EP2310747B1 - Method for continuously conditioning gas, preferably natural gas - Google Patents

Method for continuously conditioning gas, preferably natural gas Download PDF

Info

Publication number
EP2310747B1
EP2310747B1 EP09775870.0A EP09775870A EP2310747B1 EP 2310747 B1 EP2310747 B1 EP 2310747B1 EP 09775870 A EP09775870 A EP 09775870A EP 2310747 B1 EP2310747 B1 EP 2310747B1
Authority
EP
European Patent Office
Prior art keywords
gas
container
natural gas
flow
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09775870.0A
Other languages
German (de)
French (fr)
Other versions
EP2310747A2 (en
Inventor
Andreas Lenk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EWE Gasspeicher GmbH
Original Assignee
EWE Gasspeicher GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EWE Gasspeicher GmbH filed Critical EWE Gasspeicher GmbH
Priority to PL09775870T priority Critical patent/PL2310747T3/en
Publication of EP2310747A2 publication Critical patent/EP2310747A2/en
Application granted granted Critical
Publication of EP2310747B1 publication Critical patent/EP2310747B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2400/00Pretreatment and supply of gaseous fuel
    • F23K2400/10Pretreatment

Definitions

  • the invention relates to a method for the continuous conditioning of gas, preferably natural gas, before it is fed into a pipeline, in particular a pipeline network for supplying consumers, in which the pressurized gas removed from a memory, and before and after its relaxation is heated to a predetermined temperature by a diverted partial flow of the gas stored is mixed with oxygen and the fuel gas thus formed is burned and in which the accumulated heat energy, the stored gas is heated.
  • gas preferably natural gas
  • Ergas must be heated during its withdrawal from underground storage to compensate for the Joule-Thomson effect before the pressure reduction.
  • One possibility is a method of the aforementioned type, which in the EP 0 920 578 is described.
  • the heat required for heating is provided by catalytic "combustion" of a portion of the Aus Grandestroms in a reactor.
  • the heat is used by mixing the hot combustion gases as a partial gas stream in the main gas stream behind the reactor.
  • the end The gas discharged from the storage tank has a pressure of 70 - 150 bar at a temperature of 5 - 30 ° C.
  • Catalytic "combustion" in the reactor requires an activation temperature of at least 180 ° C - 250 ° C.
  • the diverted partial flow of the gas stored is mixed with oxygen and is catalytically burned.
  • the heat released in this case can then in turn be used to heat the stored gas to a temperature which is suitable for compensating for the Joule-Thomson effect which occurs during the expansion and the associated cooling.
  • the invention has for its object to improve the known method so that a safe operation for conditioning is possible.
  • the constructive implementation of the process technology according to the invention using the cooling of natural gas during expansion, in the design of the inlets of the expansion valves for cooling and mixing the gas streams before and after the second container (reactor), coupled with dew point measurements at the inlet and outlet of the natural gas in the system provided for carrying out the method allow a targeted procedure for the separation of water from the natural gas and thus the gas conditioning with respect to the Wasserdampftauddling or the drying of the natural gas.
  • This process is further coupled with special separator stages with multicyclones and filter elements as well as with condensate discharges for optimal and safe operation and reduction and contamination of condensate (water) precipitated from natural gas with higher hydrocarbon chains.
  • the user of the method according to the invention also benefits from the compact design of a system designed for its implementation in terms of space and plant costs, since all the essential parts of a Aus Cleanoutstrom consisting of separators, preheating, gas pressure reduction and measurement, gas drying and filtering already in the process engineering integrated, which can be constructively unite in a device.
  • the absence of moving parts, pumps and similar equipment reduces the operating and maintenance costs of performing the process.
  • the combination of the catalytic conversion of oxygen and hydrocarbons to the catalyst of the reactor vessel, with the expansion directly into the mixing space and / or tangential to the cooling at the inlet around the second vessel, the reactor effect the optimum precipitation of the condensates and the condensation of the water vapor from the catalytic conversion, without local generation of exhaust gases, with a computational efficiency of ⁇ 1.1, using the condensation and separation of water vapor, as well as the heat of condensation.
  • the method advantageously takes advantage of the high inlet pressures of the natural gas and the usable cooling caused by the expansion to supply line pressure to separate the condensates from the natural gas.
  • the method according to the invention is supported by the direct preheating in the first container and in the region of the supply lines into the second container, through which immediate dissolution or suppression of the gas hydrate formation can be utilized. If the use of the pressure gradient is not sufficient to achieve complete condensation, then an absorbent for binding the water vapor in the natural gas stream can be injected into the inlet of the main gas stream into the second tank. The absorbent, z. As triethylene glycol is discharged together with the condensate from the conditioning process and can, like the condensate, collected and then processed, so it is reusable.
  • the control of the conditioning process takes place dewpoint-controlled via the inlet and outlet of the natural gas in the am Entry and exit of the natural gas in a device provided for carrying out the method according to the invention installed dew point measurements by selective variation of the oxygen addition and variation of the flow control over the control valves of the main gas flow to the tangential inlet via the supply lines and to the reactor or the addition directly into the mixing zone or the mixing space between the second container and a downstream separator.
  • the method is particularly safe, especially since the addition of oxygen in the mixing container can still be assigned a safety device with nitrogen extinguishing.
  • the flow direction is indicated here by arrows.
  • branch point 3 is from the main line 2 from a branch line 4, via which a partial flow of the natural gas stored in a mixing vessel 5 is passed.
  • gaseous oxygen is passed into the mixing vessel, which mixes in the mixing vessel 5 with the supplied via the branch line 4 natural gas partial stream.
  • a fuel gas is thus formed, which is passed through the fuel gas line 7 into the first container 8 with closed container walls 9.
  • the first container forms the preheating station, which is designed as a jet pump, which has a driver nozzle 10 and a catching nozzle 11 having.
  • the supplied from the fuel gas line 7 under relatively high pressure fuel gas is injected into the first container 8, wherein the emerging from the driver nozzle 10 free jet is collected by the catching nozzle 11 and mixed on his way with befindlichem in the container 8 exhaust and heated, which is supplied via the suction line 12 as a partial exhaust stream from a catalytic combustion process.
  • the heated fuel gas mixture flows via the mixing line 13 into a reactor chamber 14 of a second container 15, which is designed as a housing enclosing the reactor 14, a mixing chamber 17 and a separator 18.
  • the jet pump located in the first container 8 sucks hot natural gas out of the reactor 14 via the suction line 12 and mixes it with the cold fuel gas which flows in from the mixing container 5.
  • the second vessel 14 contains a reactor bed in the form of a bed of catalytic granules vaporized with palladium and / or platinum.
  • Preheated fuel gas enters the second container 14 via the preheating line 13.
  • the temperature is adjusted by suitable control technology so that an activation temperature of the reactor bed in the second container 14 of about 180 ° C to 250 ° C is reached.
  • the fuel gas burns catalytically and the heat released in the process is in part via the outer circumferential surface to the second container 14 flowing around, transferred via the leads 21 and 22 supplied cold natural gas.
  • the catalytically burned fuel gases enter from the second container 14 directly into the mixing chamber 17, where they mix with the flowing through the supply line 22 cold natural gas.
  • the separator 18 is flowed through from the mixing chamber 17 derived, now heated natural gas, which precipitated in the separator 18 more condensate and the natural gas is also filtered.
  • the separator 18 also has a condensate drain 25.
  • Denoted by 26 is a device for assisting the deposition of condensate, by means of which an absorbent, for. B. triethylene glycol for binding the water vapor in the gas stream of the supply lines 21 and 22 is injected.
  • Dew point sensors at the entrance and exit of the apparatus for carrying out the method are designated 28 and 29.
  • the links with pressure sensors and temperature sensors are indicated here by dashed lines only.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum kontinuierlichen Konditionieren von Gas, vorzugsweise Ergas, vor seiner Einspeisung in eine Rohrleitung, insbesondere ein Rohrleitungsnetz zur Versorgung von Verbrauchern, bei dem das unter Druck stehende Gas aus einem Speicher entnommen, entspannt und vor oder nach seiner Entspannung auf eine vorbestimmte Temperatur erwärmt wird, indem ein abgezweigter Teilstrom des ausgespeicherten Gases mit Sauerstoff vermischt und das dadurch gebildete Brenngas verbrannt wird und bei dem mit der dabei anfallenden Wärmeenergie das ausgespeicherte Gas erwärmt wird.The invention relates to a method for the continuous conditioning of gas, preferably natural gas, before it is fed into a pipeline, in particular a pipeline network for supplying consumers, in which the pressurized gas removed from a memory, and before and after its relaxation is heated to a predetermined temperature by a diverted partial flow of the gas stored is mixed with oxygen and the fuel gas thus formed is burned and in which the accumulated heat energy, the stored gas is heated.

