EP2315669B1 - Datenträger mit gedrucktem, unterschiedlich magnetischem sicherheitsmerkmal - Google Patents

Datenträger mit gedrucktem, unterschiedlich magnetischem sicherheitsmerkmal Download PDF

Info

Publication number
EP2315669B1
EP2315669B1 EP09777185.1A EP09777185A EP2315669B1 EP 2315669 B1 EP2315669 B1 EP 2315669B1 EP 09777185 A EP09777185 A EP 09777185A EP 2315669 B1 EP2315669 B1 EP 2315669B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
partial area
printing ink
security feature
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09777185.1A
Other languages
English (en)
French (fr)
Other versions
EP2315669A2 (de
Inventor
Peter Franz
Walter DÖRFLER
Jürgen Schützmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP2315669A2 publication Critical patent/EP2315669A2/de
Application granted granted Critical
Publication of EP2315669B1 publication Critical patent/EP2315669B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/41Marking using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • B42D2033/16

Definitions

  • the invention relates to a data carrier with a printing technology applied, magnetic security feature and a manufacturing method for such a disk.
  • a banknote is described with a banknote-specific code not visible to the viewer.
  • This is, for example, a barcode printed with an ink visible only in the infrared.
  • the banknote-specific code is derived from a measurable characteristic of the banknote, for example from a pattern introduced by means of a laser or from another deliberately varied or random feature of the banknote, such as from a gravure printing element printed on the banknote.
  • the banknote described therein comprises an upper protective layer which does not absorb infrared laser light and a lower marker layer which absorbs the laser light.
  • Object of the present invention is to provide an alternative method for producing a data carrier with a non-visible to the viewer, machine-readable security feature and a corresponding disk.
  • the present invention relates to inks with a magnetic component and is based, inter alia, on the recognition that the amount of magnetic substance in such a printing ink can be reduced after printing on a data carrier. Both the amount by which the amount of the magnetic substance is reduced, as well as the affected spatial area can be specifically selected.
  • the security feature is thus generated by printing a printing ink on the data carrier which contains a selected amount of a magnetic substance in a first step. In a further step, the amount of the magnetic substance of the printing ink is reduced in at least a portion of the printed ink.
  • the ink comprises, mixed with a base ink for the applied printing process, such as high-pressure, gravure, offset, screen, digital, indirect, flexo, thermal, laser, ink jet, dot matrix, magnetic paste with para and / or ferromagnetic particles.
  • a base ink for the applied printing process such as high-pressure, gravure, offset, screen, digital, indirect, flexo, thermal, laser, ink jet, dot matrix, magnetic paste with para and / or ferromagnetic particles.
  • the ink is thus magnetizable and generates in the case of ferro-magnetic particles magnetization, which persists even without external magnetic field and produces a so-called remanence flux density.
  • the magnetic particles may be hard or soft magnetic.
  • the magnetization can be detected mechanically by magnetic sensors.
  • the printed ink covers the disk at least partially, that is, the disk is partially or completely printed with the security feature.
  • the amount of the magnetic substance contained therein is at least partially reduced by removing or extinguishing the magnetic particles. This reduces the magnetic polarizability, that is the achievable magnetization, in the corresponding subregion. In the case of ferromagnetic particles thus the remanence flux density is reduced.
  • the amount of the magnetic substance is reduced to 10 to 50% of the original amount. The amount of magnetic substance is thus, after reducing, both from the amount of the magnetic substance before reducing and from zero different, wherein these different amounts of the magnetic substance can be measured with appropriate sensors each.
  • the data carrier produced by the production method according to the invention accordingly has an altered magnetic structure, which is subsequently detectable.
  • the thickness of the print job of the printed ink is preferably not changed by reducing the amount of the magnetic substance.
  • the printed magnetic ink may be in the form of a single printing element or in the form of a plurality of spatially separated printing elements.
  • the one or more printing elements can be formed over the entire surface or as a grid.
  • the subregion in which the amount of magnetic substance is reduced can then be a subarea of such a printing element or, in the case of a plurality of printing elements, can comprise one or more printing elements completely.
  • an altered magnetic structure for example in the form of alphanumeric characters and / or graphic elements, can be created on the data carrier.
  • the security feature of the data carrier can be marked and individualized.
  • the production method according to the invention thus provides a machine-readable security feature for a data carrier whose presence is not recognizable to the viewer and thus also to a potential forger, and which consequently lacks in forgeries.
  • the security feature can be, however, with suitable test equipment, which at least in Banks or even at a point-of-sale, such as a cash register, are present, check.
  • Another advantage of the magnetic properties used according to the invention is that they are not influenced by contamination of the data carrier and are therefore superior to optical security features.
  • the magnetic ink can be printed directly on the disk or, for example, on a carrier film to produce a transfer element, which is then applied to the disk.
  • the reduction of the amount of the magnetic substance takes place by interaction of the printed ink with the radiation of an electromagnetic radiation source, in particular with the radiation of a laser.
  • the magnetic particles of the magnetic paste which is part of the ink, are highly suitable for being removed from the printed ink using such electromagnetic radiation.
  • the electromagnetic radiation By the action of the electromagnetic radiation, the magnetic particles are preferably evaporated and / or thrown out. This happens even with a very low radiation or laser power.
  • the base color and the wavelength of the laser are chosen such that the base color is transparent to light of the wavelength of the laser, so that the base color does not or only to a small extent absorb the laser light. This allows the magnetic particles using the laser are targeted, while the base color in the print order is not or only slightly changed.
  • the radiation source used is preferably short-time pulse lasers, such as Nd: YAG or Nd: YVO 4 lasers with a wavelength of 1.064 ⁇ m, which deliver pulse lengths in the range from 1 to 50 nanoseconds.
  • the use of pulsed short-term lasers helps to avoid unwanted changes to the security feature and also to the data carrier.
  • a laser By using a laser to reduce the amount of magnetic substance in the printed ink, high spatial resolution of the portions having the changed magnetic property can be obtained. This spatial resolution is determined by the size of the interaction region of the electromagnetic radiation and preferably corresponds to the size of the laser focus.
  • the change in the magnetic properties may be accompanied by a color change that should remain as inconspicuous as possible.
  • the color change or the color change of the subarea with the changed magnetic property can be characterized by means of the perception-adapted LAB color space.
  • Each hue is assigned a unique value triplet L, A, B , with the L value between 0 and 100 and the A and B values between -128 and +127, respectively.
  • the color difference .DELTA.E of two colors (L 1, A 1, B 1) and (L 2, A 2, B 2) is calculated from the Euclidean distance measure ⁇ L 2 + ⁇ A 2 + ⁇ B 2 .
  • ⁇ L L 1 -L 2
  • ⁇ A A 1 -A 2
  • ⁇ B B 1 -B 2 .
  • a specific color difference ⁇ E stands for a specific subjectively perceived by a viewer color difference between two shades.
  • the hue of the ink changes by a color distance of less than 25, preferably less than 15, 5, 2, or 1.
  • the color change in the partial area in which the amount falls of the magnetic substance was reduced visually only slightly, so that the color change for the viewer, even in comparison with areas where the amount of the magnetic substance has not been reduced, hardly or not visible.
  • the color change can be reduced by a suitable choice of the parameters of the printing ink and / or the electromagnetic radiation source.
  • the color change in reducing the amount of the magnetic substance is small when the color tone of the magnetic paste has only a slight color difference from the base color.
  • the printed security feature and / or the sub-area in which the amount of the magnetic substance has been reduced laminated by patterns and / or structures in the background printing.
  • the subarea can also be overprinted in a further processing step, for example with effect pigments. Such lamination is advantageous especially at higher color distances and / or if the visual perceptibility of the partial area with the changed magnetic structure is to be reduced.
  • a tactile perceptible element is generated by printing the ink on the disk.
  • the printing is done preferably in gravure printing, such as the intaglio printing, in which the engravings are introduced by means of a manually or mechanically guided stylus in the printing plate, or the screenprint, in which recesses are etched into the printing plate.
  • the generated gravure elements are easy to check tactile without tools, but technically difficult to imitate. With gravure printing, many degrees of freedom are available to specifically influence the tactile perceptibility as well as the magnetic properties of the printed gravure element.
  • the engraving in the printing plate for receiving the magnetic paste of the printing inks are optimized in view of the necessary signal strength of the magnetic sensors used, for example, by a sufficient dimensioning of the engraving in the printing plate in terms of depth and / or width. The smallest dimension of the engraving is at least 10 x 10 ⁇ m.
  • the engraving preferably has a width of more than 100 ⁇ m, more preferably 1 to 3 mm.
  • the smallest distance of several engravings in the pressure plate can be 0 ⁇ m. It is preferably 500 .mu.m, more preferably 1 to 10 mm.
  • the flank angle of the engraving in the printing plate is preferably 40 ° (compared to the surface normal of the printing plate surface), so that the engraving depth is about half of the engraving width. The flank angle is determined for example by the corresponding angle of the stylus to produce the engraving.
  • the engraving depths are between 0 and 250 microns, preferably between 0 and 120 microns and more preferably between 30 and 70 microns.
  • the use of the line gravure printing to produce the security feature allows the realization of integrated in the printing element tactile elements, especially in the edge region of the printing element.
  • the provision of tactile elements increases the security against forgery, since these elements are difficult to copy, in particular not by means of a (color) photocopier, and also can be easily checked by the sense of touch.
  • At least one further printing ink is printed on the data carrier in order to generate a further part of the security feature.
  • the further printing ink differs from the first printing ink in the amount of the magnetic substance which contains the further printing ink in the printing, in the hue of the printing ink and / or in the thickness of the print job.
  • the further printing ink differs from the first printing ink, for example in the mixing ratio of base color and magnetic paste used or in the base color used and / or the magnetic paste itself, the latter having, for example, magnetic particles with different magnetic properties.
  • the thickness of the print job can be easily varied over the engraving depth of the printing plate.
  • several magnetic pastes can be combined in one printing ink.
  • the thickness of the print job already influences the print job area-related amount of the magnetic substance in the security element and thus the magnetization or the (remanent) flux density of the print job. Since gravure paints are usually used in gravure printing, the tonal value can also be set via the ink layer thickness.
  • the printing of the other ink can be done in one step together with the printing of the first ink.
  • a multicolored print is possible.
  • the further printing ink can not only have different magnetic properties from the first printing ink, but it is also possible to omit the addition of a magnetic paste as a whole, so that a structuring of the magnetic properties of the security element is already possible when printing the various printing inks.
  • structures can be printed which are alternately magnetic and non-magnetic.
  • the magnetic properties of the various printed printing inks are characterized in that the amount of the magnetic substance is also reduced in at least one subarea of the further printing ink.
  • the hue and / or the amount of the magnetic substance of the plurality of printed inks chosen such that after individualizing areas with different magnetizations (in terms of strength and / or type of magnetization), but same shades result, so that the areas with measurable different magnetic properties are visually hardly or indistinguishable.
  • the contours of the region of the printing ink and / or of the subregion in which the amount of the magnetic substance is reduced are selected such that the region of the ink and / or the subregion can be detected by machine with a magnetic sensor to a desired extent.
  • a magnetic sensor generates a detection signal at the transition between regions of different magnetic flux density, for example, at the transition between a region without magnetic substance and a magnetic substance region, or between the region of the ink and a portion with a reduced amount of the magnetic substance.
  • the strength of the detection signal depends on the time-related gradient of the magnetic flux density at the magnetic sensor, so that a stronger detection signal is generated when the security feature is moved past the magnetic sensor, for example at a higher speed, and especially if a sharp or sharp on the security feature or there is rapid transition between regions of different magnetization, in other words, if there is a strong localized gradient of the amount of magnetic material on the medium.
  • a sharp transition is generated, for example, by straight edge contours of the different regions of the security element, which preferably extend transversely to the detection direction, ie transverse to the direction in which the data carrier in the detection of the magnetic properties, for example in a test method against a magnetic sensor of a corresponding Tester is moved.
