpektrummodulsBlock of formation of the spectrum module
103103
Geräuschreduktion.Noise reduction.
104104
Transformation des SpektrumsTransformation of the spectrum
105105
Inverse Fourier-Transformation von N PunktenInverse Fourier transform of N points
106106
Bearbeitung der ZeitantwortProcessing the time response
107107
Normierung.Normalization.
108, DM108, DM
Erkennung von MaximalwertenDetection of maximum values
Figur 2Figure 2
SpektraltransformationsblockSpectral transform block
10411041
Block der QuadratbildungBlock of square formation
10421042
Block der Transformation des SpektrumsBlock of transformation of the spectrum
Figur 3Figure 3
Block der Bearbeitung der ZeitantwortTime response processing block
10611061
Block der Bildung des SpektrummodulsBlock of formation of the spectrum module
10621062
Block der QuadratbildungBlock of square formation
Figur 4Figure 4
Komponenten, die sich aus der Form des Eingangssignals ergebenComponents resulting from the shape of the input signal
Figur 5Figure 5
Erkennung der Position der Impedanzfehlanpassungen.Detection of the position of the impedance mismatches.
Figur 6Figure 6
SMATV-Netz, in dem TV-Signale oder ein anderes bekanntes Signal gemessen wirdSMATV network that measures TV signals or some other known signal
201201
SatellitensignalantenneSatellite signal antenna
202202
Mischermixer
203203
AbleitungskomponentenDerivative components
204204
VerteilungsnetzDistribution network
205205
BenutzungssteckdosenUtility sockets
206206
LokalisierungseinrichtungLocation device
207207
KoaxialkabelCoaxial cable
Figur 7Figure 7
Ausführungsbeispiel der ErfindungEmbodiment of the invention
301301
Eingangsanschluss des SignalsInput terminal of the signal
302302
Einrichtung zur Energie-ErkennungDevice for energy detection
303303
Mischermixer
304304
BandpassfilterBand pass filter
305305
Lokaloszillator für ZwischenfrequenzsignalLocal oscillator for intermediate frequency signal
306306
Automatische Verstärkungsregelungsschaltung (AGC)Automatic Gain Control Circuit (AGC)
307307
Analog-Digital-Wandler (A / D)Analog-to-digital converter (A / D)
308308
Mikroprozessor-SteuerungMicroprocessor control
309309
Schnittstelle mit BenutzerInterface with user
310310
Optisches EndgerätOptical end device
311311
FPGAFPGA
Figur 8Figure 8
Sätze von Satellitenprogrammen im ZF-Band FISets of satellite programs in the IF band FI
Figur 9Figure 9
Weiteres Ausführungsbeispiel der ErfindungAnother embodiment of the invention
401401
Satelliten-Signal AntenneSatellite signal antenna
402402
Mixermixer
403403
Ausschnitt aus einem Verteilnetz unbekannter NetztopologieExcerpt from a distribution network of unknown network topology
404404
AbleitungselementDerivative element
405405
Koaxialkabel unbekannter LängeCoaxial cable of unknown length
406406
Einrichtung zur Lokalisierung von Impedanz-FehlanpassungenDevice for localizing impedance mismatches
407407
VerteilnetzDistribution network
Figur 10Figure 10
Weiteres Ausführungsbeispiel der ErfindungAnother embodiment of the invention
501501
Satelliten-Signal-AntenneSatellite signal antenna
502502
Mixermixer
503503
Ausschnitt aus einem Verteilnetz unbekannter NetztopologieExcerpt from a distribution network of unknown network topology
504504
AbleitungselementDerivative element
505505
Koaxialkabel unbekannter LängeCoaxial cable of unknown length
506506
Einrichtung zur Lokalisierung von Impedanz-FehlanpassungenDevice for localizing impedance mismatches
507507
VerteilnetzDistribution network
Beschreibung einer bevorzugten Ausführungsform der ErfindungDescription of a preferred embodiment of the invention

Im Folgenden wird eine bevorzugte beispielhafte Ausgestaltung der Erfindung beschrieben, ohne dass andere Ausführungsformen der Erfindung ausgeschlossen werden. Die nachfolgende Beschreibung veranschaulicht die Eigenschaften und Vorteile der vorliegenden Erfindung anhand einer von vielen Ausführungsformen.A preferred exemplary embodiment of the invention is described below without excluding other embodiments of the invention. The following description illustrates the features and advantages of the present invention using one of many embodiments.

