EP2305422B9 - Procédé et dispositif d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes - Google Patents

Procédé et dispositif d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes Download PDF

Info

Publication number
EP2305422B9
EP2305422B9 EP10290427.3A EP10290427A EP2305422B9 EP 2305422 B9 EP2305422 B9 EP 2305422B9 EP 10290427 A EP10290427 A EP 10290427A EP 2305422 B9 EP2305422 B9 EP 2305422B9
Authority
EP
European Patent Office
Prior art keywords
region
outline
tool
contour
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10290427.3A
Other languages
German (de)
English (en)
Other versions
EP2305422A1 (fr
EP2305422B1 (fr
Inventor
Cédric LEMAIRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EssilorLuxottica SA
Original Assignee
Essilor International Compagnie Generale dOptique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International Compagnie Generale dOptique SA filed Critical Essilor International Compagnie Generale dOptique SA
Publication of EP2305422A1 publication Critical patent/EP2305422A1/fr
Application granted granted Critical
Publication of EP2305422B1 publication Critical patent/EP2305422B1/fr
Publication of EP2305422B9 publication Critical patent/EP2305422B9/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/148Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms electrically, e.g. numerically, controlled

Definitions

  • the present invention relates to a method of machining an ophthalmic lens for mounting in a spectacle frame, according to a predetermined contour.
  • contours of certain ophthalmic lenses in particular ophthalmic lenses intended to be mounted in a frame of the surrounding type (fixing to pierced lenses), have complex shapes comprising, for example, zones curved towards the center of the lens, called negative curvature.
  • These negative curvature zones generally correspond to decorative details of the contour of the lens and need to be machined by a tool of diameter less than the diameter of the grinding wheel commonly used to cut the lens.
  • An object of the present invention is to overcome the drawbacks of the aforementioned state of the art, by providing a new method of trimming an ophthalmic lens that makes it possible to easily and quickly process lenses whose contour has areas of negative curvature
  • the lens can thus be machined in an outline having areas of negative curvature with the tools of a trimming / milling device.
  • the use of these tools is easy and fast.
  • This method can be implemented according to various advantageous and nonlimiting embodiments that can be combined with one another.
  • the Figures 1 to 5 show lenses 1, 2, 3, 4, 5 ophthalmic, whose respective contours 10, 20, 30, 40, 50, here considered in projection in a general mean plane of the lens concerned, each respectively comprise a complex region 11, 21, 31, 41, 51, delimited respectively by the points C and D, E and F, G and J, O and R, K and N.
  • Each complex region 11, 21, 31, 41, 51 comprises one or more zones of negative curvatures 11, 21, 34, 43A, 43B, 53A, 53B. These zones of negative curvature are delimited respectively by the points C and D, E and F, G and H, I and J, O and P, Q and R, K and L, M and N on the Figures 1 to 5 .
  • This grinding device 200 is controlled by an electronic and computer device 100.
  • the electronic and computer device 100 comprises means for acquiring and displaying data, typically comprising a keyboard 101 and a screen 102 adapted to the display of a device. graphic interface, control means capable of controlling the different degrees of freedom of the grinding device 200 and an operating system associated with a software application adapted to control these different components.
  • the electronic and computer device 100 executes a desired contour analysis algorithm 10, 20, 30, 40, 50, in order to determine a first region 12, 22, 32, 42A, 42B, 52 of the contour comprising the points of this contour for which the use of a first rotary tool, in this case the grinding wheel 220 of large diameter, to cut the lens, is possible without damaging the shape of the desired lens contour. More precisely, it is a matter of isolating the points of the desired contour at which the machining of the lens with the large grinding wheel 220 to reach the desired lens radius dimension at the point in question is achieved without cutting other parts of the lens 1, 2, 3, 4, 5 located within the desired contour 10, 20, 30, 40, 50.
  • a cut-off portion of the contour of the lens is understood to mean a part of the contour corresponding to an interval of values of the angle Alpha, for which the setpoint of the radius dimension can not be respected because of the fact that the machining a point of said first region to the desired radius dimension setpoint would result in machining of the lens, in this range of values of the angle Alpha, to a radius of less than the target.
  • the algorithm calculates the position of the first cutting envelope 220A of the grinding wheel 220 when the grinding wheel 220 is tangent to at least one part of the contour 20 at this point 303.
  • This position of the first cutting envelope 220A of the grinding wheel 220 corresponds to the position of the grinding wheel 220 when it is in position to machine the lens 2 according to the desired contour 20 at this point 303.
  • the grinding wheel 220 is then situated on the side of this arc of circle opposite to the side where the center 302 of the contour 20 is located.
  • the algorithm searches for the points of the contour 301 located inside this first cutting envelope 220A, that is to say located on the side of the arc corresponding to the grinding wheel 220, if exists. These points correspond to the additional points trimmed by the grinding wheel 220 when it is machining the lens 2 at the point 303 considered of the contour 20. Said additional cropped points belong to said trimmed portion of the contour.
  • the analysis algorithm determines a second region of this contour 10, 20, 30, 40, 50, out of the first region, adapted to be machined with a second rotary tool around a second axis, having a second revolution cutting envelope around this second axis having a second diameter about this axis less than said first diameter.
  • This second tool can be in the example detailed here the grinder 231 or the mill 230.
  • the analysis algorithm performs the same steps as those described above: the algorithm calculates the position of the second cutting envelope of the second tool (Here the grinder 231 or the mill 230) when it is tangent to at least a portion of the contour at the point considered, which corresponds to the position of the second tool for machining the lens 2 according to the desired contour 20 at this point. For this, it determines the position, in the average plane of the contour, of at least one circular arc whose diameter is that of said second tool, when it is tangent to the contour 20 at the point in question.
  • the algorithm calculates the position of the second cutting envelope of the second tool (Here the grinder 231 or the mill 230) when it is tangent to at least a portion of the contour at the point considered, which corresponds to the position of the second tool for machining the lens 2 according to the desired contour 20 at this point. For this, it determines the position, in the average plane of the contour, of at least one circular arc whose diameter is that of said second tool, when it is tangent to
  • the algorithm searches for the points of the contour that is inside said second sectional envelope, that is to say located on the side of the arc corresponding to the second tool, if there are any. These points correspond to the additional points trimmed by the second tool when it is machining the lens 2 at the considered point of the contour 20.
  • this second magnitude representative of the importance trimming is a function of the distance between each of these trimmed additional points and said second cutting envelope, called the trimmed width of the lens.
  • the analysis algorithm determines the trimmed width of the lens 2 at these trimmed additional points.
  • the analysis algorithm determines that the second region of the contour 10 represented on the figure 1 is the complex region 11, that the second region of the contour 20 represented on the figure 2 is empty, that the second region of the contour 30 shown on the figure 3 comprises the portions 33A, 33B of the complex region 31, that the second region of the contour 40 shown on the figure 4 comprises the parts 43A, 43B of the complex region 41, and that the second region of the contour 50 shown on the figure 5 comprises part 54 of the complex region 51.
  • This third tool 230 is chosen small enough to be able to machine the smallest details of the contour 10, 20, 30, 40, 50.
  • the analysis algorithm searches for the positions of said second cutting envelope in which this second cutting envelope is tangent. audit contour in a pair of points and in which a second inaccessible zone of the contour located between the two points of this pair and covered by said second cutting envelope is not reached by this second cutting envelope.
  • the point considered is assigned by the analysis algorithm to said first region 12, 22, 32, 42A, 42B, 52.
  • the analysis algorithm compares for example, for each point of the contour 10, 20, 30, 40, 50 not belonging to the first region 12, 22, 32, 42A, 42B, 52, the radius of curvature of the contour at this point with the product of the second diameter of said second cutting envelope of said second tool by a second factor preferably between 0.5 and 1.5, for example equal to 1.
  • the second diameter of the tool being equal to twice the radius of curvature of the second tool, it is the same as before to compare the radius of curvature of the contour at this point and the radius of curvature of the second tool multiplied by a factor between 1 and 3, for example equal to 2.
  • the point considered is assigned by the analysis algorithm to said second region 11, 33A, 33B, 43A, 43B, 54.
  • the analysis algorithm can then either assign the points of the contour belonging neither to the first region 12, 22, 32, 42A, 42B, 52, nor to the second region 11, 33A, 33B, 43A, 43B, 54 to the third region, or to determine the third region in realization the same steps as those described above, for the third envelope of the third tool, here the mill 230.
  • the analysis algorithm compares the radius of curvature of the contour at the point considered with the diameter of the third cutting envelope of the third tool multiplied by a third factor preferably between 0.5 and 1.5, for example equal to 1.
  • Each first 12, 22, 32, 42A, 42B, 52, second 11, 33A, 33B, 43A, 43B, 54 and third 21, 34, 53A, 53B region is continuous or formed of a set of subregions separated by each other by a subregion or region of the other two regions.
  • contour 30, 50 desired is divided, at the end of these steps of the algorithm, into a plurality of sub-regions to be machined each by the corresponding tool.
  • the electronic and computer device 100 controls the machining of each subregion or region of the first, second and third regions with respectively the first, second and third tools, corresponding here to the grinding wheel. 220, the grinder 231 and the strawberry 230.
  • the analysis algorithm determines the subregions of the second region flanking a subregion of the third region.
  • the electronic and computer device 100 then controls the machining of the second region, excluding said subregions of said second region flanking a subregion of the third region, with said grinder 231, and the machining of said third region. region and said subregions of said second region flanking a subregion of the third region, with the mill 230.
  • the electronic and computer device 100 then controls the machining of the first region 32 by the grinding wheel 220 and the machining of all the two subregions 33A, 33B of the second region and the third region 34 by the milling cutter 230. In this way, two changes of tools are avoided during the machining of the complex region 31 of the contour 30. The machining of the whole of the lens contour 3 is thus faster.
  • the analysis algorithm determines the length of each subregion of the first region separating two subregions of the second region and compares it with a first threshold length value.
  • the electronic and computer device 100 of the grinding device 200 then controls the machining of each subregion of the first region whose length is less than said first threshold length value with the grinder 231.
  • This first threshold length value is example between 2 and 10 millimeters, for example equal to 5 millimeters.
  • the first region has two subregions 42A, 42B, one of which 42B is flanked by two subregions of the second region.
  • the subregion 42B here has a length of a few millimeters smaller than the first threshold length value of 5 millimeters.
  • the electronic and computer device 100 of the grinding device 200 thus controls the machining of the entire complex region 11 comprising the two subregions 43A and 43B of the second region and the subregion 42B of the first region by the grinder. Only the portion 42A of the first region is machined by the grinding wheel 220.
  • the analysis algorithm determines the length of each subregion of the first region separating two subregions of the third region and compares it with a second threshold length value.
  • the electronic and computer device 100 of the grinding device 200 then controls the machining of each subregion of the first region whose length is less than the said second threshold length value with the mill 230.
  • This second threshold length value is example between 2 and 10 millimeters, for example equal to 5 millimeters.
  • the analysis algorithm determines the length of each subregion of the second region separating two subregions of the third region and compares it with a third value of threshold length.
  • the electronic and computer device 100 of the grinding device 200 then controls the machining of each subregion of the second region whose length is less than said third length threshold value with the mill 230.
  • This third threshold length value is for example between 2 and 10 millimeters, for example equal to 5 millimeters.
  • the third region comprises two subregions 53A, 53B, which surround the second region 54.
  • the second region 54 here has a length of a few millimeters smaller than the third threshold length value of 5 millimeters.
  • the electronic and computer device 100 of the grinding device 200 therefore controls the machining of the first region 52 by the grinding wheel 220 and the machining of the entire complex region 51 comprising the two subregions 53A and 53B of the third region and the second region 54 by the strawberry 230.
  • the analysis algorithm determines the amount of material to be machined of the lens 1, 2, 3, 4, 5 for each part of the contour 10, 20, 30, 40, 50 to be machined with the grinder 231 and compares it with a threshold value of quantity of material.
  • the amount of material to be machined corresponds to the area between the raw edge of the lens 1, 2, 3, 4, 5 before machining and the desired contour 10, 20, 30, 40, 50 for the cut-out lens, multiplied by 1 average thickness of the lens 1,2,3,4,5.
  • the electronic and computer device 100 controls the machining of this portion of the contour 10, 20, 30, 40, 50 with the mill 230.
  • the grinder 231 is poorly adapted to the removal of a large amount of material, and its use for this purpose is long and tedious.
  • the use of the cutter 230 makes it possible to accelerate the contouring of the contour 10, 20, 30, 40, 50.
  • the electronic and computer device 100 the machining of this portion of the contour 10, 20, 30, 40, 50 in a slightly larger outline than this contour 10, 20, 30, 40, 50 predetermined with the milling cutter 230 and the machining of this part of the contour according to the contour 10, 20, 30, 40, 50 predetermined with the grinder 231.
  • the amount of material to be machined with the grinder is reduced since part of this amount of material has been previously removed by cutting with the bur.
  • the surface state of the slice of the lens 1, 2, 3, 4, 5 thus obtained is improved.
  • Each portion of the contour 10, 20, 30, 40, 50 to be machined with the grinder 231 for which the quantity of material to be machined is less than the material quantity threshold value is machined according to the contour 10, 20, 30, 40, 50 predetermined with the grinder 231.
  • the analysis algorithm determines the fraction of the length of the contour 10, 20, 30, 40, 50 predetermined to be machined with the millstone, and if this fraction is greater than a first threshold fraction, the entire predetermined contour 10, 20, 30, 40, 50 is machined with the grinder 231.
  • the analysis algorithm determines the fraction of the length of the contour 10, 20, 30, 40, 50 predetermined to be machined with the cutter 230, and if this fraction is greater than one second threshold fraction, the entire contour 10, 20, 30, 40, 50 predetermined with this mill is machined.
  • This third threshold fraction is between 75 percent and 100 percent, for example equal to 80 percent.
  • the analysis algorithm determines the thickness of the ophthalmic lens 1, 2, 3, 4, 5 along each part of the contour 10, 20, 30, 40, 50 predetermined to be machined with the grinder 231.
  • the determined thickness is greater than a threshold thickness
  • the corresponding portion of the predetermined contour 10, 20, 30, 40, 50 is machined with the milling cutter 230.
  • the electronic and computer device 100 preferably controls first the machining of the parts of the contour 10, 20, 30, 40, 50 to be machined with the grinding wheel 220, then machining the other parts of the contour.
  • the electronic and computer device 100 preferably controls, in turn, the complete machining of each portion of the contour 10, 30, 40, 50 to be machined with the grinder 231 along said contour before controlling the machining of another part of the contour 10, 30, 40, 50 predetermined to be machined with the grinder 231.
  • each portion of the contour 10, 30, 40, 50 to be machined with the grinder 231 is preferably made in several successive passes along said portion, machining only said portion, by a movement of and-comes from the grinder 231.
  • the passes are calculated according to the maximum thickness of the lens 1, 2, 3, 4, 5 at this part of the contour. The larger the lens 1, 2, 3, 4, 5, the smaller the passes, so that each pass removes an equivalent volume of material.
  • the electronic and computer device 100 preferably controls the initial positioning of the milling a little recessed from a first end of the portion of the contour to be machined with the milling cutter, to a slightly larger dimension than that of the predetermined contour, so as to join the contour 20, 30, 40, 50 at the first end of this part.
  • the electronic and computer device 100 then controls the machining of this portion along the contour 20, 30, 40, 50.
  • the device Electronic and computer 100 controls the movement of the cutter 230 to a position beyond this second end, to a slightly larger dimension than that of the contour 20, 30, 40, 50.
  • connection between the parts of the contour of the lens 2, 3, 4, 5 machined by the cutter 230 and the other parts is more discreet.
  • the analysis algorithm can slightly modify the predetermined contour 10, 20, 30, 40, 50 so as to optimize the length of the tool. first region. For this, the analysis algorithm determines the points of the contour 10, 20, 30, 40, 50 located at each end of the subregions of the first region 12, 22, 32; 42A, 42B, 52 and determines the position of the grinding wheel 220 when it is machining each of these end points.
  • the analysis algorithm then replaces a third predetermined number of points of the second region located near each end point of the first region by points of the arc defining the edge of said grinding wheel 220 when factory the corresponding endpoint.
  • the points of the arc that replace the points of the contour 10, 20, 30, 40, 50 are equal in number to said third number of points replaced and are spaced a regular interval.
  • the first rotary tool considered may also be another rotary tool, for example the grinder or the milling cutter.
  • the second and third rotary tools are then, for example, mills of appropriate diameters.
  • the contour of the lens is likely to have negative curvature zones.
  • the negative curvature zones may be located on the upper or lower portion of the contour, relative to a line connecting the location of the nasal bridge of the frame on which the lens is intended to be mounted to the location of the branch of this mount.
  • the negative curvature zones may be located on the left or right portion of the contour, with respect to a mediator of the segment connecting the location of the nasal bridge of the frame to the location of the branch of this mount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Eyeglasses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Numerical Control (AREA)

