EP2310477B1 - Method and apparatus for starting up gasifying reactors operated with combustible dust - Google Patents

Method and apparatus for starting up gasifying reactors operated with combustible dust Download PDF

Info

Publication number
EP2310477B1
EP2310477B1 EP09777194.3A EP09777194A EP2310477B1 EP 2310477 B1 EP2310477 B1 EP 2310477B1 EP 09777194 A EP09777194 A EP 09777194A EP 2310477 B1 EP2310477 B1 EP 2310477B1
Authority
EP
European Patent Office
Prior art keywords
burner
combustible
dust
gas
burners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09777194.3A
Other languages
German (de)
French (fr)
Other versions
EP2310477A2 (en
Inventor
Olaf Schulze
Anton Althapp
Michael GÄTKE
Burkhard MÖLLER
Reinhold Grunwald
Wolfgang Rabe
Günter Scholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL09777194T priority Critical patent/PL2310477T3/en
Publication of EP2310477A2 publication Critical patent/EP2310477A2/en
Application granted granted Critical
Publication of EP2310477B1 publication Critical patent/EP2310477B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/726Start-up
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • C10J2300/0933Coal fines for producing water gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners

Definitions

  • the invention relates to a method and a device for starting gasification reactors which are operated with fuel dust.
  • High unit power gasification reactors in particular more than 200 MW, are equipped in a known manner with multiple burners for the supply of gasification agent and fuel, regardless of whether gas, solid or liquid fuel is used. Load changes are made here mainly by the switching on and off of the arranged at the head of the gasification reactor single burner and to a limited extent with a modified fuel supply by means of variable differential pressure setting between the gasification reactor and dosing for dust injection.
  • the dust outlet speed at the burner must not be below a minimum of 3 to 5 m / s to avoid flashbacks.
  • a method and apparatus for controlled delivery of fuel dust in an entrained flow gasifier is described.
  • the method differs from previously known solutions mainly in that an auxiliary gas is introduced into the dosing in the immediate vicinity of the dosing for the fuel dust and is controlled by the resulting differential pressure change between dosing and burner the dust mass flow even at low power. Due to the very different flow behavior of many fuel dusts, this method is only limitedly suitable for load control of large-capacity gasification reactors.
  • DE 10 2006 030 079 A1 is a method for commissioning a gasification reactor using a Fuel gas when starting disclosed to reduce the ignition heat demand of the burner.
  • a central ignition and pilot burner is first ignited with a fuel gas-gas mixture and immediately increased the performance of the pilot burner and the pressure of the gasification reactor including downstream Rohgassysteme up to the maximum ignition and pilot burner output and the operating pressure of the system.
  • the dust burner surrounding the ignition and pilot burners are also ignited with a fuel gas-gas mixture mixture through the existing ignition and pilot burner flame. Once this is done, the fuel is added to the reactor by sequential opening of the supply lines and ignited. The fuel gas supply is terminated after commissioning of the burner with fuel dust.
  • a device that allows starting a gasification reactor for fuel dusts in such a way that no pressure surges caused by the suddenly released during startup gas amount is not known from the prior art.
  • the present invention based on the object to provide a method and apparatus for starting a gasification reactor, which avoids the pressure surges by the sudden release of gas during startup gas in the process stage downstream of the gasification reactor and does not require flaring ,
  • One embodiment relates to a method for starting up a gasification reactor.
  • a first composition of combustible dust and fuel gas with which a first burner is charged and ignited, regulated depending on the amount of fuel in the next composition of fuel dust and fuel gas, which is supplied to the second burner for igniting, after the first burner was ignited.
  • the start-up of each burner of the gasification reactor takes place under controlled adaptation of the supply of the fuel load to the previously ignited burner.
  • measuring devices determines the recorded measurements to a control and regulation unit for the Brennstaubmengen - And outputs fuel gas streams for the burner. The measured values are compared by the control unit with corresponding setpoints. If the measured values do not agree with the nominal values, the quantities of combustible dust and fuel gas for the burners are adjusted by the control unit.
  • the first burner is charged with a fuel-fuel mixture and ignited, the composition when igniting a next burner a further combustion dust-fuel gas mixture is adjusted regulated as a function of its composition, so that no pressure surges arise during startup.
  • this method step can also be carried out analogously with further burners, so that a fuel composition of a previously ignited burner is regulated after the ignition of a further burner as a function of the quantity of fuel which has been supplied to the subsequently ignited burner.
  • a fuel composition of a previously ignited burner is regulated after the ignition of a further burner as a function of the quantity of fuel which has been supplied to the subsequently ignited burner.
  • the inventive method offers by the control possibility the advantage that the formation of pressure surges by liberated gas, which otherwise could not be utilized and which would have to be flared, and thus is disadvantageous for subsequent process stages, is avoided.
  • a much more uniform amount of dust flow from the metering vessel for the respective burner can be secured, since the pressure difference between gasification reactor and metering causes the promotion of the fuel dust in the gasification reactor.
  • All the individual burners 7 of the plurality of burners 7 are ignited one after the other, the burning load during ignition of a single burner being in the range of up to 30% of the maximum output of the individual burner 7.
  • natural gas with a methane content of more than 60% by volume is used as fuel gas.
  • An embodiment of the device for carrying out the method according to the invention describes a gasification reactor with a plurality of burners and a metering vessel for combustible dust, which is connected via a plurality of dense flow conveying lines with a corresponding burner.
  • a dust flow control element for controlling a quantity of pulverized fuel is advantageously arranged in each dense flow conveying line.
  • the device has at least one admixing device for a fuel gas for controlling a fuel gas quantity for each dense flow conveying line.
  • an operative coupling of the dust flow control elements with the admixing devices is provided for controlling the fuel compositions in relation to a total fuel load of combustible dust and fuel gas.
  • the device comprises a control and regulation unit, which provides the operative coupling between the fuel flow control device and admixing device, as well as downstream of the gasification reactor arranged measuring devices for the determination of gas quantities and / or their compositions of a synthesis gas.
  • the measured value output of the measuring instruments is connected to the control and regulation unit for a comparison of measured values with corresponding desired values in the control and regulation unit. In this case, if the measured values do not agree with the desired values and depending on each other, the fuel dust flow rates through the fuel dust flow control devices and the fuel gas streams through the admixing devices can be adjusted by the control and regulation unit.
  • the operational coupling provided by the control and regulation unit of the Brennstaubstrom-control devices and the Zumischvorraumen allows control of the amount and composition of the total, the burners supplied fuel load from fuel dust and fuel gas in the gasification reactor in the ignition of other burners.
  • DE 10 2006 030 079 A1 merely describes a controller for supplying fuel gas and oxygen-containing gasification agent and for opening the supply of fuel dust.
  • a safety system monitors the fuel gas quantity and amount of oxygen as well as the amount of fuel dust.
  • measuring devices are provided downstream of the gasification reactor, which provide measured values relating to the amount and / or composition of a synthesis gas generated, as a function of which the fuel dust flow control devices and admixing devices are controlled by the control and regulation unit to determine the composition of the fuel dust / fuel gas mixture when firing more burners to regulate.
  • Preferred embodiments relate to the arrangement of the mixing devices for fuel gas.
  • start-up of the gasification reactor is understood to mean the start-up thereof by igniting the burners. If all the burners of the gasification reactor burn, then the startup is complete and the gasification reactor operates in normal operation.
  • fuel load refers to the mass or mass flow of fuel, whether gas, liquid and / or solid fuel, that is reacted by a gasification reactor.
  • a burner of a gasification reactor must be operated at a "minimum exit velocity" at the burner mouth during ignition, which is in the range of 3 to 5 m / s, to avoid flashbacks.
  • synthesis gas consisting of carbon monoxide and hydrogen is recovered from the fuel used, and the synthesis gas produced is reused in downstream process stages, for example in the methanol, oxo or Fischer-Tropsch synthesis.
  • the hydrogen produced is also used separately, in the ammonia synthesis according to Haber-Bosch with nitrogen, as an energy carrier or reducing or hydrogenating agent.
  • the inventive method for starting gasification reactors which have two or more burners, each of which is fed via its associated dense stream conveying line with fuel dust from a metering vessel and a gas delivery line with fuel gas, comprises providing a fuel mixture of fuel dust and fuel gas in front of a Time of ignition of a burner.
  • the fuel gas used for this purpose is not an auxiliary gas in the sense of a gas used for pressure equalization between metering vessel and gasification reactor, which is often an inert gas, but a fuel gas with calorific value.
  • a natural gas may preferably be used with a methane content of more than 60%, other alkanes such as ethane, propane and butane and mixtures thereof can be used; suitable fuel gases are known in the art.
  • a first composition of combustible dust and fuel gas with which a first burner is charged for ignition, is ignited after the ignition of a second burner, which follows the ignition of the first burner and is charged with a second composition of combustible dust and fuel gas, controlled in response to the amount of fuel that was supplied to the second burner for ignition, so that the start of each of the plurality of burners of the gasification reactor takes place under controlled supply of fuel load.
  • the fuel gas content in the mixture of fuel gas and fuel dust may be varied, or the mixture composition may be controlled to decrease the combustible dust load, if necessary.
  • a second or third or further composition fed to another burner is controlled in dependence on the amount of fuel supplied to the respective preceding burner for ignition, after a third or further burner, which is charged with a third or further composition of combustible dust and fuel gas for ignition, was ignited following the ignition of the second burner.
  • the individual burners are ignited in a lower load range, that is, the minimum possible fuel load for the single burner is from 1% to 30% of the maximum load of the single burner, which is defined by the maximum fuel load at a maximum exit velocity.
  • the minimum possible fuel load for the single burner is from 1% to 30% of the maximum load of the single burner, which is defined by the maximum fuel load at a maximum exit velocity.
  • the amount of syngas generated in the gasification reactor is directly correlated with the fuel load supplied.
  • the minimum load of fuel required for starting up the gasification reactor thus determines the amount of synthesis gas that is released when the gasification reactor is started up.
  • the fuel gas is supplied via at least one admixing device between the metering vessel and the respective burner of the gasification reactor in the corresponding dense flow conveying line, which is assigned to the burner.
  • the fuel gas can also be guided in parallel to the dense phase conveying line via a fuel gas delivery line in the admixing device and from there in mixture in the burner, wherein the advantage of parallel guidance in a jointly usable by the dense flow conveyor line and the fuel gas delivery control unit is because the lines immediately adjacent to each other.
  • the Brennstaublast in the dense phase conveying line by a dust flow control device, which may be, for example, a throttle, a diaphragm or a valve, regulated, which is in operative connection with the mixing devices for the fuel gas.
  • a dust flow control device which may be, for example, a throttle, a diaphragm or a valve, regulated, which is in operative connection with the mixing devices for the fuel gas.
  • corresponding measuring devices can be provided for determining the gas quantities produced in the gasifier and / or their compositions downstream of the gasification reactor upstream of the downstream process stages, and the detected measured values output to the control and regulation unit. This compares the measured values with the corresponding setpoints and, in the event of a mismatch, adapts the quantities of combustible dust and fuel gas for the burners.
  • the skilled worker knows that a manual adjustment of Brennstaubmengen- and fuel gas streams is also possible.
  • the increase in the amount of synthesis gas generated during startup of the gasification reactor can be carried out stepwise after ignition of the first burner and the other burner in optimally minimized stages by the fuel mixture of the previously ignited burner by controlling the Brennstaubmengen- and fuel gas streams for the burner after igniting further burners in terms of mass flow and / or composition is adjusted.
  • the method according to the invention for starting is particularly suitable for large gasification reactors.
  • the term "large gasification reactor” refers to gasifiers with a capacity above 200 MW, for example a 400 MW gasification reactor.
  • the process according to the invention can also be used for gasification reactors with outputs of 1,000 MW and 1,500 MW.
  • a lower load range of such a large gasification reactor with, for example, 400 MW power is therefore at the minimum exit velocity, which is 3 m / s, 40 t / h fuel load. This corresponds to about 60% of the maximum fuel load, which can pass through this gasification reactor, namely 65 t / h, which is achievable with a maximum exit velocity of 8 m / s.
  • this reactor is started according to the prior art with 60% of the maximum load, ie at 40 t / h fuel load, this means an immediately released synthesis gas amount of 60,000 Nm 3 / h.
  • the method according to the invention for starting up in which a single burner is charged in its lower load range up to 30% of the maximum load for the single burner, with the 400 MW gasification reactor equipped, for example, with 3 individual burners, only a maximum of 20,000 Nm when the first burner is ignited 3 / h of synthesis gas free.
  • the amount of synthesis gas is then increased to 40,000 Nm 3 / h with ignition of the second burner, which releases 20,000 Nm 3 / h of synthesis gas analogously and with ignition of the third burner to 60,000 Nm 3 / h, if each individual burner is operated at minimum load, what then corresponds to the minimum load of the gasification reactor of 60,000 Nm 3 / h.
  • the composition of the fuel load can be increased up to the rated power.
  • the incremental increase in the amount of syngas can still be reduced by using four or more burners, so that the burners per burner amount of synthesis gas released corresponds to a quarter or a fraction of the minimum load of the gasification reactor.
  • a "quasi-continuous" startup of the gasification reactor can be achieved approximately.
  • the amount of pulverized fuel for the compositions is regulated as a function of the amount of fuel gas supplied, that is to say as follows: H. adjusted by the dust flow control device, the amount of fuel dust flow according to a supplied fuel gas amount.
  • H. adjusted by the dust flow control device the amount of fuel dust flow according to a supplied fuel gas amount.
  • the reverse procedure is conceivable that the fuel gas supply is increased or throttled depending on the supplied fuel dust flow rates.
  • a flow rate of the fuel dust can be in the range of 3 to 5 m / s.
  • the dusts may include dusts of solid fuels such as hard coal, lignite, their cokes, petroleum cokes, as well as cokes of peat or biomass or mixtures thereof; those skilled in the art are aware of other suitable types of combustible dust.
  • solid fuels such as hard coal, lignite, their cokes, petroleum cokes, as well as cokes of peat or biomass or mixtures thereof; those skilled in the art are aware of other suitable types of combustible dust.
  • the apparatus for carrying out the method according to the invention comprises a gasification reactor with a plurality of burners, as well as a metering vessel with a Brennstaubzu entry and a plurality of dense phase conveying line.
  • a dense flow conveying line leads to an associated burner of the gasification reactor.
  • a dust flow control device for controlling a Brennstaubstroms and at least one Zumischvoriques for a fuel gas for controlling a fuel gas quantity are arranged.
  • the device can be a Zumischvorraum for fuel gas between the metering and the respective Having burner in the associated dense flow conveying line, wherein the dust flow control device comprises a flow controller for measuring the Brennstaubstroms;
  • the admixing device for fuel gas can also be arranged directly at a feed opening of the burner and the fuel gas delivery line advantageously parallel to the dense phase conveying line, whereby the control of the Brennstaubstroms is simplified by the dust flow control device, which can then simply be a diaphragm or throttle, and no additional Flow regulator required.
  • the dust flow control devices in each dense flow conveying line and the fuel gas mixing devices are operatively coupled to each other so that regulation of an entire fuel load of fuel dust and fuel gas into the gasification reactor takes place.
  • Fig. 1 shows a schematic of the device according to the invention. From here, a Brennstaubzu operation 2 in the metering 1. From the distributor plate 4 of the metering 1, the Dichtstromdeemtechnischen 51 to 54 extend to the burners (not shown separately) of a multi-channel burner 7. A gas inlet 61 to the distributor plate 4 is used to introduce a fluidizing gas. The gas delivery lines 62 and 63 each open via a Zumischvorraum 9 in the dense flow conveying line 51.
  • the Dichtstrom complicatsysteme 51 to 54 are each designed analogously, for clarity is in Fig. 1 however, only the dense flow conveying line 51 is shown completely with admixing devices 9 and dust flow control device 8.
  • the other dense flow conveyor lines have according to the dense flow conveyor lines 51 Staubstromregelorgan and Zumischvorraumen.
  • the dust control device 8 is provided with an additional, fed back into the dense flow conveying line 51 Flow regulator 10 'connected.
  • the additional flow regulator 10 for the dust control device 8 is omitted (the dashed arrows indicate this), when the gas delivery line 63 opens into parallel to the dense flow conveyor lines 51 extending dashed fuel gas delivery line 67, which leads to a feed opening of the dense current conveying lines 51 associated burner.
  • the scheme The admixing of fuel gas into the respective dense flow conveying line 51 to 54 from the delivery line 62 or 63 takes place via at least one of the admixing devices 9.
  • an admixing of inert gas via a delivery line can take place 62 or 63 take place by means of admixing device 9.
  • a mixture of fuel and inert gas in a delivery line is conceivable.
  • the supply of fuel gas can also take place via the fluidizing gas line 61 to the distributor plate, whereby the fuel dust in the metering vessel 1 is placed in the flow state.
  • an inert gas is used as the fluidizing gas.
  • a synthesis gas delivery line 68 leads into a downstream process stage 11.
  • the incremental increase in the amount of syngas generated upon startup of a gasification reactor equipped with, for example, four burners (not shown figuratively) in optimally minimized stages by the controller the combustible dust and fuel gas load is such that upon ignition of the first burner, the increase in combustion load associated with the second, third and fourth burners in conjunction with the change in the first, second and third compositions of the fuel blends are previously in operation Burners takes place.
  • either the amount of fuel dust or the amount of fuel gas fed into the dense phase conveying line can be used for the regulation.
  • a fuel mixture is provided with a first composition of combustible dust and fuel gas which is ignited at a first burner of a gasification reactor having a plurality of burners in a lower load range of the burner of up to 30% of the burner maximum load.
  • the ignition of a second burner takes place in its lower load range, which is charged with a second composition of the fuel mixture of fuel dust and fuel.
  • the ignition of the second burner automatically triggers the control to change the first composition of the fuel mixture, so that the fuel load added by the ignition of the second burner is absorbed by changing the first composition.
  • the fuel gas content in the first composition may be reduced so that the load increase from first ignition to second ignition may be adjusted.
  • the ignition of a third or further "nth” burner runs.
  • the ignition of the third burner in its lower load range which in turn with a third composition of the fuel mixture of fuel dust and gas is supplied, a change in the second composition of the fuel mixture of the previously fired second burner is controlled.
  • the ignition of an "nth" burner in its lower load range which is fed with an “nth” composition of the fuel dust and fuel gas fuel mixture, will cause the (n-1) th composition of a previously ignited (n-1) -ter burner is changed regulated.

