EP2310748A2 - Heat shield arrangement - Google Patents

Heat shield arrangement

Info

Publication number
EP2310748A2
EP2310748A2 EP09761668A EP09761668A EP2310748A2 EP 2310748 A2 EP2310748 A2 EP 2310748A2 EP 09761668 A EP09761668 A EP 09761668A EP 09761668 A EP09761668 A EP 09761668A EP 2310748 A2 EP2310748 A2 EP 2310748A2
Authority
EP
European Patent Office
Prior art keywords
heat shield
seal
groove
support structure
shield assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09761668A
Other languages
German (de)
French (fr)
Other versions
EP2310748B1 (en
Inventor
Marcus ZURHORST
Jens Kleinfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2310748A2 publication Critical patent/EP2310748A2/en
Application granted granted Critical
Publication of EP2310748B1 publication Critical patent/EP2310748B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices

Definitions

  • the invention relates to a heat shield assembly consisting of a support structure and a heat shield attached thereto with a voltage applied to the support structure, circumferential side wall wherein the side wall at least partially has a groove and an inner space facing the support structure and defined by groove and sidewall groove edges.
  • the invention further relates to a combustion chamber having a heat shield assembly, and a gas turbine having such a combustion chamber.
  • US Pat. No. 6,470,685 B2 discloses a heat shield arrangement having a first heat shield and a second heat shield adjacent thereto, leaving a gap.
  • the individual heat shields are attached to a support structure, so that in each case an interior space is limited.
  • On the hot wall side of a heat shield a plurality of projecting into the interior of the rods are mounted, which allow better cooling of the heat shield from the interior.
  • the side walls of the heat shields are extended with an additional element, ie the side walls are located directly on the support structure on. In order to allow air to escape from the interior, cooling holes are introduced in the side walls.
  • GB 2 298 266 A discloses a heat shield assembly with heat shields overlapping in the end regions. This thus forms a complete coverage of the wall to be protected from hot gas. At least one side wall of each heat shield lies with at least one contact point directly on the support structure. In order to allow air to escape, cooling holes are introduced both in the hot side of the heat shields and in the side walls.
  • EP 1 507 116 A1 has a heat shield arrangement which comprises a plurality of heat shields arranged next to one another on a support structure while leaving a gap, wherein one or each heat shield is mounted on a support structure, so that an interior space is formed. Through an inlet channel coolant flows into the interior.
  • the side walls are not directly on the support structure, but are connected via a respective seal with the support structure.
  • the sealing element connects directly to the side wall, i. It represents a direct extension of this side wall dar. The thus extended side wall is located on the
  • the sealing element thereby fulfill both a sealing function for the coolant and a mechanical damping function for the heat shield assembly.
  • a sealing function for the coolant for the exit of the coolant from the interior of adeffenauslass- channel is provided, which opens into the gap.
  • the known heat shields are based on the principle that the heat shield walls rest directly on the support structure during the assembly of the heat shields.
  • For the cooling of the heat shields there are cooling openings which lead from the heat shield interior into the combustion chamber.
  • the coolant is completely or partially passed through the cooling holes in this gap.
  • the object of the invention is to provide an improved in terms of cooling efficiency heat shield assembly, which is characterized by an increase in efficiency.
  • the heat shield assembly should be usable in a combustion chamber for gas turbines.
  • a heat shield assembly consisting of a support structure and an attached heat shield with a voltage applied to the support structure, circumferential side wall wherein the side wall at least partially has a groove and an inner space facing the support structure and defined by groove and sidewall groove edges wherein the groove comprises a seal having at least two opposite edges, wherein the seal is clamped in the groove such that the at least two opposite edges are bent into the groove edges upon mounting of the heat shield on the support structure, such that rolling of the seal on the support structure is ensured, whereby a sealing function is ensured even during operation.
  • the invention is based on the observation that at the high temperatures required for the combustion in the heat shields discussed above, thermally-induced occur so that the corners of the heat shields are pressed against the support structure.
  • the hot-side center of the heat shields arches up.
  • the individual sides of the heat shields resting on the support structure, which form the side wall, likewise bulge away from the support structure in such a way that the side center of the support structure is now spaced apart by a thermally-induced gap.
  • a seal is mounted in the groove.
  • the seal is strained so that the two edges point away from the support side.
  • these edges are pressed into the Nutkanten, that is bent to the side wall of the heat shield.
  • the sealing function is guaranteed, so to speak, by the clamping of the seal in the groove edges, since the groove edges hold the seal in its desired position. Due to the shape of the gasket clamped in this way, it is unrolled on the entire support structure.
  • the thermally induced gap is optimally closed.
  • the bias counteracts a thermal warping, as would be effected at a temperature gradient occurring with a non-preloaded seal.
  • the heat shield bulges in the operating state. In this condition, essentially only the four heat shield ceilings remain in contact with the supporting structure. This has the effect that, in the critical operating state, the seal is, so to speak, held down in the groove edges, that is, remains in its previously desired position. This ensures the correct seat of the seal in all operating conditions, the function of the seal thus always ensured.
  • the seal can fulfill its function optimally, as it always remains in the desired position.
  • the coolant is essentially usually give as cooling air, which is wholly or partially removed from the compressor, which is arranged downstream of the combustion chamber.
  • the seal is completely embedded in the groove.
  • the seal is tightened particularly sure-fire-proof.
  • the seal is an elastic bending strip. This one can be particularly well stretched and in the Groove be introduced and is easy to manufacture.
  • the strip may also be tubular.
  • the seal is made of metal or metal alloy. This is particularly heat and temperature resistant.
  • the groove is arranged circumferentially over the entire side wall.
  • the groove is arranged in regions over the entire side wall. This can be decided depending on the type of heat shield and production factors.
  • the seal has a bending radius by the bracing.
  • FIG 3 top view of a cut-open heat shield with groove
  • FIG. 3 a schematic side view of a cut-open heat shield arrangement with a seal (planar)
  • 3b shows a schematic side view of a cut-open heat shield arrangement with a seal (concave)
  • 3c schematic side view of a cut-open heat shield arrangement with seal (convex) 4 shows a schematic drawing of the forces acting on the heat shield and the seal during operation
  • a gas turbine has an upstream compressor for combustion air, an intermediate combustion chamber and a turbine for driving the compressor and a generator or a work machine, not shown.
  • the combustion chamber comprises a support structure on which heat shield assemblies are attached.
  • the heat shield assembly 1 shows an example of a heat shield arrangement 1 in the case of thermal deformation according to the prior art.
  • the heat shield assembly 1 has a support structure 2 and a heat shield 3 with a hot side 5.
  • a side wall 4 is inclined relative to the hot side 5.
  • the heat shield arrangement 1 forms an interior 10, which is supplied with cooling medium 14, preferably cooling air, which is taken from a compressor, from the side of the support structure 2 through the supply channels 15.
  • cooling medium 14 preferably cooling air, which is taken from a compressor, from the side of the support structure 2 through the supply channels 15.
  • cooling medium 14 preferably cooling air, which is taken from a compressor
  • a thermally induced curvature 12 occurs between the support structure 2 and the side wall 4 in the heat shield 3.
  • a heat-induced gap 13 occurs between the support structure 2 and the side wall 4 in the heat shield 3.
  • Through this coolant 14 escapes unhindered into the combustion chamber.
  • 2 shows a heat shield assembly 1 on a support structure 2 with groove 7 and groove edges.
  • FIG 3 shows a plan view of a cut-open heat shield with a groove 7.
  • the groove 7 is arranged in regions.
  • the groove edges 16 are defined by the groove 7 and the side wall 4.
  • the heat-shielded ceilings 22 remain on the support structure 2, while the centers of the side walls 4 bulge so that they can release a gap 13 through the coolant 14.
  • FIG. 3a shows a schematic side view of a cutaway heat shield arrangement with a seal 6 (planar support structure).
  • a groove 7 with the groove edges 16 is present.
  • the seal has edges 8 (ends).
  • the seal 6 with the edges 8 is introduced into the groove 16.
  • the seal 6 is shaped such that the edges 8 of the seal 6 in the groove edges 16 is up. If now the heat shield 3 is mounted over the seal 6, the edges 8 are pressed into the groove edges 16, that is, bent to the side wall 4. Thus, the seal 6 is clamped in the groove 7. Due to the distortion, the seal 6 has a bending radius 20.
  • the bending radius 20 of the seal 6 is smaller than the radius of the sealing surface in planar (FIG 3a) or convex (FIG 3b) to be sealed surfaces.
  • the bending radius 20 of the seal 6 is greater than the radius of the sealing surface. Therefore, it is unrolled by the shape of the seal 6 on the support structure 2.
  • the heat shield 3 bulges. In this state, essentially only at the heat ceiling 22, it has contact with the support structure 2.
  • the thermally induced gap 14 is optimally closed.
  • the bias causes the seal 6 to become in use, i. Do not warp when exposed to temperature, as would happen, for example, with a non-strained component. Since the heat shield 3 has contact with the support structure 2 on the heat cable covers 22 in every operating state, this ensures a correct seat in each of the operating states. Thus, the seal 6 thus always remains in its predetermined, desired position and can therefore optimally fulfill its sealing function.
  • a seal 6 may for example consist of a thin bent metal strip or a thin bent metal tube.
  • FIG 4 shows a schematic drawing of the forces acting on the heat shield 1 and the seal 6 in operation.
  • the force F acts on the heat shield ceilings 22 and presses them onto the support structure 2.
  • the seal 6 is unrolled on the support structure 2.
  • the bias causes a fixed, desired position of the seal 6 under all operating conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Gasket Seals (AREA)