Description

    DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION
  • La présente invention concerne un procédé d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes, selon un contour prédéterminé.
  • Ce procédé est particulièrement adapté au détourage de lentilles ophtalmiques dont le contour présente une forme complexe, notamment des zones de courbures négatives.
  • ARRIÈRE-PLAN TECHNOLOGIQUE
  • Les contours de certaines lentilles ophtalmiques, notamment les lentilles ophtalmiques destinées à être montées dans une monture de type sans entourage (à fixation sur verres percés), présentent des formes complexes comportant par exemple des zones incurvées vers le centre de la lentille, appelées zones de courbure négative.
  • Ces zones de courbure négative correspondent généralement à des détails décoratifs du contour de la lentille et nécessitent d'être usinées par un outil de diamètre inférieur au diamètre de la meule couramment utilisé pour détourer la lentille.
  • Il existe pour cela des machines dédiées du type fraiseuse à trois axes dans lesquelles un foret de fraisage peut être déplacé librement dans un plan perpendiculaire à son axe de fraisage. Cette solution est cependant couteuse puisqu'elle nécessite l'achat d'un outil spécifique pour le détourage de ce type de lentilles. En outre, un tel outil dédié est difficile à mettre en oeuvre et son utilisation nécessite un temps d'adaptation pour l'opérateur.
  • Une autre solution proposée dans le document US7338350 pour détourer de telles lentilles consiste à utiliser une fraise de petit diamètre (typiquement l'outil de perçage). Un tel outil équipe certains dispositifs de détourage, en plus de la meule de grand diamètre utilisée de manière courante pour détourer les lentilles, pour percer les trous de fixation des lentilles pour monture de type sans entourage. On usine alors intégralement le contour de la lentille avec la fraise de perçage. La fraise présentant un très petit diamètre, elle permet d'atteindre toutes les zones de courbures négatives, même celles présentant un très petit rayon de courbure.
  • Cependant, l'état de surface de la tranche de la lentille ainsi détourée est peu satisfaisant d'un point de vue esthétique. En outre, l'opération d'usinage par la fraise est très longue et provoque une usure prématurée de cet outil.
  • OBJET DE L'INVENTION
  • Un but de la présente invention est de remédier aux inconvénients de l'état de la technique précités, en fournissant une nouvelle méthode de détourage d'une lentille ophtalmique qui permette d'usiner facilement et rapidement les lentilles dont le contour présente des zones de courbure négative
  • A cet effet, on propose selon l'invention un procédé d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes, selon un contour prédéterminé, au moyen d'au moins deux outils distincts, dont un premier outil rotatif autour d'un premier axe, ayant une première enveloppe de coupe, de révolution autour de cet axe, présentant un premier diamètre, et au moins un autre outil rotatif autour d'un axe, ayant une autre enveloppe de coupe de révolution autour de cet axe présentant un autre diamètre inférieur audit premier diamètre, ledit procédé comportant les étapes suivantes :
    • analyser au moins une partie dudit contour, pour déterminer, en fonction dudit premier diamètre, une première région de ce contour adaptée à être usinée, sans rognage dudit contour prédéterminé, avec ledit premier outil, ,
    • usiner au moins une partie de ladite première région de ce contour prédéterminé avec ledit premier outil,
    • usiner au moins une partie du reste du contour avec ledit autre outil.
  • La lentille peut ainsi être usinée selon un contour présentant des zones de courbure négative avec les outils d'un dispositif de détourage/fraisage. L'utilisation de ces outils est facile et rapide. Selon un premier mode de réalisation, on peut en particulier usiner la totalité de la première région avec le premier outil et la totalité du reste du contour avec l'autre outil.
  • Ce procédé peut être mis en oeuvre selon différents modes de réalisation avantageux et non limitatifs pouvant être combinés entre eux.
  • Selon une première caractéristique avantageuse de l'invention, ledit au moins un autre outil comporte un deuxième outil rotatif autour d'un deuxième axe, ayant une deuxième enveloppe de coupe, de révolution autour de ce deuxième axe, présentant un deuxième diamètre inférieur audit premier diamètre, le procédé comportant les étapes suivantes :
    • analyser au moins une partie dudit contour pour déterminer, en fonction dudit deuxième diamètre, une deuxième région de ce contour, hors de la première région, adaptée à être usinée avec ledit deuxième outil, sans rognage dudit contour,
    • usiner au moins une partie de la deuxième région avec ledit deuxième outil,
    • le reste du contour formant une troisième région usinée avec un troisième outil rotatif autour d'un troisième axe, ayant une troisième enveloppe de coupe de révolution autour de ce troisième axe, présentant un troisième diamètre inférieur audit deuxième diamètre.
  • Selon une autre caractéristique avantageuse, ledit au moins un autre outil comportant un deuxième outil rotatif autour d'un deuxième axe, ayant une deuxième enveloppe de coupe, de révolution autour de ce deuxième axe, présentant un deuxième diamètre inférieur audit premier diamètre, et un troisième outil rotatif autour d'un troisième axe, ayant une troisième enveloppe de coupe, de révolution autour de ce troisième axe, présentant un troisième diamètre inférieur audit deuxième diamètre, le procédé comporte en outre les étapes suivantes :
    • déterminer, en fonction dudit deuxième diamètre, une deuxième région de ce contour, hors de la première région, adaptée à être usinée avec ledit deuxième outil sans rognage dudit contour,,
    • déterminer, en fonction dudit troisième diamètre, une troisième région de ce contour hors de la première et de la deuxième région, adaptée à être usinée avec ledit troisième outil sans rognage dudit contour,
      chacune des deuxième et troisième régions étant formées d'un ensemble de sous-régions séparées les unes des autres par une sous-région ou une région de l'une des première, deuxième et troisième régions,
    • déterminer les sous-régions de ladite deuxième région encadrant une sous-région de la troisième région,
    • usiner la deuxième région, à l'exclusion desdites sous-régions de ladite deuxième région encadrant une sous-région de la troisième région, avec ledit deuxième outil,
    • usiner ladite troisième région et lesdites sous-régions de ladite deuxième région encadrant une sous-région de la troisième région, avec ledit troisième outil.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, chacune des première et deuxième régions étant formée d'un ensemble de sous-régions séparées les unes des autres par une sous-région ou une région de l'une des première, deuxième et troisième régions,
    • on détermine la longueur de chaque sous-région de la première région séparant deux sous-régions de la deuxième région et la comparer à une première valeur de longueur seuil,
    • on usine chaque sous-région de la première région dont la longueur est inférieure à ladite première valeur de longueur seuil avec ledit deuxième outil.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, chacune des première et troisième régions étant formée d'un ensemble de sous-régions séparées les unes des autres par une sous-région de l'une des première, deuxième et troisième régions :
    • on détermine la longueur de chaque sous-région de la première région séparant deux sous-régions de la troisième région et on la compare à une deuxième valeur de longueur seuil,
    • on usine chaque sous-région de la première région dont la longueur est inférieure à ladite deuxième valeur de longueur seuil avec ledit troisième outil.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, chaque deuxième et troisième région étant formée d'un ensemble de sous-régions séparées les unes des autres par une sous-région de l'une des première, deuxième et troisième régions,
    • on détermine la longueur de chaque sous-région de la deuxième région séparant deux sous-régions de la troisième région et on la compare à une troisième valeur de longueur seuil,
    • on usine chaque sous-région de la deuxième région dont la longueur est inférieure à ladite troisième valeur de longueur seuil avec ledit troisième outil.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, celui-ci comporte en outre les étapes suivantes :
    • déterminer la quantité de matière à usiner de la lentille pour chaque partie du contour à usiner avec ledit deuxième outil et la comparer à une valeur seuil de quantité de matière,
    • pour chacune de ces parties du contour à usiner avec ledit deuxième outil, si la quantité de matière déterminée est supérieure à ladite valeur seuil de quantité de matière, on usine cette partie du contour selon un contour légèrement plus grand que le contour prédéterminé avec ledit troisième outil puis on usine cette partie du contour selon le contour prédéterminé avec ledit deuxième outil,
    • pour chaque partie du contour à usiner avec ledit deuxième outil pour laquelle la quantité de matière à usiner est inférieure à la valeur seuil de quantité de matière, on usine ladite partie selon le contour prédéterminé avec ledit deuxième outil.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, celui-ci comporte en outre les étapes suivantes :
    • on détermine la fraction de la longueur du contour prédéterminé à usiner avec ledit deuxième outil,
    • si cette fraction est supérieure à une première fraction seuil, on usine la totalité du contour prédéterminé avec ledit deuxième outil.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, celui-ci comporte en outre les étapes suivantes :
    • on détermine la fraction de la longueur du contour prédéterminé à usiner avec ledit troisième outil,
    • si cette fraction est supérieure à une deuxième fraction seuil, on usine la totalité du contour prédéterminé avec ledit troisième outil.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, celui-ci comporte en outre les étapes suivantes :
    • on détermine l'épaisseur de la lentille ophtalmique le long de chaque partie du contour prédéterminé à usiner avec ledit deuxième outil,
    • si cette épaisseur est supérieure à une épaisseur seuil, on usine la partie correspondante du contour prédéterminé avec le troisième outil.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, celui-ci comporte en outre les étapes suivantes :
    • on usine d'abord les parties du contour prédéterminé à usiner avec le premier outil,
    • on usine ensuite les autres parties du contour prédéterminé.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, celui-ci comporte en outre les étapes suivantes :