Description

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum Anfahren von Vergasungsreaktoren die mit Brennstaub betrieben werden.The invention relates to a method and a device for starting gasification reactors which are operated with fuel dust.

Vergasungsreaktoren mit hoher Einheitsleistung, im Besonderen mit mehr als 200 MW, sind in bekannter Weise mit mehreren Brennern für die Zuführung von Vergasungsmittel und Brennstoff, unabhängig ob Gas-, Feststoff-, oder Flüssigbrennstoff genutzt wird, ausgestattet. Laständerungen werden hierbei hauptsächlich durch das Zu- und Abschalten der am Kopf des Vergasungsreaktors angeordneten Einzelbrenner und im begrenzten Umfang mit einer veränderten Brennstoffzufuhr mittels veränderbarer Differenzdruckeinstellung zwischen Vergasungsreaktor und Dosiergefäß für die Staubeinspeisung vorgenommen.High unit power gasification reactors, in particular more than 200 MW, are equipped in a known manner with multiple burners for the supply of gasification agent and fuel, regardless of whether gas, solid or liquid fuel is used. Load changes are made here mainly by the switching on and off of the arranged at the head of the gasification reactor single burner and to a limited extent with a modified fuel supply by means of variable differential pressure setting between the gasification reactor and dosing for dust injection.

Die Staubaustrittsgeschwindigkeit am Brenner darf ein Minimum von 3 bis 5 m/s nicht unterschreiten, um Flammenrückschläge zu vermeiden. Beim Anfahren von Vergasungsreaktoren mit großer Leistung werden daher beim Zünden beträchtliche Gasmengen freigesetzt, die in den nachgeschalteten Prozessstufen nicht auf einmal verwertet werden können und damit in die Atmosphäre abgefackelt werden müssen.The dust outlet speed at the burner must not be below a minimum of 3 to 5 m / s to avoid flashbacks. When starting gasification reactors with high power therefore considerable amounts of gas are released during ignition, which can not be utilized in the downstream process stages at once and thus flared into the atmosphere.

In der DE 33 124 49 A1 und in der DD 22 36 13 A3 sind Verfahren und Vorrichtungen zur Verbesserung des Regelverhaltens von Vergasungsreaktoren beschrieben, die das Ziel verfolgen, mittels Vibrationsbewegungen des Trägergasstromes für die Dichtstromförderung des Brennstaubes eine gleichmäßigere Beschaffenheit des Massenstromes vor allem im unteren Lastbereich zu erzielen. Dabei soll ein anteiliger Steuergasstrom, mit einer Pulsfrequenz von 0,5 bis 10 s-1 dem Hauptdichtstrom zugeführt werden. Diese Lösung verlangt einen hohen technischen Aufwand und erzielt nur begrenzt Vorteile für das Regelverhalten von Vergasungsreaktoren.In the DE 33 124 49 A1 and in the DD 22 36 13 A3 Methods and devices for improving the control behavior of gasification reactors are described, which pursue the goal to achieve a more uniform nature of the mass flow, especially in the lower load range by means of vibrational movements of the carrier gas stream for dense phase conveying the fuel dust. In this case, a proportionate control gas stream, with a pulse frequency of 0.5 to 10 s -1 to the main sealing stream to be supplied. This solution requires a high level of technicality Effort and achieved only limited benefits for the control behavior of gasification reactors.

In der DE 10 2005 048 488 A1 wird ein Verfahren und eine Vorrichtung für Flugstromvergaser mit hoher Leistung beschrieben, wobei Brennstaub mit einem Wassergehalt von weniger als 10 Massen- % und einer Korngröße von unter 200 µm über Dosiersysteme aufgegeben wird. Diese führen den Brennstaub über Förderrohre mehreren Vergasungsbrennern zu, die am Kopf des Vergasungsreaktors symmetrisch angeordnet sind und zusätzliche Sauerstoffzuführungen enthalten. Dabei erfolgt das Zünden mehrerer Staubbrenner mit Sauerstoff im Kopf des Reaktors mittels Zünd- und Pilotbrenner. Eine mengenmäßige Erfassung des zugeführten Brennstaubes und Sauerstoffes erfolgt dabei im Zusammenhang mit einer festgelegten Sauerstoffverhältniszahl und einem Regelmechanismus. Die auch mit diesem Verfahren beim Anfahren entstehenden großen Gasmengen müssen über Fackelsysteme in der Atmosphäre verbrannt werden, um Lastschwankungen abzufangen.In the DE 10 2005 048 488 A1 describes a method and an apparatus for high flow entrainment gasifier, wherein fuel dust with a water content of less than 10% by mass and a particle size of less than 200 microns is fed via dosing. These lead the fuel dust via delivery pipes to several gasification burners, which are arranged symmetrically at the head of the gasification reactor and contain additional oxygen feeds. The ignition of several dust burner with oxygen in the head of the reactor by means of ignition and pilot burner. A quantitative detection of the supplied fuel dust and oxygen takes place in connection with a specified oxygen ratio and a control mechanism. The large quantities of gas which also arise during startup with this method must be burned by means of torch systems in the atmosphere in order to absorb load fluctuations.