Ergas muß bei seiner Ausspeicherung aus Untergrundspeichern zur Kompensation des Joule-Thomson-Effektes vor der Druckreduzierung erwärmt werden. Eine Möglichkeit ist ein Verfahren der vorbezeichneten Gattung, welches in der EP 0 920 578 beschrieben ist. Dabei wird die für die Erwärmung notwendige Wärme durch katalytische "Verbrennung" eines Teils des Ausspeicherstroms in einem Reaktor bereitgestellt. Bei dem bekannten Verfahren werden durch die katalytische Umsetzung von Sauerstoff mit Brenngas, z. B. Erdgas L, im stark unterstöchiometrischen Mischungsbereich am Katalysator direkt im Gasstrom Temperaturen von bis zu 400 °C erreicht. Die Wärmenutzung erfolgt durch das Einmischen der heißen Verbrennungsgase als Teilgasstrom in den Hauptgasstrom hinter dem Reaktor. Das aus dem Speicher abgeleitete Ergas hat einen Druck von 70 - 150 bar bei einer Temperatur von 5 - 30 °C.Ergas must be heated during its withdrawal from underground storage to compensate for the Joule-Thomson effect before the pressure reduction. One possibility is a method of the aforementioned type, which in the EP 0 920 578 is described. The heat required for heating is provided by catalytic "combustion" of a portion of the Ausspeicherstroms in a reactor. In the known method by the catalytic reaction of oxygen with fuel gas, for. As natural gas L, achieved in the strong substoichiometric mixing range at the catalyst directly in the gas stream temperatures of up to 400 ° C. The heat is used by mixing the hot combustion gases as a partial gas stream in the main gas stream behind the reactor. The end The gas discharged from the storage tank has a pressure of 70 - 150 bar at a temperature of 5 - 30 ° C.