Abstract

The invention relates to a heat shield arrangement (1) comprising a support structure (2) and a heat shield (3) which is mounted thereon and has a circumferential sidewall (4) that lies on the support structure (2). At least some areas of the sidewall (4) have a groove (7). The heat shield (3) also has an interior space (10) facing the support structure (2) as well as groove edges (16) defined by the groove (7) and the sidewall (4). The groove (7) encompasses a seal (6) that has at least two opposite edges (8) and is braced within the groove (7) in such a way that the at least two opposite edges (8) are bent into the groove edges (16) when the heat shield (3) is mounted on the support structure (2) such that it is ensured that the seal (6) rolls off on the support structure (2), thus ensuring a sealing function also during operation. The invention further relates to a combustion chamber comprising the heat shield arrangement according to the invention as well as a gas turbine.

Description

Beschreibungdescription
HitzeSchildanordnungHeat shield arrangement
Die Erfindung betrifft eine Hitzeschildanordnung bestehend aus einer Tragstruktur und einem daran befestigten Hitzeschild mit einer auf der Tragstruktur anliegenden, umlaufenden Seitenwand wobei die Seitenwand zumindest bereichsweise eine Nut aufweist sowie einer der Tragstruktur zugewandten Innenraum sowie durch Nut und Seitenwand definierte Nutkanten. Die Erfindung betrifft ferner eine Brennkammer, die eine Hitzeschildanordnung aufweist, sowie eine Gasturbine mit einer derartigen Brennkammer.The invention relates to a heat shield assembly consisting of a support structure and a heat shield attached thereto with a voltage applied to the support structure, circumferential side wall wherein the side wall at least partially has a groove and an inner space facing the support structure and defined by groove and sidewall groove edges. The invention further relates to a combustion chamber having a heat shield assembly, and a gas turbine having such a combustion chamber.
Aufgrund der in Heißgaskanälen oder anderen Heißgasräumen herrschenden hohen Temperaturen ist es erforderlich, die Innenwandung eines Heißgaskanals bestmöglichst temperaturresis- tent zu gestalten. Hierzu bieten sich hochwarmfeste Werkstoffe, z. B. Keramiken an. Der Nachteil keramischer Werkstoffe liegt sowohl in ihrer starken Sprödigkeit sowie in ihrem ungünstigen Temperaturleitverhalten. Als Alternative zu keramischen Werkstoffen für Hitzeschilde bieten sich hochwarmfeste metallische Legierungen auf Eisen, Nickel- oder Kobaltbasis an. Da die Einsatztemperatur von hochwarmfesten Metalllegie- rungen aber deutlich unter der Heißgastemperatur liegt, ist es erforderlich, metallische Hitzeschilde in Heißgaskanälen zu kühlen.Due to the high temperatures prevailing in hot gas ducts or other hot gas spaces, it is necessary to design the inner wall of a hot gas duct in the best possible temperature-resistant manner. For this purpose, offer high-temperature materials, eg. As ceramics. The disadvantage of ceramic materials lies both in their strong brittleness and in their unfavorable thermal conductivity. As an alternative to ceramic materials for heat shields offer high-temperature metallic alloys based on iron, nickel or cobalt. However, since the operating temperature of high-temperature metal alloys is well below the hot gas temperature, it is necessary to cool metallic heat shields in hot gas ducts.
Die US 6 470 685 B2 offenbart eine Hitzeschildanordnung mit einem ersten Hitzeschild und einem dazu benachbarten, unter Belassung eines Spalts angeordneten zweiten Hitzeschild. Die einzelnen Hitzeschilde sind an einer Tragstruktur angebracht, so dass jeweils ein Innenraum begrenzt wird. An der Heißwandseite eines Hitzeschilds sind eine Vielzahl in den Innenraum hineinragende Stäbe angebracht, die eine bessere Kühlung des Hitzeschilds vom Innenraum her ermöglichen. Die Seitenwände der Hitzeschilde sind mit einem zusätzlichen Element verlängert, d.h. die Seitenwände liegen direkt an der Tragstruktur auf. Um ein Ausströmen der Luft aus dem Innenraum zu ermöglichen, sind Kühlöffnungen in den Seitenwänden eingebracht.US Pat. No. 6,470,685 B2 discloses a heat shield arrangement having a first heat shield and a second heat shield adjacent thereto, leaving a gap. The individual heat shields are attached to a support structure, so that in each case an interior space is limited. On the hot wall side of a heat shield, a plurality of projecting into the interior of the rods are mounted, which allow better cooling of the heat shield from the interior. The side walls of the heat shields are extended with an additional element, ie the side walls are located directly on the support structure on. In order to allow air to escape from the interior, cooling holes are introduced in the side walls.
Die GB 2 298 266 A offenbart eine Hitzeschildanordnung mit sich in den Endbereichen überlappenden Hitzeschilden. Diese bildet somit eine vollständige Überdeckung der zu schützenden Wand vor Heißgas. Mindestens eine Seitenwand jedes Hitzeschilds liegt mit mindestens einem Kontaktpunkt direkt auf der Tragstruktur. Um ein Ausströmen der Luft zu ermöglichen, sind sowohl in der Heißseite der Hitzeschilde als auch in den Seitenwänden Kühlöffnungen eingebracht.GB 2 298 266 A discloses a heat shield assembly with heat shields overlapping in the end regions. This thus forms a complete coverage of the wall to be protected from hot gas. At least one side wall of each heat shield lies with at least one contact point directly on the support structure. In order to allow air to escape, cooling holes are introduced both in the hot side of the heat shields and in the side walls.