  • This detection direction is generally already known in the production of the data carrier and is generally equal to the direction of one of the edges of the data carrier or the security element. Such an orientation of the edges leads to a high detection signal in the magnetic sensor and thus reduces on the one hand the necessary amount of magnetic particles in the ink and on the other hand the necessary Detection sensitivity of the magnetic sensor, whereby the security feature and its various areas can be detected with little effort and high detection reliability.
  • a slow transition that is a broad transition region with a small localized gradient of the amount of magnetic substance at the transition, is preferably generated and the transition is obscured, for example by the intensity of the electromagnetic radiation with which the amount of magnetic substance in the subregion is reduced is changed continuously or stepwise in the edge region of the subregion.
  • the strength of the later detection signal of the magnetic sensor can be changed and thus the security feature of the data carrier can be further individualized.
  • the individualization is preferably supported by a suitable choice of the contour of the area or the areas of the ink with the magnetic particles.
  • the amount of the magnetic substance in the at least one subregion is not reduced over the entire surface but only in a grid-like manner.
  • the basic idea here is that the location-related resolution of the magnetic sensor is usually lower than the location-related resolution of the electromagnetic radiation used to reduce the amount of the magnetic substance, for example the laser focus.
  • the Width of the interaction region of the electromagnetic radiation is preferably selected so that within the subregion a visually barely perceptible raster pattern is generated.
  • the grid preferably comprises points or lines with a suitably chosen pattern, in particular with variable grid spacings and / or grid intensities.
  • the subarea has raster lines which lie in the direction of the detection direction, since thus the position of the raster lines during the detection relative to the magnetic sensor does not change and therefore the emergence of an undesired detection signal is excluded.
  • the amount of the magnetic substance is not reduced in the entire print order of the printing ink but only on its upper side.
  • the amount of the magnetic substance is reduced only in a small segment of the print job, whereby the hue of the applied ink changes visually only slightly.
  • Such reduction of the amount of the magnetic substance in only a near-surface region can be carried out very easily on a gravure printing element with a significant amount of the print job, in particular on a tactile element.
  • this near-surface reduction is performed at the same time raster-like, which further reduces the visual distinctness of the portion of the area of the ink with unreduced amount of magnetic substance.
  • the laser used to reduce the amount of the magnetic substance is also used for introducing further markings, for example individualizing codes, in at least one further security feature, for example in a foil element and / or a security thread, of the data carrier.
  • a data carrier with an imprinted security feature can be produced, which has a first and a second subregion with the same print layer thickness and the same printed ink, wherein the first subregion contains a first quantity of a magnetic substance and the second subregion contains a second, lower, contains reduced amount of the magnetic substance relative to the first portion.
  • Other portions of the security feature may include other print layer thicknesses, other hues, other inks, and / or other types of magnetic materials or amounts.
  • the security feature may, as mentioned, be designed as a spatially continuous, continuous inking, that is, as a single printing element.
  • the first and second subregions then form subregions of the individual printing element.
  • the security feature may also consist of several spatially separated printing elements. In this case, for example, the first and second partial areas completely comprise partial areas of the different pressure elements or preferably one or more different pressure elements.
  • the various subregions of the security feature can be made with a single pressure step.
  • a suitable post-processing step preferably in the form of a laser action, the magnetic properties of the printed ink can be selectively changed in certain regions.
  • a volume can be created with an individualized security feature.
  • banknote 1 with two security features: a security strip 2 and a printed security feature.
  • the proportion of the magnetic pigment that is, the amount of the magnetic substance, is thus between 5% and 20%.
  • the quantities are based on the weight (weight percent).
  • the magnetic pigment, the binder and the chalk constitute the abrasive portion of the magnetic paste.
  • the remaining components form the so-called mixing proportion of the magnetic paste.
  • the scrubbing portion is dispersed by means of a three-roll chair or a bead mill.
  • the coercivity of the magnetic pigment should be between 18 and 40 kA / m.
  • a yellow gravure ink is used in the preferred embodiment.
  • it can also be used intaglio with any other hue, as long as the intaglio ink is suitable for mixing with magnetic paste.
  • the intaglio and the magnetic magnetic paste have different hues, so that not only the magnetic properties of the imprinted ink but also the hue thereof can be influenced by their mixing ratio.
  • the intaglio ink is yellow and the magnetic paste is olive, so that as the proportion of magnetic paste increases, the resulting ink becomes increasingly dark.
  • the magnetic paste may be changed in accordance with the requirements of the magnetic properties, and a plurality of different magnetic pastes may be mixed with a gravure ink to a printing ink.
  • magnetic pastes which are not olive-colored, dark-colored or black, but which are as light as possible or white. This has the advantage that they do not or only slightly change the hue of a bright spot ink.
  • the magnetic pastes are transparent to electromagnetic radiation in the infrared wavelength range.
  • the security element with the selected magnetic properties, in particular with the selected amount of the magnetic pigment, printed on the disk is determined by the test method, in particular the sensitivity of the magnetic sensors used therein.
  • a gravure coating of about 8 g / m 2 can be produced.
  • the printed ink is processed with a laser.
  • a laser In the preferred embodiment, an Nd: YAG or Nd: YVO 4 short-time laser is used with a continuous wave power in the range of 1 to 10 watts, for example 6 watts, a pulse frequency of up to 100 kHz and a power per unit area of 1 up to 5 J / cm 2 .
  • the pulse length of the laser pulses is less than 50 ns, preferably less than 20 ns, or even less than 1 ns.
  • the laser types mentioned have a wavelength of approximately 1064 nm, which is not absorbed by the yellow intaglio ink of the printing ink.
  • another laser wavelength may need to be selected so that it is within a range where the intaglio printing ink does not or only slightly absorb.
  • the laser interacts over the entire layer thickness of the ink applied, which can be detected at high laser power by traces of smoke on the top and bottom of the printed ink.
  • the laser parameters such as power, pulse length, pulse frequency, interaction duration and spot size of the laser, ie its focus, are matched to the various components of the printed ink as well as to the desired result.
  • Fig. 3A shows a printed security feature consisting of a matrix of 7 x 3 similarly printed printing elements. These may be printed elements printed over the entire surface or printed as a raster, for example a line screen printed in line gravure printing.
  • the left column as well as the upper and lower rows of the printing elements were excluded from the laser treatment, that is, the printing elements which are outside the area A.
  • the printing elements lying in region A were processed with a laser after printing, in which line-by-line printing elements were processed identically. All printing elements within area A have been processed with the same laser power, but the interaction time with the laser within one column increases progressively from top to bottom. To the right of the column, the color difference resulting from the laser treatment is given to an unprocessed printing element.
  • Fig. 3A the color difference increases with increasing interaction duration, that is, with the number of laser pulses which have acted on the printing element.
  • interaction duration that is, with the number of laser pulses which have acted on the printing element.
  • the amount of the removed magnetic substance not only the difference in magnetizability and / or remanence flux density over an untreated printing element but also the color difference increases. Similar results are obtained when working with different laser power and the same number of laser pulses.
  • the amount of magnetic pigment in the print job is reduced to 10 to 50% of the original value by the laser treatment, such that the remanence flux density decreases, for example, from 10 ⁇ T to between 1 and 5 ⁇ T, for example, 2.3 or 4 ⁇ T.
  • FIG. 3B Another security feature is shown, which has the same spatial matrix structure as in Fig. 3A has shown security feature.
  • the applied ink differs in the mixing ratio of the intaglio printing ink used and the magnetic paste.
  • the proportion of the olive magnetic paste was reduced here compared to the yellow intaglio ink, resulting in a lighter color tone of the initially printed ink compared to the inks Fig. 3A shown embodiment results.
  • a laser factor increased by a factor of 4 was used, it being possible to remove different proportions of the magnetic particles in the print job by means of different laser powers Fig. 3B
  • codings and / or individualizations can be introduced into security features consisting of multiple printing elements, as shown in FIG Fig. 1 outlined.
  • other markings such as alphanumeric characters and / or graphic symbols, may also be introduced into a continuous printing area, as shown in FIG Fig. 2 outlined.
  • the reference character B designates in each case the partial regions processed by the laser.
  • the introduced individualization can refer, for example, to a given pattern, can serve for numbering coding or denote a denomination, for example a banknote.
  • FIGS. 2A to 2C show a particularly preferred embodiment, in which the security feature 3 consists of a chromatic color, in which a certain amount of a magnetic pigment has been mixed.
  • a reference number B is introduced in the form of a numbering with a laser.
  • the reference symbol B is in this case designed as negative writing, ie the laser acts on a large area over a region of the security feature 3, wherein the numbering is generated by reducing or switching off the laser power.
  • FIGS. 2A to 2C show here in each upper part of the security feature 3 with incorporated reference numeral B and in each lower part the reference numeral B, which is introduced only in the substrate of the banknote 1.
  • both the printed ink and its laser-processed sections integrate into the rest of the design of the data carrier, for example in a background printing or in a subsequent overprinting, whereby the security feature and in particular its portions machined with the laser are laminated.
  • FIGS. 4A and 4B Two variants show the obscuring of a transition between two areas of a security element.
  • a spatially slow change in the amount of magnetic pigment between a region C with applied ink with magnetic pigments and a portion B is produced with a reduced amount of magnetic pigments.
  • a plan view of the security feature is shown in each case, in which the portion B is formed rectangular in the surrounding area C.
  • the intensity of the laser radiation used to reduce the amount of magnetic pigments is sketched.
  • the respective left edge of the subregions B is a so-called resolved edge or a veiled transition, which should produce no or only a small signal in the detection with the magnetic sensor, wherein the detection direction is parallel to the x direction here.
  • the full intensity of the laser radiation which is necessary for reducing the magnetic pigments to the desired amount, only at a certain distance from the left edge of the portion B is set. In between, the intensity of the laser radiation increases with increasing distance from the edge of the subarea B ( Fig. 4A ) or gradual ( Fig. 4B ), resulting in the desired spatially slow change in the amount of magnetic pigment in the x-axis direction.
  • Fig. 5 the opposite case is shown.
  • an area C is printed with ink with a curved edge.
  • the printing produces a blurred, fogged edge, that is to say the magnetic pigments contained in the printing ink produce only a small detection signal, since the average amount of magnetic pigment increases only slowly, depending on the position on the x-axis within the region of the curved edge.
  • This blurred, fogged edge can be converted to a sharp, distinct edge with a strong detection signal by using laser radiation in the area of the curved edge to adjust the amount of magnetic pigments in region C to the amount of magnetic pigments in the surrounding region.
  • no magnetic pigments are present in the surrounding area and in the region of the curved edge of area C, the magnetic pigments are completely removed to produce the sharp edge.
  • FIGS. 6A, 6B and 6C schematically different types of rasters are shown, as they can be used to produce a portion B with reduced amount of magnetic pigment.
  • the illustrated grid points and grid lines represent the interaction region of the laser radiation.
  • the interaction region is ideally very narrow.
  • the raster pattern, the grid spacings and the raster strengths are selected according to the requirements and can vary over the subarea B.
  • a plan view of a security element is shown. This has a region C with an applied printing ink with magnetic pigments and a portion B with the same ink, but with a reduced amount of magnetic pigment on, the amount of magnetic pigment was reduced using a line grid.
  • the detection signal U of a magnetic sensor is shown, wherein the detection direction is in the x direction.
  • the grid spacings of the line grid in subarea B are below the spatial resolution of the magnetic sensor, which is despite the screening and thus not full-scale reduction of the amount of magnetic pigment in area B, at the boundary line D between area C and section B is a sharp edge, which is a strong detection signal of the magnetic sensor generated.
  • FIG. 8 Another sharp edge is located on the right boundary line E of region C.
  • This embodiment is suitable for the case of a small amount of ink per area and is particularly suitable for bright printing inks.
  • a gravure printing element is shown in perspective view, which consists of a printing ink with magnetic pigments. In this case, only in a near-surface portion B, the amount of magnetic pigment is reduced. In the remaining area C of the gravure element, the amount of magnetic pigment is not reduced. A possible color change of the printing ink of the gravure printing element can only take place in the small subregion B, which greatly reduces its visual perceptibility.
  • the laser can also be used to produce other security features such as those in the Figures 1 and 2 schematically represented security thread 2, other film elements and other suitable for laser processing security features are processed.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Methods (AREA)
  • Credit Cards Or The Like (AREA)