In der DE 102005047 583 A1 sind ein Verfahren und eine Vorrichtung zur geregelten Zufuhr von Brennstaub in einem Flugstromvergaser beschrieben. Das Verfahren unterscheidet sich gegenüber bisher bekannten Lösungen vor allem dadurch, dass ein Hilfsgas in die Dosierleitung in unmittelbarer Nähe des Dosiergefäßes für den Brennstaub eingegeben wird und über die sich daraus ergebende Differenzdruckänderung zwischen Dosiergefäß und Brenner der Staubmassestrom auch bei niedrigen Leistungen gesteuert wird. Auf Grund des sehr unterschiedlichen Fließverhaltens vieler Brennstäube ist auch dieses Verfahren nur begrenzt zur Laststeuerung von Vergasungsreaktoren großer Leistung geeignet.In the DE 102005047 583 A1 For example, a method and apparatus for controlled delivery of fuel dust in an entrained flow gasifier is described. The method differs from previously known solutions mainly in that an auxiliary gas is introduced into the dosing in the immediate vicinity of the dosing for the fuel dust and is controlled by the resulting differential pressure change between dosing and burner the dust mass flow even at low power. Due to the very different flow behavior of many fuel dusts, this method is only limitedly suitable for load control of large-capacity gasification reactors.

In DE 10 2006 030 079 A1 wird ein Verfahren zur Inbetriebnahme eines Vergasungsreaktors unter Nutzung eines Brenngases beim Anfahren offenbart, um den Zündwärmebedarf der Brenner zu reduzieren. Dazu wird zunächst ein zentraler Zünd- und Pilotbrenner mit einem Brenngas-Vergasungsmittel-Gemisch gezündet und sofort die Leistung des Pilotbrenners und der Druck des Vergasungsreaktors einschließlich nachgeschalteter Rohgassysteme bis auf die maximale Zünd- und Pilotbrennerleistung und den Betriebsdruck der Anlage gesteigert. Danach werden die den Zünd- und Pilotbrenner umgebenden Staubbrenner ebenfalls mit einem Brenngas-Vergasungsmittel-Gemisch durch die bestehende Zünd- und Pilotbrennerflamme gezündet. Ist dies erfolgt, wird durch sequentielles Öffnen der Zuführungsleitungen der Brennstaub in den Reaktor zugeführt und gezündet. Die Brenngaszufuhr wird nach erfolgter Inbetriebnahme der Brenner mit Brennstaub beendet.In DE 10 2006 030 079 A1 is a method for commissioning a gasification reactor using a Fuel gas when starting disclosed to reduce the ignition heat demand of the burner. For this purpose, a central ignition and pilot burner is first ignited with a fuel gas-gas mixture and immediately increased the performance of the pilot burner and the pressure of the gasification reactor including downstream Rohgassysteme up to the maximum ignition and pilot burner output and the operating pressure of the system. Thereafter, the dust burner surrounding the ignition and pilot burners are also ignited with a fuel gas-gas mixture mixture through the existing ignition and pilot burner flame. Once this is done, the fuel is added to the reactor by sequential opening of the supply lines and ignited. The fuel gas supply is terminated after commissioning of the burner with fuel dust.

Eine Vorrichtung, die ein Anfahren eines Vergasungsreaktors für Brennstäube in einer Weise ermöglicht, dass keine Druckstöße durch die beim Anfahren schlagartig freigesetzte Gasmenge entstehen, ist aus dem Stand der Technik bisher nicht bekannt.A device that allows starting a gasification reactor for fuel dusts in such a way that no pressure surges caused by the suddenly released during startup gas amount is not known from the prior art.

Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein Verfahren und eine Vorrichtung zum Anfahren eines Vergasungsreaktors bereit zu stellen, das die Druckstöße durch die beim Anfahren schlagartig freigesetzte Gasmenge in den dem Vergasungsreaktor nachgeschalteten Prozessstufen vermeidet und keine Abfackelung erforderlich macht.Based on this prior art, the present invention based on the object to provide a method and apparatus for starting a gasification reactor, which avoids the pressure surges by the sudden release of gas during startup gas in the process stage downstream of the gasification reactor and does not require flaring ,

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des unabhängigen Anspruchs 1 und eine Vorrichtung mit den Merkmalen des unabhängigen Anspruchs 11 gelöst. Weiterbildungen werden in den Unteransprüchen beschrieben.This object is achieved by a method having the features of independent claim 1 and an apparatus having the features of independent claim 11. Further developments are described in the subclaims.

Die Aufgabe wird erfindungsgemäß durch ein Verfahren zum Anfahren eines Vergasungsreaktors mit einer Mehrzahl von Brennern, gelöst, demzufolge
jeder Brenner 7 über eine ihm zugeordnete Dichtstromförderleitung 51,52,53,54 mit Brennstaub aus einem Dosiergefäß 1 und über eine Gasförderleitung 62,63 mit Brenngas beschickt wird, wobei
die Vorrichtung zu jeder Dichtstromförderleitung zumindest eine Zumischvorrichtung 9 für ein Brenngas 62, 63 zur Regelung einer Brenngasmenge aufweist, wobei ein Brenner des Vergasungsreaktors mit einer "minimalen Austrittsgeschwindigkeit" am Brennermund beim Zünden betrieben wird, die im Bereich von 3 bis 5 m/s liegt, wobei die einzelnen Brenner 7 in einem unteren Lastbereich gezündet werden, das heißt, die minimal mögliche Brennstofflast für einen einzelnen Brenner 7 beträgt von 1% bis zu 30% der Maximallast des Einzelbrenners 7, die durch die maximale Brennstofflast bei einer maximalen Austrittsgeschwindigkeit definiert ist, demzufolge vor einem Zeitpunkt des Zündens eines Brenners 7 ein Brennstoffgemisch aus Brennstaub und Brenngas bereitgestellt wird, und wobei eine erste Zusammensetzung aus Brennstaub und Brenngas, mit der ein erster Brenner 7 zum Zünden beschickt wird, nach dem auf das Zünden des ersten Brenners 7 folgende Zünden eines zweiten Brenners 7, der mit einer zweiten Zusammensetzung aus Brennstaub und Brenngas zum Zünden beschickt wird, in Abhängigkeit der Brennstofflast geregelt wird, die dem zweiten Brenner 7 zum Zünden zugeführt wird,
so dass das Anfahren jedes der Mehrzahl von Brennern 7 des Vergasungsreaktors unter geregelter Anpassung der Zufuhr der Brennstofflast zum zuvor gezündeten Brenner 7 erfolgt, wobei die Brennstofflast zu den zuvor gezündeten Brennern 7 durch

  • Bestimmen von Gasmengen und/oder deren Zusammensetzungen eines im Vergasungsreaktor erzeugten Synthesegases mittels stromabwärts zu dem Vergasungsreaktor vor nachgeschalteten Prozessstufen angeordneten Messgeräten und
  • Ausgabe der durch die Messgeräte erfassten Messwerte an eine Steuer- und Regeleinheit für die Brennstaubmengen- und Brenngasströme für die Brenner 7 und
  • Vergleichen der Messwerte mit entsprechenden Sollwerten und bei Nichtübereinstimmung der Messwerte mit den Sollwerten Anpassen der Brennstaubmengen- und Brenngasströme für die Brenner 7 durch die Steuer- und Regeleinheit
beim Zünden weiterer Brenner geregelt wird.The object is achieved by a method for starting a gasification reactor with a plurality of burners, solved, accordingly
each burner 7 is charged via its associated dense flow conveying line 51,52,53,54 with fuel dust from a metering vessel 1 and a gas delivery line 62,63 with fuel gas, wherein
the device comprises at least one admixing device 9 for a fuel gas 62, 63 for controlling a fuel gas quantity, wherein a burner of the gasification reactor is operated at a "minimum exit velocity" at the burner mouth during ignition, which is in the range of 3 to 5 m / s wherein the individual burners 7 are ignited in a lower load range, that is, the minimum possible fuel load for a single burner 7 is from 1% to 30% of the maximum load of the single burner 7 defined by the maximum fuel load at a maximum exit velocity according to which a fuel mixture of fuel dust and fuel gas is provided before a time of igniting a burner 7, and wherein a first composition of combustible dust and fuel gas, with which a first burner 7 is charged for ignition, after that following the ignition of the first burner 7 Igniting a second burner 7, which with a the second composition of fuel dust and fuel gas is charged for ignition, is regulated in dependence on the fuel load which is supplied to the second burner 7 for ignition,
so that the start-up of each of the plurality of burners 7 of the gasification reactor takes place under controlled adaptation of the supply of the fuel load to the previously ignited burner 7, wherein the fuel load to the previously ignited burners 7 through
  • Determining gas quantities and / or their compositions of a synthesis gas generated in the gasification reactor by means downstream of the gasification reactor upstream of downstream process stages arranged measuring devices and
  • Output of the measured values recorded by the measuring devices to a control and regulation unit for the Brennstaubmengen- and fuel gas streams for the burner 7 and
  • Compare the measured values with the corresponding setpoint values and, if the measured values do not agree with the nominal values, adapt the amount of fuel dust and fuel gas streams for the burners 7 by the control unit
when firing another burner is regulated.

Eine Ausführungsform bezieht sich auf ein Verfahren zum Anfahren eines Vergasungsreaktors. Dabei wird eine erste Zusammensetzung aus Brennstaub und Brenngas, mit der ein erster Brenner beschickt und gezündet wird, in Abhängigkeit der Brennstoffmenge in der nächsten Zusammensetzung aus Brennstaub und Brenngas geregelt, die dem zweiten Brenner zum Zünden zugeführt wird, nachdem der erste Brenner gezündet wurde. So erfolgt das Anfahren jedes Brenners des Vergasungsreaktors unter geregelter Anpassung der Zufuhr der Brennstofflast zum zuvor gezündeten Brenner. Zur Regelung der Brennstofflast zu den zuvor gezündeten Brenners beim Zünden weiterer Brenner werden Gasmengen und/oder deren Zusammensetzungen eines im Vergasungsreaktor erzeugten Synthesegases mittels stromabwärts zu dem Vergasungsreaktor vor nachgeschalteten Prozessstufen angeordneten Messgeräten bestimmt, die die erfassten Messwerte an eine Steuer- und Regeleinheit für die Brennstaubmengen- und Brenngasströme für die Brenner ausgibt. Die Messwerte werden durch die Steuer- und Regeleinheit mit entsprechenden Sollwerten verglichen. Bei Nichtübereinstimmung der Messwerte mit den Sollwerten werden die Brennstaubmengen- und Brenngasströme für die Brenner durch die Steuer- und Regeleinheit angepasst.One embodiment relates to a method for starting up a gasification reactor. In this case, a first composition of combustible dust and fuel gas, with which a first burner is charged and ignited, regulated depending on the amount of fuel in the next composition of fuel dust and fuel gas, which is supplied to the second burner for igniting, after the first burner was ignited. Thus, the start-up of each burner of the gasification reactor takes place under controlled adaptation of the supply of the fuel load to the previously ignited burner. To regulate the fuel load to the previously ignited burner when igniting further burners gas quantities and / or their compositions of a synthesis gas generated in the gasification reactor by downstream to the gasification reactor upstream of downstream process stages arranged measuring devices determines the recorded measurements to a control and regulation unit for the Brennstaubmengen - And outputs fuel gas streams for the burner. The measured values are compared by the control unit with corresponding setpoints. If the measured values do not agree with the nominal values, the quantities of combustible dust and fuel gas for the burners are adjusted by the control unit.

Im Gegensatz zur DE 10 2006 030 079 A1 , in der der Pilotbrenner nur mit Brenngas gezündet, dafür aber sofort auf Maximalleistung gefahren wird, woraufhin die Staubbrenner ebenfalls nur mit Brenngas gezündet werden, wird im erfindungsgemäßen Verfahren der ersten Brenner mit einem Brennstaub-Brenngas-Gemisch beschickt und gezündet, dessen Zusammensetzung beim Zünden eines nächsten Brenners mit einem weiteren Brennstaub-Brenngas-Gemisch in Abhängigkeit dessen Zusammensetzung geregelt angepasst wird, so dass keine Druckstöße beim Anfahren entstehen.In contrast to DE 10 2006 030 079 A1 in which the Pilot burner ignited only with fuel gas, but immediately driven to maximum power, whereupon the dust burners are also ignited only with fuel gas, in the inventive method, the first burner is charged with a fuel-fuel mixture and ignited, the composition when igniting a next burner a further combustion dust-fuel gas mixture is adjusted regulated as a function of its composition, so that no pressure surges arise during startup.