Die EP 1 507 116 Al weist eine Hitzeschildanordnung auf, die mehrere unter Belassung eines Spalts nebeneinander an einer Tragstruktur angeordneten Hitzeschilde umfasst, wobei ein oder jedes Hitzeschild auf einer Tragstruktur angebracht ist, so dass ein Innenraum gebildet wird. Durch einen Einlasskanal strömt Kühlmittel in den Innenraum. Für eine wärmedehnungstolerante und, gegenüber auftretenden mechanischen Belastungen in einer Brennkammer resistente Befestigung der Hitzeschilde, liegen die Seitenwände nicht direkt auf der Tragstruktur auf, sondern sind über ein jeweiliges Dichtung mit der Tragstruktur verbunden. Das Dichtelement schließt direkt an die Seitenwand an, d.h. es stellt eine direkte Verlängerung dieser Seitenwand dar. Die so verlängerte Seitenwand liegt an derEP 1 507 116 A1 has a heat shield arrangement which comprises a plurality of heat shields arranged next to one another on a support structure while leaving a gap, wherein one or each heat shield is mounted on a support structure, so that an interior space is formed. Through an inlet channel coolant flows into the interior. For a heat-expansion-tolerant and, in relation to mechanical loads occurring in a combustion chamber resistant mounting of the heat shields, the side walls are not directly on the support structure, but are connected via a respective seal with the support structure. The sealing element connects directly to the side wall, i. It represents a direct extension of this side wall dar. The thus extended side wall is located on the
Tragstruktur auf. Das Dichtelement erfüllen dabei sowohl eine Dichtfunktion für das Kühlmittel als auch eine mechanische Dämpfungsfunktion für die Hitzeschildanordnung. Zum Austritt des Kühlmittels aus dem Innenraum ist ein Kühlmittelauslass- kanal vorgesehen, der in den Spalt einmündet.Support structure on. The sealing element thereby fulfill both a sealing function for the coolant and a mechanical damping function for the heat shield assembly. For the exit of the coolant from the interior of a Kühlmittelauslass- channel is provided, which opens into the gap.
Zusammenfassend liegt den bekannten Hitzeschilden das Prinzip zugrunde, dass die Hitzeschildwände bei der Montage der Hitzeschilde direkt an der Tragstruktur aufliegen. Für die Küh- lung der Hitzeschilde sind Kühlöffnungen vorhanden, die vom Hitzeschildinnenraum in die Brennkammer führen. Um den Spalt benachbarter Hitzeschildanordnungen gegen Heißgas abzudich- ten, wird das Kühlmittel vollständig oder teilweise durch die Kühlöffnungen in diesen Spalt geleitet.In summary, the known heat shields are based on the principle that the heat shield walls rest directly on the support structure during the assembly of the heat shields. For the cooling of the heat shields, there are cooling openings which lead from the heat shield interior into the combustion chamber. To dampen the gap between adjacent heat shield assemblies against hot gas. th, the coolant is completely or partially passed through the cooling holes in this gap.
Grundlegend gemeinsam ist den beschriebenen Hitzeschildanord- nungen, dass Verdichterluft als Kühlmedium für die Brennkammer und deren Auskleidung benutzt wird. Das Kühlmittel tritt in die Brennkammer ein, ohne an der Verbrennung teilgenommen zu haben. Es ist bekannt, dass sich der Kühlmittelverbrauch hinsichtlich des Wirkungsgrads negativ auswirkt und höhere Emissionswerte durch die erforderliche höhere Einstellung der Flammentemperatur erzeugt. Den Hitzeschildanordnungen liegt damit das Ziel zugrunde, den Kühlmittelverbrauch möglichst gering zu halten.Fundamentally common to the heat shield arrangements described is that compressor air is used as the cooling medium for the combustion chamber and its lining. The coolant enters the combustion chamber without having participated in the combustion. It is known that the coolant consumption has a negative effect on the efficiency and produces higher emission values due to the required higher setting of the flame temperature. The heat shield arrangements is thus based on the goal of keeping the coolant consumption as low as possible.
Aufgabe der Erfindung ist es, eine hinsichtlich der Kühleffizienz verbesserte Hitzeschildanordnung anzugeben, die sich durch eine Steigerung des Wirkungsgrades auszeichnet. Die Hitzeschildanordnung soll in einer Brennkammer für Gasturbinen einsetzbar sein.The object of the invention is to provide an improved in terms of cooling efficiency heat shield assembly, which is characterized by an increase in efficiency. The heat shield assembly should be usable in a combustion chamber for gas turbines.
Diese Aufgabe wird erfindungsgemäß gelöst durch die Angabe einer Hitzeschildanordnung , bestehend aus einer Tragstruktur und einem daran befestigten Hitzeschild mit einer auf der Tragstruktur anliegenden, umlaufenden Seitenwand wobei die Seitenwand zumindest bereichsweise eine Nut aufweist sowie einer der Tragstruktur zugewandten Innenraum sowie durch Nut und Seitenwand definierte Nutkanten wobei die Nut eine Dichtung mit mindestens zwei gegenüberliegenden Kanten umfasst, wobei die Dichtung derart in der Nut verspannt wird, dass die mindestens zwei gegenüberliegende Kanten bei Montage des Hitzeschildes auf der Tragstruktur in die Nutkanten gebogen werden, so dass ein Abrollen der Dichtung auf der Tragstruktur gewährleistet ist, wodurch eine Dichtfunktion auch bei Betrieb gewährleistet ist.This object is achieved by the disclosure of a heat shield assembly consisting of a support structure and an attached heat shield with a voltage applied to the support structure, circumferential side wall wherein the side wall at least partially has a groove and an inner space facing the support structure and defined by groove and sidewall groove edges wherein the groove comprises a seal having at least two opposite edges, wherein the seal is clamped in the groove such that the at least two opposite edges are bent into the groove edges upon mounting of the heat shield on the support structure, such that rolling of the seal on the support structure is ensured, whereby a sealing function is ensured even during operation.