    • on usine tour à tour chaque partie du contour prédéterminé à usiner avec le deuxième outil selon le contour prédéterminé pour cette partie avant d'usiner une autre partie du contour prédéterminé à usiner avec le deuxième outil.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, celui-ci comporte en outre les étapes suivantes, pour usiner chaque partie du contour prédéterminé à usiner avec le troisième outil,
    • on positionne initialement le troisième outil un peu en retrait d'une première extrémité de cette partie, à une cote légèrement plus grande que celle du contour prédéterminé, de manière à rejoindre le contour prédéterminé à ladite première extrémité de cette partie, puis
    • on usine ladite partie selon le contour prédéterminé,
    • enfin, on amène le troisième outil jusqu'à une position au delà de la deuxième extrémité de cette partie, à une cote légèrement plus grande que celle du contour prédéterminé.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, celui-ci comporte en outre les étapes suivantes, pour déterminer ladite première région de ce contour,
    • on détermine, pour chaque point du contour, une position de ladite première enveloppe de coupe, lorsque ledit premier outil est tangent à au moins une partie du contour prédéterminé en ce point, et on détermine les points du contour, appelés points additionnels rognés, qui se trouvent à l'intérieur de ladite première enveloppe de coupe dudit premier outil,
    • on détermine une première grandeur représentative de l'importance du rognage, par exemple fonction du nombre des points additionnels rognés ou de la distance entre chacun de ces points additionnels rognés et ladite première enveloppe de coupe,
    • on compare cette première grandeur représentative à une première valeur seuil prédéterminée,
    • on attribue ledit point considéré du contour à ladite première région du contour en fonction du résultat de cette comparaison.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, celui-ci comporte en outre les étapes suivantes, pour déterminer ladite deuxième région de ce contour,
    • on détermine, pour chaque point du contour en dehors de la première région, une position de ladite deuxième enveloppe de coupe lorsque ledit deuxième outil est tangent à au moins une partie dudit contour prédéterminé en ce point, et on détermine les points du contour, appelés points additionnels rognés, qui se trouvent à l'intérieur de ladite deuxième enveloppe de coupe dudit deuxième outil,
    • on détermine une deuxième grandeur représentative de l'importance du rognage, par exemple fonction du nombre des points additionnels rognés ou de la distance entre chacun de ces points additionnels rognés et ladite deuxième enveloppe de coupe,
    • on compare cette deuxième grandeur représentative à une deuxième valeur seuil prédéterminée,
    • on attribue ledit point considéré du contour à ladite deuxième région du contour en fonction du résultat de cette comparaison.
  • Selon une autre caractéristique avantageuse du procédé selon l'invention, en variante, pour déterminer ladite première région du contour,
    • on recherche les positions de ladite première enveloppe de coupe dans lesquelles cette première enveloppe de coupe est tangente audit contour en un couple de points et dans lesquelles une première zone inaccessible du contour située entre les deux points de ce couple et recouverte par ladite première enveloppe de coupe n'est pas atteinte par cette première enveloppe de coupe,
    • on définit la première région comme comportant au moins une partie du contour mais excluant les points desdites premières zones inaccessibles.
  • Alors, pour déterminer ladite deuxième région du contour,
    • on recherche les positions de ladite deuxième enveloppe de coupe dans lesquelles cette deuxième enveloppe de coupe est tangente audit contour en un couple de points et dans lesquelles une deuxième zone inaccessible du contour située entre les deux points de ce couple et recouverte par ladite deuxième enveloppe de coupe n'est pas atteinte par cette deuxième enveloppe de coupe,
    • on définit la deuxième région comme comportant au moins une partie du contour mais excluant ladite première région ainsi que les points desdites deuxièmes zones inaccessibles.
  • En variante encore, pour déterminer ladite première région du contour,
    • on détermine, pour chaque point du contour, le rayon de courbure local du contour en ce point,
    • on compare ce rayon de courbure avec ledit premier diamètre de ladite première enveloppe de coupe dudit premier outil,
    • on attribue le point considéré du contour à ladite première région du contour en fonction du résultat de cette comparaison.
  • Alors, pour déterminer ladite deuxième région du contour :
    • on détermine, pour chaque point du contour en dehors de la première région, le rayon de courbure local du contour en ce point,
    • on compare ce rayon de courbure avec ledit deuxième diamètre dudit deuxième outil,
    • on attribue le point considéré du contour à ladite deuxième région du contour en fonction du résultat de cette comparaison.
  • L'invention concerne également un dispositif d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes, selon un contour prédéterminé, comportant
    • au moins deux outils distincts comprenant un premier outil rotatif autour d'un premier axe, ayant une enveloppe de coupe de révolution autour de ce premier axe présentant un premier diamètre et un autre outil rotatif autour d'un axe, ayant une autre enveloppe de coupe de révolution autour de cet axe présentant un autre diamètre inférieur audit premier diamètre,
    • des moyens de traitement électroniques adaptés à analyser au moins une partie dudit contour, pour déterminer, en fonction dudit premier diamètre, une première région de ce contour adaptée à être usinée, sans rognage dudit contour prédéterminé, avec ledit premier outil.
    DESCRIPTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATION
  • La description qui va suivre, en regard des dessins annexés, donnée à titre d'exemple non limitatif, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
  • Sur les dessins annexés:
    • les figures 1 à 5 sont des vues schématiques de différentes lentilles ophtalmiques dont les différents contours sont usinés au moyen du procédé selon l'invention ;
    • la figure 6 est une vue schématique en perspective d'un dispositif de détourage utilisé pour mettre en oeuvre le procédé selon l'invention ;
    • les figures 7 et 8 sont des vues schématiques du contour de la figure 2 discrétisé par un algorithme d'analyse des contours et d'une enveloppe d'un outil d'usinage, illustrant deux méthodes d'analyse de ce contour.
  • Les figures 1 à 5 montrent des lentilles 1, 2, 3, 4, 5 ophtalmiques, dont les contours respectifs 10, 20, 30, 40, 50, ici considérés en projection dans un plan général moyen de la lentille concernée, comportent chacun respectivement une région complexe 11, 21, 31, 41, 51, délimitée respectivement par les points C et D, E et F, G et J, O et R, K et N.
  • Chaque région complexe 11, 21, 31, 41, 51 comporte une ou plusieurs zones de courbures négatives 11, 21, 34, 43A, 43B, 53A, 53B. Ces zones de courbures négatives sont respectivement délimitées par les points C et D, E et F, G et H, I et J, O et P, Q et R, K et L, M et N sur les figures 1 à 5.
  • Pour détourer une de ces lentilles, on la place dans un dispositif d'usinage 200 connu en lui-même, tel que celui décrit dans le document WO2008/043910 .
  • Un tel dispositif, tel qu'illustré sur la figure 6, comporte:
    • une bascule 204 qui est montée pivotante autour d'un axe de bascule A1, en pratique un axe horizontal, sur un châssis 203, et qui comporte des moyens de support de la lentille 1, 2, 3, 4, 5 permettant une mise en rotation motorisée de cette lentille autour d'un axe de blocage A2 sensiblement perpendiculaire au plan moyen de la lentille et parallèle à l'axe A1;
    • un train de meules de grand diamètre, comportant notamment une grande meule 220, montées sur le châssis 203 pour tourner, par entrainement motorisé, autour d'un axe de meule A3 parallèle à l'axe de bascule A1 ;
    • un module de finition 235 qui embarque plusieurs outils de finition, dont une meulette 231 et une fraise de perçage 230 montées rotatives autour d'axes A5, A6 parallèles aux axes de bascule A1, de blocage A2 et de meule A3, et qui est monté à pivotement autour de l'axe de meule A3 pour la commande de la position de ses outils de finition par rapport à la lentille.
  • La meule 220 est une meule classique, qui comporte une surface coupante définissant, dans sa rotation, autour de l'axe A3 une enveloppe de coupe de révolution autour de cet axe A3, présentant un diamètre supérieur ou égal à 80 millimètres, par exemple égal à 155 millimètres.
  • La meulette 231 est une meule de plus petit diamètre que la meule 220, qui comporte une surface coupante définissant, dans sa rotation autour de l'axe A5, une enveloppe de coupe de révolution autour de cet axe A5, présentant de préférence un diamètre inférieur à 80 millimètres, par exemple égal à 11 millimètres.
  • La fraise 230 comporte une arête coupante définissant, dans sa rotation autour de l'axe A6, une enveloppe de coupe de révolution autour de cet axe A6, qui présente un diamètre inférieur à 10 millimètres et de préférence inférieur à 5 millimètres, par exemple égal à 1,4 millimètres.
  • Ce dispositif de meulage 200 est piloté par un dispositif électronique et informatique 100. Le dispositif électronique et informatique 100 comprend des moyens d'acquisition et d'affichage de données comportant typiquement un clavier 101 et un écran 102 adapté à l'affichage d'une interface graphique, des moyens de pilotage aptes à piloter les différents degrés de liberté du dispositif de meulage 200 et un système d'exploitation associé à un applicatif logiciel adapté à piloter ces différents composants.
  • Le dispositif électronique et informatique 100 possède une mémoire dans laquelle est insérée la forme du contour 10, 20, 30, 40, 50 souhaité pour la lentille 1,2,3,4,5.
  • On entend ici par « contour souhaité » ou « contour prédéterminé » une consigne de cote de rayon de la lentille qui est prédéterminée en fonction de la monture dans laquelle la lentille est destinée à être montée et en fonction du référentiel optique de la lentille et de caractéristiques géométrico-morphologique du futur porteur. Comme représenté sur la figure 1, le contour 10 est défini par une consigne de cote de rayon, qui consiste typiquement en une fonction donnant la distance L(Alpha) de chaque point 13 de ce contour 10 par rapport à un centre 14 de ce contour 10 en fonction d'un angle Alpha mesuré entre une direction de référence X et la droite reliant le point 13 considéré du contour 10 et ledit centre 14.
  • Le contour 10, 20, 30, 40, 50 de la lentille à détourer comportant, comme représenté sur les figures 1 à 5, des régions complexes, l'usinage de la lentille est réalisé à l'aide d'au moins deux outils distincts, choisis ici parmi les outils dont dispose le dispositif de meulage 200.