In einer anderen Ausführungsform kann dieser Verfahrensschritt auch mit weiteren Brennern analog durchgeführt werden, so dass eine Brennstoffzusammensetzung eines zuvor gezündeten Brenners nach dem Zünden eines weiteren Brenners in Abhängigkeit der Brennstoffmenge geregelt wird, die dem nachfolgend gezündeten Brenner zugeführt wurde. Dadurch erfolgt das Anfahren des Vergasungsreaktors unter geregelter Zufuhr der Brennstofflast.In another embodiment, this method step can also be carried out analogously with further burners, so that a fuel composition of a previously ignited burner is regulated after the ignition of a further burner as a function of the quantity of fuel which has been supplied to the subsequently ignited burner. As a result, the startup of the gasification reactor takes place under controlled supply of the fuel load.

Das erfindungsgemäße Verfahren bietet durch die Regelungsmöglichkeit den Vorteil, dass die Entstehung von Druckstößen durch freigesetztes Gas, das andernfalls nicht verwertet werden könnte und das abgefackelt werden müsste, und das insofern für nachfolgende Prozessstufen nachteilig ist, vermieden wird. Hinzu kommt, dass mit der Vermeidung von Druckschwankungen im Vergasungsreaktor ein wesentlich gleichmäßigerer Staubmengenstrom aus dem Dosiergefäß für die jeweiligen Brenner gesichert werden kann, da die Druckdifferenz zwischen Vergasungsreaktor und Dosiergefäß die Förderung des Brennstaubes in den Vergasungsreaktor bewirkt.The inventive method offers by the control possibility the advantage that the formation of pressure surges by liberated gas, which otherwise could not be utilized and which would have to be flared, and thus is disadvantageous for subsequent process stages, is avoided. In addition, with the avoidance of pressure fluctuations in the gasification reactor a much more uniform amount of dust flow from the metering vessel for the respective burner can be secured, since the pressure difference between gasification reactor and metering causes the promotion of the fuel dust in the gasification reactor.

Alle einzelnen Brenner 7 der Mehrzahl von Brennern 7 werden nacheinander gezündet, wobei die Brennstaublast beim Zünden eines Einzelbrenners im Bereich von bis zu 30 % der Maximalleistung des einzelnen Brenners 7 liegt.All the individual burners 7 of the plurality of burners 7 are ignited one after the other, the burning load during ignition of a single burner being in the range of up to 30% of the maximum output of the individual burner 7.

Während des Anfahrens der einzelnen Brenner 7

  • wird eine Brennstaublast im Bereich von bis zu 30 % der Maximalleistung des einzelnen Brenners 7 eingestellt,
  • erfolgt die Regelung der Zusammensetzungen aus Brennstaub und Brenngas für die einzelnen Brenner 7 derart, dass beim Zünden weiterer Brenner 7 die dem zuvor gezündeten Brenner 7 zugeführte Brennstofflast gedrosselt wird,
so dass eine schrittweise Zunahme einer im Vergasungsreaktor erzeugten Gasmenge bewirkt wird.During startup of the individual burners 7
  • a firing load is set in the range of up to 30% of the maximum power of the individual burner 7,
  • the control of the compositions of combustible dust and fuel gas for the individual burners 7 takes place in such a way that, when additional burners 7 are ignited, the fuel load supplied to the previously fired burner 7 is throttled,
so as to effect a stepwise increase in the amount of gas produced in the gasification reactor.

In einer besonderen Weiterbildung des erfindungsgemäßen Verfahrens wird als Brenngas Erdgas mit einem Methangehalt von über 60 Vol. -%, eingesetzt.In a particular development of the process according to the invention, natural gas with a methane content of more than 60% by volume is used as fuel gas.

Eine Ausführungsform der Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens beschreibt einen Vergasungsreaktor mit mehreren Brennern und einem Dosiergefäß für Brennstaub, das über mehrere Dichtstromförderleitungen mit einem entsprechenden Brenner verbunden ist. Dabei ist vorteilhaft in jeder Dichtstromförderleitung ein Staubstromregelorgan zur Regelung einer Brennstaubmenge angeordnet. Weiterhin weist die Vorrichtung zu jeder Dichtstromförderleitung zumindest eine Zumischvorrichtung für ein Brenngas zur Regelung einer Brenngasmenge auf. Um das erfindungsgemäße Verfahren durchführen zu können, ist eine operative Kopplung der Staubstromregelorgane mit den Zumischvorrichtungen zur Regelung der Brennstoffzusammensetzungen in Bezug auf eine gesamte Brennstofflast aus Brennstaub und Brenngas vorgesehen. Dazu umfasst die Vorrichtung eine Steuer- und Regelungseinheit, die die operative Kopplung zwischen Brennstaubstrom-Regelungsvorrichtung und Zumischvorrichtung bereitstellt, sowie stromabwärts zu dem Vergasungsreaktor angeordnete Messgeräte zur Bestimmung von Gasmengen und/oder deren Zusammensetzungen eines Synthesegases. Die Messwertausgabe der Messgeräte ist mit der Steuer- und Regelungseinheit für einen Vergleich von Messwerten mit entsprechenden Sollwerten in der Steuer- und Regelungseinheit verbunden. Dabei können bei Nichtübereinstimmung der Messwerte mit den Sollwerten und in Abhängigkeit voneinander die Brennstaubmengenströme durch die Brennstaubstrom-Regelungsvorrichtungen und die Brenngasströme durch die Zumischvorrichtungen durch die Steuer- und Regelungseinheit angepasst werden. So ermöglicht die durch die Steuer- und Regelungseinheit bereitgestellte operative Kopplung der Brennstaubstrom-Regelungsvorrichtungen und der Zumischvorrichtungen eine Regelung der Menge und Zusammensetzung der gesamten, den Brennern insgesamt zugeführten Brennstofflast aus Brennstaub und Brenngas in den Vergasungsreaktor beim Zünden weiterer Brenner.An embodiment of the device for carrying out the method according to the invention describes a gasification reactor with a plurality of burners and a metering vessel for combustible dust, which is connected via a plurality of dense flow conveying lines with a corresponding burner. In this case, a dust flow control element for controlling a quantity of pulverized fuel is advantageously arranged in each dense flow conveying line. Furthermore, the device has at least one admixing device for a fuel gas for controlling a fuel gas quantity for each dense flow conveying line. In order to be able to carry out the method according to the invention, an operative coupling of the dust flow control elements with the admixing devices is provided for controlling the fuel compositions in relation to a total fuel load of combustible dust and fuel gas. For this purpose, the device comprises a control and regulation unit, which provides the operative coupling between the fuel flow control device and admixing device, as well as downstream of the gasification reactor arranged measuring devices for the determination of gas quantities and / or their compositions of a synthesis gas. The measured value output of the measuring instruments is connected to the control and regulation unit for a comparison of measured values with corresponding desired values in the control and regulation unit. In this case, if the measured values do not agree with the desired values and depending on each other, the fuel dust flow rates through the fuel dust flow control devices and the fuel gas streams through the admixing devices can be adjusted by the control and regulation unit. Thus, the operational coupling provided by the control and regulation unit of the Brennstaubstrom-control devices and the Zumischvorrichtungen allows control of the amount and composition of the total, the burners supplied fuel load from fuel dust and fuel gas in the gasification reactor in the ignition of other burners.

DE 10 2006 030 079 A1 beschreibt lediglich eine Steuerung zur Zuführung von Brenngas und sauerstoffhaltigem Vergasungsmittel und zur Öffnung der Zuführleistungen für Brennstaub. Ein Sicherheitssystem überwacht die Brenngasmenge und Sauerstoffmenge sowie die Brennstaubmenge. Erfindungsgemäß hingegen sind Messgeräte stromabwärts des Vergasungsreaktors vorgesehen, die Messwerte bezüglich der Menge und/oder Zusammensetzung eines erzeugten Synthesegases liefern, in Abhängigkeit derer die Brennstaubstrom-Regelungsvorrichtungen und Zumischvorrichtungen durch die Steuer- und Regelungseinheit angesteuert werden, um die Zusammensetzung der Brennstaub-Brenngas-Gemisch beim Zünden weiterer Brenner zu regeln. DE 10 2006 030 079 A1 merely describes a controller for supplying fuel gas and oxygen-containing gasification agent and for opening the supply of fuel dust. A safety system monitors the fuel gas quantity and amount of oxygen as well as the amount of fuel dust. In contrast, according to the invention, measuring devices are provided downstream of the gasification reactor, which provide measured values relating to the amount and / or composition of a synthesis gas generated, as a function of which the fuel dust flow control devices and admixing devices are controlled by the control and regulation unit to determine the composition of the fuel dust / fuel gas mixture when firing more burners to regulate.

Bevorzugte Ausführungsformen beziehen sich auf die Anordnung der Zumischvorrichtungen für Brenngas.Preferred embodiments relate to the arrangement of the mixing devices for fuel gas.

Wesentliche Vorteile der Erfindung im Vergleich zum Stand der Technik ergeben sich mit dem erfindungsgemäßen Verfahren vor allem durch die Regelungsmöglichkeit der Zusammensetzung der dem Vergasungsreaktor in Form von Brennstaub und Brenngas zugeführten Brennstoffmenge beim Anfahren von Reaktoren, die Leistungen von 200 MW bis zu 1500 MW erbringen und die mit mehreren Hauptbrennern ausgestattet sind, so dass die beim Anfahren des Vergasungsreaktors erzeugte Gasmenge nicht schlagartig in einem Druckstoß freigesetzt wird, sondern schrittweise durch das sequenzielle Zünden der Brenner und Anpassen der Brennstoffzusammensetzungen zunimmt. Durch die Vermeidung von Druckstößen, die durch die beim Anfahren solcher großen Vergasungsreaktoren plötzlich freigesetzten Gasmengen entstehen, werden nachteilige Aus-wirkungen auf die nachfolgenden Prozessstufen vermieden und es wird gleichzeitig vorteilhaft ein gleichmäßigerer Staubmengenstrom aus den Dosiergefäßen in die jeweiligen Brenner gefördert. Ein Abfackeln von plötzlich freigesetzten großen Gasmengen in der Startphase, wie es bei Vorrichtungen des Standes der Technik notwendig ist, erübrigt sich somit.Significant advantages of the invention compared to the prior art are obtained by the method according to the invention, especially by the possibility of regulating the composition of the gasification reactor in the form of fuel dust and Fuel quantity supplied to fuel gas when starting up reactors which provide outputs of 200 MW up to 1500 MW and which are equipped with several main burners, so that the amount of gas generated when starting the gasification reactor is not released suddenly in a pressure surge, but gradually by the sequential ignition of Burner and adjusting the fuel compositions increases. By avoiding pressure surges caused by the gas quantities suddenly released by the startup of such large gasification reactors, disadvantageous effects on the subsequent process stages are avoided and, at the same time, a more uniform amount of dust flow from the metering vessels into the respective burners is advantageously conveyed. Flaring off suddenly released large amounts of gas in the starting phase, as is necessary in devices of the prior art, is therefore unnecessary.

Diese und weitere Vorteile werden durch die nachfolgende Beschreibung unter Bezug auf die begleitenden Figuren dargelegt.These and other advantages are set forth by the following description with reference to the accompanying figures.

Der Bezug auf die Figuren in der Beschreibung dient der Unterstützung der Beschreibung. Die Figuren sind lediglich schematische Darstellungen von Ausführungsformen der Erfindung.

  • Fig. 1 zeigt eine schematische Darstellung einer erfindungsgemäßen Vorrichtung.
  • Fig. 2 zeigt ein Ablaufschema des erfindungsgemäßen Verfahrens.
The reference to the figures in the description is to support the description. The figures are merely schematic representations of embodiments of the invention.
  • Fig. 1 shows a schematic representation of a device according to the invention.
  • Fig. 2 shows a flowchart of the method according to the invention.