Die Erfindung geht von der Beobachtung aus, dass bei den für die Verbrennung erforderlichen hohen Temperaturen bei den oben diskutierten Hitzeschilden thermisch-induzierte Verwöl- bungen auftreten, dergestalt, dass die Ecken der Hitzeschilde an die Tragstruktur gepresst werden. Die Heißseitenmitte der Hitzeschilde wölbt sich auf. Die an der Tragstruktur aufliegenden einzelnen Seiten der Hitzeschilde, welche die Seiten- wand bilden, wölben sich ebenfalls von der Tragstruktur weg und zwar dergestalt, dass die Seitenmitte von der Tragstruktur nun durch einen thermisch-induzierten Spalt beabstandet ist. Die im kalten Zustand dicht an der Tragstruktur aufliegenden Seiten der Hitzeschilde weisen nun einen Spalt auf. Dieser kann bei einer typischen Kantenlänge von 200mm typischerweise bis zu 2,0 mm betragen. Durch diesen thermischinduzierten Spalt entsteht jedoch ein unkontrollierter, vermehrter Kühlmittelaustritt, was dazu führt, dass bei mehreren benachbart zueinander angeordneten Hitzeschilden der Spalt zwischen diesen Hitzeschilden gegen Eintritt von Heißgas in diese Spalte nicht ausreichend thermisch gesperrt wird. Dies führt daher zu einem deutlich vermehrten Kühlmittelverbrauch als für die Kühlaufgabe und die Sperraufgabe des Spalts eigentlich erforderlich wäre. Ein erhöhter Kühlmittelverbrauch führt aber zu einem niedrigeren Wirkungsgrad. Bislang wurde, wollte man diesen Wirkungsgradverlust kompensieren, üblicherweise die Flammentemperatur und damit die Heißgas-Temperatur erhöht wodurch nachteiligerweise erhöhte NOx-Emissionen in Kauf genommen werden.The invention is based on the observation that at the high temperatures required for the combustion in the heat shields discussed above, thermally-induced occur so that the corners of the heat shields are pressed against the support structure. The hot-side center of the heat shields arches up. The individual sides of the heat shields resting on the support structure, which form the side wall, likewise bulge away from the support structure in such a way that the side center of the support structure is now spaced apart by a thermally-induced gap. The sides of the heat shields, which lie close to the support structure in the cold state, now have a gap. This can typically be up to 2.0 mm with a typical edge length of 200mm. However, this thermally induced gap results in an uncontrolled, increased coolant outlet, which leads to the fact that in the case of a plurality of heat shields arranged adjacent to one another, the gap between these heat shields is not sufficiently thermally blocked against entry of hot gas into this gap. This therefore leads to a significantly increased consumption of coolant than for the cooling task and the blocking task of the gap would actually be required. An increased coolant consumption leads to a lower efficiency. So far, if one wanted to compensate for this loss of efficiency, usually the flame temperature and thus the hot gas temperature increased which disadvantageously increased NOx emissions are accepted.
Ausgehend von dieser Erkenntnis werden mit der erfindungsgemäßen Hitzeschildanordnung unerwünschte Kühlmittelverluste und infolgedessen unerwünschte Wirkungsgradverluste vermieden. Dazu wird eine Dichtung in der Nut angebracht. Die Dich- tung wird verspannt, so dass die beiden Kanten von der Tragseite wegzeigen. Bei Montage der Hitzeschilde über der Dichtung werden diese Kanten in die Nutkanten gedrückt, das heißt zur Seitenwand des Hitzeschildes gebogen. Die Dichtfunktion wird sozusagen durch das verspannen der Dichtung in den Nut- kanten gewährleistet, da die Nutkanten die Dichtung in ihrer gewünschten Position halten. Durch die Form der so verspannten Dichtung wird diese auf der gesamten Tragstruktur abgerollt. Durch das Abrollen wird die Dichtung optimal auf die Tragstruktur gepresst, das heißt auf der gesamten Länge der Seitenwände an welche die Tragstruktur anliegend. Der ther- misch-induzierten Spalt wird optimal geschlossen. Die Vorspannung wirkt einer thermischen Verwölbung entgegen, wie dies bei einem auftretenden Temperaturgradient mit einer nicht vorgespannten Dichtung bewirkt wäre. Das Hitzeschild wölbt sich im Betriebszustand. In diesem Zustand bleiben haben im Wesentlichen nur noch die vier Hitzeschildecken Kontakt zur Tragstruktur. Dies bewirkt, dass die Dichtung im kritischen Betriebszustand sozusagen in den Nutkanten niedergehalten wird, sprich in ihrer vorab gewünschten Position verbleibt. Dies gewährleistet also den korrekten Sitz der Dichtung in allen Betriebszuständen, die Funktion der Dichtung bleibt somit jeweils sichergestellt. Somit kann die Dichtung ihre Funktion optimal erfüllen, da sie immer in der gewünschten Position bleibt.Based on this finding, unwanted coolant losses and, as a result, undesirable efficiency losses are avoided with the heat shield arrangement according to the invention. For this purpose, a seal is mounted in the groove. The seal is strained so that the two edges point away from the support side. When mounting the heat shields over the seal, these edges are pressed into the Nutkanten, that is bent to the side wall of the heat shield. The sealing function is guaranteed, so to speak, by the clamping of the seal in the groove edges, since the groove edges hold the seal in its desired position. Due to the shape of the gasket clamped in this way, it is unrolled on the entire support structure. By rolling the seal is optimally on the Support structure pressed, that is on the entire length of the side walls to which the support structure adjacent. The thermally induced gap is optimally closed. The bias counteracts a thermal warping, as would be effected at a temperature gradient occurring with a non-preloaded seal. The heat shield bulges in the operating state. In this condition, essentially only the four heat shield ceilings remain in contact with the supporting structure. This has the effect that, in the critical operating state, the seal is, so to speak, held down in the groove edges, that is, remains in its previously desired position. This ensures the correct seat of the seal in all operating conditions, the function of the seal thus always ensured. Thus, the seal can fulfill its function optimally, as it always remains in the desired position.
Das Kühlmittel ist dabei im Wesentlichen gewöhnlich als Kühlluft geben, die ganz oder teilweise dem Verdichter entnommen wird, welcher der Brennkammer nachgeordnet ist.The coolant is essentially usually give as cooling air, which is wholly or partially removed from the compressor, which is arranged downstream of the combustion chamber.
Durch die Einsparung von Kühlmittel steht der Verbrennung mehr Verdichterluft zur Verfügung was sich hinsichtlich des Durchsatzvolumens positiv auswirkt. Eine Überdosierung des Kühlmittels führt daher zu einem geringeren Wirkungsgrad. Ei- ne überhöhte Kühlmittelmenge führt weiterhin zu ungünstigenBy saving on coolant, more compressor air is available to the combustion, which has a positive effect on the throughput volume. An overdose of the coolant therefore leads to a lower efficiency. An excessive amount of coolant continues to lead to unfavorable conditions