Description

  • Die Erfindung betrifft einen Datenträger mit einem drucktechnisch aufgebrachten, magnetischen Sicherheitsmerkmal sowie ein Herstellungsverfahren für einen solchen Datenträger.
  • Zur Abwehr von Fälschungsversuchen besteht für Datenträger jeglicher Art, wie beispielsweise Banknoten, Aktien, Anleihen, Urkunden, Gutscheine, Schecks, Lotteriescheine, hochwertige Eintrittskarten, Pässe, Ausweise und sonstige fälschungsgefährdete Papiere, sowie kartenförmigen Datenträger, insbesondere Chipkarten, ständig ein Bedarf an neuen Sicherheitsmerkmalen.
  • In der WO 2006/053685 A2 wird eine Banknote mit einem für den Betrachter nicht sichtbaren, banknotenspezifischen Code beschrieben. Dies ist beispielsweise ein Barcode, der mit einer nur im Infraroten sichtbaren Druckfarbe gedruckt ist. Der banknotenspezifische Code wird aus einer messbaren Eigenschaft der Banknote abgeleitet, beispielsweise aus einem mithilfe eines Lasers eingebrachten Muster oder aus einem anderweitig gezielt variierten oder zufälligen Merkmal der Banknote, wie aus einem auf der Banknote aufgedruckten Tiefdruckelement.
  • Ebenso beschreibt die WO 2007/110155 A1 ein Sicherheitselement, welches nur im Infraroten erkennbar und für einen Betrachter somit nicht sichtbar ist. Die darin beschriebene Banknote umfasst eine obere Schutzschicht, welche infrarotes Laserlicht nicht absorbiert, und eine untere Markierungsschicht, welche das Laserlicht absorbiert. Mittels kurzer IR-Laserpulse kann dadurch eine für den Betrachter nicht sichtbare Information in die untere Markierungsschicht eingeschrieben werden, ohne die obere Deckschicht zu zerstören.
  • Aus DE 10 2007 055 112 A1 ist ein sogenanntes "Waschverfahren" bekannt, bei dem in eine Beschichtung in Auflicht erkennbare Zeichen dadurch eingebracht werden, dass unter der Beschichtung eine Druckfarbe aufgetragen wird, die aus einer Mischung aus einem Bindemittel und reaktiven Bestandteilen besteht. Bei Kontakt mit Wasser und/ oder durch Bestrahlung werden die reaktiven Bestandteile aktiviert und brechen die Beschichtung auf. Weiter wird ausgeführt, dass zusammen mit der Druckfarbe auch die darüberliegende Beschichtung bzw. alle über der Druckfarbe liegenden Beschichtungen entfernt werden.
  • Aufgabe der vorliegenden Erfindung ist es, ein alternatives Verfahren zur Herstellung eines Datenträgers mit einem für den Betrachter nicht sichtbaren, maschinenlesbaren Sicherheitsmerkmal sowie einen entsprechenden Datenträger anzugeben.
  • Diese Aufgabe wird durch ein Verfahren und einen Datenträger mit den Merkmalen der unabhängigen Ansprüche gelöst. Die abhängigen Ansprüche und die nachfolgende Beschreibung betreffen bevorzugte Ausgestaltungen und Weiterbildungen.
  • Die vorliegende Erfindung bezieht sich auf Druckfarben mit einem magnetischen Bestandteil und beruht unter anderem auf der Erkenntnis, dass die Menge des magnetischen Stoffes in einer solchen Druckfarbe nach dem Aufdrucken auf einen Datenträger reduziert werden kann. Sowohl der Betrag, um den die Menge des magnetischen Stoffes reduziert wird, als auch der betroffene räumliche Bereich können dabei gezielt ausgewählt werden.
  • Das Sicherheitsmerkmal wird demnach erzeugt, indem in einem ersten Schritt eine Druckfarbe auf den Datenträger aufgedruckt wird, welche eine ausgewählte Menge eines magnetischen Stoffes enthält. In einem weiteren Schritt wird die Menge des magnetischen Stoffes der Druckfarbe in zumindest einem Teilbereich der aufgedruckten Druckfarbe reduziert.
  • Die Druckfarbe umfasst, vermischt mit einer Basisfarbe für das angewendete Druckverfahren, wie Hochdruck, Tiefdruck, Offsetdruck, Siebdruck, Zifferndruck, Indirektdruck, Flexodruck, Thermodruck, Laserdruck, Tintenstrahldruck, Nadeldruck, eine Magnetpaste mit para- und/ oder ferro-magnetischen Partikeln. Die Druckfarbe ist somit magnetisierbar und erzeugt im Falle ferro-magnetischer Partikel eine Magnetisierung, welche auch ohne äußeres Magnetfeld bestehen bleibt und eine sogenannte Remanenz-Flussdichte erzeugt. Die magnetischen Partikel können dabei hart- oder weichmagnetisch sein. Die Magnetisierung kann maschinell durch Magnetsensoren detektiert werden.
  • Die aufgedruckte Druckfarbe überdeckt den Datenträger zumindest teilweise, das heißt der Datenträger ist mit dem Sicherheitsmerkmal teilweise oder vollständig bedruckt.
  • Im Anschluss an das Aufdrucken der magnetischen Druckfarbe wird zumindest bereichsweise die Menge des darin enthaltenen magnetischen Stoffes reduziert, indem die magnetischen Partikel entfernt bzw. gelöscht werden. Dadurch wird die magnetische Polarisierbarkeit, das heißt die erreichbare Magnetisierung, in dem entsprechenden Teilbereich verringert. Im Falle ferro-magnetischer Partikel wird somit die Remanenz-Flussdichte reduziert. Vorzugsweise wird die Menge des magnetischen Stoffes auf 10 bis 50 % der ursprünglichen Menge reduziert. Die Menge des magnetischen Stoffes ist somit nach dem Reduzieren sowohl von der Menge des magnetischen Stoffes vor dem Reduzieren als auch von Null verschieden, wobei diese verschiedenen Mengen des magnetischen Stoffes mit geeigneten Sensoren jeweils gemessen werden können. Der nach dem erfindungsgemäßen Herstellungsverfahren hergestellte Datenträger besitzt dementsprechend eine veränderte magnetische Struktur, welche anschließend detektierbar ist. Durch dieses partielle Verändern der magnetischen Eigenschaft in zumindest einem Teilbereich der aufgedruckten magnetischen Druckfarbe wird somit ein eindeutig unterscheidbares maschinenlesbares Sicherheitsmerkmal geschaffen.
    Die Dicke des Druckauftrages der aufgedruckten Druckfarbe ändert sich durch das Reduzieren der Menge des magnetischen Stoffes vorzugsweise nicht.
    Die aufgedruckte magnetische Druckfarbe kann in Form eines einzelnen Druckelements oder in Form von mehreren räumlich getrennten Druckelementen vorliegen. Das oder die Druckelemente können dabei vollflächig oder als Raster ausgebildet sein. Der Teilbereich, in dem die Menge des magnetischen Stoffes reduziert wird, kann dann ein Teilbereich eines solchen Druckelementes sein oder im Falle mehrerer Druckelemente ein oder mehrere Druckelemente vollständig umfassen. Dadurch kann auf dem Datenträger eine veränderte magnetische Struktur, beispielsweise in Form alphanumerischer Zeichen und/oder graphischer Elemente, geschaffen werden. Durch diese Form von intelligenter magnetischer Codierung kann das Sicherheitsmerkmal des Datenträgers markiert und individualisiert werden.
  • Das erfindungsgemäße Herstellungsverfahren schafft somit ein maschinenlesbares Sicherheitsmerkmal für einen Datenträger, dessen Vorhandensein für den Betrachter und somit auch für einen potentiellen Fälscher nicht erkennbar ist, und welches folglich in Fälschungen fehlt. Das Sicherheitsmerkmal lässt sich jedoch mit geeigneten Prüfmitteln, welche zumindest in Banken oder auch an einem Point-of-Sale, beispielsweise einer Kasse, vorhanden sind, überprüfen.
  • Ein weiterer Vorteil der erfindungsgemäß genutzten magnetischen Eigenschaften ist, dass diese durch Verschmutzungen des Datenträgers nicht beeinflusst werden und somit optischen Sicherheitsmerkmalen überlegen sind.
  • Die magnetische Druckfarbe kann unmittelbar auf den Datenträger aufgedruckt werden oder beispielsweise auf eine Trägerfolie zur Erzeugung eines Transferelementes, welches anschließend auf den Datenträger aufgebracht wird.
  • In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Herstellungsverfahrens erfolgt das Reduzieren der Menge des magnetischen Stoffes durch Wechselwirkung der aufgedruckten Druckfarbe mit der Strahlung einer elektromagnetischen Strahlungsquelle, insbesondere mit der Strahlung eines Lasers. Die magnetischen Partikel der Magnetpaste, welche Teil der Druckfarbe ist, eignen sich in hohem Maße dazu, mithilfe solcher elektromagnetischer Strahlung aus der aufgedruckten Druckfarbe entfernt zu werden. Durch die Einwirkung der elektromagnetischen Strahlung werden die magnetischen Partikel vorzugsweise verdampft und/ oder herausgeschleudert. Dies geschieht bereits bei einer sehr geringen Strahlungs- bzw. Laserleistung.
  • Vorzugsweise werden die Basisfarbe und die Wellenlänge des Lasers derart gewählt, dass die Basisfarbe für Licht der Wellenlänge des Lasers transparent ist, so dass die Basisfarbe das Laserlicht nicht oder in nur geringem Umfang absorbiert. Dadurch können die magnetischen Partikel mithilfe des Lasers gezielt bearbeitet werden, während die Basisfarbe im Druckauftrag nicht oder in nur geringem Umfang verändert wird.
  • Vorzugsweise werden als Strahlungsquelle Kurzzeit-Pulslaser, wie Nd:YAG-oder Nd:YVO4-Laser mit einer Wellenlänge von 1,064 µm verwendet, welche Pulslängen im Bereich von 1 bis 50 Nanosekunden liefern. Die Verwendung von gepulsten Kurzzeit-Lasern trägt dazu bei, unerwünschte Veränderungen an dem Sicherheitsmerkmal und auch an dem Datenträger zu vermeiden. Durch die Verwendung eines Lasers zum Reduzieren der Menge des magnetischen Stoffes in der aufgedruckten Druckfarbe kann eine hohe räumliche Auflösung der Teilbereiche mit der veränderten magnetischen Eigenschaft erzielt werden. Diese räumliche Auflösung wird durch die Größe des Wechselwirkungsbereichs der elektromagnetischen Strahlung bestimmt und entspricht vorzugsweise der Größe des Laserfokus.
  • Die Veränderung der magnetischen Eigenschaften kann mit einer Farbveränderung einhergehen, die möglichst unauffällig bleiben sollte. Die Farbveränderung bzw. der Farbumschlag des Teilbereichs mit der veränderten magnetischen Eigenschaft kann mithilfe des wahrnehmungsangepassten LAB-Farbraums charakterisiert werden. Dabei wird jedem Farbton ein eindeutiges Wertetripel L, A, B zugeordnet, wobei der L-Wert zwischen 0 und 100 und die A- und B-Werte jeweils zwischen -128 und +127 liegen. Der Farbabstand ΔE zweier Farbtöne (L1 , A1, B1 ) und (L2, A2, B2 ) berechnet sich aus dem euklidischen Abstandsmaß Δ L 2 + Δ A 2 + Δ B 2 ,
    Figure imgb0001
    wobei gilt ΔL = L1 - L2, ΔA = A1 - A2 und ΔB = B1 - B2. In diesem wahrnehmungsangepassten Farbraum steht ein bestimmter Farbabstand ΔE für einen bestimmten subjektiv durch einen Betrachter empfundenen farblichen Unterschied zweier Farbtöne.
  • Vorzugsweise ändert sich durch das Reduzieren der Menge des magnetischen Stoffes der Farbton der Druckfarbe um einen Farbabstand von weniger als 25, vorzugsweise weniger als 15, 5, 2 oder 1. Bei einem derart geringen Farbabstand fällt die Farbveränderung in dem Teilbereich, in dem die Menge des magnetischen Stoffes reduziert wurde, visuell nur geringfügig aus, so dass die Farbveränderung für den Betrachter auch im Vergleich mit Bereichen, in denen die Menge des magnetischen Stoffes nicht reduziert wurde, kaum oder nicht zu erkennen ist.
  • Der Farbumschlag kann durch eine geeignete Wahl der Parameter der Druckfarbe und/ oder der elektromagnetischen Strahlungsquelle vermindert werden. Generell fällt der Farbumschlag beim Reduzieren der Menge des magnetischen Stoffes gering aus, wenn der Farbton der Magnetpaste einen nur geringen Farbabstand von der Basisfarbe aufweist.