Die katalytische "Verbrennung" im Reaktor benötigt eine Aktivierungstemperatur von mindestens 180 °C - 250 °C. Um die Temperatur zu erreichen, wird der abgezweigte Teilstrom des ausgespeicherten Gases mit Sauerstoff vermischt und katalytisch verbrannt wird. Die dabei freigesetzte Wärme kann sodann wiederum genutzt werden, um das ausgespeicherte Gas auf eine Temperatur zu erwärmen, die geeignet ist, den bei der Entspannung und der damit verbundenen Abkühlung auftretenden Joule-Thomson-Effekt zu kompensieren.Catalytic "combustion" in the reactor requires an activation temperature of at least 180 ° C - 250 ° C. In order to reach the temperature, the diverted partial flow of the gas stored is mixed with oxygen and is catalytically burned. The heat released in this case can then in turn be used to heat the stored gas to a temperature which is suitable for compensating for the Joule-Thomson effect which occurs during the expansion and the associated cooling.

Bei dem bekannten Verfahren besteht stets das Risiko, daß der Reaktor, in dem die katalytische Umsetzung des Brenngases unter Freisetzung von Wärme abläuft, durch die niedrigen Temperaturen des ausgespeicherten Erdgases kalt geblasen wird, so daß der Sauerstoff im Brenngas verbleibt, ohne umgesetzt zu werden. Dies kann grundsätzlich dadurch ausgeschlossen werden, daß das Brenngas-Sauerstoffgemisch auf die Katalysatoraktivierungstemperatur von 180 - 250 °C vor der Entspannung erwärmt wird. Ohne diese Vorwärmung gerät der bekannte Prozeß schon nach kurzer Zeit aus dem Gleichgewicht, weil die Aktivierungstemperatur im Reaktor unterschritten wird. Andererseits kann das Zünden bei einem Vorgang der Zudosierung von Sauerstoff in Brenngase, hier Erdgas, niemals ganz ausgeschlossen werden. Dies Risiko wird sogar höher, wenn bei Unterschreitung der Aktivierungstemperatur des Reaktors der Sauerstoff im Brenngas verbleibt, weil er nicht umgesetzt wurde. Die Sauerstoffkonzentration steigt und damit auch das Risiko der Selbstzündung bei den hier auftretenden hohen Drücken. Eine sichere Ausführung des bekannten Verfahrens ist nicht gewährleistet.In the known method, there is always a risk that the reactor in which the catalytic conversion of the fuel gas proceeds with the release of heat, is cold blown by the low temperatures of the stored natural gas, so that the oxygen remains in the fuel gas, without being reacted. This can be excluded in principle by the fact that the fuel gas-oxygen mixture is heated to the catalyst activation temperature of 180 - 250 ° C prior to relaxation. Without this preheating the known process gets out of balance after a short time, because the activation temperature in the reactor is exceeded. On the other hand, the ignition in a process of metering oxygen into fuel gases, here natural gas, never be completely excluded. This risk becomes even higher if the oxygen remains in the fuel gas when it falls below the activation temperature of the reactor, because it was not reacted. The oxygen concentration increases and thus the risk of auto-ignition at the high pressures occurring here. A safe execution of the known method is not guaranteed.

Nach der EP 0 529 474 ist es auch bekannt, die Abgase der katalytischen Verbrennung zu kühlen und einen Teil der gekühlten Abgase über eine Rückführleitung zu einem Brenngas-/Abgasmischen zurückzuführen, wodurch die Selbstzündgefahr gemindert werden soll.After EP 0 529 474 It is also known to cool the exhaust gases of the catalytic combustion and to return a portion of the cooled exhaust gases via a return line to a fuel gas / Abgasmischen, whereby the Selbstzündgefahr should be reduced.

Der Erfindung liegt die Aufgabe zugrunde das bekannte Verfahren so zu verbessern, daß ein sicherer Betrieb zur Konditionierung möglich ist.The invention has for its object to improve the known method so that a safe operation for conditioning is possible.

Diese Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Weiterbildungen und vorteilhafte Ausgestaltungen ergeben sich aus den Ansprüchen 2 bis 9.This object is achieved by the features of claim 1. Further developments and advantageous embodiments will become apparent from the claims 2 to 9.

Die konstruktive Umsetzung der erfindungsgemäßen Verfahrenstechnik, unter Nutzung der Abkühlung von Ergas bei der Expansion, bei der Gestaltung der Einlässe der Entspannungsventile zur Kühlung und Mischung der Gasströme vor und hinter dem zweiten Behälter (Reaktor), gekoppelt mit Taupunktmessungen am Eintritt und Austritt des Erdgases in die zur Durchführung des Verfahrens vorgesehene Anlage, ermöglichen eine gezielte Fahrweise zur Abscheidung von Wasser aus dem Erdgas und somit der Gaskonditionierung in Bezug auf den Wasserdampftaupunkt bzw. die Trocknung des Erdgases.The constructive implementation of the process technology according to the invention, using the cooling of natural gas during expansion, in the design of the inlets of the expansion valves for cooling and mixing the gas streams before and after the second container (reactor), coupled with dew point measurements at the inlet and outlet of the natural gas in the system provided for carrying out the method allow a targeted procedure for the separation of water from the natural gas and thus the gas conditioning with respect to the Wasserdampftaupunkt or the drying of the natural gas.