Ein nicht einschränkendes Beispiel der bevorzugten Ausführungsform wird nun anhand der folgenden Figuren beschrieben:
Es zeigt

Figur 6
in vereinfachter Darstellung den Weg des Signals in einem SMATV-Netz bis zu dem erfindungsgemäßen System der Erkennung und der Lokalisierung von Fehlanpasungen;
Figur 7
ein Schema des Systems zur Erkennung und Lokalisierung von Fehlanpassungen gemäß der Erfindung;
Figur 8
ein Beispiel eines Spektrums, das zur Erkennung und Lokalisierung von Impedanz-Fehlanpassungen verwendet wird,
Figur 9
die Verwendung des erfindungsgemäßen Systems zur Messung der Länge eines Koaxialkabels; und
Figur 10
die Verwendung des erfindungsgemäßen Systems zur Erkennung der Entfernung zu einem Ausfall.
A non-limiting example of the preferred embodiment will now be described with reference to the following figures:
It shows
Figure 6
a simplified representation of the path of the signal in a SMATV network up to the inventive system of detection and localization of incorrect adaptations;
Figure 7
a scheme of the system for detection and localization of mismatches according to the invention;
Figure 8
an example of a spectrum used to detect and locate impedance mismatches,
Figure 9
the use of the system according to the invention for measuring the length of a coaxial cable; and
Figure 10
the use of the system according to the invention for detecting the distance to a failure.

Figur 6 zeigt eine vereinfachte Darstellung eines SMATV-Netzwerks, in welchem die Erkennung und die Lokalisierung von Fehlanpassungen erfolgt. Der Block 201 entspricht einer Satellitensignal-Empfangsantenne, die das im ZF-Band empfangene Signal in den Bereich zwischen 950 und 2150 MHz positioniert. Das Signal aus dem Block 201 wird mit einem terrestrischen TV-Signal gemischt und an das Verteil-Netz 204 übertragen. Die Fehlanpassungen in den Ableitungskomponenten 203 und in den Steckdosen 205 werden auf das Eingangssignal im Netz 204 summiert, sie werden übertragen über das Koaxialkabel 207 bis zu dem System 206 zur Erkennung und Lokalisierung der Fehlanpassungen. Figure 6 shows a simplified representation of a SMATV network in which the detection and localization of mismatches takes place. The block 201 corresponds to a satellite signal receiving antenna which positions the signal received in the IF band in the range between 950 and 2150 MHz. The signal from block 201 is mixed with a terrestrial TV signal and transmitted to distribution network 204. The mismatches in the derivation components 203 and in the sockets 205 are added to the input signal in the network 204, they are transmitted via the coaxial cable 207 to the system 206 for detection and localization of the mismatches.