  • Bei einer vorteilhaften Ausgestaltung wird das aufgedruckte Sicherheitsmerkmal und/ oder der Teilbereich, in dem die Menge des magnetischen Stoffes reduziert worden ist, durch Muster und/oder Strukturen im Untergrunddruck kaschiert. Weiterhin kann der Teilbereich auch in einem weiteren Bearbeitungsschritt überdruckt werden, beispielsweise mit Effektpigmenten. Eine solche Kaschierung ist vor allem bei höheren Farbabständen vorteilhaft und/oder wenn die visuelle Wahrnehmbarkeit des Teilbereichs mit der veränderten magnetischen Struktur vermindert werden soll.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird durch das Aufdrucken der Druckfarbe auf dem Datenträger ein taktil wahrnehmbares Element erzeugt.
  • Das Aufdrucken geschieht dabei vorzugsweise im Tiefdruck, wie beispielsweise dem Stichtiefdruck, bei welchem die Gravuren mithilfe eines manuell oder maschinell geführten Stichels in die Druckplatte eingebracht werden, oder dem Rastertiefdruck, bei welchem Vertiefungen in die Druckplatte geätzt werden. Die dabei erzeugten Tiefdruckelemente sind leicht und ohne Hilfsmittel taktil zu überprüfen, aber technisch nur schwer nachahmbar. Mit dem Tiefdruck stehen viele Freiheitsgrade zur Verfügung, um die taktile Wahrnehmbarkeit wie auch die magnetischen Eigenschaften des aufgedruckten Tiefdruckelementes gezielt zu beeinflussen. Dabei werden die Gravuren in der Druckplatte für die Aufnahme der Magnetpaste der Druckfarben im Hinblick auf die notwendige Signalstärke der verwendeten Magnetsensoren optimiert, beispielsweise durch eine ausreichende Dimensionierung der Gravur in der Druckplatte in Bezug auf Tiefe und/ oder Breite. Die kleinste Ausdehnung der Gravur beträgt mindestens 10 x 10 µm. Bevorzugt weist die Gravur eine Breite von mehr als 100 µm, besonders bevorzugt 1 bis 3 mm auf. Der kleinste Abstand mehrerer Gravuren in der Druckplatte kann 0 µm betragen. Er beträgt bevorzugt 500 µm, besonders bevorzugt 1 bis 10 mm. Der Flankenwinkel der Gravur in der Druckplatte beträgt bevorzugt 40° (gegenüber der Flächennormalen der Druckplattenoberfläche), so dass die Gravurtiefe etwa die Hälfte der Gravurbreite beträgt. Der Flankenwinkel wird beispielsweise durch den entsprechenden Winkel des Stichels zur Erzeugung der Gravur bestimmt. Die Gravurtiefen liegen zwischen 0 und 250 µm, bevorzugt zwischen 0 und 120 µm und besonders bevorzugt zwischen 30 und 70 µm. Dabei können verschieden dicke Druckaufträge, die aus verschieden tiefen Gravuren resultieren, mit dem zur Reduzierung der Menge des magnetischen Stoffes verwendeten Laser, unterschiedlich wechselwirken. Denn die oberflächennahen magnetischen Partikel eines dicken Druckauftrags werden von der einfallenden Laserstrahlung stärker beeinflusst als die tiefer liegenden Partikel. Zur Erhöhung der taktilen Wahrnehmbarkeit des Sicherheitsmerkmals besitzt dessen taktiler Bereich eine Linienstruktur mit taktil wahrnehmbaren Linien in der Höhe von beispielhaft 100 µm.
  • Die Verwendung des Linientiefdrucks zur Erzeugung des Sicherheitsmerkmals ermöglicht die Realisierung von im Druckelement integrierten taktilen Elementen, vor allem im Randbereich des Druckelementes. Das Vorsehen von taktilen Elementen erhöht die Fälschungssicherheit, da diese Elemente nur schwer kopiert werden können, insbesondere nicht mittels eines (Farb)-Fotokopierers, und zudem über den Tastsinn leicht überprüft werden können.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird zumindest eine weitere Druckfarbe auf den Datenträger aufgedruckt, um einen weiteren Teil des Sicherheitsmerkmals zu erzeugen. Die weitere Druckfarbe unterscheidet sich von der ersten Druckfarbe in der Menge des magnetischen Stoffes, die die weitere Druckfarbe beim Aufdrucken enthält, im Farbton der Druckfarbe und/ oder in der Dicke des Druckauftrags.
  • Die weitere Druckfarbe unterscheidet sich von der ersten Druckfarbe beispielsweise im Mischungsverhältnis von verwendeter Basisfarbe und Magnetpaste oder in der verwendeten Basisfarbe und/ oder der Magnetpaste selbst, wobei letztere beispielsweise magnetische Partikel mit anderen magnetischen Eigenschaften aufweist. Insbesondere beim Drucken im Tiefdruck kann die Dicke des Druckauftrages leicht über die Gravurtiefe der Druckplatte variiert werden. Zusätzlich können auch mehrere Magnetpasten in einer Druckfarbe kombiniert werden. Somit steht eine Vielzahl von Freiheitsgraden zur Verfügung, um der aufgedruckten Druckfarbe den gewünschten Farbton und die gewünschten magnetischen Eigenschaften zu verleihen. Insbesondere beeinflusst bereits die Dicke des Druckauftrags die flächenbezogene Menge des magnetischen Stoffes in dem Sicherheitselement und somit die Magnetisierung bzw. die (Remanenz-)Flussdichte des Druckauftrags. Da im Tiefdruck üblicherweise lasierende Farben verwendet werden, kann über die Farbschichtdicke auch der Tonwert eingestellt werden.
  • Das Aufdrucken der weiteren Druckfarbe kann in einem Arbeitsschritt zusammen mit dem Aufdrucken der ersten Druckfarbe geschehen. Es ist insbesondere ein mehrfarbiger Druck möglich. Dabei kann die weitere Druckfarbe nicht nur von der ersten Druckfarbe verschiedene magnetische Eigenschaften besitzen, sondern es kann auch auf die Beimischung einer Magnetpaste insgesamt verzichtet werden, so dass bereits beim Aufdrucken der verschiedenen Druckfarben eine Strukturierung der magnetischen Eigenschaften des Sicherheitselementes möglich ist. Vorzugsweise können Strukturen aufgedruckt werden, welche abwechselnd magnetisch und nicht magnetisch sind.
  • In einer weiteren vorteilhaften Ausgestaltung werden die magnetischen Eigenschaften der verschiedenen aufgedruckten Druckfarben dadurch individualisiert, dass auch in zumindest einem Teilbereich der weiteren Druckfarbe die Menge des magnetischen Stoffes reduziert wird.
  • Dadurch ergeben sich weitere Freiheitsgrade zur Individualisierung des Datenträgers und zur Gestaltung des gewünschten Sicherheitsmerkmals. Vorzugsweise wird der Farbton und/oder die Menge des magnetischen Stoffes der mehreren aufgedruckten Druckfarben derart gewählt, dass sich nach dem Individualisieren Bereiche mit unterschiedlichen Magnetisierungen (hinsichtlich Stärke und/ oder Art der Magnetisierung), aber gleichen Farbtönen ergeben, so dass die Bereiche mit messbar verschiedenen magnetischen Eigenschaften visuell kaum oder nicht unterscheidbar sind.
  • Vorteilhafterweise werden die Konturen des Bereichs der Druckfarbe und/ oder des Teilbereichs, in dem die Menge des magnetischen Stoffes reduziert wird, derart gewählt, dass der Bereich der Druckfarbe und/ oder der Teilbereich mit einem Magnetsensor maschinell in einem gewünschten Umfang detektierbar sind. Ein Magnetsensor erzeugt ein Detektionssignal beim Übergang zwischen Bereichen mit verschiedener magnetischer Flussdichte, beispielsweise beim Übergang zwischen einem Bereich ohne magnetischen Stoff und einem Bereich mit magnetischem Stoff, oder auch zwischen dem Bereich der Druckfarbe und einem Teilbereich mit einer reduzierten Menge des magnetischen Stoffes. Die Stärke des Detektionssignals hängt von dem zeitbezogenen Gradienten der magnetischen Flussdichte am Magnetsensor ab, so dass ein stärkeres Detektionssignal erzeugt wird, wenn das Sicherheitsmerkmal beispielsweise mit größerer Geschwindigkeit an dem Magnetsensor vorbei bewegt wird, und vor allem, wenn auf dem Sicherheitsmerkmal ein scharfer bzw. schneller Übergang zwischen Bereichen mit verschiedener Magnetisierung vorliegt, mit anderen Worten, wenn ein starker ortsbezogener Gradient der Menge des magnetischen Stoffes auf dem Datenträger vorhanden ist. Ein solcher scharfer Übergang wird beispielsweise durch geradlinige Randkonturen der verschiedenen Bereiche des Sicherheitselements erzeugt, welche vorzugsweise quer zur Detektionsrichtung verlaufen, das heißt quer zu der Richtung, in welcher der Datenträger bei der Detektion der magnetischen Eigenschaften beispielsweise in einem Prüfverfahren gegenüber einem magnetischen Sensor einer entsprechenden Prüfvorrichtung verschoben wird. Diese Detektionsrichtung ist bei der Herstellung des Datenträgers im Allgemeinen bereits bekannt und ist im Allgemeinen gleich der Richtung einer der Kanten des Datenträgers oder des Sicherheitselements. Eine solche Ausrichtung der Kanten führt zu einem hohen Detektionssignal im Magnetsensor und reduziert somit einerseits die notwendige Menge von magnetischen Partikeln in der Druckfarbe und andererseits die notwendige Detektionsempfindlichkeit des Magnetsensors, wodurch das Sicherheitsmerkmal und dessen verschiedene Bereiche mit geringem Aufwand und hoher Detektionssicherheit detektiert werden können.
  • Ist dagegen ein möglichst geringes Detektionssignal des Magnetsensors beim Übergang zwischen Bereichen mit verschiedener Magnetisierung erwünscht, wird vorzugsweise ein langsamer Übergang, das heißt ein breiter Übergangsbereich mit einem kleinen ortsbezogenen Gradienten der Menge des magnetischen Stoffs an dem Übergang, erzeugt und der Übergang verschleiert, indem beispielsweise die Intensität der elektromagnetischen Strahlung, mit der die Menge des magnetischen Stoffs in dem Teilbereich reduziert wird, im Randbereich des Teilbereichs kontinuierlich oder stufenweise verändert wird. Dadurch kann während des Schritts des Reduzierens der Menge des magnetischen Stoffs, beispielsweise über die Intensität der elektromagnetische Strahlung, die Stärke des späteren Detektionssignals des Magnetsensors verändert werden und somit das Sicherheitsmerkmal des Datenträger zusätzlich individualisiert werden. Das Individualisieren wird vorzugsweise durch eine geeignete Wahl der Kontur des Bereichs bzw. der Bereiche der Druckfarbe mit den magnetischen Partikeln unterstützt.
  • Vorteilhafterweise wird die Menge des magnetischen Stoffes in dem zumindest einen Teilbereich nicht vollflächig, sondern nur rasterartig reduziert. Grundgedanke dabei ist es, dass die ortsbezogene Auflösung des Magnetsensors üblicherweise geringer ist als die ortsbezogene Auflösung der zum Reduzieren der Menge des magnetischen Stoffes verwendeten elektromagnetischen Strahlung, beispielsweise des Laserfokus. Dadurch kann beispielsweise ein für den Magnetsensor gut detektierbarer, scharfer Übergang erzeugt werden, während der Farbton der Druckfarbe in dem Teilbereich visuell nicht oder nur geringfügig wahrnehmbar verändert wird. Dazu wird die Breite des Wechselwirkungsbereichs der elektromagnetischen Strahlung vorzugsweise so gewählt, dass innerhalb des Teilbereichs ein visuell kaum wahrnehmbares Rastermuster erzeugt wird. Das Raster umfasst vorzugsweise Punkte oder Linien mit geeignet gewähltem Muster, insbesondere mit variablen Rasterabständen und/ oder Rasterstärken. In einer besonders bevorzugten Ausgestaltung weist der Teilbereich Rasterlinien auf, welche in Richtung der Detektionsrichtung liegen, da sich somit die Position der Rasterlinien während der Detektion gegenüber dem Magnetsensor nicht verändert und daher das Entstehen eines unerwünschten Detektionssignals ausgeschlossen ist.