Gekoppelt wird dieses Verfahren weiterhin mit speziellen Abscheiderstufen mit Multizyklonen und Filterelementen sowie mit Kondensatausschleusungen zur optimalen und sicheren Fahrweise und Reduzierung und der Kontamination des aus dem Erdgas ausgefällten Kondensats (Wasser) mit höheren Kohlenwasserstoffketten.This process is further coupled with special separator stages with multicyclones and filter elements as well as with condensate discharges for optimal and safe operation and reduction and contamination of condensate (water) precipitated from natural gas with higher hydrocarbon chains.

Dies stellt einen wesentlichen wirtschaftlichen Vorteil gegenüber der bekannten Technik zur Gasaufbereitung bzw. Konditionierung dar. Die anfallenden Kondensate werden einfach über einen nachgeschalteten Filter von Kohlenwasserstoffen getrennt und sind einfach und kostengünstig zu entsorgen.This represents a significant economic advantage over the known technology for gas conditioning or conditioning. The resulting condensates are easily separated by a downstream filter of hydrocarbons and are easy and inexpensive to dispose of.

Auch profitiert der Anwender des erfindungsgemäßen Verfahrens von der kompakten Bauweise einer für seine Durchführung vorgesehenen Anlage in Bezug auf Platz und Anlagenkosten, da alle wesentlichen Teile einer Ausspeicheranlage, bestehend aus Abscheider, Vorwärmung, Gasdruckreduzierung und -messung, Gastrocknung und Filterung bereits in die Verfahrenstechnik integriert sind, die sich konstruktiv in einer Vorrichtung vereinigen lassen.The user of the method according to the invention also benefits from the compact design of a system designed for its implementation in terms of space and plant costs, since all the essential parts of a Ausspeicheranlage consisting of separators, preheating, gas pressure reduction and measurement, gas drying and filtering already in the process engineering integrated, which can be constructively unite in a device.

Das Nichtvorhandensein beweglicher Teile, Pumpen und ähnlicher Einrichtungen, reduziert die Betriebs- und Wartungskosten für die Durchführung des Verfahrens. Die Kombination der katalytischen Umsetzung von Sauerstoff und Kohlenwasserstoffen am Katalysator des Reaktorbehälters, mit der Entspannung direkt in den Mischraum und/oder tangential zur Kühlung am Eintritt um den zweiten Behälter, den Reaktor, herum, bewirken die optimale Ausscheidung der Kondensate und das Kondensieren des Wasserdampfes aus der katalytischen Umsetzung heraus, ohne lokale Erzeugung von Abgasen, und zwar mit einem rechnerischen Wirkungsgrad der < 1,1 ist, unter der Nutzung der Kondensation und Abscheidung des Wasserdampfes, sowie der Kondensationswärme.The absence of moving parts, pumps and similar equipment reduces the operating and maintenance costs of performing the process. The combination of the catalytic conversion of oxygen and hydrocarbons to the catalyst of the reactor vessel, with the expansion directly into the mixing space and / or tangential to the cooling at the inlet around the second vessel, the reactor, effect the optimum precipitation of the condensates and the condensation of the water vapor from the catalytic conversion, without local generation of exhaust gases, with a computational efficiency of <1.1, using the condensation and separation of water vapor, as well as the heat of condensation.

Das Verfahren nutzt mit Vorteil die hohen Eintrittdrücke des Erdgases und die durch die Expansion auf Versorgungsleitungsdruck verursachten nutzbaren Abkühlungen zur Abtrennung der Kondensate aus dem Erdgas. Unterstützt wird das erfindungsgemäße Verfahren durch die direkte Vorwärmung im ersten Behälter sowie im Bereich der Zuleitungen in den zweiten Behälter, durch welche sich sofortige Auflösung bzw. Unterbindung der Gashydratbildung nutzen läßt. Sollte die Nutzung des Druckgefälles nicht ausreichend sein, um eine vollständige Kondensation zu erreichen, so kann in den Eintritt des Hauptgasstromes in den zweiten Behälter unterstützend ein Absorptionsmittel zur Bindung des Wasserdampfes im Erdgasstrom eingedüst werden. Das Absorptionsmittel, z. B. Triethylenglykol, wird zusammen mit dem Kondensat aus dem Konditionierungsprozeß ausgeschleust und kann, wie das Kondensat, aufgefangen und anschließend aufbereitet werden, womit es erneut nutzbar ist.The method advantageously takes advantage of the high inlet pressures of the natural gas and the usable cooling caused by the expansion to supply line pressure to separate the condensates from the natural gas. The method according to the invention is supported by the direct preheating in the first container and in the region of the supply lines into the second container, through which immediate dissolution or suppression of the gas hydrate formation can be utilized. If the use of the pressure gradient is not sufficient to achieve complete condensation, then an absorbent for binding the water vapor in the natural gas stream can be injected into the inlet of the main gas stream into the second tank. The absorbent, z. As triethylene glycol is discharged together with the condensate from the conditioning process and can, like the condensate, collected and then processed, so it is reusable.