Figur 7 zeigt eine schematische Darstellung des Systems der Erfassung und Lokalisierung von Fehlanpassungen. Das Signal kommt in das System über 301. Der Block 302 ist eine Einrichtung zur Erkennung der Energie (Power-Detektor), die dazu dient, das Modul 308 zu informieren, das an dem Eingang ein Signal anliegt. Das Modul 308 ist das Herzstück des Systems und seine Mission ist es, die Schritte zu ordnen, die die anderen Blöcke, die Teil des globalen Systems sind, zu folgen haben in Abhängigkeit von Benutzer-Instruktionen angezeigt über die Schnittstelle 309, sowie die Schritte des Power-Detektors 302. Das HF-Signal wird auf eine bekannte Zwischenfrequenz umgesetzt, mittels des Oszillators 305 und des Mischers 303. Das Bandpassfilter 304 hat die Aufgabe, die Bandbreite, die bei der Bildung des Spektrums verwendet wird, zu begrenzen, wodurch das Signal, das den benachbarten Frequenzen entspricht, eliminiert wird, so dass nur das interessierende Band verbleibt, das von dem Analog-Digital-Wandler 307 digitalisiert wird.
In diesem Anwendungsbeispiel der Erfindung wird vorab der Verstärkungspegel des Signals mit einer Verstärkungsregelung 306 angepasst, um so den gesamten dynamischen Bereich des Analog-Digital-Wandler abzudecken und somit die Quantisierungsfehler zu reduzieren. Nach der Digitalisierung wird das Signal an das System 311 gegeben, in dem die notwendigen Abtastwerte genommen werden, um das Spektrum des Frequenzbereichs, mit dem gearbeitet wird, zu erhalten. Nachdem die Abtastwerte erfasst sind, erhält man ihre Frequenzantwort und diese wird dem System 308 übermittelt, wobei irgendeine passende Kommunikationsschnittstelle verwendet wird. In diesem nicht einschränkenden Beispiel ist das System 311 eine FPGA (Field Programmable Gate Array). Das System 308 berechnet den Ort der Impedanz Fehlanpassungen. Der Block 308 wird auch die Frequenz des Signals anpassen für die Erfassung des Signals und so das Spektrum des Satellitenbandes formen, ein Beispiel eines resultierendes Spektrums ist in Figur 8 dargestellt.
Figure 7 shows a schematic representation of the system of detection and localization of mismatches. The signal comes into the system via 301. The block 302 is a device for detecting the energy (power detector), which is used to inform the module 308 that a signal is present at the input. The module 308 is the heart of the system and its mission is to organize the steps that the other blocks that are part of the global system have to follow depending on user instructions displayed via the interface 309, as well as the steps of the Power detector 302. The RF signal is converted to a known intermediate frequency by means of the oscillator 305 and the mixer 303. The bandpass filter 304 has the task of limiting the bandwidth that is used in the formation of the spectrum, whereby the signal that corresponds to the neighboring frequencies is eliminated, so that only the band of interest that is digitized by the analog-to-digital converter 307 remains.
In this application example of the invention, the gain level of the signal is adjusted in advance with a gain control 306 in order to cover the entire dynamic range of the analog-digital converter and thus to reduce the quantization errors. After digitization, the signal is passed to the system 311, in which the necessary samples are taken to obtain the spectrum of the frequency range that is being used. After the samples are acquired, their frequency response is obtained and this is communicated to system 308 using any suitable communication interface. Not in this one As a restrictive example, the system 311 is an FPGA (Field Programmable Gate Array). The system 308 calculates the location of the impedance mismatches. Block 308 will also adjust the frequency of the signal to capture the signal and thus shape the spectrum of the satellite band, an example of a resulting spectrum is in FIG Figure 8 shown.

Der Benutzer der vorliegenden Erfindung kann mit den Block 308 über die Benutzeroberfläche 309 kommunizieren.
Figur 9 zeigt eine Situation, in der die vorliegende Erfindung verwendet wird. Diese Darstellung stellt keine Einschränkung weder hinsichtlich der Umsetzung noch hinsichtlich des Anwendungsbereich der vorliegenden Erfindung dar. Das dargestellte System misst die unbekannte Länge L eines Kabels 406, das sich in einem SMATV Netz 407 befindet, in dem ein Bereich 403 besteht, dessen Topologie nicht bekannt ist. Das Kabel 406 sowie das System 406 zur Erkennung und Lokalisierung von Fehlanpassungen sind mit einer Weiche (Ableitelement) 404 verbunden.
Figur 10 zeigt, als Beispiel, ein System, das die unbekannte Entfernung zur Fehlerstelle LF innerhalb eines Kabels 505 der Länge Lc, das in einem SMATV-Netz 507 angeordnet ist. Das Netz weist einen Teil 503 auf, dessen Topologie nicht bekannt ist. das Kabel 505 sowie das System 506 zur Erkennung und Lokalisierung von Fehlanpassungen sind mit einer Weiche (Ableitelement) 504 verbunden.
Diese bevorzugte Ausführungsform, die keine Einschränkung auf die Umsetzung der Erfindung oder den Anwendungsbereich der vorliegenden Erfindung darstellt, betrifft ein System zur Erkennung und Lokalisierung von Impedanz-Fehlanpassungen in SMATV-Netzwerken.
Das erfindungsgemäße System ist in der Weise ausgestaltet, dass Eingangssignale in einem SMATV-Netz Signale sind, die nicht durch bzw. in das System von außen eingegeben werden.
Es werden systeminterne Signale zur Erkennung und Lokalisierung von Impedanz-Fehlanpassungen verwendet.
The user of the present invention can communicate with block 308 via user interface 309.
Figure 9 Figure 11 shows a situation in which the present invention is used. This representation does not represent a restriction neither with regard to the implementation nor with regard to the scope of the present invention. The system shown measures the unknown length L of a cable 406 which is located in a SMATV network 407 in which an area 403 exists whose topology is not known is. The cable 406 and the system 406 for the detection and localization of mismatches are connected to a switch (diverting element) 404.
Figure 10 FIG. 8 shows, as an example, a system which determines the unknown distance to the fault location LF within a cable 505 of length Lc which is arranged in a SMATV network 507. The network has a part 503, the topology of which is not known. The cable 505 and the system 506 for the detection and localization of mismatches are connected to a switch (diverting element) 504.
This preferred embodiment, which does not constitute a restriction on the implementation of the invention or the scope of the present invention, relates to a system for the detection and localization of impedance mismatches in SMATV networks.
The system according to the invention is designed in such a way that input signals in a SMATV network are signals that are not input from outside through or into the system.
System-internal signals are used to identify and localize impedance mismatches.