  • In einer weiteren vorteilhaften Ausgestaltung wird die Menge des magnetischen Stoffes nicht in dem gesamten Druckauftrag der Druckfarbe reduziert sondern lediglich an dessen Oberseite. Dadurch wird die Menge des magnetischen Stoffes nur in einem kleinen Segment des Druckauftrags reduziert, wodurch sich der Farbton der aufgetragenen Druckfarbe visuell nur geringfügig ändert. Ein solches Reduzieren der Menge des magnetischen Stoffes in nur einem oberflächennahen Bereich kann sehr einfach an einem Tiefdruckelement mit einer signifikanten Höhe des Druckauftrags durchgeführt werden, insbesondere an einem taktilen Element. Vorteilhafterweise wird dieses oberflächennahe Reduzieren zugleich rasterartig ausgeführt, was die visuelle Unterscheidbarkeit des Teilbereichs von dem Bereich der Druckfarbe mit nicht reduzierter Menge von magnetischem Stoff weiter reduziert.
  • Vorzugsweise wird der zum Reduzieren der Menge des magnetischen Stoffes verwendete Laser auch zum Einbringen von weiteren Markierungen, beispielsweise individualisierenden Codierungen, in zumindest einem weiteren Sicherheitsmerkmal, beispielsweise in einem Folienelement und/oder einem Sicherheitsfaden, des Datenträgers verwendet.
  • Mittels des vorbeschriebenen Verfahrens ist somit ein Datenträger mit einem aufgedruckten Sicherheitsmerkmal herstellbar, welches einen ersten und einen zweiten Teilbereich mit gleicher Druckschichtdicke und gleicher aufgedruckter Druckfarbe aufweist, wobei der erste Teilbereich eine erste Menge eines magnetischen Stoffes enthält und der zweite Teilbereich eine zweite, geringere, gegenüber dem ersten Teilbereich reduzierte Menge des magnetischen Stoffes enthält. Weitere Teilbereiche des Sicherheitsmerkmals können andere Druckschichtdicken, andere Farbtöne, andere Druckfarben und/ oder andersartige magnetische Stoffe oder Stoffmengen aufweisen.
  • Das Sicherheitsmerkmal kann, wie erwähnt, als ein räumlich zusammenhängender, durchgehender Farbauftrag, das heißt als einzelnes Druckelement, ausgestaltet sein. Die ersten und zweiten Teilbereiche bilden dann Teilbereiche des einzelnen Druckelementes. Das Sicherheitsmerkmal kann auch aus mehreren räumlich voneinander getrennten Druckelementen bestehen. In diesem Fall umfassen der erste und zweite Teilbereich beispielsweise Teilbereiche der verschiedenen Druckelemente oder vorzugsweise eines oder mehrere verschiedene Druckelemente vollständig.
  • Die verschiedenen Teilbereiche des Sicherheitsmerkmals können mit nur einem einzigen Druckschritt hergestellt werden. Mithilfe eines geeigneten Nachbearbeitungsschrittes, vorzugsweise in Form einer Lasereinwirkung, können die magnetischen Eigenschaften der aufgedruckten Druckfarbe bereichsweise gezielt verändert werden. Somit kann ein Datenträger mit einem individualisiertem Sicherheitsmerkmal geschaffen werden.
  • Weitere Ausführungsformen und Vorteile der Erfindung werden nachfolgend beispielhaft anhand der Figuren erläutert. Es zeigen:
  • Fig.1
    eine Banknote mit einem gedruckten Sicherheitsmerkmal in Form einer individualisierten Matrix;
    Fig. 2
    eine Banknote mit einem gedruckten Sicherheitsmerkmal, umfassend ein alphanumerisches Zeichen;
    Fig. 2A-C
    ein gedrucktes Sicherheitsmerkmal, umfassend eine Nummerierung, die mit von Fig. 2A bis Fig. 2C zunehmender Laserleistung gelasert wurde;
    Fig. 3A, 3B
    ein gedrucktes Sicherheitsmerkmal in Form einer Matrix;
    Fig. 4A, 4B
    das Verschleiern einer zuvor ausgeprägten Kante;
    Fig. 5
    das Ausprägen einer zuvor verschleierten Kante;
    Fig. 6A, 6B, 6C
    verschiedene Rastermuster zum Reduzieren der Magnetpigmentmenge
    Fig. 7
    ein magnetisches Detektionssignal; und
    Fig. 8
    eine perspektivische Ansicht eines Tiefdruckelements.
  • Die Erfindung wird nun am Beispiel einer Banknote näher erläutert. Dazu zeigen die Figuren 1 und 2 schematisch eine Banknote 1 mit jeweils zwei Sicherheitsmerkmalen: einem Sicherheitsstreifen 2 und einem aufgedrucktem Sicherheitsmerkmal 3.
  • In einem bevorzugten Ausführungsbeispiel des Herstellungsverfahrens wird das Sicherheitsmerkmal 3 mittels Stichdruck auf den Datenträger aufgedruckt. Die aufzudruckende Druckfarbe setzt sich zusammen aus einer an sich bekannten Stichtiefdruckfarbe als Basisfarbe und aus einer Magnetpaste oder einer andersartigen magnetischen Druckfarbe, welche einen Anteil von 10 bis 60 % an der aufzudruckenden Druckfarbe bildet. In dem bevorzugten Ausführungsbeispiel besteht die magnetische Basisfarbe aus folgenden Bestandteilen:
    • Magnetpigment BASF 345 (Harteisen)   35,0 %;
    • Bindemittel Stichdruck 67 0109/16 (GSI)   37,0 %;
    • Kreide (nicht gecoated)   10,0 %;
    • Anti-Ablegepaste 67 0113 (GSI)   6,0 %;
    • Anti-Ablegepaste 67 0114 (GSI)   6,0 %;
    • Mineralöl 190 - 240°C SB   2,0 %;
    • Mikronisiertes PE-Wachs   2,0 %; und
    • Trockenstoff 67 0141 (GSI)   2,0 %.
  • In der aufgedruckten Druckfarbe beträgt der Anteil des Magnetpigments, das heißt die Menge des magnetischen Stoffes, somit zwischen 5 % und 20 %. Die Mengenangaben beziehen sich auf das Gewicht (Gewichtsprozent).
  • Das Magnetpigment, das Bindemittel und die Kreide bilden den Abreibeanteil der Magnetpaste. Die übrigen Bestandteile bilden den sogenannten Mischanteil der Magnetpaste. Der Abreibeanteil wird mittels eines Drei-Walzen-Stuhls oder einer Perlmühle dispergiert.
  • Die Koerzitivfeldstärke des Magnetpigments sollte zwischen 18 und 40 kA/m liegen. Vorzugsweise wird das isometrische Magnetpigment BASF 345 verwendet, welches eine Koerzitivfeldstärke von 21 kA/m (= 265 Oe) aufweist.
  • Als Basisfarbe für die Druckfarbe wird im bevorzugten Ausführungsbeispiel eine gelbe Stichtiefdruckfarbe verwendet. Es kann aber auch Stichtiefdruckfarbe mit jedem anderen Farbton verwendet werden, solange die Stichtiefdruckfarbe für ein Mischen mit Magnetpaste geeignet ist. Im Allgemeinen haben die Stichtiefdruckfarbe und die magnetische Magnetpaste verschiedener Farbtöne, so dass über deren Mischungsverhältnis nicht nur die magnetischen Eigenschaften der aufgedruckten Druckfarbe, sondern auch deren Farbton beeinflusst werden kann. Im bevorzugten Ausführungsbeispiel sind die Stichtiefdruckfarbe gelb und die Magnetpaste oliv, so dass bei zunehmendem Anteil von Magnetpaste die resultierende Druckfarbe zunehmend dunkel wird. Weiterhin kann die Magnetpaste entsprechend den Anforderungen an die magnetischen Eigenschaften verändert werden, und es können auch mehrere verschiedene Magnetpasten mit einer Stichtiefdruckfarbe zu einer Druckfarbe gemischt werden.
  • Bevorzugt können auch Magnetpasten verwendet werden, die nicht olivfarben, dunkelfarben oder schwarz, sondern die möglichst hell oder weiß sind. Dies hat den Vorteil, dass sie den Farbton einer hellen Stichdruckfarbe nicht oder nur geringfügig verändern. Besonders bevorzugt sind die Magnetpasten transparent für elektromagnetische Strahlung im infraroten Wellenlängenbereich.
  • Anschließend wird das Sicherheitselement mit den gewählten magnetischen Eigenschaften, insbesondere mit der gewählten Menge des Magnetpigments, auf den Datenträger gedruckt. Die durch den Aufdruck erhältliche Remanenz-Flussdichte kann unterhalb der Größenordnung des natürlichen Erdmagnetfeldes (ca. 50 µT) liegen und beispielsweise 10 µT betragen. Die notwendige Flussdichte des Druckauftrags wird durch das Prüfverfahren, insbesondere die Empfindlichkeit der dabei eingesetzten Magnetsensoren, bestimmt.
  • Beispielsweise kann mit dem Tiefdruck ein Farbauftrag von ca. 8 g/m2 erzeugt werden.
  • Anschließend wird die aufgedruckte Druckfarbe mit einem Laser bearbeitet. In dem bevorzugten Ausführungsbeispiel wird hierzu ein Nd:YAG- oder ein Nd:YVO4-Kurzzeitlaser verwendet mit einer Dauerstrich-Leistung im Bereich von 1 bis 10 Watt, beispielsweise 6 Watt, einer Pulsfrequenz von bis zu 100 kHz und einer flächenbezogenen Energie von 1 bis 5 J/cm2. Die Pulslänge der Laserpulse beträgt weniger als 50 ns, vorzugsweise weniger als 20 ns, oder sogar weniger als 1 ns.
  • Die genannten Lasertypen haben eine Wellenlänge von ca. 1064 nm, die von der gelben Stichtiefdruckfarbe der Druckfarbe nicht absorbiert wird. Bei Verwendung anderer Stichtiefdruckfarben muss möglicherweise eine andere Laserwellenlänge gewählt werden, so dass diese in einem Bereich liegt, in der die Stichtiefdruckfarbe nicht oder nur geringfügig absorbiert. Dadurch wechselwirkt der Laser über die gesamte Schichtdicke der aufgetragenen Druckfarbe, was bei starker Laserleistung durch Schmauchspuren auf der Ober- und Unterseite der aufgedruckten Druckfarbe erkannt werden kann.
  • Die Laserparameter, wie Leistung, Pulslänge, Pulsfrequenz, Wechselwirkungsdauer und Spotgröße des Lasers, also dessen Fokussierung, werden zum einen auf die verschiedenen Komponenten der aufgedruckten Druckfarbe als auch auf das gewünschte Ergebnis abgestimmt.
  • Fig. 3A zeigt ein gedrucktes Sicherheitsmerkmal, welches aus einer Matrix von 7 x 3 gleichartig gedruckten Druckelementen besteht. Es kann sich dabei um vollflächig gedruckte oder als Raster gedruckte Druckelemente handeln, beispielsweise um ein im Linientiefdruck gedrucktes Linienraster. In der Matrix wurden die linke Spalte sowie die obere und die untere Zeile der Druckelemente von der Laserbehandlung ausgenommen, also die Druckelemente, die außerhalb des Bereichs A liegen. Die im Bereich A liegenden Druckelemente wurden nach dem Drucken mit einem Laser bearbeitet, wobei zeilenweise nebeneinanderliegende Druckelemente gleichartig bearbeitet wurden. Alle Druckelemente innerhalb des Bereichs A wurden mit der gleichen Laserleistung bearbeitet, jedoch wächst die Wechselwirkungszeit mit dem Laser innerhalb einer Spalte von oben nach unten zunehmend. Rechts neben der Spalte ist der sich durch die Laserbehandlung ergebende Farbabstand zu einem unbearbeiteten Druckelement angegeben. Wie aus Fig. 3A ersichtlich, nimmt der Farbabstand mit zunehmender Wechselwirkungsdauer, das heißt mit der Anzahl der Laserpulse, welche auf das Druckelement eingewirkt haben, zu. Mit anderen Worten wächst mit der Menge des entfernten magnetischen Stoffes nicht nur der Unterschied in der Magnetisierbarkeit und/oder Remanenz-Flussdichte gegenüber einem unbehandelten Druckelement, sondern auch der Farbabstand. Ähnliche Ergebnisse erhält man, wenn mit unterschiedlicher Laserleistung und gleicher Anzahl Laserpulse bearbeitet wird.
  • Typischerweise wird die Menge des Magnetpigments in dem Druckauftrag durch die Laserbehandlung auf 10 bis 50 % des ursprünglichen Wertes reduziert, so dass die Remanenz-Flussdichte beispielsweise von 10 µT auf Werte zwischen 1 und 5 µT, beispielsweise 2,3 oder 4 µT, sinkt.