  • Avant de commencer l'usinage de ladite lentille, le dispositif électronique et informatique 100 détermine quelles régions du contour souhaité de la lentille vont être usinées par quel outil, en fonction des caractéristiques géométriques de ce contour souhaité et en fonction des diamètres des enveloppes de coupes des outils disponibles. On se place en effet dans l'hypothèse où le premier diamètre du premier outil est trop grand pour respecter la géométrie du contour souhaité dans ses zones de courbure négative présentant une concavité trop prononcée.
  • Pour cela, le dispositif électronique et informatique 100 exécute un algorithme d'analyse du contour 10, 20, 30, 40, 50 souhaité, afin de déterminer une première région 12, 22, 32, 42A, 42B, 52 du contour comprenant les points de ce contour pour lesquels l'utilisation d'un premier outil rotatif, en l'espèce la meule 220 de grand diamètre, pour détourer la lentille, est possible sans détériorer la forme du contour de lentille souhaité. Plus précisément, il s'agit d'isoler les points du contour souhaité auxquels l'usinage de la lentille avec la grande meule 220 pour atteindre la cote de rayon de lentille souhaitée au point considéré, est réalisé sans rogner d'autres parties de la lentille 1, 2, 3, 4, 5 situées à l'intérieur du contour 10, 20, 30, 40, 50 souhaité.
  • On entend ici par partie rognée du contour de la lentille une partie du contour correspondant à un intervalle de valeurs de l'angle Alpha, pour lesquelles la consigne de la cote de rayon ne peut pas être respectée en raison du fait que l'usinage d'un point de ladite première région à la consigne de cote de rayon souhaité engendrerait un usinage de la lentille, dans cet intervalle de valeurs de l'angle Alpha, à une cote de rayon inférieure à la consigne.
  • Pour cela, selon un premier mode de réalisation, l'algorithme d'analyse discrétise le contour 10, 20, 30, 40, 50 considéré en un ensemble 301 de points en projection dans un plan moyen de ce contour, comme représenté sur la figure 7 dans le cas du contour 20 de la figure 2. Par exemple, l'algorithme d'analyse modélise le contour 20 considéré par un ensemble 301 de points de ce contour 20 situés tous les un degré d'angle autour d'un centre 302 de ce contour. L'ensemble 301 de points comporte alors 360 points. Le centre 302 du contour 20 est par exemple le centre d'un rectangle 300 dit « de boxing » dans lequel ledit contour 20 est inclus et dont chaque côté est tangent audit contour 20.
  • Pour chaque point 303 de l'ensemble 301 de points modélisant le contour 20 de la lentille 2, l'algorithme calcule la position de la première enveloppe de coupe 220A de la meule 220 lorsque celle-ci est tangente à au moins une partie du contour 20 en ce point 303. Cette position de la première enveloppe de coupe 220A de la meule 220 correspond à la position de la meule 220 lorsque celle-ci est en position pour usiner la lentille 2 selon le contour 20 souhaité en ce point 303.
  • Cette détermination de la position de la première enveloppe de coupe 220A de la meule 220 correspond à la détermination de la position d'au moins un arc de cercle dont le diamètre est celui de la meule 220, correspondant à la tranche de la meule 220 lorsque celle-ci est tangente au contour 20 au point 303 considéré.
  • La meule 220 est alors située du côté de cet arc de cercle opposé au côté où se situe le centre 302 du contour 20.
  • L'algorithme recherche ensuite les points du contour 301 qui se trouvent à l'intérieur de cette première enveloppe de coupe 220A, c'est-à-dire situés du côté de l'arc de cercle correspondant à la meule 220, s'il en existe. Ces points correspondent aux points additionnels rognés par la meule 220 lorsqu'elle usine la lentille 2 au point 303 considéré du contour 20. Lesdits points additionnels rognés appartiennent à ladite partie rognée du contour.
  • Pour cela, l'algorithme d'analyse calcule la distance entre chaque point du contour se trouvant à l'intérieur de la première enveloppe de coupe et ladite première enveloppe de coupe. Si cette distance est supérieure à un seuil de distance prédéterminé, l'algorithme d'analyse retient le point considéré comme étant situé à l'intérieur de ladite enveloppe. Si cette distance est inférieure audit seuil de distance prédéterminé, l'algorithme d'analyse détermine que le point considéré n'est pas un point additionnel rogné. Ce seuil de distance est par exemple compris entre 0 et 0,2 millimètre.
  • L'algorithme d'analyse détermine ensuite une première grandeur représentative de l'importance du rognage en ce point 303, compare cette première grandeur à une première valeur seuil prédéterminée et attribue ledit point 303 considéré à ladite première région 12, 22, 32, 42A, 42B, 52 en fonction du résultat de cette comparaison.
  • Par exemple, cette première grandeur représentative de l'importance du rognage est fonction du nombre de points additionnels rognés au point considéré. Elle est par exemple égale au nombre de points additionnels rognés.
  • Si ce nombre de points additionnels rognés est inférieur à un premier nombre seuil prédéterminé, le point 303 considéré du contour 20 est attribuée à la première région 22 de ce contour adaptée à être usinée, sans rognage dudit contour 20 prédéterminé, avec la meule 220. Ledit premier nombre seuil est par exemple compris entre 1 et 10. Ce premier nombre seuil est déterminé en fonction du nombre total de points de l'ensemble 301 de points ou en fonction de l'intervalle entre chaque point successif de cet ensemble 301.
  • C'est le cas par exemple du point additionnel 303 représenté sur la figure 7, pour lequel il n'y a aucun point additionnel rogné par la meule 220, et des points du sous-ensemble de points 304 correspondant à la partie 22 du contour 20.
  • Alternativement, cette première grandeur représentative de l'importance du rognage est fonction de la distance entre chacun de ces points additionnels rognés et ladite première enveloppe de coupe 220A, appelée la largeur rognée de la lentille. L'algorithme d'analyse détermine alors la largeur rognée de la lentille 2 en ces points additionnels rognés.
  • Si cette largeur rognée est inférieure pour tous les points additionnels rognés à une première largeur seuil prédéterminée, le point 303 considéré du contour 20 est attribuée à ladite première région. Cette première largeur seuil est par exemple comprise entre 0,5 et 2 millimètres.
  • Dans le cas des lentilles 1, 2, 3, 5 représentées sur les figures 1 à 3 et 5, cette première région correspond aux parties 12, 22, 32, 52 du contour 10, 20, 30, 50 qui se trouve en dehors de la région complexe 11, 21, 31, 51. Dans le cas de la lentille 4 représentée sur la figure 4, cette première région correspond à la partie 42A du contour 40 qui se trouve en dehors de la région complexe 41 et à la partie 42B du contour 40 située au milieu de la région complexe 41.
  • Selon le procédé conforme à l'invention, le dispositif électronique et informatique 100 du dispositif de meulage 200 commande alors l'usinage d'au moins une partie de ladite première région 12, 22, 32, 42A, 42B, 52 du contour 10, 20, 30, 40, 50 avec ladite meule 220 et l'usinage d'au moins une partie du reste du contour avec un autre outil rotatif autour d'un axe, ayant une autre enveloppe de coupe de révolution autour de cet axe présentant un autre diamètre inférieur au diamètre de ladite meule. Cet autre outil rotatif est ici la meulette 231 ou la fraise 230.
  • Par exemple, selon un premier mode de réalisation de l'invention, le dispositif électronique et informatique 100 du dispositif de meulage 200 commande l'usinage de la totalité de la première région 12 du contour 10 de la lentille 1 avec la grande meule 220 et l'usinage du reste du contour 11 avec la meulette 231. De la même façon, le dispositif électronique et informatique 100 du dispositif de meulage 200 commande l'usinage de la totalité de la première région 22 du contour 20 de la lentille 2 avec la grande meule 220 et l'usinage du reste du contour 21 avec la fraise 230.
  • Selon un deuxième mode de réalisation, l'algorithme d'analyse détermine une deuxième région de ce contour 10, 20, 30, 40, 50, hors de la première région, adaptée à être usinée avec un deuxième outil rotatif autour d'un deuxième axe, ayant une deuxième enveloppe de coupe de révolution autour de ce deuxième axe présentant un deuxième diamètre autour de cet axe inférieur audit premier diamètre. Ce deuxième outil peut être dans l'exemple détaillé ici la meulette 231 ou la fraise 230.
  • Pour cela, dans le cas par exemple du contour de la figure 2, pour chaque point de l'ensemble de points 301 n'appartenant pas à la première région, l'algorithme d'analyse exécute les mêmes étapes que celles exposées précédemment : l'algorithme calcule la position de la deuxième enveloppe de coupe du deuxième outil (ici la meulette 231 ou la fraise 230) lorsque celui-ci est tangent à au moins une partie du contour au point considéré, ce qui correspond à la position du deuxième outil pour usiner la lentille 2 selon le contour 20 souhaité en ce point. Pour cela, il détermine la position, dans le plan moyen du contour, d'au moins un arc de cercle dont le diamètre est celui dudit deuxième outil, lorsque celui-ci est tangent au contour 20 au point considéré.
  • L'algorithme recherche ensuite les points du contour qui se trouve à l'intérieur de ladite deuxième enveloppe de coupe, c'est-à-dire situé du côté de l'arc de cercle correspondant au deuxième outil, s'il en existe. Ces points correspondent aux points additionnels rognés par le deuxième outil lorsque celui-ci usine la lentille 2 au point considéré du contour 20.
  • Comme précédemment, l'algorithme d'analyse détermine ensuite une deuxième grandeur représentative de l'importance du rognage en ce point, compare cette deuxième grandeur à une deuxième valeur seuil prédéterminée et attribue ledit point considéré à ladite deuxième région en fonction du résultat de cette comparaison.
  • Par exemple, cette deuxième grandeur représentative de l'importance du rognage est fonction du nombre de points additionnels rognés au point considéré. Elle est par exemple égale au nombre ces points additionnels rognés.
  • Si le nombre de points additionnels rognés est inférieur à un deuxième nombre seuil prédéterminé le point considéré du contour 20 est attribué à la deuxième région de ce contour 20 adaptée à être usinée, sans rognage dudit contour 20 prédéterminé, avec le deuxième outil. Typiquement, le deuxième nombre seuil est compris entre 1,5 pourcent et 3 pourcent du nombre total de points de l'ensemble de points modélisant le contour de la lentille.
  • Alternativement, cette deuxième grandeur représentative de l'importance du rognage est fonction de la distance entre chacun de ces points additionnels rognés et ladite deuxième enveloppe de coupe, appelée la largeur rognée de la lentille. L'algorithme d'analyse détermine alors la largeur rognée de la lentille 2 en ces points additionnels rognés.
  • Si cette largeur rognée est inférieure pour tous les points additionnels rognés à une deuxième largeur seuil prédéterminée, le point considéré du contour 20 est attribué à la deuxième région.