Claims (3)

  1. System for detection and localization of impedance mismatches in SMATV-networks, which comprises:
    - a radio frequency input (301) for receiving a signal in a point of the SMATV network;
    - a device (302) for detecting energy of this signal;
    - a mixing stage (303) for converting this signal;
    - a bandpass filter (304) for filtering the converted signal;
    - an automatic gain control circuit (306) for adapting the filtered signal;
    - an analog-to-digital converter (307) for digitalization of the adapted signal;
    - a module for detection and localization of impedance mismatches (308, 311), which comprises:
    a first block (101) configured for calculation of a spectrum of the signal digitized by the analog-to-digital converter;
    a second block (102) configured for calculation of a module of the spectrum of the signal is;
    a third block (103) configured to reduce the noise of the module of the spectrum of the signal;
    a fourth block (104) configured to spectrum transform the noise-reduced module of the spectrum of the signal, wherein the spectrum transform comprises performing an operation (1041, 1042) with the noise-reduced module to the nth power;
    a fifth block (105) configured for calculation of an inverse Fourier-transformed (IFT) of the transformed noise-reduced module of the spectrum of the signal;
    a sixth block (106) configured for calculation of a module to the n-th power of the inverse Fourier-transformed (IFT) of the transformed noise-reduced module of the spectrum of the signal; and
    a seventh block (108) configured to detect and localize impedance mismatches in the SMATV-network at the positions of maxima in the module to the nth power of the inverse Fourier transform of the transformed noise-reduced module of the spectrum of the signal.
  2. System according to claim 1, wherein a spatial resolution of the detection, a used bandwidth and a spatial detection range for detection and localization of impedance mismatches can be set.
  3. System according to claim 1, further comprising an eight block for performing a normalization operation (107) of the module to the nth power of the inverse Fourier transform of the transformed noise-reduced module of the spectrum of the signal (106), wherein the system is configured to compare impedance mismatches detected and localized in different points of the SMATV-network.
EP10015153.9A 2009-11-30 2010-11-30 System for detecting and localising impedance error adjustments Active EP2328288B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10015153T PL2328288T3 (en) 2009-11-30 2010-11-30 System for detecting and localising impedance error adjustments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200902278A ES2380532A1 (en) 2009-11-30 2009-11-30 System and method for detecting and localising impedance error adjustments

Publications (2)

Publication Number Publication Date
EP2328288A1 EP2328288A1 (en) 2011-06-01
EP2328288B1 true EP2328288B1 (en) 2020-10-14

Family

ID=43663656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10015153.9A Active EP2328288B1 (en) 2009-11-30 2010-11-30 System for detecting and localising impedance error adjustments

Country Status (4)