Zur Verdeutlichung des Begriffsinhalts, wie er in der vorliegenden Erfindung verstanden werden soll, werden nachfolgend einige Begriffe wie folgt definiert.To clarify the term content, as it should be understood in the present invention, some terms are defined as follows.

Unter "Anfahren" des Vergasungsreaktors wird die Inbetriebnahme desselben durch Zünden der Brenner verstanden. Brennen alle Brenner des Vergasungsreaktors, so ist das Anfahren beendet und der Vergasungsreaktor arbeitet im Normalbetrieb.The term "start-up" of the gasification reactor is understood to mean the start-up thereof by igniting the burners. If all the burners of the gasification reactor burn, then the startup is complete and the gasification reactor operates in normal operation.

Der Begriff "Brennstofflast" bezieht sich auf den Massen- oder Mengenstrom an Brennstoff, sei es Gas-, Flüssig- und/oder Feststoffbrennstoff, der von einem Vergasungsreaktor umgesetzt wird. Ein Brenner eines Vergasungsreaktors muss mit einer "minimalen Austrittsgeschwindigkeit" am Brennermund beim Zünden betrieben werden, die im Bereich von 3 bis 5 m/s liegt, um Flammenrückschläge zu vermeiden.The term "fuel load" refers to the mass or mass flow of fuel, whether gas, liquid and / or solid fuel, that is reacted by a gasification reactor. A burner of a gasification reactor must be operated at a "minimum exit velocity" at the burner mouth during ignition, which is in the range of 3 to 5 m / s, to avoid flashbacks.

In einem Vergasungsreaktor wird aus dem eingesetzten Brennstoff "Synthesegas", bestehend aus Kohlenmonoxid und Wasserstoff, gewonnen und das erzeugte Synthesegas wird in nachgeschalteten Prozessstufen weiterverwendet, beispielsweise in der Methanol-, Oxo- oder Fischer-Tropsch-Synthese. Der erzeugte Wasserstoff findet auch separat Anwendung, in der Ammoniaksynthese nach Haber-Bosch mit Stickstoff, als Energieträger oder Reduktions- oder Hydrierungsmittel.In a gasification reactor, "synthesis gas" consisting of carbon monoxide and hydrogen is recovered from the fuel used, and the synthesis gas produced is reused in downstream process stages, for example in the methanol, oxo or Fischer-Tropsch synthesis. The hydrogen produced is also used separately, in the ammonia synthesis according to Haber-Bosch with nitrogen, as an energy carrier or reducing or hydrogenating agent.

Das erfindungsgemäße Verfahren zum Anfahren von Vergasungs-reaktoren, die zwei oder mehr Brenner haben, von denen jeder über eine ihm zugeordnete Dichtstromförderleitung mit Brennstaub aus einem Dosiergefäß und über eine Gasförderleitung mit Brenngas beschickt wird, umfasst die Bereitstellung eines Brennstoffgemischs aus Brennstaub und Brenngas vor einem Zeitpunkt des Zündens eines Brenners. Das hierzu eingesetzte Brenngas ist kein Hilfsgas im Sinne eines zum Druckausgleich zwischen Dosiergefäß und Vergasungsreaktors verwendeten Gases, das vielfach ein Inertgas ist, sondern ein Brenngas mit Brennwert. Als Brenngas kann ein Erdgas bevorzugt mit einem Methangehalt von mehr als 60 % eingesetzt werden, weitere Alkane wie Ethan, Propan und Butan und Gemische derselben können eingesetzt werden; geeignete Brenngase sind dem Fachmann bekannt.The inventive method for starting gasification reactors, which have two or more burners, each of which is fed via its associated dense stream conveying line with fuel dust from a metering vessel and a gas delivery line with fuel gas, comprises providing a fuel mixture of fuel dust and fuel gas in front of a Time of ignition of a burner. The fuel gas used for this purpose is not an auxiliary gas in the sense of a gas used for pressure equalization between metering vessel and gasification reactor, which is often an inert gas, but a fuel gas with calorific value. As fuel gas, a natural gas may preferably be used with a methane content of more than 60%, other alkanes such as ethane, propane and butane and mixtures thereof can be used; suitable fuel gases are known in the art.

Erfindungsgemäß wird eine erste Zusammensetzung aus Brennstaub und Brenngas, mit der ein erster Brenner zum Zünden beschickt wird, nach dem Zünden eines zweiten Brenners, das auf das Zünden des ersten Brenners folgt und der mit einer zweiten Zusammensetzung aus Brennstaub und Brenngas zum Zünden beschickt wird, in Abhängigkeit der Brennstoffmenge geregelt, die dem zweiten Brenner zum Zünden zugeführt wurde, so dass das Anfahren jedes der Mehrzahl von Brennern des Vergasungsreaktors unter geregelter Zufuhr der Brennstofflast erfolgt. Darüber hinaus kann der Brenngasgehalt in dem Gemisch aus Brenngas und Brennstaub variiert bzw. die Gemischzusammensetzung geregelt eingestellt werden, um die Brennstaubfracht zu verringern, falls erforderlich.According to the invention, a first composition of combustible dust and fuel gas, with which a first burner is charged for ignition, is ignited after the ignition of a second burner, which follows the ignition of the first burner and is charged with a second composition of combustible dust and fuel gas, controlled in response to the amount of fuel that was supplied to the second burner for ignition, so that the start of each of the plurality of burners of the gasification reactor takes place under controlled supply of fuel load. In addition, the fuel gas content in the mixture of fuel gas and fuel dust may be varied, or the mixture composition may be controlled to decrease the combustible dust load, if necessary.

Wenn der Vergasungsreaktor über mehr als zwei Brenner verfügt, so wird nach dem erfindungsgemäßen Verfahren eine zweite oder eine dritte oder weitere Zusammensetzung, die einem weiteren Brenner zugeführt wird, in Abhängigkeit der Brennstoffmenge geregelt, die dem entsprechenden vorangegangenen Brenner zum Zünden zugeführt wurde, nachdem ein dritter oder weiterer Brenner, der mit einer dritten oder weiteren Zusammensetzung aus Brennstaub und Brenngas zum Zünden beschickt wird, auf das Zünden des zweiten Brenners folgend gezündet wurde.When the gasification reactor has more than two burners, according to the method of the present invention, a second or third or further composition fed to another burner is controlled in dependence on the amount of fuel supplied to the respective preceding burner for ignition, after a third or further burner, which is charged with a third or further composition of combustible dust and fuel gas for ignition, was ignited following the ignition of the second burner.

Dabei werden die Einzelbrenner in einem unteren Lastbereich gezündet, das heißt, die minimal mögliche Brennstofflast für den Einzelbrenner beträgt von 1 % bis zu 30 % der Maximallast des Einzelbrenners, die durch die maximale Brennstofflast bei einer maximalen Austrittsgeschwindigkeit definiert ist. Dadurch wird beim Zünden des ersten Brenners des Vergasungsreaktors eine geringstmöglich erzeugbare Synthesegasmenge freigesetzt und es wird, indem beim Zünden des zweiten oder dritten Brenners bzw. der weiteren Brenner die dem zuvor gezündeten Brenner zugeführte Brennstofflast durch Regelung der Brennstoffzusammensetzung zurückgefahren wird, die durch das Zünden der folgenden Brenner hinzugekommene Brennstofflast ausgeglichen und ein schrittweises Ansteigen der erzeugten Synthesegasmenge und damit ein schrittweiser Druckanstieg in im Vergleich zum Stand der Technik sehr kleinen Schritten nahezu "stufenlos" bewirkt, dass das erzeugte Synthesegas schon in der Anfahrphase des Vergasungsreaktors den nachgeschalteten Prozessstufen zugeführt werden kann.The individual burners are ignited in a lower load range, that is, the minimum possible fuel load for the single burner is from 1% to 30% of the maximum load of the single burner, which is defined by the maximum fuel load at a maximum exit velocity. As a result, when the first burner of the Gasification reactor liberated the least possible amount of synthesis gas and it is by the ignition of the previously ignited burner fuel flow is reduced by controlling the fuel composition when igniting the second or third burner or the other burners, the fuel load added by the ignition of the following burner balanced and a gradual Increasing the amount of synthesis gas generated and thus a gradual increase in pressure in comparison to the prior art very small steps almost "infinitely" causes the generated synthesis gas can be supplied to the downstream process stages already in the start-up phase of the gasification reactor.

Die im Vergasungsreaktor erzeugte Synthesegasmenge ist direkt mit der zugeführten Brennstofflast korreliert. Die für das Anfahren des Vergasungsreaktors erforderliche Minimallast an Brennstoff bestimmt somit die erzeugte Synthesegasmenge, die beim Anfahren des Vergasungsreaktors freigesetzt wird.The amount of syngas generated in the gasification reactor is directly correlated with the fuel load supplied. The minimum load of fuel required for starting up the gasification reactor thus determines the amount of synthesis gas that is released when the gasification reactor is started up.

Das Brenngas wird jeweils über zumindest eine Zumischvorrichtung zwischen dem Dosiergefäß und dem jeweiligen Brenner des Vergasungsreaktors in die entsprechende Dichtstromförderleitung zugeführt, die dem Brenner zugeordnet ist.The fuel gas is supplied via at least one admixing device between the metering vessel and the respective burner of the gasification reactor in the corresponding dense flow conveying line, which is assigned to the burner.

Alternativ kann das Brenngas auch jeweils parallel zur Dichtstrom-förderleitung über eine Brenngasförderleitung in die Zumischvorrichtung geführt und von dort im Gemisch in den Brenner geführt werden, wobei der Vorteil der Parallelführung in einer gemeinsam durch die Dichtstromförderleitung und die Brenngasförderleitung nutzbaren Regelungseinheit liegt, da die Leitungen unmittelbar benachbart zueinander liegen.Alternatively, the fuel gas can also be guided in parallel to the dense phase conveying line via a fuel gas delivery line in the admixing device and from there in mixture in the burner, wherein the advantage of parallel guidance in a jointly usable by the dense flow conveyor line and the fuel gas delivery control unit is because the lines immediately adjacent to each other.

In dem erfindungsgemäßen Verfahren wird die Brennstaublast in der Dichtstromförderleitung durch eine Staubstromregelungsvorrichtung, die beispielsweise eine Drossel, eine Blende oder ein Ventil sein kann, geregelt, die mit den Zumischvorrichtungen für das Brenngas in operativer Verbindung steht. Durch eine Steuer- und Regelungseinheit können somit die Brennstaubmengen- und Brenngasströme für einen Brenner in Abhängigkeit voneinander und in Abhängigkeit von den Brennstaubmengen- und Brenngasströmen der vorangehend gezündeten Brenner eingestellt werden. Die Regelung kann unmittelbar mit dem Zündzeitpunkt der einzelnen Brenner verbunden sein. Vorteilhaft können entsprechende Messgeräte zur Bestimmung der im Vergaser entstehenden Gasmengen und/oder deren Zusammensetzungen stromabwärts zu dem Vergasungsreaktor vor den nachgeschalteten Prozessstufen vorgesehen sein und die erfassten Messwerte an die Steuer- und Regelungseinheit ausgegeben werden. Diese vergleicht die Messwerte mit entsprechenden Sollwerten und passt bei Nichtübereinstimmung die Brennstaubmengen- und Brenngasströme für die Brenner an. Der Fachmann weiß, dass eine manuelle Einstellung der Brennstaubmengen- und Brenngasströme ebenfalls möglich ist.In the method according to the invention, the Brennstaublast in the dense phase conveying line by a dust flow control device, which may be, for example, a throttle, a diaphragm or a valve, regulated, which is in operative connection with the mixing devices for the fuel gas. By a control and regulation unit thus the Brennstaubmengen- and fuel gas streams can be adjusted for a burner as a function of each other and in dependence on the Brennstaubmengen- and fuel gas streams of the previously ignited burner. The control can be connected directly to the ignition timing of the individual burners. Advantageously, corresponding measuring devices can be provided for determining the gas quantities produced in the gasifier and / or their compositions downstream of the gasification reactor upstream of the downstream process stages, and the detected measured values output to the control and regulation unit. This compares the measured values with the corresponding setpoints and, in the event of a mismatch, adapts the quantities of combustible dust and fuel gas for the burners. The skilled worker knows that a manual adjustment of Brennstaubmengen- and fuel gas streams is also possible.