Temperaturen in der Brennkammer. Dies wird mit einer erhöhten Flammeneinstellung kompensiert was zu erhöhten NOx- Schadstoffemissionen führt. Durch die Erfindung wird die bisherige Überdosierung von Kühlmittel zum Kühlen der Hitze- Schildanordnungen und Sperren des Spalts zwischen benachbarten Hitzeschildanordnungen nunmehr vermieden.Temperatures in the combustion chamber. This is compensated with an increased flame setting resulting in increased NOx pollutant emissions. By the invention, the previous overdose of coolant for cooling the heat shield assemblies and locking the gap between adjacent heat shield assemblies is now avoided.
Bevorzugt ist die Dichtung vollständig in der Nut eingebettet. Somit wird die Dichtung besonders verruschtsicher ver- spannt.Preferably, the seal is completely embedded in the groove. Thus, the seal is tightened particularly sure-fire-proof.
In bevorzugter Ausgestaltung ist die Dichtung ein elastischer Biegestreifen. Dieser kann besonders gut gespannt und in die Nut eingebracht werden und ist leicht herzustellen. Alternativ kann der Streifen auch schlauchförmig sein.In a preferred embodiment, the seal is an elastic bending strip. This one can be particularly well stretched and in the Groove be introduced and is easy to manufacture. Alternatively, the strip may also be tubular.
Bevorzugt ist die Dichtung aus Metall oder Metalllegierung. Diese ist besonders hitze- und temperaturbeständig.Preferably, the seal is made of metal or metal alloy. This is particularly heat and temperature resistant.
In bevorzugter Ausgestaltung ist die Nut umlaufend über die gesamte Seitenwand angeordnet. Alternativ ist die Nut bereichsweise über die gesamte Seitenwand angeordnet. Dieses kann je nach Art des Hitzeschildes und nach Herstellungsfaktoren zu entscheiden sein.In a preferred embodiment, the groove is arranged circumferentially over the entire side wall. Alternatively, the groove is arranged in regions over the entire side wall. This can be decided depending on the type of heat shield and production factors.
Bevorzugt weist die Dichtung durch das Verspannen einen Biegeradius auf.Preferably, the seal has a bending radius by the bracing.
Im Folgenden wird die Erfindung beispielhaft anhand einer Zeichnung näher erläutert.In the following the invention will be explained by way of example with reference to a drawing.
Darin zeigt in vereinfachter und nicht maßstäblicher Darstel- lung:It shows in a simplified and not to scale representation:
FIG 1 Seitenansicht einer Hitzeschildanordnung,1 side view of a heat shield arrangement,
FIG 2 Querschnitt einer Hitzeschildanordnung gemäß mit der Nut ohne Dichtung2 shows a cross section of a heat shield arrangement according to the groove without seal
FIG 3 Draufsicht eines aufgeschnittenen Hitzeschilds mit NutFIG 3 top view of a cut-open heat shield with groove
FIG 3a schematische Seitenansicht einer aufgeschnittenen Hitzeschildanordnung mit Dichtung (planar)FIG. 3 a schematic side view of a cut-open heat shield arrangement with a seal (planar)
FIG 3b schematische Seitenansicht einer aufgeschnittenen Hitzeschildanordnung mit Dichtung (konkav)3b shows a schematic side view of a cut-open heat shield arrangement with a seal (concave)
FIG 3c schematische Seitenansicht einer aufgeschnittenen Hitzeschildanordnung mit Dichtung (konvex) FIG 4 schematische Zeichnung der wirkenden Kräfte auf den Hitzeschild und die Dichtung im Betrieb3c schematic side view of a cut-open heat shield arrangement with seal (convex) 4 shows a schematic drawing of the forces acting on the heat shield and the seal during operation
Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Identical parts are provided with the same reference numerals in all figures.
Eine Gasturbine weist einen vorgeschalteten Verdichter für Verbrennungsluft, eine zwischengeschalteten Brennkammer sowie eine Turbine zum Antrieb des Verdichters und eines nicht näher dargestellten Generators oder einer Arbeitsmaschine auf.A gas turbine has an upstream compressor for combustion air, an intermediate combustion chamber and a turbine for driving the compressor and a generator or a work machine, not shown.
Über Beschaufelung einer oder mehrerer Verdichterstufen wird zumeist Luft komprimiert, diese wird anschließend in der Brennkammer mit einem gasförmigen oder/und flüssigen Treibstoff gemischt, zündet und verbrannt. Außerdem kann die Luft oder ein anderes Kühlmittel zur Kühlung eingesetzt. So entsteht ein Heißgas welches im nachfolgenden Turbinenteil entspannt wird, wobei sich thermische in mechanische Energie um- wandelt. Die Brennkammer umfasst dabei eine Tragstruktur auf denen Hitzeschildanordnungen befestigt sind.By blading one or more compressor stages mostly air is compressed, this is then mixed in the combustion chamber with a gaseous and / or liquid fuel, ignited and burned. In addition, the air or another coolant used for cooling. The result is a hot gas which is expanded in the subsequent turbine part, with thermal converted into mechanical energy. The combustion chamber comprises a support structure on which heat shield assemblies are attached.
In FIG 1 ist ein Beispiel einer Hitzeschildanordnung 1 bei thermischer Verformung nach dem Stand der Technik darge- stellt. Die Hitzeschildanordnung 1 weist eine Tragstruktur 2 und ein Hitzeschild 3 mit einer Heißseite 5 auf. Eine Seitenwand 4 ist gegenüber der Heißseite 5 geneigt. Die Hitzeschildanordnung 1 bildet einen Innenraum 10 aus, der von seitens der Tragstruktur 2 durch die Zufuhrkanäle 15 mit Kühl- mittel 14 vorzugsweise Kühlluft, die einem Verdichter entnommen wird, versorgt wird. Bei hohen thermischen Belastungen, wie sie insbesondere in Brennkammern für Gasturbine entstehen, tritt an der Heißseite 5 und an den jeweiligen Seiten 4 eine thermisch induzierte Wölbung 12 auf. Bei dem Hitzeschild 3 tritt infolgedessen zwischen der Tragstruktur 2 und der Seitenwand 4 ein thermisch-induzierter Spalt 13 auf. Durch diesen entweicht Kühlmittel 14 ungehindert in die Brennkammer . FIG 2 zeigt eine Hitzeschildanordnung 1 auf einer Tragstruktur 2 mit Nut 7 und Nutkanten. Die Nut 7 kann dabei umlaufend in der Seitenwand 4 oder bereichsweise angeordnet sein.1 shows an example of a heat shield arrangement 1 in the case of thermal deformation according to the prior art. The heat shield assembly 1 has a support structure 2 and a heat shield 3 with a hot side 5. A side wall 4 is inclined relative to the hot side 5. The heat shield arrangement 1 forms an interior 10, which is supplied with cooling medium 14, preferably cooling air, which is taken from a compressor, from the side of the support structure 2 through the supply channels 15. At high thermal loads, such as those resulting in combustion chambers for gas turbine, occurs on the hot side 5 and on the respective sides 4, a thermally induced curvature 12. As a result, a heat-induced gap 13 occurs between the support structure 2 and the side wall 4 in the heat shield 3. Through this coolant 14 escapes unhindered into the combustion chamber. 2 shows a heat shield assembly 1 on a support structure 2 with groove 7 and groove edges. The groove 7 can be arranged circumferentially in the side wall 4 or partially.