  • On considère dans la suite de la description que le deuxième outil est la meulette 231.
  • Alors l'algorithme d'analyse détermine que la deuxième région du contour 10 représenté sur la figure 1 est la région complexe 11, que la deuxième région du contour 20 représenté sur la figure 2 est vide, que la deuxième région du contour 30 représenté sur la figure 3 comporte les parties 33A, 33B de la région complexe 31, que la deuxième région du contour 40 représenté sur la figure 4 comporte les parties 43A, 43B de la région complexe 41, et que la deuxième région du contour 50 représenté sur la figure 5 comporte la partie 54 de la région complexe 51.
  • Le dispositif électronique et informatique 100 commande alors l'usinage d'au moins une partie de la deuxième région 11, 33A, 33B, 43A, 43B, 54 du contour 10, 30, 40, 50 avec la meulette 231.
  • Le reste du contour 20, 30, 40, 50 forme une troisième région 21, 34, adaptée à être usinée avec un troisième outil rotatif autour d'un troisième axe, ayant une troisième enveloppe de coupe de révolution autour de ce troisième axe présentant un troisième diamètre inférieur audit deuxième diamètre. Ce troisième outil est ici la fraise 230.
  • Alternativement, le deuxième outil peut être une première fraise et le troisième outil est alors par exemple une deuxième fraise de plus petit diamètre que la première.
  • Le diamètre de ce troisième outil 230 est choisi assez petit pour pouvoir usiner les plus petits détails du contour 10, 20, 30, 40, 50.
  • En variante, l'algorithme d'analyse peut déterminer ladite troisième région du contour 10, 20, 30, 40, 50 en appliquant les même étapes que celles décrites précédemment dans le cas du premier et du deuxième outil, en utilisant la troisième enveloppe de coupe de ce troisième outil.
  • L'algorithme d'analyse peut également mettre en oeuvre d'autres méthodes de détermination des première et deuxième régions, en variante des deux modes de réalisation qui viennent d'être décrits.
  • Par exemple, l'algorithme d'analyse recherche les positions de ladite première enveloppe de coupe dans lesquelles cette première enveloppe de coupe est tangente audit contour en un couple de points et dans lesquelles une première zone inaccessible du contour située entre les deux points de ce couple et recouverte par ladite première enveloppe de coupe n'est pas atteinte par cette première enveloppe de coupe.
  • Cette variante est illustrée par la figure 8. Sur cette figure, on a représenté le contour 20 de la lentille 2 de la figure 2, modélisé par l'ensemble 301 de points.
  • Alternativement, l'algorithme d'analyse peut également utiliser le contour non discrétisé de la lentille.
  • Dans cet exemple, l'algorithme d'analyse trouve une position de la première enveloppe de coupe 220A dans laquelle celle-ci est tangente à un couple de deux points 306, 307 de l'ensemble de points 301.
  • La zone du contour 20 comportant les points 305 compris entre les deux points 306, 307, qui correspond à la région complexe 21 du contour 20, est recouverte par la première enveloppe 220A de la meule 220 et n'est pas atteinte par cette première enveloppe 220A: la zone des points 305 est inaccessible à cette meule 220 et la consigne de rayon du contour en ces points 305 ne peut être atteinte à l'aide de la meule 220.
  • L'algorithme d'analyse définit alors la première région 12, 22, 32, 42A, 42B, 52 comme comportant au moins une partie du contour mais excluant les points desdites premières zones inaccessibles.
  • Ici, la première région 22 est définie comme comportant l'ensemble du contour 20, à l'exclusion de la zone inaccessible des points 305, qui correspond à la région complexe 21.
  • Alors, de la même façon, pour déterminer ladite deuxième région 11, 33A, 33B, 43A, 43B, 54 du contour, l'algorithme d'analyse recherche les positions de ladite deuxième enveloppe de coupe dans lesquelles cette deuxième enveloppe de coupe est tangente audit contour en un couple de points et dans lesquelles une deuxième zone inaccessible du contour située entre les deux points de ce couple et recouverte par ladite deuxième enveloppe de coupe n'est pas atteinte par cette deuxième enveloppe de coupe.
  • L'algorithme d'analyse définit la deuxième région 11, 33A, 33B, 43A, 43B, 54 comme comportant au moins une partie du contour 10, 20, 30, 40, 50 mais excluant ladite première région 12, 22, 32, 42A, 42B, 52 ainsi que les points desdites deuxièmes zones inaccessibles.
  • L'algorithme d'analyse peut alors soit attribuer les points du contour n'appartenant ni à la première région 12, 22, 32, 42A, 42B, 52, ni à la deuxième région 11, 33A, 33B, 43A, 43B, 54 à la troisième région, soit déterminer la troisième région en réalisation les mêmes étapes que celles décrites précédemment, pour la troisième enveloppe du troisième outil, ici la fraise.
  • Selon une autre méthode, pour déterminer ladite première région 12, 22, 32, 42A, 42B, 52 du contour,
    • l'algorithme d'analyse détermine, pour chaque point du contour, le rayon de courbure local du contour en ce point,
    • il compare ce rayon de courbure avec ledit premier diamètre de ladite première enveloppe de coupe dudit premier outil,
    • il attribue le point considéré du contour à ladite première région 12, 22, 32, 42A, 42B, 52 du contour en fonction du résultat de cette comparaison.
  • L'algorithme d'analyse compare par exemple, pour chaque point du contour 10, 20, 30, 40, 50, le rayon de courbure du contour en ce point avec le produit du premier diamètre de ladite première enveloppe de coupe 220A dudit premier outil, ici la meule 220, par un premier facteur compris de préférence entre 0,5 et 1,5, par exemple égal à 1.
  • Le premier diamètre du premier outil étant égal au double du rayon de courbure de cet outil, cela revient à comparer le rayon de courbure du contour en ce point et le rayon de courbure du premier outil multiplié par un facteur compris entre 1 et 3, par exemple égal à 2.
  • Si le rayon de courbure du contour au point considéré est supérieur au premier diamètre multiplié par ledit premier facteur, le point considéré est attribué par l'algorithme d'analyse à ladite première région 12, 22, 32, 42A, 42B, 52.
  • Alors, pour déterminer ladite deuxième région 11, 33A, 33B, 43A, 43B, 54 du contour :
    • l'algorithme d'analyse détermine, pour chaque point du contour en dehors de la première région 12, 22, 32, 42A, 42B, 52, le rayon de courbure local du contour en ce point,
    • il compare ce rayon de courbure avec ledit deuxième diamètre dudit deuxième outil,
    • il attribue le point considéré du contour à ladite deuxième région 11, 33A, 33B, 43A, 43B, 54 du contour en fonction du résultat de cette comparaison.
  • Par exemple, si le point considéré précédemment n'est pas attribué à ladite première région 12, 22, 32, 42A, 42B, 52, l'algorithme d'analyse compare le rayon de courbure du contour en ce point au deuxième diamètre de la deuxième enveloppe du deuxième outil, ici la meulette 231, pour déterminer si ce point appartient à ladite deuxième région 11, 33A, 33B, 43A, 43B, 54.
  • Pour cela, l'algorithme d'analyse compare par exemple, pour chaque point du contour 10, 20, 30, 40, 50 n'appartenant pas à la première région 12, 22, 32, 42A, 42B, 52, le rayon de courbure du contour en ce point avec le produit du deuxième diamètre de ladite deuxième enveloppe de coupe dudit deuxième outil par un deuxième facteur compris de préférence entre 0,5 et 1,5, par exemple égal à1.
  • Le deuxième diamètre de l'outil étant égal au double du rayon de courbure du deuxième outil, cela revient comme précédemment à comparer le rayon de courbure du contour en ce point et le rayon de courbure du deuxième outil multiplié par un facteur compris entre 1 et 3, par exemple égal à 2.
  • Si le rayon de courbure du contour au point considéré est supérieur au deuxième diamètre multiplié par ledit deuxième facteur, le point considéré est attribué par l'algorithme d'analyse à ladite deuxième région 11, 33A, 33B, 43A, 43B, 54.
  • Comme précédemment, l'algorithme d'analyse peut alors soit attribuer les points du contour n'appartenant ni à la première région 12, 22, 32, 42A, 42B, 52, ni à la deuxième région 11, 33A, 33B, 43A, 43B, 54 à la troisième région, soit déterminer la troisième région en réalisation les mêmes étapes que celles décrites précédemment, pour la troisième enveloppe du troisième outil, ici la fraise 230. L'algorithme d'analyse compare alors le rayon de courbure du contour au point considéré avec le diamètre de la troisième enveloppe de coupe du troisième outil multiplié par un troisième facteur compris de préférence entre 0,5 et 1,5, par exemple égal à 1.
  • Chaque première 12, 22, 32, 42A, 42B, 52, deuxième 11, 33A, 33B, 43A, 43B, 54 et troisième 21, 34, 53A, 53B région est continue ou formée d'un ensemble de sous-régions séparées les unes des autres par une sous-région ou une région des deux autres régions.
  • Ainsi, dans le cas le plus général, par exemple dans le cas des contours 30, 50 représentés sur les figures 3 et 5, le contour 30, 50 souhaité est divisé, à l'issue de ces étapes de l'algorithme, en une pluralité de sous-régions destinées à être usinées chacune par l'outil correspondant.
  • Selon un troisième mode de réalisation de l'invention, le dispositif électronique et informatique 100 commande l'usinage de chaque sous-région ou région des première, deuxième et troisième régions avec respectivement le premier, deuxième et troisième outil, correspondant ici à la meule 220, la meulette 231 et la fraise 230.
  • Selon un quatrième mode de réalisation, l'algorithme d'analyse détermine les sous-régions de la deuxième région encadrant une sous-région de la troisième région.
  • Le dispositif électronique et informatique 100 commande alors l'usinage de la deuxième région, à l'exclusion desdites sous-régions de ladite deuxième région encadrant une sous-région de la troisième région, avec ladite meulette 231, et l'usinage de ladite troisième région et desdites sous-régions de ladite deuxième région encadrant une sous-région de la troisième région, avec la fraise 230.
  • Dans le cas du contour 30 représenté sur la figure 3, les sous-régions 33A, 33B de la deuxième région encadrent la troisième région 34.
  • Le dispositif électronique et informatique 100 commande alors l'usinage de la première région 32 par la meule 220 et l'usinage de l'ensemble des deux sous-régions 33A, 33B de la deuxième région et de la troisième région 34 par la fraise 230. De cette manière, on évite deux changements d'outils au cours de l'usinage de la région complexe 31 du contour 30. L'usinage de l'ensemble du contour 30 de lentille 3 est ainsi plus rapide.
  • Selon un cinquième mode de réalisation, l'algorithme d'analyse détermine la longueur de chaque sous-région de la première région séparant deux sous-régions de la deuxième région et la compare à une première valeur de longueur seuil.
  • Le dispositif électronique et informatique 100 du dispositif de meulage 200 commande alors l'usinage de chaque sous-région de la première région dont la longueur est inférieure à ladite première valeur de longueur seuil avec la meulette 231. Cette première valeur de longueur seuil est par exemple comprise entre 2 et 10 millimètres, égale par exemple à 5 millimètres.