Country Link
EP (1) EP2328288B1 (en)
ES (2) ES2380532A1 (en)
PL (1) PL2328288T3 (en)
PT (1) PT2328288T (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751766A (en) * 1995-04-27 1998-05-12 Applied Signal Technology, Inc. Non-invasive digital communications test system
US6687632B1 (en) * 1998-01-23 2004-02-03 Trilithic, Inc. Testing of CATV systems
US6437578B1 (en) 2000-11-14 2002-08-20 Tektronix, Inc. Cable loss correction of distance to fault and time domain reflectometer measurements
US6868357B2 (en) 2001-07-07 2005-03-15 Cynthia M. Furse Frequency domain reflectometry system for testing wires and cables utilizing in-situ connectors, passive connectivity, cable fray detection, and live wire testing
US6691051B2 (en) 2001-08-14 2004-02-10 Tektronix, Inc. Transient distance to fault measurement
US7215126B2 (en) 2002-11-19 2007-05-08 University Of Utah Research Foundation Apparatus and method for testing a signal path from an injection point
US7512503B2 (en) 2003-05-12 2009-03-31 Simmonds Precision Products, Inc. Wire fault detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2328288A1 (en) 2011-06-01
ES2826987T3 (en) 2021-05-19
ES2380532A1 (en) 2012-05-16
PL2328288T3 (en) 2021-04-19
PT2328288T (en) 2020-12-07

Similar Documents

Publication Publication Date Title
DE2263594C3 (en) Device for localizing loop errors in electrical communication paths
DE19503021C2 (en) Apparatus and method for determining the single sideband noise figure from double sideband measurements
DE102013207464B4 (en) Measuring method and measuring device for measuring broadband measuring signals
DE10107441B4 (en) Method for characterizing frequency conversion devices
EP2831613B1 (en) Time domain measuring method with frequency domain calibration
DE102014226073A1 (en) Method and device for operating a radar system of a motor vehicle
DE102012217582A1 (en) Calibrating a reconstructed signal using a multi-tone calibration signal
DE60118586T2 (en) METHOD AND DEVICE FOR LINE DAMPING MEASUREMENT
DE60019320T2 (en) IMPROVED METHOD FOR DETERMINING THE GRINDING CONFIGURATION OF A PARTICIPANT
DE10296446T5 (en) Frequency analysis method, frequency analysis apparatus and spectrum analyzer
WO2003107558A1 (en) Method and circuit arrangement for determining transmission parameters
DE102005032982A1 (en) Signal-conversion method for converting an incoming analog/digital signal splits the incoming signal into numerous amplitude ranges to make it available to multiple channels for digitalizing
EP2328288B1 (en) System for detecting and localising impedance error adjustments
DE102021200326A1 (en) METHOD AND SYSTEM FOR PERFORMING TIME RANGE MEASUREMENTS OF A PERIODIC HIGH FREQUENCY (RF) SIGNAL USING A MEASURING INSTRUMENT OPERATED IN A FREQUENCY RANGE
DE10233617B4 (en) Derivation of a composite step function behavior
DE19803761C2 (en) Method and arrangement for determining the transfer function of transfer media
WO2015158445A1 (en) Apparatus and method for sound-based environment detection
EP3462194A1 (en) Method and circuit arrangements for locating an error location on an electrical line based on time-domain reflectometry
EP2191579B2 (en) Apparatus and method for receiving an information signal with an information signal spectrum
DE2653969C2 (en) Methods and arrangements for the automatic determination of bearing angles
WO2010003672A1 (en) Method for digitizing analogue signals and reconstructing the respective signal therefrom as well as signal processing path for carrying out the method
EP0980151A1 (en) Method for measuring attenuation in digital transmission lines
WO2019206567A1 (en) Method for detecting a channel impulse response in a system, which is operated in particular for communication, transmission device and reception device
DE10027789A1 (en) Method and device for determining the transfer function and impulse response in low-voltage networks using spread spectrum signals
EP3714548B1 (en) Method and system for interference reduction by the detection of a chirp signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20111201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04H 20/12 20080101AFI20200608BHEP

Ipc: H04H 20/63 20080101ALN20200608BHEP

INTG Intention to grant announced

Effective date: 20200626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1324592

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016772

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2328288

Country of ref document: PT

Date of ref document: 20201207

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20201130

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2826987

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016772

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20210715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1324592

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221031

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231024

Year of fee payment: 14

Ref country code: PT

Payment date: 20231025

Year of fee payment: 14

Ref country code: IT

Payment date: 20231024

Year of fee payment: 14

Ref country code: FR

Payment date: 20231024

Year of fee payment: 14

Ref country code: DE

Payment date: 20231024

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231025

Year of fee payment: 14