Auf diese Weise kann die Zunahme der erzeugten Synthesegasmenge beim Anfahren des Vergasungsreaktors schrittweise nach dem Zünden des ersten Brenners und der weiteren Brenner in optimal minimierten Stufen erfolgen, indem durch die Regelung/Steuerung der Brennstaubmengen- und Brenngasströme für die Brenner das Brennstoffgemisch der vorher gezündeten Brenner nach dem Zünden weiterer Brenner hinsichtlich Massenstrom und/oder Zusammensetzung angepasst wird.In this way, the increase in the amount of synthesis gas generated during startup of the gasification reactor can be carried out stepwise after ignition of the first burner and the other burner in optimally minimized stages by the fuel mixture of the previously ignited burner by controlling the Brennstaubmengen- and fuel gas streams for the burner after igniting further burners in terms of mass flow and / or composition is adjusted.

Das erfindungsgemäße Verfahren zum Anfahren ist insbesondere für große Vergasungsreaktoren geeignet. Der Begriff "großer Vergasungsreaktor" bezieht sich auf Vergaser mit einer Leistung über 200 MW, beispielsweise ein 400 MW Vergasungsreaktor. Es finden auch Vergaser mit 500 MW technische Anwendung. Theoretisch kann das erfindungsgemäße Verfahren auch für Vergasungsreaktoren mit Leistungen von 1.000 MW und 1.500 MW angewendet werden.The method according to the invention for starting is particularly suitable for large gasification reactors. The term "large gasification reactor" refers to gasifiers with a capacity above 200 MW, for example a 400 MW gasification reactor. There are also carburetors with 500 MW technical application. Theoretically, the process according to the invention can also be used for gasification reactors with outputs of 1,000 MW and 1,500 MW.

Ein unterer Lastbereich eines solchen großen Vergasungsreaktors mit beispielsweise 400 MW Leistung beträgt daher bei der minimalen Austrittsgeschwindigkeit, die 3 m/s beträgt, 40 t/h Brennstofflast. Dies entspricht etwa 60 % der maximalen Brennstofflast, die dieser Vergasungsreaktor durchsetzten kann, nämlich 65 t/h, was mit einer maximalen Austrittsgeschwindigkeit von 8 m/s erreichbar ist.A lower load range of such a large gasification reactor with, for example, 400 MW power is therefore at the minimum exit velocity, which is 3 m / s, 40 t / h fuel load. This corresponds to about 60% of the maximum fuel load, which can pass through this gasification reactor, namely 65 t / h, which is achievable with a maximum exit velocity of 8 m / s.

Wird dieser Reaktor nach dem Stand der Technik mit 60 % der Maximallast, also bei 40 t/h Brennstofflast angefahren, bedeutet dies eine unmittelbar freigesetzte Synthesegasmenge von 60.000 Nm3/h. Mit dem erfindungsgemäßen Verfahren zum Anfahren hingegen, in welchem ein Einzelbrenner in seinem unteren Lastbereich bis zu 30 % der Maximallast für den Einzelbrenner beschickt wird, werden mit dem mit beispielsweise mit 3 Einzelbrennern ausgestattete 400 MW-Vergasungsreaktor beim Zünden des ersten Brenners maximal lediglich 20.000 Nm3/h Synthesegas frei. Sukzessive wird die Synthesegasmenge dann mit Zündung des zweiten Brenners, der analog 20.000 Nm3/h Synthesegas freisetzt, auf 40.000 Nm3/h und mit Zündung des dritten Brenners entsprechend auf 60.000 Nm3/h gesteigert, wenn jeder Einzelbrenner mit Minimallast betrieben wird, was dann der Minimallast des Vergasungsreaktors von 60.000 Nm3/h entspricht. Nun kann durch Änderung der Zusammensetzung der Brennstofflast die Gesamtdurchlast bis zur Nennleistung erhöht werden. Entsprechend dem genannten Beispiel eines 400 MW Vergasungsreaktors mit 3 Brennern kann die schrittweise Zunahme der Synthesegasmenge noch verringert werden, indem vier oder mehr Brenner eingesetzt werden, so dass die pro Brenner freigesetzte Synthesegasmenge ein Viertel oder ein Bruchteil der Minimallast des Vergasungsreaktors entspricht. Damit kann ein "quasi stufenloses" Anfahren des Vergasungsreaktors angenähert erreicht werden.If this reactor is started according to the prior art with 60% of the maximum load, ie at 40 t / h fuel load, this means an immediately released synthesis gas amount of 60,000 Nm 3 / h. By contrast, with the method according to the invention for starting up in which a single burner is charged in its lower load range up to 30% of the maximum load for the single burner, with the 400 MW gasification reactor equipped, for example, with 3 individual burners, only a maximum of 20,000 Nm when the first burner is ignited 3 / h of synthesis gas free. Successively, the amount of synthesis gas is then increased to 40,000 Nm 3 / h with ignition of the second burner, which releases 20,000 Nm 3 / h of synthesis gas analogously and with ignition of the third burner to 60,000 Nm 3 / h, if each individual burner is operated at minimum load, what then corresponds to the minimum load of the gasification reactor of 60,000 Nm 3 / h. Now, by changing the composition of the fuel load, the total load can be increased up to the rated power. According to the example of a 400 MW gasification reactor with 3 burners, the incremental increase in the amount of syngas can still be reduced by using four or more burners, so that the burners per burner amount of synthesis gas released corresponds to a quarter or a fraction of the minimum load of the gasification reactor. Thus, a "quasi-continuous" startup of the gasification reactor can be achieved approximately.

In einer Ausführungsform des erfindungsgemäßen Verfahrens wird die Brennstaubmenge für die Zusammensetzungen in Abhängigkeit von der zugeführten Brenngasmenge geregelt, d. h. mit Hilfe der Staubstromregelungsvorrichtung der Brennstaubmengenstrom entsprechend einer zugeführten Brenngasmenge eingestellt. Alternativ ist auch die umgekehrte Vorgehensweise denkbar, dass in Abhängigkeit der zugeführten Brennstaubmengenströme die Brenngaszufuhr erhöht oder gedrosselt wird. Eine Fließgeschwindigkeit des Brennstaubs kann dabei im Bereich von 3 bis 5 m/s liegen.In one embodiment of the method according to the invention, the amount of pulverized fuel for the compositions is regulated as a function of the amount of fuel gas supplied, that is to say as follows: H. adjusted by the dust flow control device, the amount of fuel dust flow according to a supplied fuel gas amount. Alternatively, the reverse procedure is conceivable that the fuel gas supply is increased or throttled depending on the supplied fuel dust flow rates. A flow rate of the fuel dust can be in the range of 3 to 5 m / s.

Die Brennstäube können dabei Stäube aus festen Brennstoffen wie Steinkohle, Braunkohle, deren Kokse, Petrolkokse, sowie Kokse aus Torf oder Biomasse oder deren Gemische umfassen; dem Fachmann sind weitere geeignete Brennstaubarten bekannt.The dusts may include dusts of solid fuels such as hard coal, lignite, their cokes, petroleum cokes, as well as cokes of peat or biomass or mixtures thereof; those skilled in the art are aware of other suitable types of combustible dust.

Die Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens umfasst einen Vergasungsreaktor mit einer Mehrzahl von Brennern, sowie ein Dosiergefäß mit einer Brennstaubzuführung und einer Mehrzahl von Dichtstrom-förderleitung. Dabei führt jeweils eine Dichtstromförderleitung zu einem dazugehörigen Brenner des Vergasungsreaktors. In jeder Dichtstromförderleitung sind eine Staubstromregelungsvorrichtung zur Regelung eines Brennstaubstroms und zumindest eine Zumischvorrichtung für ein Brenngas zur Regelung einer Brenngasmenge angeordnet.The apparatus for carrying out the method according to the invention comprises a gasification reactor with a plurality of burners, as well as a metering vessel with a Brennstaubzuführung and a plurality of dense phase conveying line. In each case, a dense flow conveying line leads to an associated burner of the gasification reactor. In each dense flow conveying line a dust flow control device for controlling a Brennstaubstroms and at least one Zumischvorrichtung for a fuel gas for controlling a fuel gas quantity are arranged.

Die Vorrichtung kann dabei eine Zumischvorrichtung für Brenngas zwischen dem Dosiergefäß und dem jeweiligen Brenner in der dazugehörigen Dichtstromförderleitung aufweisen, wobei die Staubstromregelungsvorrichtung ein Durchflussregler zur Messung des Brennstaubstroms umfasst; alternativ kann die Zumischvorrichtung für Brenngas auch direkt an einer Zuführöffnung des Brenners angeordnet sein und die Brenngasförderleitung vorteilhaft parallel zur Dichtstrom-förderleitung verlaufen, wodurch die Regelung des Brennstaubstroms durch die Staubstromregelungsvorrichtung vereinfacht wird, die dann einfach eine Blende oder Drossel sein kann, und keinen zusätzlichen Durchflussregler benötigt.The device can be a Zumischvorrichtung for fuel gas between the metering and the respective Having burner in the associated dense flow conveying line, wherein the dust flow control device comprises a flow controller for measuring the Brennstaubstroms; Alternatively, the admixing device for fuel gas can also be arranged directly at a feed opening of the burner and the fuel gas delivery line advantageously parallel to the dense phase conveying line, whereby the control of the Brennstaubstroms is simplified by the dust flow control device, which can then simply be a diaphragm or throttle, and no additional Flow regulator required.

Die Staubstromregelungsvorrichtungen in jeder Dichtstromförderleitung und die Zumischvorrichtungen für Brenngas sind miteinander operativ gekoppelt, so dass eine Regelung einer gesamten Brennstofflast aus Brennstaub und Brenngas in den Vergasungsreaktor erfolgt.The dust flow control devices in each dense flow conveying line and the fuel gas mixing devices are operatively coupled to each other so that regulation of an entire fuel load of fuel dust and fuel gas into the gasification reactor takes place.

Fig. 1 zeigt ein Schema der erfindungsgemäßen Vorrichtung. Hierin mündet eine Brennstaubzuführung 2 in das Dosiergefäß 1. Von dem Anströmboden 4 des Dosiergefäßes 1 erstrecken sich die Dichtstromförderleitungen 51 bis 54 zu den Brennern (nicht einzeln dargestellt) eines Mehrkanalbrenners 7. Eine Gaszuleitung 61 zum Anströmboden 4 dient zur Einleitung eines Fluidisierungsgases. Die Gasförderleitungen 62 und 63 münden jeweils über eine Zumischvorrichtung 9 in die Dichtstromförderleitung 51. Die Dichtstromfördersysteme 51 bis 54 sind jeweils analog gestaltet, zur Übersichtlichkeit ist in Fig. 1 allerdings lediglich die Dichtstromförderleitung 51 vollständig mit Zumischvorrichtungen 9 und Staubstromregelungsvorrichtung 8 dargestellt. Die weiteren Dichtstromförderleitungen weisen entsprechend der Dichtstromförderleitungen 51 Staubstromregelorgan und Zumischvorrichtungen auf. Die Staubregelungsvorrichtung 8 ist mit einem zusätzlichen, in die Dichtstromförderleitung 51 rückgekoppelten Durchflussregler 10' verbunden. Der zusätzliche Durchflussregler 10 für die Staubregelungsvorrichtung 8 entfällt (die gestrichelten Pfeile deuten dies an), wenn die Gasförderleitung 63 in die parallel zur Dichtstromförderleitungen 51 verlaufende gestrichelt dargestellte Brenngasförderleitung 67 mündet, die zu einer Zuführungsöffnung des zur Dichtstromförderleitungen 51 zugehörigen Brenners führt. Fig. 1 shows a schematic of the device according to the invention. From here, a Brennstaubzuführung 2 in the metering 1. From the distributor plate 4 of the metering 1, the Dichtstromförderleitungen 51 to 54 extend to the burners (not shown separately) of a multi-channel burner 7. A gas inlet 61 to the distributor plate 4 is used to introduce a fluidizing gas. The gas delivery lines 62 and 63 each open via a Zumischvorrichtung 9 in the dense flow conveying line 51. The Dichtstromfördersysteme 51 to 54 are each designed analogously, for clarity is in Fig. 1 however, only the dense flow conveying line 51 is shown completely with admixing devices 9 and dust flow control device 8. The other dense flow conveyor lines have according to the dense flow conveyor lines 51 Staubstromregelorgan and Zumischvorrichtungen. The dust control device 8 is provided with an additional, fed back into the dense flow conveying line 51 Flow regulator 10 'connected. The additional flow regulator 10 for the dust control device 8 is omitted (the dashed arrows indicate this), when the gas delivery line 63 opens into parallel to the dense flow conveyor lines 51 extending dashed fuel gas delivery line 67, which leads to a feed opening of the dense current conveying lines 51 associated burner.