FIG 3 zeigt eine Draufsicht eines aufgeschnittenen Hitzeschilds mit Nut 7. Hier ist die Nut 7 bereichsweise angeordnet. Die Nutkanten 16 werden durch Nut 7 und die Seitenwand 4 definiert. Bei einer thermischen Belastung verbleiben die Hitzeschildecken 22 an der Tragstruktur 2, während sich die Mitten der Seitenwände 4 so wölben, dass sie einen Spalt 13 freigeben durch den Kühlmittel 14 entweichen kann.3 shows a plan view of a cut-open heat shield with a groove 7. Here, the groove 7 is arranged in regions. The groove edges 16 are defined by the groove 7 and the side wall 4. When subjected to thermal stress, the heat-shielded ceilings 22 remain on the support structure 2, while the centers of the side walls 4 bulge so that they can release a gap 13 through the coolant 14.
FIG 3a zeigt eine schematische Seitenansicht einer aufgeschnittenen Hitzeschildanordnung mit Dichtung 6 (planare Tragstruktur) . Hier ist eine Nut 7 mit den Nutkanten 16 vorhanden. Die Dichtung weist Kanten 8 (Enden) auf. Die Dichtung 6 mit den Kanten 8 wird in der Nut 16 eingebracht. Um die Dichtung 6 jeweils in der Mitte der Seitenwände 4 anzubringen wird, die Dichtung 6 derart geformt, dass die Kanten 8 der Dichtung 6 in den Nutkanten 16 nach oben steht. Wird nun der Hitzeschild 3 über der Dichtung 6 montiert, werden die Kanten 8 in die Nutkanten 16 gedrückt, das heißt zur Seitenwand 4 gebogen. Somit ist die Dichtung 6 in der Nut 7 verspannt. Durch das Verspannen weist die Dichtung 6 einen Biegeradius 20 auf.FIG. 3a shows a schematic side view of a cutaway heat shield arrangement with a seal 6 (planar support structure). Here is a groove 7 with the groove edges 16 is present. The seal has edges 8 (ends). The seal 6 with the edges 8 is introduced into the groove 16. In order to attach the seal 6 in each case in the middle of the side walls 4, the seal 6 is shaped such that the edges 8 of the seal 6 in the groove edges 16 is up. If now the heat shield 3 is mounted over the seal 6, the edges 8 are pressed into the groove edges 16, that is, bent to the side wall 4. Thus, the seal 6 is clamped in the groove 7. Due to the distortion, the seal 6 has a bending radius 20.
Um eine derartige Verspannung zu bewerkstelligen, ist bei planaren (FIG 3a) oder konvexen (FIG 3b) abzudichtenden Flächen der Biegeradius 20 der Dichtung 6 kleiner ist als der Radius der Dichtfläche. Bei konkaven (FIG 3c) abzudichtenden Flächen ist der Biegeradius 20 der Dichtung 6 größer als der Radius der Dichtfläche. Daher wird durch die Form der Dichtung 6 diese auf der Tragstruktur 2 abgerollt. Durch das Abrollen wird die Dichtung 6 in der gesamten Länge der Nut 7 auf die Tragstruktur 2 gepresst. Bei Betrieb wölbt sich der Hitzeschild 3. In diesem Zustand hat es im Wesentlichen nur noch an den Hitzeschildecken 22 Kontakt mit der Tragstruktur 2.In order to accomplish such a tension, the bending radius 20 of the seal 6 is smaller than the radius of the sealing surface in planar (FIG 3a) or convex (FIG 3b) to be sealed surfaces. In the case of concave surfaces (FIG. 3c), the bending radius 20 of the seal 6 is greater than the radius of the sealing surface. Therefore, it is unrolled by the shape of the seal 6 on the support structure 2. By rolling the seal 6 is pressed in the entire length of the groove 7 on the support structure 2. In operation, the heat shield 3 bulges. In this state, essentially only at the heat ceiling 22, it has contact with the support structure 2.
Bei einer derart verspannten Dichtung ist der thermisch induzierte Spalt 14 optimal verschlossen. Durch die Vorspannung wird die Dichtung 6 sich bei Betrieb, d.h. bei Beaufschlagung mit Temperatur nicht verwölben, wie dies beispielsweise mit einem nicht verspannten Bauteil geschehen würde. Da der Hit- zeschild 3 in jedem Betriebszustand an den Hitzeschildecken 22 Kontakt zur Tragstruktur 2 aufweist, gewährleistet dies einen korrekten Sitz in jedem der Betriebszustände . Somit verbleibt die Dichtung 6 also immer in ihrer vorgegebenen, gewünschten Position und kann daher ihre Dichtfunktion opti- mal erfüllen.In such a strained seal the thermally induced gap 14 is optimally closed. The bias causes the seal 6 to become in use, i. Do not warp when exposed to temperature, as would happen, for example, with a non-strained component. Since the heat shield 3 has contact with the support structure 2 on the heat cable covers 22 in every operating state, this ensures a correct seat in each of the operating states. Thus, the seal 6 thus always remains in its predetermined, desired position and can therefore optimally fulfill its sealing function.
Eine Dichtung 6 kann beispielsweise aus einem dünnen gebogenen Metallstreifen oder einem dünnen gebogenen Metallschlauch bestehen .A seal 6 may for example consist of a thin bent metal strip or a thin bent metal tube.
FIG 4 zeigt eine schematische Zeichnung der wirkenden Kräfte auf den Hitzeschild 1 und die Dichtung 6 im Betrieb. Die Kraft F wirkt auf die Hitzeschildecken 22 und presst diese auf die Tragstruktur 2. Die Dichtung 6 wird auf der Trag- struktur 2 abgerollt. Die Vorspannung bewirkt eine feste, gewünschte Position der Dichtung 6 unter allen Betriebsbedingungen . 4 shows a schematic drawing of the forces acting on the heat shield 1 and the seal 6 in operation. The force F acts on the heat shield ceilings 22 and presses them onto the support structure 2. The seal 6 is unrolled on the support structure 2. The bias causes a fixed, desired position of the seal 6 under all operating conditions.