  • Dans le cas du contour 40 représenté sur la figure 4, la première région comporte deux sous-régions 42A, 42B, dont l'une 42B est encadrée par deux sous-régions de la deuxième région. La sous-région 42B présente ici une longueur de quelques millimètres inférieure à la première valeur de longueur seuil de 5 millimètres.
  • Le dispositif électronique et informatique 100 du dispositif de meulage 200 commande donc l'usinage de l'ensemble de la région complexe 11 comprenant les deux sous-régions 43A et 43B de la deuxième région et la sous-région 42B de la première région par la meulette. Seule la partie 42A de la première région est usinée par la meule 220.
  • De même, selon un sixième mode de réalisation, l'algorithme d'analyse détermine la longueur de chaque sous-région de la première région séparant deux sous-régions de la troisième région et la compare à une deuxième valeur de longueur seuil.
  • Le dispositif électronique et informatique 100 du dispositif de meulage 200 commande alors l'usinage de chaque sous-région de la première région dont la longueur est inférieure à ladite deuxième valeur de longueur seuil avec la fraise 230. Cette deuxième valeur de longueur seuil est par exemple comprise entre 2 et 10 millimètres, égale par exemple à 5 millimètres.
  • Selon un septième mode de réalisation, l'algorithme d'analyse détermine la longueur de chaque sous-région de la deuxième région séparant deux sous-régions de la troisième région et la compare à une troisième valeur de longueur seuil.
  • Le dispositif électronique et informatique 100 du dispositif de meulage 200 commande alors l'usinage de chaque sous-région de la deuxième région dont la longueur est inférieure à ladite troisième valeur seuil de longueur avec la fraise 230.
  • Cette troisième valeur de longueur seuil est par exemple comprise entre 2 et 10 millimètres, égale par exemple à 5 millimètres.
  • Dans le cas du contour 50 représenté sur la figure 5, la troisième région comporte deux sous-régions 53A, 53B, qui encadrent la deuxième région 54. La deuxième région 54 présente ici une longueur de quelques millimètres inférieure à la troisième valeur de longueur seuil de 5 millimètres.
  • Le dispositif électronique et informatique 100 du dispositif de meulage 200 commande donc l'usinage de la première région 52 par la meule 220 et l'usinage de l'ensemble de la région complexe 51 comprenant les deux sous-régions 53A et 53B de la troisième région et la deuxième région 54 par la fraise 230.
  • Selon un huitième mode de réalisation de l'invention, l'algorithme d'analyse détermine la quantité de matière à usiner de la lentille 1, 2, 3, 4, 5 pour chaque partie du contour 10, 20, 30, 40, 50 à usiner avec la meulette 231 et la compare à une valeur seuil de quantité de matière.
  • La quantité de matière à usiner correspond à la surface comprise entre le bord brut de la lentille 1, 2, 3, 4, 5 avant usinage et le contour 10, 20, 30, 40, 50 souhaitée pour la lentille détourée, multipliée par l'épaisseur moyenne de la lentille 1,2,3,4,5.
  • Pour chacune de ces parties du contour 10, 20, 30, 40, 50 à usiner avec ladite meulette, si la quantité de matière déterminée est supérieure à ladite valeur seuil de quantité de matière, le dispositif électronique et informatique 100 commande l'usinage de cette partie du contour 10, 20, 30, 40, 50 avec la fraise 230.
  • La meulette 231 est peu adaptée au retrait d'une grande quantité de matière, et son utilisation à cette fin est longue et fastidieuse. L'utilisation de la fraise 230 permet d'accélérer le détourage du contour 10, 20, 30, 40, 50.
  • En variante, pour chacune de ces parties du contour 10, 20, 30, 40, 50 à usiner avec la meulette 231, si la quantité de matière déterminée est supérieure à ladite valeur seuil de quantité de matière, le dispositif électronique et informatique 100 commande l'usinage de cette partie du contour 10, 20, 30, 40, 50 selon un tracé légèrement plus grand que ce contour 10, 20, 30, 40, 50 prédéterminé avec la fraise 230 puis l'usinage de cette partie du contour selon le contour 10, 20, 30, 40, 50 prédéterminé avec la meulette 231.
  • Ainsi, la quantité de matière à usiner avec la meulette est réduite puisqu'une partie de cette quantité de matière à été retiré au préalable par le découpage effectué avec la fraise. En outre, l'état de surface de la tranche de la lentille 1, 2, 3, 4, 5 ainsi obtenue est amélioré.
  • Chaque partie du contour 10, 20, 30, 40, 50 à usiner avec la meulette 231 pour laquelle la quantité de matière à usiner est inférieure à la valeur seuil de quantité de matière est usinée selon le contour 10, 20, 30, 40, 50 prédéterminé avec la meulette 231.
  • Selon un neuvième mode de réalisation de l'invention, l'algorithme d'analyse détermine la fraction de la longueur du contour 10, 20, 30, 40, 50 prédéterminé à usiner avec la meulette, et si cette fraction est supérieure à une première fraction seuil, on usine la totalité du contour 10, 20, 30, 40, 50 prédéterminé avec la meulette 231.
  • Cette première fraction seuil est comprise entre 75 pourcent et 100 pourcent, par exemple égale à 80 pourcent.
  • Ainsi les changements d'outils au cours de l'usinage sont limités et celui-ci est plus rapide.
  • Selon un dixième mode de réalisation de l'invention, l'algorithme d'analyse détermine la fraction de la longueur du contour 10, 20, 30, 40, 50 prédéterminé à usiner avec la fraise 230, et si cette fraction est supérieure à une deuxième fraction seuil, on usine la totalité du contour 10, 20, 30, 40, 50 prédéterminé avec cette fraise.
  • Cette troisième fraction seuil est comprise entre 75 pourcent et 100 pourcent, par exemple égale à 80 pourcent.
  • Ainsi les changements d'outils au cours de l'usinage sont limités et celui-ci est plus rapide.
  • Selon un onzième mode de réalisation de l'invention, l'algorithme d'analyse détermine l'épaisseur de la lentille 1, 2, 3, 4, 5 ophtalmique le long de chaque partie du contour 10, 20, 30, 40, 50 prédéterminé à usiner avec la meulette 231.
  • Cette détermination est réalisée en fonction du contour 10, 20, 30, 40, 50 et des caractéristiques géométriques et optiques de la lentille 1, 2, 3, 4, 5.
  • Si l'épaisseur déterminée est supérieure à une épaisseur seuil, on usine la partie correspondante du contour 10, 20, 30, 40, 50 prédéterminé avec la fraise 230.
  • Quel que soit le mode de réalisation de l'invention, en pratique, le dispositif électronique et informatique 100 commande de préférence d'abord l'usinage des parties du contour 10, 20, 30, 40, 50 à usiner avec la meule 220, puis l'usinage des autres parties du contour.
  • En outre, le dispositif électronique et informatique 100 commande de préférence, tour à tour, l'usinage complet de chaque partie du contour 10, 30, 40, 50 à usiner avec la meulette 231 selon ledit contour avant de commander l'usinage d'une autre partie du contour 10, 30, 40, 50 prédéterminé à usiner avec la meulette 231.
  • En effet, l'usinage de chaque partie du contour 10, 30, 40, 50 à usiner avec la meulette 231 se fait de préférence en plusieurs passes successives le long de ladite partie, en usinant uniquement ladite partie, par un mouvement de va-et-vient de la meulette 231. Les passes sont calculées en fonction de l'épaisseur maximale de la lentille 1, 2, 3, 4, 5 au niveau de cette partie du contour. Plus la lentille 1, 2, 3, 4, 5 est épaisse, et plus les passes sont petites, de manière à ce que chaque passe enlève un volume équivalent de matière.
  • En outre, afin d'améliorer l'aspect des points de jonction entre les parties du contour 20, 30, 40, 50 à usiner avec la fraise et les autres parties, le dispositif électronique et informatique 100 commande de préférence le positionnement initial de la fraise un peu en retrait d'une première extrémité de la partie du contour à usiner avec la fraise, à une cote légèrement plus grande que celle du contour prédéterminé, de manière à rejoindre le contour 20, 30, 40, 50 à la première extrémité de cette partie.
  • Le dispositif électronique et informatique 100 commande ensuite l'usinage de cette partie selon le contour 20, 30, 40, 50.
  • A la deuxième extrémité de cette partie du contour, le dispositif électronique et informatique 100 commande le mouvement de la fraise 230 jusqu'à une position située au delà cette deuxième extrémité, à une cote légèrement plus grande que celle du contour 20, 30, 40, 50.
  • Ainsi, le raccord entre les parties du contour de la lentille 2, 3, 4, 5 usinées par la fraise 230 et les autres parties est plus discret.
  • Selon encore un autre aspect avantageux, afin de limiter l'utilisation des outils autres que la meule 220, l'algorithme d'analyse peut modifier légèrement le contour 10, 20, 30, 40, 50 prédéterminé de manière à optimiser la longueur de la première région. Pour cela, l'algorithme d'analyse détermine les points du contour 10, 20, 30, 40, 50 situés à chaque extrémité des sous-régions de la première région 12, 22, 32; 42A, 42B, 52 et détermine la position de la meule 220 lorsqu'elle usine chacun de ces points d'extrémité.
  • L'algorithme d'analyse remplace alors un troisième nombre prédéterminé de points de la deuxième région situés à proximité de chaque point d'extrémité de la première région par des points de l'arc de cercle délimitant la tranche de ladite meule 220 lorsqu'elle usine le point d'extrémité correspondant. Les points de l'arc de cercle qui remplacent les points du contour 10, 20, 30, 40, 50 sont en nombre égal audit troisième nombre de points remplacés et sont espacés d'un intervalle régulier.
  • La présente invention n'est nullement limitée aux modes de réalisation décrits et représentés mais l'homme du métier saura y apporter toute variante conforme à son esprit.
  • En particulier, les différents modes de réalisation décrits peuvent être combinés entre eux.
  • Le premier outil rotatif considéré peut également être un autre outil rotatif, par exemple la meulette ou la fraise.
  • Les deuxième et troisième outils rotatifs sont alors par exemple des fraises de diamètres appropriés.
  • En outre, on peut envisager que seule une partie du contour de la lentille soit susceptible de comporter des zones de courbure négative. Par exemple, les zones de courbure négatives peuvent être localisées sur la partie supérieure ou la partie inférieure du contour, par rapport à une ligne reliant l'emplacement du pontet nasal de la monture sur laquelle la lentille est destinée à être montée à l'emplacement de la branche de cette monture.
  • En variante, les zones de courbure négatives peuvent être localisées sur la partie gauche ou la partie droite du contour, par rapport à une médiatrice du segment reliant l'emplacement du pontet nasal de la monture à l'emplacement de la branche de cette monture.
  • On peut envisager alors que seule la partie correspondante du contour de la lentille soit analysée avant l'usinage de la lentille.