Die Erfassung der zu- und abgeführten Staubmengen aus dem Dosiergefäß 1 erfolgt über ein Wägesystem 3. Die Erfassung und Regelung der Gasmengen in den Gasförderleitungen 62,63 sowie der in der Fluidisierungsgasleitung 61, Sauerstoffleitung 64 und Wasserdampfleitung 65 erfolgt über die Durchflussregler 10. Die Regelung des Brennstaubmassenstromes in der Dichtstromförderleitung 51 bis 54 erfolgt jeweils über ein Staubstromregelorgan 8. Über zumindest eine der Zumischvorrichtungen 9 erfolgt die Zumischung von Brenngas in die jeweilige Dichtstromförderleitung 51 bis 54 aus der Förderleitung 62 oder 63. Des Weiteren kann eine Zumischung von Inertgas über eine Förderleitung 62 oder 63 mittels Zumischvorrichtung 9 erfolgen. Auch eine Mischung aus Brenn- und Inertgas in einer Förderleitung ist denkbar. Darüber hinaus kann die Zufuhr von Brenngas auch über die Fluidisierungsgasleitung 61 zum Anströmboden erfolgen, womit der Brennstaub in dem Dosiergefäß 1 in den Fließzustand versetzt wird. Alternativ wird als Fluidisierungsgas ein Inertgas verwendet. Vom Mehrkanalbrenner 7 aus führt eine Synthesegasförderleitung 68 in eine nachgeschaltete Prozessstufe 11.The detection and control of the amounts of gas from the metering vessel 1 via a weighing system 3. The detection and control of the gas quantities in the gas conveyor lines 62,63 and in the fluidizing gas line 61, oxygen line 64 and steam line 65 via the flow controller 10. The scheme The admixing of fuel gas into the respective dense flow conveying line 51 to 54 from the delivery line 62 or 63 takes place via at least one of the admixing devices 9. Furthermore, an admixing of inert gas via a delivery line can take place 62 or 63 take place by means of admixing device 9. A mixture of fuel and inert gas in a delivery line is conceivable. Moreover, the supply of fuel gas can also take place via the fluidizing gas line 61 to the distributor plate, whereby the fuel dust in the metering vessel 1 is placed in the flow state. Alternatively, an inert gas is used as the fluidizing gas. From the multi-channel burner 7, a synthesis gas delivery line 68 leads into a downstream process stage 11.

Die schrittweise Zunahme der erzeugten Synthesegasmenge beim Anfahren eines mit beispielsweise 4 Brennern ausgestatteten Vergasungsreaktors (figurativ nicht dargestellt) in optimal minimierten Stufen durch die Regelung/Steuerung der Brennstaub- und Brenngaslast erfolgt in der Weise, dass nach der Zündung des ersten Brenners die mit dem Zuschalten des zweiten, dritten und vierten Brenners verbundene Brennstaublaststeigerung in Verbindung mit der Änderung der des ersten, zweiten und dritten Zusammensetzungen der Brennstoffmischungen der vorher in Betrieb gesetzten Brennern erfolgt. Hierbei kann für die Regelung entweder die Brennstaubmenge oder die in die Dichtstromförderleitung eingespeiste Brenngasmenge genutzt werden.The incremental increase in the amount of syngas generated upon startup of a gasification reactor equipped with, for example, four burners (not shown figuratively) in optimally minimized stages by the controller the combustible dust and fuel gas load is such that upon ignition of the first burner, the increase in combustion load associated with the second, third and fourth burners in conjunction with the change in the first, second and third compositions of the fuel blends are previously in operation Burners takes place. In this case, either the amount of fuel dust or the amount of fuel gas fed into the dense phase conveying line can be used for the regulation.

Verdeutlicht wird das erfindungsgemäße Verfahren durch die schematische Darstellung in Fig. 2 . Dabei wird zunächst ein Brennstoffgemisch mit einer ersten Zusammensetzung aus Brennstaub und Brenngas bereitgestellt, das an einem ersten Brenner eines Vergasungsreaktors mit mehreren Brennern in einem unteren Lastbereich des Brenners von bis zu 30 % der Brennermaximallast gezündet wird. Nach der Zündung des ersten Brenners erfolgt die Zündung eines zweiten Brenners in seinem unteren Lastbereich, welcher mit einer zweiten Zusammensetzung der Brennstoffmischung aus Brennstaub und Brennstoff beschickt wird. Dabei löst die Zündung des zweiten Brenners automatisch die Regelung/Steuerung zur Änderung der ersten Zusammensetzung der Brennstoffmischung aus, so dass die durch die Zündung des zweiten Brenners hinzugekommene Brennstofflast durch Änderung der ersten Zusammensetzung aufgefangen wird. Beispielsweise kann der Brenngasanteil in der ersten Zusammensetzung verringert werden, so dass der Lastanstieg von erster Zündung zu zweiter Zündung angepasst werden kann.The process of the invention is illustrated by the schematic representation in FIG Fig. 2 , Initially, a fuel mixture is provided with a first composition of combustible dust and fuel gas which is ignited at a first burner of a gasification reactor having a plurality of burners in a lower load range of the burner of up to 30% of the burner maximum load. After the ignition of the first burner, the ignition of a second burner takes place in its lower load range, which is charged with a second composition of the fuel mixture of fuel dust and fuel. At this time, the ignition of the second burner automatically triggers the control to change the first composition of the fuel mixture, so that the fuel load added by the ignition of the second burner is absorbed by changing the first composition. For example, the fuel gas content in the first composition may be reduced so that the load increase from first ignition to second ignition may be adjusted.

Analog verläuft die Zündung eines dritten oder weiteren "n-ten" Brenners. Durch die Zündung des dritten Brenners in seinem unteren Lastbereich, der selbst wiederum mit einer dritten Zusammensetzung der Brennstoffmischung aus Brennstaub und Gas beschickt wird, wird eine Änderung der zweiten Zusammensetzung der Brennstoffmischung des zuvor gezündeten zweiten Brenners geregelt/gesteuert. So wird auch die Zündung eines "n-ten" Brenners in dessen unterem Lastbereich, der mit einer "n-ten" Zusammensetzung der Brennstoffmischung aus Brennstaub und Brenngas beschickt wird, bewirken, dass die (n-1)-te Zusammensetzung eines zuvor gezündeter (n-1)-ter Brenner geregelt geändert wird.Similarly, the ignition of a third or further "nth" burner runs. By the ignition of the third burner in its lower load range, which in turn with a third composition of the fuel mixture of fuel dust and gas is supplied, a change in the second composition of the fuel mixture of the previously fired second burner is controlled. Thus, the ignition of an "nth" burner in its lower load range, which is fed with an "nth" composition of the fuel dust and fuel gas fuel mixture, will cause the (n-1) th composition of a previously ignited (n-1) -ter burner is changed regulated.

Claims (13)

  1. Method for starting up a gasifying reactor with a plurality of burners,
    characterized in that
    each burner (7) is charged with combustible dust from a metering vessel (1) via a dense-flow feed line (51, 52, 53, 54) assigned to it
    and with combustible gas via a gas feed line (62, 63), wherein the apparatus has for each dense-flow feed line at least one admixing device (9) for a combustible gas (62, 63) for regulating a combustible gas quantity,
    wherein a burner of the gasifying reactor is operated during ignition at a "minimum outlet velocity" at the burner mouth that lies in the range from 3 to 5 m/s, wherein the individual burners (7) are ignited in a lower load range, that is to say the minimum possible fuel load for an individual burner (7) is from 1% to 30% of the maximum load of the individual burner (7), which is defined by the maximum fuel load at a maximum outlet velocity, accordingly a fuel mixture comprising combustible dust and combustible gas is provided before a point in time of igniting a burner (7), and
    wherein a first composition comprising combustible dust and combustible gas with which a first burner (7) is charged for igniting is regulated, in dependence on the fuel load that is supplied to the second burner (7) for igniting, after the igniting of a second burner (7), which is charged with a second composition comprising combustible dust and combustible gas, following the igniting of the first burner (7),
    so that the starting up of each of the plurality of burners (7) of the gasifying reactor takes place with regulated adaptation of the supply of the fuel load to the previously ignited burner (7),
    wherein the fuel load to the previously ignited burners (7) is regulated by
    - determining gas quantities and/or compositions thereof of a syngas generated in the gasifying reactor by means of measuring instruments arranged downstream of the gasifying reactor ahead of process stages arranged thereafter and
    - output of the measured values recorded by the measuring instruments to an open-loop and closed-loop control unit for the combustible-dust-quantity and combustible-gas flows for the burners (7) and
    - comparing the measured values with corresponding setpoint values and, if the measured values do not coincide with the setpoint values, adapting the combustible-dust-quantity and combustible-gas flows for the burners (7) by the open-loop and closed-loop control unit
    when igniting further burners.
  2. Method according to Claim 1,
    characterized in that
    a second or a third or further composition supplied to a further burner (7) is/are regulated,
    in dependence on the fuel load that is supplied to the corresponding preceding burner (7) for igniting,
    after the igniting of a third of further burner (7), which is/are charged with a third or further composition comprising combustible dust and combustible gas for igniting, following the igniting of the second or further burner (7).
  3. Method according to Claim 1 or 2,
    characterized in that
    the combustible gas (62, 63) is supplied into the corresponding dense-flow feed line (51, 52, 53, 54) via at least one admixing device (9) laid between the metering vessel (1) and the respective burner.
  4. Method according to Claim 1 or 2,
    characterized in that
    the combustible gas (62, 63) is supplied directly to a supply opening of the burner (7) by way of at least one admixing device (9) parallel to the dense-flow feed line (51, 52, 53, 54) via a combustible-gas feed line (67).
  5. Method according to at least one of Claims 1 to 4,
    characterized in that
    all of the individual burners (7) of the plurality of burners (7) are ignited one after the other, wherein the combustible dust load when igniting an individual burner lies in the range from 1 to 30% of the maximum output of the individual burner (7).
  6. Method according to Claim 5,
    characterized in that
    during the starting up of the individual burners (7)
    - a combustible dust load is set in the range of up to 30% of the maximum output of the individual burner (7),
    - the regulating of the compositions comprising combustible dust and combustible gas for the individual burners (7) takes place in such a way that, when igniting further burners (7), the fuel load supplied to the previously ignited burner (7) is throttled,
    so that a step-by-step increase in a gas quantity generated in the gasifying reactor is brought about.
  7. Method according to at least one of the preceding claims,
    characterized in that
    the gasifying reactor is charged with combustible gas from the group comprising:
    dusts of solid fuels, in particular of hard coal, lignite, of cokes of lignite or hard coal, of petroleum cokes, dusts of peat cokes or of cokes of biomass.
  8. Method according to at least one of the preceding claims,
    characterized in that
    the gasifying reactor delivers an output in a range from 200 MW to 1500 MW, preferably in a range from 200 MW to 500 MW.
  9. Method according to at least one of the preceding claims,
    characterized in that
    a flow velocity of the combustible dust lies in the range from 3 to 5 m/s.
  10. Method according to at least one of the preceding claims,
    characterized in that
    natural gas with a methane content of over 60% by volume is used as the combustible gas.
  11. Apparatus for carrying out a method according to at least one of Claims 1 to 10, comprising
    a gasifying reactor with
    - a plurality of burners (7) and with
    - at least one metering vessel (1) and
    - a plurality of dense-flow feed lines (51, 52, 53, 54) for supplying combustible dust, which are respectively assigned to one of the burners (7) of the gasifying reactor, wherein each burner (7) is assigned a combustible-dust-flow regulating device (8) for regulating a combustible-dust-quantity flow, which in operative connection with the dense-flow feed line (51, 52, 53, 54) assigned to the respective burner (7) is arranged in or on the dense-flow feed line (51, 52, 53, 54) and
    - on each dense-flow feed line (51, 52, 53, 54) at least one admixing device (9) for a combustible gas (62, 63) is arranged upstream of or on the burner (7), wherein the combustible-dust-flow regulating devices (8) and the admixing devices (9) are operatively connected to one another,
    characterized in that
    the apparatus
    - comprises an open-loop and closed-loop control unit, which provides the operative coupling of the combustible-dust-flow regulating device (8), arranged in each dense-flow feed line (51, 52, 53, 54), and the admixing device (9) for combustible gas (62, 63), assigned to each burner (7), and
    - comprises measuring instruments for determining gas quantities and/or compositions thereof of a syngas downstream of the gasifying reactor, which have a measured value output that is connected to the open-loop and closed-loop control unit for a comparison of measured values with corresponding setpoint values in the open-loop and closed-loop control unit,
    wherein the combustible-dust quantity flows through the combustible-dust-flow regulating devices (8) and the combustible gas flows through the admixing devices (9) can be adapted by the open-loop and closed-loop control unit if the measured values do not coincide with the setpoint values and in dependence on one another, and
    wherein the operative coupling of the combustible-dust-flow regulating devices (8) and the admixing devices (9) by the open-loop and closed-loop control unit forms a way of regulating the quantity and composition of the entire fuel load, comprising combustible dust and combustible gas, that is supplied overall to the burners (7) in the gasifying reactor when igniting further burners.
  12. Apparatus according to Claim 11,
    characterized in that
    the admixing device (9) for combustible gas is arranged in the associated dense-flow feed line (51, 52, 53, 54) or at a supply opening of the burner (7).
  13. Apparatus according to Claim 12,
    characterized in that
    a combustible-gas feed line (67) for supplying combustible gas into the admixing device (9) is arranged separately and close by, in particular parallel to, the dense-flow feed line (51, 52, 53, 54).
EP09777194.3A 2008-08-01 2009-07-15 Method and apparatus for starting up gasifying reactors operated with combustible dust Active EP2310477B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09777194T PL2310477T3 (en) 2008-08-01 2009-07-15 Method and apparatus for starting up gasifying reactors operated with combustible dust