Verfahrenstechnisch erfolgt die Regelung des Konditionierungsprozesses taupunktgesteuert über die am Eintritt und Austritt des Erdgases in die am Eintritt und Austritt des Erdgases in einer zur Durchführung des erfindungsgemäßen Verfahrens vorgesehene Vorrichtung installierten Taupunktmessungen und zwar durch gezielte Variation der Sauerstoffzugabe und Variation der Mengenregelung über die Regelventile des Hauptgasstromes zum tangentialen Einlaß über die Zuleitungen und um den Reaktor bzw. die Zugabe direkt in die Mischzone bzw. den Mischraum zwischen dem zweiten Behälter und einem nachgeschalteten Abscheider. Damit ist das Verfahren besonders sicher, zumal der Sauerstoffzugabe in den Mischbehälter noch eine Sicherheitseinrichtung mit Stickstofflöschung zugeordnet werden kann.In terms of process technology, the control of the conditioning process takes place dewpoint-controlled via the inlet and outlet of the natural gas in the am Entry and exit of the natural gas in a device provided for carrying out the method according to the invention installed dew point measurements by selective variation of the oxygen addition and variation of the flow control over the control valves of the main gas flow to the tangential inlet via the supply lines and to the reactor or the addition directly into the mixing zone or the mixing space between the second container and a downstream separator. Thus, the method is particularly safe, especially since the addition of oxygen in the mixing container can still be assigned a safety device with nitrogen extinguishing.

Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens, aus dem sich weitere erfinderische Merkmale ergeben, ist in der Zeichnung in Form eines Fließdiagramms schematisch dargestellt.An embodiment of the method according to the invention, from which further inventive features arise, is shown schematically in the drawing in the form of a flow chart.

Das zu konditionierende Erdgas wird, vor seiner Einspeisung in eine Rohrleitung 1 eines nicht weiter dargestellten Rohrleitungsnetzes zur Versorgung von Verbrauchern, einem ebenfalls nicht weiter dargestellten Speicher entnommen und strömt aus dem Speicher über eine Hauptleitung 2 ab. Die Strömungsrichtung ist hier durch Pfeile angedeutet.The natural gas to be conditioned, before being fed into a pipeline 1 of a pipeline network, not shown, for the supply of consumers, taken from a memory also not shown and flows out of the memory via a main line 2 from. The flow direction is indicated here by arrows.

Im Abzweigpunkt 3 geht von der Hauptleitung 2 eine Zweigleitung 4 ab, über die ein Teilstrom des ausgespeicherten Erdgases in einen Mischbehälter 5 geleitet wird.In the branch point 3 is from the main line 2 from a branch line 4, via which a partial flow of the natural gas stored in a mixing vessel 5 is passed.

Über die Leitung 6 wird in den Mischbehälter 5 gasförmiger Sauerstoff geleitet, der sich im Mischbehälter 5 mit dem über die Zweigleitung 4 zugeführten Erdgas-Teilstrom vermischt.Via the line 6 5 gaseous oxygen is passed into the mixing vessel, which mixes in the mixing vessel 5 with the supplied via the branch line 4 natural gas partial stream.

In dem Mischbehälter 5 wird somit ein Brenngas gebildet, das über die Brenngasleitung 7 in den ersten Behälter 8 mit geschlossenen Behälterwänden 9 geleitet wird. Der erste Behälter bildet die Vorwärmstation, die als Strahlpumpe ausgebildet ist, welche eine Treiberdüse 10 und eine Fangdüse 11 aufweist. Über die Treiberdüse 10 wird das von der Brenngasleitung 7 unter relativ hohem Druck zugeführte Brenngas in den ersten Behälter 8 eingedüst, wobei der aus der Treiberdüse 10 austretende Freistrahl von der Fangdüse 11 aufgefangen wird und sich auf seinem Weg mit im Behälter 8 befindlichem Abgas vermischt und erwärmt, welches über die Saugleitung 12 als Abgasteilstrom aus einem katalytischen Verbrennungsprozeß zugeführt wird.In the mixing vessel 5, a fuel gas is thus formed, which is passed through the fuel gas line 7 into the first container 8 with closed container walls 9. The first container forms the preheating station, which is designed as a jet pump, which has a driver nozzle 10 and a catching nozzle 11 having. About the driver nozzle 10, the supplied from the fuel gas line 7 under relatively high pressure fuel gas is injected into the first container 8, wherein the emerging from the driver nozzle 10 free jet is collected by the catching nozzle 11 and mixed on his way with befindlichem in the container 8 exhaust and heated, which is supplied via the suction line 12 as a partial exhaust stream from a catalytic combustion process.