Claims

Patentansprüche claims
1. Hitzeschildanordnung (1), bestehend aus einer Tragstruk- tur (2) und einem daran befestigten Hitzeschild (3) mit einer auf der Tragstruktur (2) anliegenden, umlaufenden Seitenwand (4) wobei die Seitenwand (4) zumindest bereichsweise eine Nut (7) aufweist sowie einer der Tragstruktur (2) zugewandten Innenraum (10) sowie durch Nut (7) und Seitenwand (4) definier- te Nutkanten (16) dadurch gekennzeichnet, dass die Nut (7) eine Dichtung (6) mit mindestens zwei gegenüberliegenden Kanten (8) umfasst, wobei die Dichtung (6) derart in der Nut (7) verspannt wird, dass die mindestens zwei gegenüberliegende Kanten (8) bei Montage des Hitzeschildes (3) auf der Tragstruktur (2) in die Nutkanten (16) gebogen werden, so dass ein Abrollen der Dichtung (6) auf der Tragstruktur (2) gewährleistet ist, wodurch eine Dichtfunktion auch bei Betrieb gewährleistet ist.1. Heat shield arrangement (1), comprising a supporting structure (2) and a heat shield (3) attached to it, with a circumferential side wall (4) bearing against the support structure (2), the side wall (4) forming a groove (at least in places). 7) and an inner space (10) facing the support structure (2) and groove edges (16) defined by groove (7) and side wall (4), characterized in that the groove (7) has a seal (6) with at least two opposite edges (8), wherein the seal (6) is clamped in the groove (7) such that the at least two opposite edges (8) when mounting the heat shield (3) on the support structure (2) in the groove edges (16 ) are bent so that a rolling of the seal (6) on the support structure (2) is ensured, whereby a sealing function is ensured even during operation.
2. Hitzeschildanordnung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Dichtung (6) vollständig in der Nut (7) eingebettet ist.2. heat shield assembly (1) according to claim 1, characterized in that the seal (6) is completely embedded in the groove (7).
3. Hitzeschildanordnung (1) nach einem der vorhergehenden An- Sprüche, dadurch gekennzeichnet, dass die Dichtung (6) ein elastischer Biegestreifen ist.Third heat shield assembly (1) according to any one of the preceding claims, characterized in that the seal (6) is an elastic bending strip.
4. Hitzeschildanordnung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dichtung (6) aus Metall oder Metalllegierung ist.4. heat shield assembly (1) according to any one of the preceding claims, characterized in that the seal (6) made of metal or metal alloy.
5. Hitzeschildanordnung (1) nach einer der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nut (7) umlaufend über die gesamte Seitenwand (4) angeordnet ist.5. heat shield assembly (1) according to any one of the preceding claims, characterized in that the groove (7) is arranged circumferentially over the entire side wall (4).
6. Hitzeschildanordnung (1) nach einer der Ansprüche 1-4 dadurch gekennzeichnet, dass die Nut (7) bereichsweise über die gesamte Seitenwand (4) angeordnet ist. 6. heat shield assembly (1) according to one of claims 1-4, characterized in that the groove (7) is arranged in regions over the entire side wall (4).
7. Hitzeschildanordnung (1) nach einer der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dichtung (6) durch das Verspannen einen Biegeradius (20) aufweist.7. heat shield assembly (1) according to any one of the preceding claims, characterized in that the seal (6) by the bracing a bending radius (20).
8. Hitzeschildanordnung (1) nach Anspruch 7, dadurch gekennzeichnet, dass bei planaren oder konvexen abzudichtenden Flächen der Biegeradius (20) der Dichtung (6) kleiner ist als der Radius der Dichtfläche.8. heat shield assembly (1) according to claim 7, characterized in that in planar or convex surfaces to be sealed, the bending radius (20) of the seal (6) is smaller than the radius of the sealing surface.
9. Hitzeschildanordnung nach Anspruch 7 dadurch gekennzeichnet, dass bei konkaven abzudichtenden Flächen der Biegeradius9. heat shield assembly according to claim 7, characterized in that at concave surfaces to be sealed, the bending radius
(20) der Dichtung (6) größer ist als der Radius der Dichtfläche .(20) of the seal (6) is greater than the radius of the sealing surface.
10. Brennkammer (4) mit einer Tragstruktur (2), die eine Hitzeschildanordnung (1) nach einem der vorhergehenden Ansprüche aufweist .10. combustion chamber (4) having a support structure (2) having a heat shield assembly (1) according to any one of the preceding claims.
11. Gasturbine (1) mit einer Brennkammer (4) nach Anspruch 10. 11. Gas turbine (1) with a combustion chamber (4) according to claim 10.
EP09761668.4A 2008-06-12 2009-06-05 Heat shield arrangement Active EP2310748B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810028025 DE102008028025B4 (en) 2008-06-12 2008-06-12 Heat shield arrangement
PCT/EP2009/056943 WO2009150105A2 (en) 2008-06-12 2009-06-05 Heat shield arrangement