  • In Fig. 3B ist ein weiteres Sicherheitsmerkmal dargestellt, welches den gleichen räumlichen Matrixaufbau wie das in Fig. 3A gezeigte Sicherheitsmerkmal besitzt. Die aufgetragene Druckfarbe unterscheidet sich jedoch im Mischungsverhältnis der verwendeten Stichtiefdruckfarbe und der Magnetpaste. Der Anteil der oliven Magnetpaste wurde hier gegenüber der gelben Stichtiefdruckfarbe reduziert, wodurch sich ein hellerer Farbton der anfänglich aufgedruckten Druckfarbe gegenüber dem in Fig. 3A gezeigten Ausführungsbeispiel ergibt. In dem in Fig. 3B gezeigten Ausführungsbeispiel wurde zudem eine um den Faktor 4 erhöhte Laserintensität verwendet, wobei durch unterschiedliche Laserleistungen unterschiedliche Anteile der magnetischen Partikel im Druckauftrag entfernt werden können In dem in Fig. 3B gezeigten Ausführungsbeispiel wird ein detektierbarer Unterschied zwischen dem magnetischen Signal eines bearbeiteten und eines unbearbeiteten Druckelementes bereits bei einem geringeren Farbabstand als bei dem in Fig. 3A gezeigten Ausführungsbeispiel erzeugt.
  • Mit der in den Fig. 3A und 3B gezeigten Technik können Codierungen und/ oder Individualisierungen in aus mehreren Druckelementen bestehende Sicherheitsmerkmale eingebracht werden, wie dies in Fig. 1 skizziert ist. Alternativ können auch andere Markierungen, wie alphanumerische Zeichen und/ oder graphische Symbole, in einen durchgehenden Druckbereich eingebracht werden, wie dies in Fig. 2 skizziert ist. In den Fig. 1 und 2 bezeichnet das Bezugszeichen B jeweils die mit dem Laser bearbeiteten Teilbereiche.
  • Die eingebrachte Individualisierung kann sich beispielsweise auf ein vorgegebenes Muster beziehen, kann zur Nummerierungscodierung dienen oder eine Stückelung, beispielsweise einer Banknote, bezeichnen.
  • Die Figuren 2A bis 2C zeigen ein besonders bevorzugtes Ausführungsbeispiel, bei dem das Sicherheitsmerkmal 3 aus einer Buntfarbe besteht, in die eine bestimmte Menge eines magnetischen Pigments eingemischt wurde. In dieses Sicherheitsmerkmal 3 wird mit einem Laser ein Bezugszeichen B in Form einer Nummerierung eingebracht. Das Bezugszeichen B ist hierbei als Negativschrift ausgeführt, d.h. der Laser beaufschlagt großflächig einen Bereich des Sicherheitsmerkmals 3, wobei die Nummerierung durch Verringerung oder Ausschalten der Laserleistung erzeugt wird. Figuren 2A bis 2C zeigen hierbei im jeweils oberen Teil das Sicherheitsmerkmal 3 mit eingebrachtem Bezugszeichen B und im jeweils unteren Teil das Bezugszeichen B, das lediglich in das Substrat der Banknote 1 eingebracht ist.
  • In dem gewählten Ausführungsbeispiel nimmt die beaufschlagte Laserleistung von Fig. 2A nach Fig. 2C hin zu. Hierbei ist:
    • in Fig. 2A die Laserleistung derart gering gewählt, dass der Laser das Substrat der Banknote 1 nicht oder kaum erkennbar verändert bzw. schwärzt (Fig. 2A unten). Trifft der Laser mit der gleichen Laserleistung auf das Sicherheitsmerkmal 3, werden jedoch die magnetischen Pigmente verändert bzw. aufgehellt, so dass der mit dem Laser beaufschlagte Bereich des Sicherheitsmerkmals 3 hell im Vergleich zu den nicht durch den Laser beaufschlagten Bereichen erscheint (Fig. 2A oben). Die Nummerierung erscheint im Farbton der nicht durch den Laser beaufschlagten Bereiche und ist somit als dunkle Schrift gegenüber den mit dem Laser beaufschlagten hellen Bereichen zu erkennen, d.h. die Nummerierung wirkt als Positivschrift.
    • in Fig. 2B die Laserleistung derart gewählt, dass der Laser das Substrat der Banknote 1 erkennbar verändert bzw. schwärzt (Fig. 2B unten). Trifft der Laser mit der gleichen Laserleistung auf das Sicherheitsmerkmal 3, werden die magnetischen Pigmente zwar ebenso wie in Fig. 2A verändert bzw. aufgehellt, die Laserleistung ist jedoch so angepasst, dass durch die gleichzeitige Veränderung bzw. Schwärzung des Substrats der mit dem Laser beaufschlagte Bereich des Sicherheitsmerkmals 3 ebenso hell erscheint wie die nicht durch den Laser beaufschlagten Bereiche (Fig. 2B oben). Dies bedeutet, dass sich die Änderung der magnetischen Pigmente und die durch die Farbe hindurchscheinende Änderung des Substrats für einen Betrachter gegenseitig aufheben. Der mit dem Laser beaufschlagte Bereich ist somit ebenso wie die Nummerierung im Sicherheitsmerkmal 3 nicht zu erkennen.
    • in Fig. 2C die Laserleistung so hoch gewählt, dass der Laser das Substrat der Banknote 1 stark verändert bzw. schwärzt (Fig. 2B unten). Trifft der Laser mit der gleichen Laserleistung auf das Sicherheitsmerkmal 3, werden zwar ebenso wie in Fig. 2A oder Fig. 2B die magnetischen Pigmente verändert bzw. aufgehellt, durch die gleichzeitige starke Veränderung bzw. Schwärzung des Substrats erscheint jedoch der mit dem Laser beaufschlagte Bereich des Sicherheitsmerkmals 3 dunkler bzw. schwarz im Vergleich zu den nicht durch den Laser beaufschlagten Bereichen (Fig. 2C oben). Dies bedeutet, dass die durch die Farbe hindurchscheinende Änderung bzw. Schwärzung des Substrats die Änderung der magnetischen Pigmente überwiegt. Die Nummerierung erscheint im Farbton der nicht durch den Laser beaufschlagten Bereiche und ist somit als helle Schrift gegenüber den mit dem Laser beaufschlagten dunklen Bereichen zu erkennen, d.h. sie wirkt als Negativschrift.
  • In einem weiteren bevorzugten Ausführungsbeispiel integrieren sich sowohl die aufgedruckte Druckfarbe als auch deren mit dem Laser bearbeitete Teilbereiche in das übrige Design des Datenträgers, beispielsweise in einen Untergrunddruck oder in eine anschließende Überdruckung, wodurch das Sicherheitsmerkmal und insbesondere dessen mit dem Laser bearbeitete Teilbereiche kaschiert werden.
  • In den Figuren 4A und 4B ist anhand von zwei Varianten das Verschleiern eines Übergangs zwischen zwei Bereichen eines Sicherheitselements dargestellt. Dazu wird eine räumlich langsame Änderung der Magnetpigmentmenge zwischen einem Bereich C mit aufgebrachter Druckfarbe mit Magnetpigmenten und einem Teilbereich B mit einer reduzierten Menge an Magnetpigmenten erzeugt. Im oberen Teil der beiden Figuren ist jeweils eine Draufsicht auf das Sicherheitsmerkmal gezeigt, in welchem der Teilbereich B rechteckig in dem umgebenden Bereich C ausgebildet ist. Im unteren Teil der beiden Figuren ist die Intensität der zum Reduzieren der Menge der Magnetpigmente verwendeten Laserstrahlung skizziert. Die jeweils linke Kante der Teilbereiche B ist dabei eine sogenannte aufgelöste Kante bzw. ein verschleierter Übergang, welcher bei der Detektion mit dem Magnetsensor kein oder nur ein geringes Signal erzeugen soll, wobei die Detektionsrichtung hier parallel zur x-Richtung liegt. Dazu wird die volle Intensität der Laserstrahlung, die zum Reduzieren der Magnetpigmente um die gewünschte Menge notwendig ist, erst in einem gewissen Abstand vom linken Rand des Teilbereichs B eingestellt. Dazwischen wird die Intensität der Laserstrahlung mit zunehmendem Abstand vom Rand des Teilbereichs B stufenweise (Fig. 4A) oder graduell (Fig. 4B) erhöht, was zu der gewünschten räumlich langsamen Änderung der Magnetpigment-Menge in Richtung der x-Achse führt.
  • Mit derselben Technik der Veränderung der Intensität der Laserstrahlung mit zunehmendem Abstand von einem Rand kann auch eine zunächst scharfe Kante bzw. ein räumlich schneller Übergang, wie er beispielsweise bei einem direkt angrenzenden Druck von zwei Druckfarben mit verschiedenen Magnetpigmentmengen entsteht, in einen unscharfe, verschleierte Kante mit einem breiten Übergangsbereich überführt werden, welche kein oder ein nur geringes Detektionssignal erzeugt.
  • In Fig. 5 ist der umgekehrte Fall dargestellt. Hier wird ein Bereich C mit Druckfarbe mit einer geschwungenen Kante aufgedruckt. Dadurch entsteht durch den Druck eine unscharfe, verschleierte Kante, das heißt die in der Druckfarbe enthaltenen Magnetpigmente erzeugen ein nur geringes Detektionssignal, da die mittlere Magnetpigmentmenge in Abhängigkeit von der Position auf der x-Achse innerhalb des Bereichs der geschwungenen Kante nur langsam zunimmt. Diese unscharfe, verschleierte Kante kann in eine scharfe, ausgeprägte Kante mit einem starken Detektionssignal überführt werden, indem mithilfe von Laserstrahlung in dem Bereich der geschwungenen Kante die Menge der Magnetpigmente in dem Bereich C an die Menge der Magnetpigmente in dem umgebenden Bereich angepasst wird. Im einfachsten Fall sind in dem umgebenden Bereich keine Magnetpigmente vorhanden und im Bereich der geschwungenen Kante von Bereich C werden die Magnetpigmente zur Erzeugung der scharfen Kante vollständig entfernt.
  • In den Figuren 6A, 6B und 6C sind schematisch verschiedene Rastertypen dargestellt, wie sie zur Erzeugung eines Teilbereichs B mit reduzierter Magnetpigmentmenge verwendet werden können. Die dargestellten Rasterpunkte und Rasterlinien stellen dabei den Wechselwirkungsbereich der Laserstrahlung dar. Der Wechselwirkungsbereich ist idealerweise sehr schmal. Das Rastermuster, die Rasterabstände und die Rasterstärken werden dabei entsprechend den Anforderungen ausgewählt und können über den Teilbereich B variieren.
  • Im oberen Teil von Fig. 7 ist schematisch eine Draufsicht auf ein Sicherheitselement gezeigt. Dieses weist einen Bereich C mit einer aufgebrachten Druckfarbe mit Magnetpigmenten und einen Teilbereich B mit der gleichen Druckfarbe, jedoch mit reduzierter Magnetpigmentmenge auf, wobei die Magnetpigmentmenge mithilfe eines Linienrasters reduziert wurde. Im unteren Bereich ist das Detektionssignal U eines Magnetsensors dargestellt, wobei die Detektionsrichtung in x-Richtung liegt. Die Rasterabstände des Linienrasters in Teilbereich B liegen unterhalb des räumlichen Auflösungsvermögens des Magnetsensors, weswegen trotz der Rasterung und der somit nicht vollflächigen Reduzierung der Magnetpigmentmenge in Teilbereich B, an der Grenzlinie D zwischen Bereich C und Teilbereich B eine scharfe Kante liegt, die ein starkes Detektionssignal des Magnetsensors erzeugt. Eine weitere scharfe Kante liegt an der rechten Grenzlinie E von Bereich C. Dieses Ausführungsbeispiel ist für den Fall einer geringen Farbmenge pro Fläche geeignet und ist besonders für helle Druckfarben geeignet.
    In Fig. 8 ist ein Tiefdruckelement in perspektivischer Ansicht dargestellt, welches aus einer Druckfarbe mit Magnetpigmenten besteht. Dabei ist nur in einem oberflächennahen Teilbereich B die Magnetpigmentmenge reduziert. Im übrigen Bereich C des Tiefdruckelements ist die Magnetpigmentmenge nicht reduziert. Ein möglicher Farbumschlag der Druckfarbe des Tiefdruckelement kann dabei lediglich in dem kleinen Teilbereich B stattfinden, was dessen visuelle Wahrnehmbarkeit stark reduziert.
  • Mit dem Laser können bei der Herstellung neben dem Tiefdruckelement 3 auch weitere Sicherheitsmerkmale, wie der in den Figuren 1 und 2 schematisch dargestellte Sicherheitsfaden 2, sonstige Folienelemente und andere für eine Laserbearbeitung geeignete Sicherheitsmerkmale bearbeitet werden.