Das erwärmte Brenngasgemisch strömt über die Mischleitung 13 in eine Reaktorkammer 14 eines zweiten Behälters 15, der als ein den Reaktor 14, eine Mischkammer 17 und einen Abscheider 18 umschließendes Gehäuse ausgebildet ist.The heated fuel gas mixture flows via the mixing line 13 into a reactor chamber 14 of a second container 15, which is designed as a housing enclosing the reactor 14, a mixing chamber 17 and a separator 18.

Die in dem ersten Behälter 8 befindliche Strahlpumpe saugt über die Saugleitung 12 heißes Erdgas aus dem Reaktor 14 und vermischt es mit dem kalten Brenngas, welches aus dem Mischbehälter 5 zuströmt.The jet pump located in the first container 8 sucks hot natural gas out of the reactor 14 via the suction line 12 and mixes it with the cold fuel gas which flows in from the mixing container 5.

Das aus der Hauptleitung 2 unter Vorschaltung von Entspannungsventilen über die Zuleitungen 21 und 22 in das Gehäuse des zweiten Behälters 15 eintretende kalte Erdgas umströmt den Reaktorbehälter 14, wobei es um den Reaktorbehälter 14 herum mit Leitelementen 23, die an dessen Umfang wendelförmig angeordnet sind, gelenkt wird.The entering from the main line 2 by preconcentration of expansion valves via the leads 21 and 22 in the housing of the second container 15 cold natural gas flows around the reactor vessel 14, wherein it around the reactor vessel 14 around with guide elements 23 which are arranged helically arranged on the circumference becomes.

Der zweite Behälter 14 enthält ein Reaktorbett in Form einer Schüttung aus katalytischem Korn, das mit Palladium und/oder Platin bedampft ist.The second vessel 14 contains a reactor bed in the form of a bed of catalytic granules vaporized with palladium and / or platinum.

Über die Vorwärmleitung 13 tritt vorgewärmtes Brenngas in den zweiten Behälter 14 ein. Die Temperatur wird durch geeignete Steuerungstechnik so eingestellt, daß eine Aktivierungstemperatur des Reaktorbettes im zweiten Behälter 14 von etwa 180 °C bis 250 °C erreicht wird.Preheated fuel gas enters the second container 14 via the preheating line 13. The temperature is adjusted by suitable control technology so that an activation temperature of the reactor bed in the second container 14 of about 180 ° C to 250 ° C is reached.

Das Brenngas verbrennt katalytisch und die dabei freigesetzte Wärme wird zum Teil über die Außenmantelfläche an das den zweiten Behälter 14 umströmende, über die Zuleitungen 21 und 22 zugeführte kalte Erdgas übertragen.The fuel gas burns catalytically and the heat released in the process is in part via the outer circumferential surface to the second container 14 flowing around, transferred via the leads 21 and 22 supplied cold natural gas.

Es sind vorrichtungsmäßige Maßnahmen getroffen, damit das über die Außenmantelfläche vorgewärmte Erdgas mit dem über die Zuleitung 22 zugeleiteten kalten Erdgas gemischt wird.Device measures are taken to ensure that the natural gas preheated via the outer jacket surface is mixed with the cold natural gas supplied via the supply line 22.

Die katalytisch verbrannten Brenngase treten aus dem zweiten Behälter 14 direkt in die Mischkammer 17 ein, wo sie sich mit dem über die Zuleitung 22 eingeströmten kalten Erdgas vermischen.The catalytically burned fuel gases enter from the second container 14 directly into the mixing chamber 17, where they mix with the flowing through the supply line 22 cold natural gas.

Durch diese Abkühlung, einerseits an der Außenmantelfläche des Reaktors 14, andererseits durch den Übertritt der heißen Brenngase in das kalte Erdgas in der Mischkammer 17, entsteht sofort Hydratbildung mit entsprechender Kondensatabscheidung, welche über die Kondensatableitungen 23 und 24 abgeleitet werden.By this cooling, on the one hand on the outer surface of the reactor 14, on the other hand by the passage of the hot fuel gases in the cold natural gas in the mixing chamber 17, immediately hydrate formation with appropriate condensate, which are discharged through the condensate drainages 23 and 24.

Der Abscheider 18 wird von aus der Mischkammer 17 abgeleitetem, nunmehr erwärmten Erdgas durchströmt, wobei im Abscheider 18 weiteres Kondensat ausgeschieden und das Erdgas auch gefiltert wird.The separator 18 is flowed through from the mixing chamber 17 derived, now heated natural gas, which precipitated in the separator 18 more condensate and the natural gas is also filtered.

Auch der Abscheider 18 verfügt über eine Kondensatableitung 25.The separator 18 also has a condensate drain 25.

Mit 26 ist eine Einrichtung zur Unterstützung der Kondensatabscheidung bezeichnet, mittels der ein Absorptionsmittel, z. B. Triethylenglykol zur Bindung des Wasserdampfes in den Gasstrom der Zuleitungen 21 und 22 eingedüst wird.Denoted by 26 is a device for assisting the deposition of condensate, by means of which an absorbent, for. B. triethylene glycol for binding the water vapor in the gas stream of the supply lines 21 and 22 is injected.