Publications (2)

Publication Number Publication Date
EP2310748A2 true EP2310748A2 (en) 2011-04-20
EP2310748B1 EP2310748B1 (en) 2017-02-01

Family

ID=41066167

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09761668.4A Active EP2310748B1 (en) 2008-06-12 2009-06-05 Heat shield arrangement

Country Status (5)

Country Link
EP (1) EP2310748B1 (en)
CN (1) CN102066840A (en)
DE (1) DE102008028025B4 (en)
RU (1) RU2508507C2 (en)
WO (1) WO2009150105A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102400721B (en) * 2011-11-01 2014-04-02 沈阳黎明航空发动机(集团)有限责任公司 Replacement method of fulcrum heat-insulating screen of turbine bearing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE831620C (en) * 1949-04-25 1952-02-14 Roland Laraque Improvement on internal combustion engines with opposing cylinders
GB2166120A (en) * 1984-09-15 1986-04-30 Yeate And Hanson Ind Ltd Linings
EP0550126A1 (en) * 1992-01-02 1993-07-07 General Electric Company Thrust augmentor heat shield
GB2298266A (en) * 1995-02-23 1996-08-28 Rolls Royce Plc A cooling arrangement for heat resistant tiles in a gas turbine engine combustor
GB2300909B (en) * 1995-05-18 1998-09-30 Europ Gas Turbines Ltd A gas turbine gas duct arrangement
DE59706065D1 (en) * 1996-09-26 2002-02-21 Siemens Ag HEAT SHIELD COMPONENT WITH COOL FLUID RETURN AND HEAT SHIELD ARRANGEMENT FOR A HOT GAS CONTAINING COMPONENT
EP1022437A1 (en) * 1999-01-19 2000-07-26 Siemens Aktiengesellschaft Construction element for use in a thermal machine
US6302402B1 (en) * 1999-07-07 2001-10-16 Air Products And Chemicals, Inc. Compliant high temperature seals for dissimilar materials
GB2361303B (en) * 2000-04-14 2004-10-20 Rolls Royce Plc Wall structure for a gas turbine engine combustor
DE10205180B4 (en) * 2002-02-08 2005-04-28 Elringklinger Ag Cooling water seal between an engine block and a cylinder liner
EP1507116A1 (en) * 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Heat shield arrangement for a high temperature gas conveying component, in particular for a gas turbine combustion chamber
DE102005046731A1 (en) * 2005-04-19 2006-11-02 Siemens Ag Heat shield arrangement
GB2434199B (en) * 2006-01-14 2011-01-05 Alstom Technology Ltd Combustor liner with heat shield

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009150105A2 *

Also Published As

Publication number Publication date
WO2009150105A3 (en) 2011-01-06
DE102008028025B4 (en) 2011-05-05
DE102008028025A1 (en) 2009-12-24
WO2009150105A2 (en) 2009-12-17
CN102066840A (en) 2011-05-18
EP2310748B1 (en) 2017-02-01
RU2508507C2 (en) 2014-02-27
RU2011100155A (en) 2012-07-20

Similar Documents

Publication Publication Date Title
EP1701095B1 (en) Heat shield
EP2363643B1 (en) Heat shield element
DE2737622C2 (en) Turbine shell
CH698036B1 (en) Seal assembly.
DE10155420A1 (en) Heat shield arrangement with sealing element
DE102005039503A1 (en) Cable seal for gas turbine engine
DE102011057077A1 (en) Structural turbine jacket ring device low ductility
WO2006064038A1 (en) Heat shield element
DE60119674T2 (en) Method and device for sealing adjustable nozzles in gas turbines
EP2423599A2 (en) Method for operating a burner arrangement and burner arrangement for implementing the method
DE2439339A1 (en) GAS TURBINE
DE112008003522T5 (en) The turbine nozzle
EP0904512B1 (en) Heat-shield arrangement, especially for structural components of gas turbine plants
EP1884713B1 (en) Heat shield arrangement, particularly for a gas turbine
DE102005046731A1 (en) Heat shield arrangement
EP1248924A1 (en) Thermally stressable wall and method for sealing a gap in a thermally stressed wall
EP2310748B1 (en) Heat shield arrangement
EP0658724A2 (en) Combusiton chamber with ceramic lining
EP3132201B1 (en) Side coated heat schild element with impacted cooling on open section
EP1591724A1 (en) Gap sealing element for a heat shield
DE4343332C2 (en) Device for convective cooling of a highly loaded combustion chamber
EP1422479B1 (en) Chamber for the combustion of a fluid combustible mixture
EP1128131A1 (en) Heat shield element, combustion chamber and gas turbine
EP1557611B1 (en) Flow barrier, lining and combustion chamber
DE102020203017A1 (en) Combustion chamber with ceramic heat shield and seal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101105

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160825

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 865914

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013619

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170201

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170502

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170501

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170501

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013619

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170605

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170605

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170605

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 865914

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009013619

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230627

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 15