Claims (19)

  1. Verfahren zur Herstellung eines Datenträgers (1) mit einem gedruckten Sicherheitsmerkmal (3), umfassend den Schritt:
    (1) Drucken von Druckfarbe auf den Datenträger (1) zur Erzeugung zumindest eines Teils des Sicherheitsmerkmals (3), wobei die Druckfarbe eine Menge eines magnetischen Stoffes enthält, indem die Druckfarbe vermischt mit einer Basisfarbe eine Magnetpaste mit para- und/ oder ferro-magnetischen Partikeln umfasst,
    gekennzeichnet durch den weiteren Schritt
    (2) Reduzieren der Menge des magnetischen Stoffes in zumindest einem Teilbereich (A, B) der gedruckten Druckfarbe, indem mindestens ein Teil der magnetischen Partikel entfernt bzw. gelöscht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Reduzieren der Menge des magnetischen Stoffes durch Wechselwirkung mit der Strahlung einer elektromagnetischen Strahlungsquelle, insbesondere eines Lasers, vorzugsweise mit Pulslängen kleiner als 50 ns, erfolgt.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich durch das Reduzieren der Menge des magnetischen Stoffes der Farbton der Druckfarbe des Teilbereiches (A, B) um einen Farbabstand von weniger als 25, vorzugsweise weniger als 15, 5, 2 oder 1, ändert.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Teilbereich (A, B) durch einen Unterdruck und/ oder einen Überdruck kaschiert wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Drucken der Druckfarbe auf dem Datenträger (1) ein taktil wahrnehmbares Element erzeugt, das Aufbringen vorzugsweise durch einen Tiefdruck geschieht und weiter vorzugsweise in dem Teilbereich ein Farbauftrag von 8 g/m2 aufgebracht wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch den weiteren Schritt:
    - Drucken von weiterer Druckfarbe auf den Datenträger (1) zur Erzeugung eines weiteren Teils des Sicherheitsmerkmals, wobei der weitere Teil des Sicherheitsmerkmals sich von dem in Schritt (1) aufgebrachten Teil in der Menge des magnetischen Stoffes, die die weitere Druckfarbe beim Aufdrucken enthält, im Farbton der Druckfarbe, und/oder in der Dicke des Druckauftrags unterscheidet.
  7. Verfahren nach Anspruch 6, gekennzeichnet durch den weiteren Schritt:
    - Reduzieren der Menge des magnetischen Stoffes in zumindest einem Teilbereich (A, B) der weiteren gedruckten Druckfarbe.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontur des Bereichs der Druckfarbe und/oder des Teilbereichs (A, B) eine quer zu einer Detektionsrichtung liegende, geradlinige Kante, eine quer zu der Detektionsrichtung liegende, geschwungene Kante und/ oder eine quer zu der Detektionsrichtung liegende Kante mit einem breiten Übergangsbereich aufweist.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Menge des magnetischen Stoffes in dem zumindest einen Teilbereich (A, B) rasterartig reduziert ist.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Menge des magnetischen Stoffes in dem zumindest einen Teilbereich (A, B) nur an der Oberfläche der Druckfarbe reduziert wird.
  11. Verfahren nach einem der Ansprüche 2 bis 10, gekennzeichnet durch den weiteren Schritt:
    - Einbringen einer Codierung in ein weiteres Sicherheitsmerkmal (2) des Datenträgers (1), vorzugsweise in ein Folienelement und/oder einen Sicherheitsfaden, durch Wechselwirkung mit der elektromagnetischen Strahlung.
  12. Datenträger (1) mit einem gedruckten Sicherheitsmerkmal (3), wobei das Sicherheitsmerkmal (3) einen ersten (C) und einen zweiten Teilbereich (A, B) mit gleicher Druckschichtdicke und gleicher gedruckter Druckfarbe aufweist, wobei die Druckfarbe vermischt mit einer Basisfarbe einen magnetischen Stoff in Form einer Magnetpaste mit para- und/oder ferro-magnetischen Partikeln umfasst, und der erste Teilbereich (C) eine erste Menge des magnetischen Stoffes enthält, dadurch gekennzeichnet, dass der zweite Teilbereich (A, B) eine gegenüber dem ersten Teilbereich (C) reduzierte, zweite Menge des magnetischen Stoffes aufweist, wobei mindestens ein Teil der magnetischen Partikel entfernt bzw. gelöscht ist.
  13. Datenträger (1) nach Anspruch 12, dadurch gekennzeichnet, dass der Farbabstand zwischen dem Farbton des ersten Teilbereichs (C) und dem Farbton des zweiten Teilbereichs (A, B) weniger als 25, vorzugsweise weniger als 15, 5, 2 oder 1, beträgt.
  14. Datenträger (1) nach einem der Ansprüche 12 bis 13, dadurch gekennzeichnet, dass der erste (C) und/ oder zweite Teilbereich (A, B) durch einen Unterdruck und/ oder einen Überdruck kaschiert ist.
  15. Datenträger (1) nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass das Sicherheitsmerkmal (3) ein taktil wahrnehmbares Druckelement bildet, vorzugsweise ein Tiefdruckelement ist, und weiter vorzugsweise der Farbauftrag in dem ersten (C) und zweiten Teilbereich (A, B) des Sicherheitsmerkmals (3) 8 g/m2 beträgt.
  16. Datenträger (1) nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass das gedruckte Sicherheitsmerkmal (3) einen weiteren mit magnetischer Druckfarbe gedruckten Teilbereich umfasst, welcher sich von dem ersten Teilbereich des Sicherheitsmerkmals in der Menge des magnetischen Stoffes in der Druckfarbe, im Farbton der Druckfarbe und/oder in der Dicke des Druckauftrags unterscheidet.
  17. Datenträger (1) nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass die Kontur von zumindest einem der Teilbereiche des Sicherheitsmerkmals (3) eine quer zu einer Detektionsrichtung liegende, geradlinige Kante, eine quer zu der Detektionsrichtung liegende, geschwungene Kante und/ oder eine quer zu der Detektionsrichtung liegende Kante mit einem breiten Übergangsbereich aufweist.
  18. Datenträger (1) nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass die Menge des magnetischen Stoffes in dem zweiten Teilbereich (A, B) rasterartig reduziert ist.
  19. Datenträger (1) nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass die Menge des magnetischen Stoffes in dem zweiten Teilbereich (A, B) nur an der Oberfläche der Druckfarbe reduziert ist.
EP09777185.1A 2008-07-17 2009-07-14 Datenträger mit gedrucktem, unterschiedlich magnetischem sicherheitsmerkmal Not-in-force EP2315669B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008033693A DE102008033693A1 (de) 2008-07-17 2008-07-17 Datenträger mit einem gedruckten magnetischen Sicherheitsmerkmal
PCT/EP2009/005116 WO2010006767A2 (de) 2008-07-17 2009-07-14 Datenträger mit einem gedruckten magnetischen sicherheitsmerkmal