Mit 27 ist eine Sicherheitseinrichtung bezeichnet, über die auch die Sauerstoffzufuhr 6 gesteuert und geregelt wird.27 denotes a safety device, via which the oxygen supply 6 is controlled and regulated.

Taupunktmeßfühler am Eingang und Ausgang der Vorrichtung zur Durchführung des Verfahrens sind mit 28 und 29 bezeichnet. Die Verknüpfungen mit Druckmeßfühlern und Temperaturmeßfühlern sind hier durch gestrichelte Linien lediglich angedeutet.Dew point sensors at the entrance and exit of the apparatus for carrying out the method are designated 28 and 29. The links with pressure sensors and temperature sensors are indicated here by dashed lines only.

Claims (9)

  1. A method for continuously conditioning gas, preferably natural gas, before it is fed into a pipeline (1), in particular a network of pipelines for supplying consumers, in which the pressurized gas is removed from a storage tank, decompressed and heated to a predetermined temperature either before or after its decompression, in that a diverted partial flow of the natural gas removed from storage is mixed with oxygen and the resulting combustion gas is catalytically combusted and in which the gas removed from storage is heated using the heat energy thereby occurring,
    characterized in
    that a partial flow is diverted from a flow of hot flue gas released during catalytic combustion and
    conducted together with the cold combustion gas into a first container (8),
    that the combustion gas in the first container (8) is mixed with the partial flow of flue gas supplied and thereby heated and
    that the mixture of flue gas and combustion gas from the first container (8) preheated in this manner is diverted into a second container (15) in which it undergoes catalytic combustion, with the heat from which the gas removed from storage which is to be conditioned is heated to the desired temperature in each case.
  2. The method according to claim 1, characterized in that the natural gas removed from storage is immediately decompressed before being introduced into the second container (15).
  3. The method according to claim 2, characterized in that the decompressed natural gas is divided into partial flows, at least one of which is introduced around a reactor (14) of the second container (15) and at least one further partial flow is introduced into a mixing chamber (17) of the second container (15), wherein a partial flow of heated natural gas leaving the reactor (14) is simultaneously introduced into the mixing chamber (17).
  4. The method according to claim 3, characterized in that the gas flow leaving the mixing chamber (17) is conducted through a separator (18).
  5. The method according to claim 4, characterized in that the condensates occurring in the reactor (14) of the mixing chamber (17) and also in the separator (18) are diverted into a condensate trap.
  6. The method according to claim 5, characterized in that an absorption agent for binding the water vapour is sprayed into the gas flow, in order to assist the condensate separation.
  7. The method according to claim 6, characterized in that triethylene glycol is used as the absorption agent.
  8. The method according to one of the preceding claims, characterized in that the dew point of the natural gas removed from storage is measured at least before it enters the first container (8) and after it leaves the second container (15), that, depending on the measured dew point values, an oxygen addition and flow control of the flow of natural gas conducted into the second container (15) is varied.
  9. The method according to claim 8, characterized in that the variations in oxygen addition and flow control are conducted in a program-controlled manner.
EP09775870.0A 2008-08-04 2009-05-12 Method for continuously conditioning gas, preferably natural gas Not-in-force EP2310747B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09775870T PL2310747T3 (en) 2008-08-04 2009-05-12 Method for continuously conditioning gas, preferably natural gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008036243A DE102008036243A1 (en) 2008-08-04 2008-08-04 Process for the continuous conditioning of gas, preferably natural gas
PCT/DE2009/000665 WO2010015214A2 (en) 2008-08-04 2009-05-12 Method for continuously conditioning gas, preferably natural gas

Publications (2)

Publication Number Publication Date
EP2310747A2 EP2310747A2 (en) 2011-04-20
EP2310747B1 true EP2310747B1 (en) 2014-12-03

Family

ID=41501105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09775870.0A Not-in-force EP2310747B1 (en) 2008-08-04 2009-05-12 Method for continuously conditioning gas, preferably natural gas

Country Status (11)

Country Link
US (1) US8899045B2 (en)
EP (1) EP2310747B1 (en)
CA (1) CA2734365A1 (en)
DE (1) DE102008036243A1 (en)
DK (1) DK2310747T3 (en)
ES (1) ES2531829T3 (en)
HU (1) HUE024525T2 (en)
PL (1) PL2310747T3 (en)
PT (1) PT2310747E (en)
RU (1) RU2470225C2 (en)
WO (1) WO2010015214A2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330773A (en) 1963-03-28 1967-07-11 Du Pont Process for preparing gaseous mixtures
US5003782A (en) 1990-07-06 1991-04-02 Zoran Kucerija Gas expander based power plant system
DE4127883A1 (en) * 1991-08-22 1993-02-25 Abb Patent Gmbh DEVICE FOR HEAT GENERATION BY CATALYTIC COMBUSTION
US5606858A (en) * 1993-07-22 1997-03-04 Ormat Industries, Ltd. Energy recovery, pressure reducing system and method for using the same
DE19633674C2 (en) 1996-08-21 1998-07-16 Hamburger Gaswerke Gmbh In-line gas preheating
FR2833863B1 (en) 2001-12-20 2004-08-20 Air Liquide CATALYTIC REACTOR, CORRESPONDING INSTALLATION AND REACTION METHOD
US7108838B2 (en) 2003-10-30 2006-09-19 Conocophillips Company Feed mixer for a partial oxidation reactor
EP1865249B1 (en) 2006-06-07 2014-02-26 2Oc A gas pressure reducer, and an energy generation and management system including a gas pressure reducer
RU67236U1 (en) * 2007-05-10 2007-10-10 Дмитрий Тимофеевич Аксенов SYSTEM FOR PREPARING NATURAL GAS FOR COMBUSTION IN BOILER UNITS WITH COMPLEX USE OF OVER PRESSURE GAS PRESSURE FOR ELECTRICITY AND COOLING, GAS DIVERSION