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008036058A DE102008036058B4 (en) 2008-08-01 2008-08-01 Method and device for starting up combustible gasification reactors
PCT/EP2009/005125 WO2010012376A2 (en) 2008-08-01 2009-07-15 Method and apparatus for starting up gasifying reactors operated with combustible dust

Publications (2)

Publication Number Publication Date
EP2310477A2 EP2310477A2 (en) 2011-04-20
EP2310477B1 true EP2310477B1 (en) 2017-06-21

Family

ID=41461613

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09777194.3A Active EP2310477B1 (en) 2008-08-01 2009-07-15 Method and apparatus for starting up gasifying reactors operated with combustible dust

Country Status (12)

Country Link
US (1) US9670428B2 (en)
EP (1) EP2310477B1 (en)
JP (1) JP2011529970A (en)
KR (1) KR101643969B1 (en)
CN (1) CN102105567B (en)
AU (1) AU2009275490B2 (en)
BR (1) BRPI0917423A2 (en)
CA (1) CA2732029C (en)
DE (1) DE102008036058B4 (en)
PL (1) PL2310477T3 (en)
RU (1) RU2011104148A (en)
WO (1) WO2010012376A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048931B4 (en) * 2009-10-10 2014-06-18 Linde Ag Dosing system, dense phase conveying system and method for feeding dusty bulk material
DE102011077911A1 (en) * 2011-06-21 2012-12-27 Siemens Ag Consistent feed of dusts with controllable restriction in the dust delivery line
US10041667B2 (en) * 2011-09-22 2018-08-07 Ensyn Renewables, Inc. Apparatuses for controlling heat for rapid thermal processing of carbonaceous material and methods for the same
DE102011083850A1 (en) * 2011-09-30 2013-04-04 Siemens Aktiengesellschaft Pneumatic fuel supply from a metering vessel to a high differential pressure gasification reactor
JP6695163B2 (en) * 2016-02-17 2020-05-20 三菱日立パワーシステムズ株式会社 Fine powder fuel supply device and method, integrated gasification combined cycle facility
PL429573A1 (en) * 2016-06-08 2019-10-07 Gas Technology Institute Method and the device for distribution of solid fuel materials at a uniform rate
CN109852425B (en) * 2019-01-08 2020-11-13 科林未来能源技术(北京)有限公司 Gasification device internal circulation cooling system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2902911A1 (en) * 1979-01-26 1980-07-31 Krupp Gmbh METHOD AND DEVICE FOR THE PNEUMATICALLY CONTROLLED FEEDING OF A REACTOR DEPENDING ON THE EXHAUSTED PRODUCT QUANTITY
DE3104054A1 (en) * 1981-02-06 1982-08-12 Kümmel, Joachim, Dipl.-Ing., 4044 Kaarst BURNER FOR THE COMBUSTION OF DUST-MADE FUELS
JPS58104833A (en) * 1981-12-12 1983-06-22 Kawasaki Steel Corp Continuously supplying method and device for transporting granule from one distributive transportation tank to plural supply ends by controlling mass flow to optional preset value
DD205452A1 (en) * 1982-06-09 1983-12-28 Jens Lahr METHOD AND DEVICE FOR DELIVERING DUST-SOUND MATERIALS IN RESPONSE TANGES
DD223613A3 (en) * 1982-06-09 1985-06-12 Freiberg Brennstoffinst METHOD FOR GASIFYING / BURNING DUST-FIRM FUELS
JPH083104B2 (en) * 1986-11-27 1996-01-17 バブコツク日立株式会社 Burner device for coal gasifier
EP0308026B1 (en) * 1987-09-18 1991-08-21 Shell Internationale Researchmaatschappij B.V. Feed vessel apparatus for coal gasification
CN1017873B (en) * 1987-09-18 1992-08-19 国际壳牌研究有限公司 Feed hopper design for coal gasifier
US4830545A (en) 1987-09-18 1989-05-16 Shell Oil Company Feed line design
DE3823773A1 (en) * 1988-07-14 1990-01-18 Krupp Koppers Gmbh METHOD FOR DETERMINING AND CONTROLLING THE FUEL MASS CURRENT IN PARTIAL OXIDATION (GASIFICATION) OF FINE-GRAINED TO DUST-SHAPED FUELS
CA2192534C (en) * 1996-12-10 2002-01-29 Danilo Klvana Process and apparatus for gas phase exothermic reactions
JPH11217574A (en) * 1998-01-30 1999-08-10 Nippon Steel Corp Firing of gasifier and apparatus therefor
DE202005021660U1 (en) * 2005-10-04 2009-03-05 Siemens Aktiengesellschaft Apparatus for the controlled supply of combustible dust in an air flow gasifier
DE202005021659U1 (en) * 2005-10-07 2010-01-14 Siemens Aktiengesellschaft Device for high-flow entrainment gasifier
DE102006030079B4 (en) * 2006-06-28 2009-01-22 Siemens Aktiengesellschaft Method for commissioning high-flow entrainment gasification reactors with combination burner and multi-burner arrangement
US8303673B2 (en) 2006-08-25 2012-11-06 Siemens Aktiengesellschaft Method and device for a high-capacity entrained flow gasifier
JP5166910B2 (en) * 2008-01-29 2013-03-21 三菱重工業株式会社 Coal gasifier startup method and starter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102105567A (en) 2011-06-22
EP2310477A2 (en) 2011-04-20
BRPI0917423A2 (en) 2015-12-01
WO2010012376A3 (en) 2010-06-10
KR101643969B1 (en) 2016-08-01
PL2310477T3 (en) 2017-12-29
DE102008036058B4 (en) 2013-04-18
US20110195365A1 (en) 2011-08-11
WO2010012376A2 (en) 2010-02-04
AU2009275490A1 (en) 2010-02-04
RU2011104148A (en) 2012-09-10
DE102008036058A1 (en) 2010-02-04
CA2732029C (en) 2017-09-05
CN102105567B (en) 2015-03-18
CA2732029A1 (en) 2010-02-04
JP2011529970A (en) 2011-12-15
AU2009275490B2 (en) 2016-08-18
US9670428B2 (en) 2017-06-06
KR20110049803A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
EP2310477B1 (en) Method and apparatus for starting up gasifying reactors operated with combustible dust
DE102006030079B4 (en) Method for commissioning high-flow entrainment gasification reactors with combination burner and multi-burner arrangement
EP2329196B1 (en) Burner and method for operating a burner
CH697710A2 (en) A method of controlling a turbine which has a plurality of parallel fuel valves.
DE102011115363B4 (en) Power plant and process for its operation
DE102012100261A1 (en) Stoichiometric exhaust gas recirculation and associated combustion control
EP0484993B1 (en) Process for controlling the start-up of a fluidised bed gasification of solid fuel
DE2831027C2 (en) Method and device for entrained flow gasification
CH701150A2 (en) A method for providing a reformed by means of a plasma torch system fuel, the one or more combustion chambers is supplied in a gas turbine system.
DE102014100571A1 (en) Nozzle system and method for starting and operating gas turbines with low energy fuels
DD284041A5 (en) METHOD FOR DETERMINING AND CONTROLLING MASS FUEL IN PARTIAL OXIDATION (GASIFICATION) OF FINE-CORROSIVE TO DUST-FUEL FUELS
DE102005061486B4 (en) Method for operating a combustion chamber of a gas turbine
DE3220546C2 (en)
DE3047734A1 (en) Partial oxidn. gas producer burner - has premix zone formed by geometry of central flow path and surrounding coaxial tube
AT507175B1 (en) METHOD AND DEVICE FOR PROVIDING A CONSTANT PRODUCT GAS QUANTITY FROM A SWITCHING LINE GAS GENERATION SYSTEM
EP1828572A1 (en) Method for the operation of a gas turbo group
DE102018114870B3 (en) Burner system and method for producing hot gas in a gas turbine plant
WO2023057090A1 (en) Device and method for carrying out partial oxidation
EP4003909A1 (en) Apparatus and method for automatable start-up of a steam reformer arrangement into a normal operating state, and use and open-loop control/closed-loop control device and computer program product
DE102004058759A1 (en) Method for providing a fuel for the gas turbine of an IGCC power plant
DE102004058758A1 (en) Method for controlling the burn gas flow for a gas turbine in an IGCC system by the controlled addition of fluid fuel to compensate for pressure fluctuations in the burn gas flow
EP2169308A1 (en) Fuel supply and method for fuel injection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110301

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120511

19U Interruption of proceedings before grant

Effective date: 20110930

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20121203

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

17Q First examination report despatched

Effective date: 20130102

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS FUEL GASIFICATION TECHNOLOGY GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10J 3/30 20060101AFI20161114BHEP

Ipc: C10J 3/50 20060101ALI20161114BHEP

Ipc: C10J 3/72 20060101ALI20161114BHEP

INTG Intention to grant announced

Effective date: 20161220

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20170515

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 902943

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014100

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009014100

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170715

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170921

26N No opposition filed

Effective date: 20180322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170821

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 902943

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220711

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220711

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221220

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801