Publications (2)

Publication Number Publication Date
EP2315669A2 EP2315669A2 (de) 2011-05-04
EP2315669B1 true EP2315669B1 (de) 2016-11-09

Family

ID=41427227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09777185.1A Not-in-force EP2315669B1 (de) 2008-07-17 2009-07-14 Datenträger mit gedrucktem, unterschiedlich magnetischem sicherheitsmerkmal

Country Status (5)

Country Link
EP (1) EP2315669B1 (de)
AU (1) AU2009270482B2 (de)
DE (1) DE102008033693A1 (de)
RU (1) RU2498906C2 (de)
WO (1) WO2010006767A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011105399A1 (de) * 2011-06-22 2012-12-27 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zum Herstellen desselben sowie Verwendung des Sicherheitselements
RU2568708C2 (ru) * 2014-03-18 2015-11-20 Федеральное Государственное Унитарное Предприятие "Гознак" (Фгуп "Гознак") Многослойный полимерный защитный элемент
DE102015121822A1 (de) 2015-12-15 2017-06-22 Bogen Electronic Gmbh Gegenstand mit Informationen sowie Verfahren zum Aufbringen und Auslesen der Informationen des Gegenstands
DE102015121812B4 (de) 2015-12-15 2017-11-02 Bogen Electronic Gmbh Gegenstand, Verfahren zum Herstellen des Gegenstands und Verfahren zum Bestimmen einer Position des Gegenstands
CN106599966B (zh) 2016-12-08 2020-04-28 中钞特种防伪科技有限公司 防伪元件及防伪产品
DE102017202628B4 (de) 2017-02-17 2022-03-17 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Kodieren eines plattenartigen Werkstücks, Verfahren zum Identifizieren eines plattenartigen Werkstücks, Strahlungsbearbeitungsvorrichtung und Kodiersystem
AU2018294308B2 (en) * 2017-06-26 2023-05-04 Sicpa Holding Sa Printing of security features
RU174923U1 (ru) * 2017-07-25 2017-11-10 Акционерное общество "ГОЗНАК" Прибор для измерения остаточного уровня магнитного потока печатных оттисков

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2129198A5 (en) * 1971-05-18 1972-10-27 Cit Alcatel Composite plastic signs - mfd as blank sheets incorporating latent photo-sensitive tamperproof colourants
GB1556241A (en) * 1977-10-19 1979-11-21 Emi Ltd Secure system for dispensing of cash goods or services
DE19548528A1 (de) * 1995-12-22 1997-06-26 Giesecke & Devrient Gmbh Sicherheitsdokument mit einem Sicherheitselement und Verfahren zu dessen Herstellung
WO2005108109A1 (de) * 2004-05-05 2005-11-17 Giesecke & Devrient Gmbh Wertdokument
WO2006053685A2 (de) 2004-11-18 2006-05-26 Giesecke & Devrient Gmbh Wertdokumente, herstellung und prüfung von wertdokumenten
DE102004057918A1 (de) * 2004-11-30 2006-06-01 Merck Patent Gmbh Laserkennzeichnung von Wertdokumenten
DE102006014367A1 (de) 2006-03-27 2007-10-04 Giesecke & Devrient Gmbh Datenträger und Verfahren zu seiner Herstellung
DE102007055112A1 (de) * 2007-01-05 2008-07-10 Giesecke & Devrient Gmbh Verfahren zur Herstellung von Sicherheitsfolien

Also Published As

Publication number Publication date
RU2498906C2 (ru) 2013-11-20
WO2010006767A3 (de) 2010-05-14
EP2315669A2 (de) 2011-05-04
AU2009270482A1 (en) 2010-01-21
DE102008033693A1 (de) 2010-01-21
WO2010006767A2 (de) 2010-01-21
AU2009270482B2 (en) 2013-08-01
RU2011105739A (ru) 2012-09-27

Similar Documents

Publication Publication Date Title
EP2315669B1 (de) Datenträger mit gedrucktem, unterschiedlich magnetischem sicherheitsmerkmal
EP0863815B1 (de) Datenträger mit optisch variabler farbe
EP1458577B1 (de) Sicherheitselement und verfahren seiner herstellung
EP1317346B1 (de) Datenträger, verfahren zu seiner herstellung und stichtiefdruckplatte
EP1744899B1 (de) Wertdokument
EP2007586B9 (de) Sicherheitselement mit visuell und taktil erkennbaren echtheitsmerkmalen
EP1575785B1 (de) Sicherheitselement mit zwei unterschiedlichen, lesbaren informationen
DE102004022079A1 (de) Wertdokument mit Seriennummer
EP2886362B1 (de) Wertdokument
EP1404531B1 (de) Sicherheitselement
EP1744905A1 (de) Schichtartiges wertdokument mit farbgemisch in einer schicht
EP1436775A1 (de) Gedruckte, maschinenlesbare codierung, dokument mit einer solchen codierung und verfahren zur herstellung der codierung und des dokuments
EP1609619A2 (de) Sicherheitselement mit eingebrachten Motiven
EP2465703B1 (de) Strukturiertes Colorshift-Sicherheitselement
WO2012113546A2 (de) Individualisiertes durchsichtsregister
EP2723578B1 (de) Sicherheitselement und verfahren zum herstellen desselben sowie verwendung des sicherheitselements
EP2606474A1 (de) Verifikation von sicherheitselementen mit fenster und weiterer information
EP3666542A2 (de) Verfahren zum herstellen eines laminats und laminat sowie sicherheits- oder wertdokument mit einem innenliegenden sicherheitsmerkmal
WO2018065496A1 (de) Sicherheitselement und wertdokument mit diesem sicherheitselement
EP3231625B1 (de) Ein verfahren zur laserbehandlung einer beschichtung mit effektpigmenten
DE102015004072A1 (de) Mehrfarbiges Sicherheitselement mit Effektfarben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110217

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009013361

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B41M0003140000

Ipc: B42D0025410000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B42D 25/29 20140101ALI20160520BHEP

Ipc: B41M 3/14 20060101ALI20160520BHEP

Ipc: B42D 25/41 20140101AFI20160520BHEP

INTG Intention to grant announced

Effective date: 20160610

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 843542

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013361

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009013361

Country of ref document: DE

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: GIESECKE & DEVRIENT GMBH, 81677 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013361

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170724

Year of fee payment: 9

Ref country code: DE

Payment date: 20170731

Year of fee payment: 9

Ref country code: FR

Payment date: 20170720

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180118 AND 20180124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170714

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170714

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 843542

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009013361

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180714

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109