Also Published As

Publication number Publication date
WO2010015214A3 (en) 2010-04-01
PT2310747E (en) 2015-02-24
DE102008036243A1 (en) 2010-02-11
US8899045B2 (en) 2014-12-02
RU2470225C2 (en) 2012-12-20
WO2010015214A2 (en) 2010-02-11
DK2310747T3 (en) 2015-03-02
RU2011103900A (en) 2012-09-10
US20110120011A1 (en) 2011-05-26
PL2310747T3 (en) 2015-04-30
ES2531829T3 (en) 2015-03-20
HUE024525T2 (en) 2016-01-28
EP2310747A2 (en) 2011-04-20
CA2734365A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
WO2017182187A1 (en) Method for purifying an asphaltene-containing fuel
DE102013016443B4 (en) Combustion engine reformer plant
EP1303684B1 (en) Method for operating a gas and steam turbine installation and corresponding installation
EP2310747B1 (en) Method for continuously conditioning gas, preferably natural gas
WO2016066553A1 (en) Column with absorption, scrubbing and cooling region and method for purifying a gas
WO2009027230A2 (en) Method for the operation of a power plant featuring integrated gasification, and power plant
EP2324223B1 (en) Device for continuously conditioning fed-out natural gas
EP3679165B1 (en) Reduction gas generation from saturated top gas
DE2207035C3 (en) Method and device for the incineration-free recovery of the expansion energy of blast furnace gas
EP1525155B1 (en) Waste-heat boiler for a claus plant
DE19930051C2 (en) Device and method for carrying out a water quench
DE102007038410B4 (en) Apparatus and method for the selective catalytic reduction of nitrogen oxides in an oxygen-containing exhaust gas of an incinerator
EP3156507B1 (en) Method and device for generation and treatment of protection and/or reaction gases especially for heat treatment of metals
DE2900275A1 (en) Reheating purified gas after scrubber - using system for mixing stream with some gas used in exchanger to cool crude gas before scrubber
DE10049227B4 (en) Procedures for gas purification of process gas from gasification processes
EP2133308A1 (en) Pure gas pre-heating device and method for pre-heating pure gas
DE102009037460A1 (en) Method for separating hydrogen sulfide from a gas stream using supersonic cyclone separator, by condensing the gas stream and then conducting through the cyclone separator, in which the hydrogen sulfide is separated from the gas stream
DE2548972C2 (en) Process and device for converting CO-containing gases
WO2014095111A1 (en) Superheating of an export gas used in a reduction process, in order to balance out amount fluctuations, and device
DE581873C (en) Process for the decomposition of hydrocarbon oils under pressure
AT216479B (en) Process for the continuous oxidation of volatile sulfur compounds in industrial wastewater
DE10307302A1 (en) Hydrocarbon cracking gas cooler is cleaned in two-stage process by combination of steam and oxygen in different ratios
DE1246689B (en) Method and device for converting hot gases containing carbon monoxide leaving a gas generator
DE19644144A1 (en) Hydrolysis of cyanides and cyano complexes under pressure without scale or blockages
DE19939636A1 (en) Crude gas continuous sampling and sample preparation method for crude gas production and washing process, involves adjusting entire dead time for crude gas sampling when obtaining predetermined quantity of crude gas sample

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110219

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROHR- UND MASCHINENANLAGENTECHNIK GMBH

Owner name: EWE GASSPEICHER GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EWE GASSPEICHER GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140825

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 699585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010307

Country of ref document: DE

Effective date: 20150115

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20150212

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2531829

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20150520

Year of fee payment: 7

Ref country code: ES

Payment date: 20150520

Year of fee payment: 7

Ref country code: DE

Payment date: 20150220

Year of fee payment: 7

Ref country code: DK

Payment date: 20150522

Year of fee payment: 7

Ref country code: NO

Payment date: 20150521

Year of fee payment: 7

Ref country code: GB

Payment date: 20150521

Year of fee payment: 7

Ref country code: RO

Payment date: 20150506

Year of fee payment: 7

Ref country code: PT

Payment date: 20150505

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150520

Year of fee payment: 7

Ref country code: BE

Payment date: 20150518

Year of fee payment: 7

Ref country code: FR

Payment date: 20150519

Year of fee payment: 7

Ref country code: PL

Payment date: 20150504

Year of fee payment: 7

Ref country code: AT

Payment date: 20150520

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010307

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20150504

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150519

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E024525

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150512

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009010307

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160531

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 699585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160512

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160512

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161114

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160512

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160512

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160513

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160512

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181128