Claims (19)

  1. Procédé d'usinage d'une lentille (1, 2, 3, 4, 5) ophtalmique en vue de son montage dans une monture de lunettes, selon un contour (10, 20, 30, 40, 50) prédéterminé, au moyen d'au moins deux outils distincts, dont un premier outil (220) rotatif autour d'un premier axe (A3), ayant une première enveloppe de coupe, de révolution autour de cet axe (A3), présentant un premier diamètre, et au moins un autre outil (230; 231) rotatif autour d'un axe (A5 ; A6), ayant une autre enveloppe de coupe, de révolution autour de cet axe (A5 ; A6), présentant un autre diamètre inférieur audit premier diamètre, ledit procédé comportant les étapes suivantes :
    - analyser au moins une partie dudit contour (10, 20, 30, 40, 50), pour déterminer, en fonction dudit premier diamètre, une première région (12, 22, 32, 42A, 42B, 52) de ce contour (10, 20, 30, 40, 50) adaptée à être usinée, sans rognage dudit contour (10, 20, 30, 40, 50) prédéterminé, avec ledit premier outil (220),
    - usiner au moins une partie de ladite première région (12, 22, 32, 42A, 42B, 52) de ce contour (10, 20, 30, 40, 50) prédéterminé avec ledit premier outil (220),
    - usiner au moins une partie du reste du contour (10, 20, 30, 40, 50) avec ledit autre outil (230; 231).
  2. Procédé selon la revendication 1, dans lequel ledit au moins un autre outil comporte un deuxième outil (231) rotatif autour d'un deuxième axe (A5), ayant une deuxième enveloppe de coupe, de révolution autour de ce deuxième axe (A5), présentant un deuxième diamètre inférieur audit premier diamètre, le procédé comportant en outre les étapes suivantes :
    - analyser au moins une partie dudit contour (10, 20, 30, 40, 50), pour déterminer, en fonction dudit deuxième diamètre, une deuxième région (11, 33A, 33B, 43A, 43B, 54) de ce contour (10, 20, 30, 40, 50), hors de la première région (12, 22, 32, 42A, 42B, 52), adaptée à être usinée avec ledit deuxième outil (231) sans rognage dudit contour,
    - usiner au moins une partie de la deuxième région (11, 33A, 33B, 43A, 43B, 54) avec ledit deuxième outil,
    - le reste du contour (10, 20 30, 40, 50) formant une troisième région (21, 34, 53A, 53B) usinée avec un troisième outil (230) rotatif autour d'un troisième axe (A6), ayant une troisième enveloppe de coupe, de révolution autour de ce troisième axe, présentant un troisième diamètre inférieur audit deuxième diamètre.
  3. Procédé selon l'une des revendications 1 et 2, dans lequel ledit au moins un autre outil comportant un deuxième outil (231) rotatif autour d'un deuxième axe, (A5) ayant une deuxième enveloppe de coupe, de révolution autour de ce deuxième axe (A5), présentant un deuxième diamètre autour de cet axe inférieur audit premier diamètre et un troisième outil (230) rotatif autour d'un troisième axe (A6), ayant une troisième enveloppe de coupe, de révolution autour de ce troisième axe (A6), présentant un troisième diamètre inférieur audit deuxième diamètre, le procédé comporte en outre les étapes suivantes :
    - déterminer, en fonction dudit deuxième diamètre, une deuxième région (11, 33A, 33B, 43A, 43B, 54) de ce contour (10, 20, 30, 40, 50), hors de la première région (12, 22, 32, 42A, 42B, 52), adaptée à être usinée avec ledit deuxième outil (231) sans rognage dudit contour,
    - déterminer, en fonction dudit troisième diamètre, une troisième région (21, 34, 53A, 53B) de ce contour (10, 20, 30, 40, 50) hors de la première et de la deuxième région (11, 33A, 33B, 43A, 43B, 54), adaptée à être usinée avec ledit troisième outil (230) sans rognage dudit contour,
    chacune des deuxième (33A, 33B, 43A, 43B, 54) et troisième régions (34, 53A, 53B) étant formée d'un ensemble de sous-régions séparées les unes des autres par une sous-région ou une région de l'une des première (32, 42A, 42B, 52), deuxième (33A, 33B, 43A, 43B, 54) et troisième régions (34, 53A, 53B),
    - déterminer les sous-régions de ladite deuxième région (33A, 33B, 43A, 43B, 54) encadrant une sous-région de la troisième région (34, 53A, 53B),
    - usiner la deuxième région (33A, 33B, 43A, 43B, 54), à l'exclusion desdites sous-régions de ladite deuxième région (33A, 33B, 43A, 43B, 54) encadrant une sous-région de la troisième région (34, 53A, 53B), avec ledit deuxième outil,
    - usiner ladite troisième région (34, 53A, 53B) et lesdites sous-régions de ladite deuxième région (33A, 33B, 43A, 43B, 54) encadrant une sous-région de la troisième région (34, 53A, 53B), avec ledit troisième outil (230).
  4. Procédé selon l'une des revendications 2 et 3, selon lequel, chacune des première région (42A, 42B) et deuxième région (43A, 43B) étant formée d'un ensemble de sous-régions séparées les unes des autres par une sous-région ou une région de l'une des première (42A, 42B), deuxième (43A, 43B) et troisième régions,
    - on détermine la longueur de chaque sous-région de la première région (42A, 42B) séparant deux sous-régions de la deuxième région (43A, 43B) et la comparer à une première valeur de longueur seuil,
    - on usine chaque sous-région de la première région (42A, 42B) dont la longueur est inférieure à ladite première valeur de longueur seuil avec ledit deuxième outil.
  5. Procédé selon l'une des revendications 2 à 4, selon lequel, chacune des première région (22, 32, 52) et troisième région (21, 34, 53A, 53B) étant formée d'un ensemble de sous-régions séparées les unes des autres par une sous-région de l'une des première (22, 32, 52), deuxième (33A, 33B, 43A, 43B, 54) et troisième régions (21, 34, 53A, 53B):
    - on détermine la longueur de chaque sous-région de la première région (22, 32, 52) séparant deux sous-régions de la troisième région (21, 34, 53A, 53B) et on la compare à une deuxième valeur de longueur seuil,
    - on usine chaque sous-région de la première région (32, 52) dont la longueur est inférieure à ladite deuxième valeur de longueur seuil avec ledit troisième outil (230).
  6. Procédé selon l'une des revendications 2 à 5, selon lequel, chaque deuxième (54) et troisième région (53A, 53B) étant formée d'un ensemble de sous-régions séparées les unes des autres par une sous-région de l'une des première (52), deuxième (54) et troisième régions (53A, 53B),
    - on détermine la longueur de chaque sous-région de la deuxième région (54) séparant deux sous-régions de la troisième région (53A, 53B) et on la compare à une troisième valeur de longueur seuil,
    - on usine chaque sous-région de la deuxième région (54) dont la longueur est inférieure à ladite troisième valeur de longueur seuil avec ledit troisième outil (230).
  7. Procédé selon l'une des revendications 2 à 6, comportant en outre les étapes suivantes :
    - déterminer la quantité de matière à usiner de la lentille (1, 3, 4, 5) pour chaque partie du contour (10, 30, 40, 50) à usiner avec ledit deuxième outil (231) et la comparer à une valeur seuil de quantité de matière,
    - pour chacune de ces parties du contour (10, 30, 40, 50) à usiner avec ledit deuxième outil, si la quantité de matière déterminée est supérieure à ladite valeur seuil de quantité de matière, on usine cette partie du contour (10, 30, 40, 50) selon un contour (10, 30, 40, 50) légèrement plus grand que le contour (10, 30, 40, 50) prédéterminé avec ledit troisième outil (230) puis on usine cette partie du contour (10, 30, 40, 50) selon le contour (10, 30, 40, 50) prédéterminé avec ledit deuxième outil (231),
    - pour chaque partie du contour (10, 30, 40, 50) à usiner avec ledit deuxième outil pour laquelle la quantité de matière à usiner est inférieure à la valeur seuil de quantité de matière, on usine ladite partie selon le contour (10, 30, 40, 50) prédéterminé avec ledit deuxième outil (231).
  8. Procédé selon l'une des revendications 2 à 7, selon lequel :
    - on détermine la fraction de la longueur du contour (10, 30, 40, 50) prédéterminé à usiner avec ledit deuxième outil (231),
    - si cette fraction est supérieure à une première fraction seuil, on usine la totalité du contour (10, 30, 40, 50) prédéterminé avec ledit deuxième outil.
  9. Procédé selon l'une des revendications 2 à 8, selon lequel :
    - on détermine la fraction de la longueur du contour (20, 30, 40, 50) prédéterminé à usiner avec ledit troisième outil (230),
    - si cette fraction est supérieure à une deuxième fraction seuil, on usine la totalité du contour (20, 30, 40, 50) prédéterminé avec ledit troisième outil.
  10. Procédé selon l'une des revendications 2 à 9, selon lequel :
    - on détermine l'épaisseur de la lentille (1, 3, 4, 5) ophtalmique le long de chaque partie du contour (10, 30, 40, 50) prédéterminé à usiner avec ledit deuxième outil (231),
    - si cette épaisseur est supérieure à une épaisseur seuil, on usine la partie correspondante du contour (10, 30, 40, 50) prédéterminé avec le troisième outil (230).
  11. Procédé selon l'une des revendications 2 à 10, selon lequel, pour usiner chaque partie du contour (20 30, 40, 50) prédéterminé à usiner avec le troisième outil (230),
    - on positionne initialement le troisième outil un peu en retrait d'une première extrémité de cette partie, à une cote légèrement plus grande que celle du contour (20, 30, 40, 50) prédéterminé, de manière à rejoindre le contour (20, 30, 40, 50) prédéterminé à ladite première extrémité de cette partie, puis
    - on usine ladite partie selon le contour (20, 30, 40, 50) prédéterminé, puis
    - on amène le troisième outil (230) jusqu'à une position au delà de la deuxième extrémité de cette partie, à une cote légèrement plus grande que celle du contour (20, 30, 40, 50) prédéterminé.
  12. Procédé selon l'une des revendications 1 à 11, selon lequel, pour déterminer ladite première région (12, 22, 32, 42A, 42B, 52) de ce contour (10, 20, 30, 40, 50),
    - on détermine, pour chaque point du contour (10, 20, 30, 40, 50), une position de ladite première enveloppe de coupe (220A) lorsque le premier outil (220) est tangent à au moins une partie du contour (10, 20, 30, 40, 50) prédéterminé en ce point, et on détermine les points du contour (10, 20, 30, 40, 50), appelés points additionnels rognés, qui se trouvent à l'intérieur de ladite première enveloppe de coupe (220A) dudit premier outil (220),
    - on détermine une première grandeur représentative de l'importance du rognage,
    - on compare cette première grandeur représentative à une première valeur seuil prédéterminée,
    - on attribue ledit point considéré du contour (10, 20, 30, 40, 50) à ladite première région (12, 22, 32, 42A, 42B, 52) du contour (10, 20, 30, 40, 50) en fonction du résultat de cette comparaison.
  13. Procédé selon l'une des revendications 1 à 11, selon lequel, pour déterminer ladite première région (12, 22, 32, 42A, 42B, 52) du contour (10, 20, 30, 40, 50),
    - on recherche les positions de ladite première enveloppe de coupe dans lesquelles cette première enveloppe de coupe est tangente audit contour (10, 20, 30, 40, 50) en un couple de points et dans lesquelles une première zone inaccessible du contour située entre les deux points de ce couple et recouverte par ladite première enveloppe de coupe n'est pas atteinte par cette première enveloppe de coupe,
    - on définit la première région (12, 22, 32, 42A, 42B, 52) comme comportant au moins une partie du contour (10, 20, 30, 40, 50) mais excluant les points desdites premières zones inaccessibles.
  14. Procédé selon l'une des revendications 1 à 11, selon lequel, pour déterminer ladite première région (12, 22, 32, 42A, 42B, 52) du contour (10, 20, 30, 40, 50),
    - on détermine, pour chaque point du contour (10, 20, 30, 40, 50), le rayon de courbure local du contour (10, 20, 30, 40, 50) en ce point,
    - on compare ce rayon de courbure avec ledit premier diamètre de ladite première enveloppe de coupe dudit premier outil,
    - on attribue le point considéré du contour (10, 20, 30, 40, 50) à ladite première région (12, 22, 32, 42A, 42B, 52) du contour (10, 20, 30, 40, 50) en fonction du résultat de cette comparaison.
  15. Procédé selon l'une des revendications 2 à 14, selon lequel, pour déterminer ladite deuxième région (11, 33A, 33B, 43A, 43B, 54) de ce contour (10, 20, 30, 40, 50),
    - on détermine, pour chaque point du contour (10, 20, 30, 40, 50) en dehors de la première région (12, 22, 32, 42A, 42B, 52), une position de ladite deuxième enveloppe de coupe lorsque le deuxième outil (231) est tangent à au moins une partie dudit contour (10, 20, 30, 40, 50) prédéterminé en ce point, et on détermine les points du contour (10, 20, 30, 40, 50), appelés points additionnels rognés, qui se trouvent à l'intérieur de ladite deuxième enveloppe de coupe dudit deuxième outil,
    - on détermine une deuxième grandeur représentative de l'importance du rognage,
    - on compare cette deuxième grandeur représentative à une deuxième valeur seuil prédéterminée,
    - on attribue ledit point considéré du contour (10, 20, 30, 40, 50) à ladite deuxième région (11, 33A, 33B, 43A, 43B, 54) du contour (10, 20, 30, 40, 50) en fonction du résultat de cette comparaison.
  16. Procédé selon l'une des revendications 2 à 14, selon lequel, pour déterminer ladite deuxième région (11, 33A, 33B, 43A, 43B, 54) du contour (10, 20, 30, 40, 50),
    - on recherche les positions de ladite deuxième enveloppe de coupe dans lesquelles cette deuxième enveloppe de coupe est tangente audit contour (10, 20, 30, 40, 50) en un couple de points et dans lesquelles une deuxième zone inaccessible du contour située entre les deux points de ce couple et recouverte par ladite deuxième enveloppe de coupe n'est pas atteinte par cette deuxième enveloppe de coupe,
    - on définit la deuxième région (11, 33A, 33B, 43A, 43B, 54) comme comportant au moins une partie du contour (10, 20, 30, 40, 50) mais excluant ladite première région ainsi que les points desdites deuxièmes zones inaccessibles.
  17. Procédé selon l'une des revendications 2 à 14, selon lequel, pour déterminer ladite deuxième région (11, 33A, 33B, 43A, 43B, 54) du contour (10, 20, 30, 40, 50),
    - on détermine, pour chaque point du contour (10, 20, 30, 40, 50) en dehors de la première région (12, 22, 32, 42A, 42B, 52), le rayon de courbure local du contour (10, 20, 30, 40, 50) en ce point,
    - on compare ce rayon de courbure avec ledit deuxième diamètre dudit deuxième outil (231),
    - on attribue le point considéré du contour (10, 20, 30, 40, 50) à ladite deuxième région (11, 33A, 33B, 43A, 43B, 54) du contour (10, 20, 30, 40, 50) en fonction du résultat de cette comparaison.
  18. Procédé selon l'une des revendications 1 à 17, selon lequel :
    - on usine d'abord les parties du contour (10, 20, 30, 40, 50) prédéterminé à usiner avec le premier outil (220),
    - on usine ensuite les autres parties du contour (10, 20, 30, 40, 50) prédéterminé.
  19. Dispositif d'usinage d'une lentille (1, 2, 3, 4, 5) ophtalmique en vue de son montage dans une monture de lunettes, selon un contour (10, 20, 30, 40, 50) prédéterminé, comportant
    - au moins deux outils distincts comprenant un premier outil (220) rotatif autour d'un premier axe (A3), ayant une enveloppe de coupe de révolution autour de ce premier axe (A3) présentant un premier diamètre et un autre outil (230; 231) rotatif autour d'un axe (A5 ; A6), présentant un autre diamètre autour de cet axe (A5 ; A6) inférieur audit premier diamètre,
    caractérisé en ce qu'il comporte en outre:
    - des moyens de traitement électroniques adaptés à analyser au moins une partie dudit contour, pour déterminer une première région (12, 22, 32, 42A, 42B, 52) de ce contour (10, 20, 30, 40, 50) adaptée à être usinée, sans rognage dudit contour (10, 20, 30, 40, 50) prédéterminé, avec ledit premier outil (220), en fonction dudit premier diamètre.
EP10290427.3A 2009-09-15 2010-07-29 Procédé et dispositif d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes Active EP2305422B9 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0904412A FR2950163B1 (fr) 2009-09-15 2009-09-15 Procede et dispositif d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes

Publications (3)

Publication Number Publication Date
EP2305422A1 EP2305422A1 (fr) 2011-04-06
EP2305422B1 EP2305422B1 (fr) 2013-04-03
EP2305422B9 true EP2305422B9 (fr) 2014-10-08

Family

ID=41683347

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10290427.3A Active EP2305422B9 (fr) 2009-09-15 2010-07-29 Procédé et dispositif d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes

Country Status (3)

Country Link
EP (1) EP2305422B9 (fr)
ES (1) ES2413656T3 (fr)
FR (1) FR2950163B1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029378B1 (en) 2004-10-14 2006-04-18 National Optronics, Inc. Combination router-end mill cutter tool, edger with combination tool, and method of edging eyeglass lenses
FR2900854B1 (fr) * 2006-05-10 2009-07-17 Essilor Int Procede et dispositif de detourage d'une lentille par decoupage de ladite lentille
FR2906746B1 (fr) 2006-10-10 2009-05-22 Essilor Int Dispositif d'usinage de lentilles ophtalmiques comprenant une pluralite d'outils d'usinage disposes sur un module orientable
FR2926898B1 (fr) * 2008-01-28 2010-03-19 Essilor Int Procede de preparation d'une lentille ophtalmique avec un usinage specifique de sa nervure d'emboitement

Also Published As

Publication number Publication date
EP2305422A1 (fr) 2011-04-06
ES2413656T3 (es) 2013-07-17
FR2950163A1 (fr) 2011-03-18
EP2305422B1 (fr) 2013-04-03
FR2950163B1 (fr) 2012-01-20

Similar Documents

Publication Publication Date Title
EP2046529B1 (fr) Paire de lunettes ophtalmiques et procede de formation d'une nervure peripherique d'emboitement sur le chant d'une lentille
EP2015896B1 (fr) Procédé de détourage d'une lentille par découpage de ladite lentille
EP1807244B1 (fr) Dispositif et procede de reglage de la direction de perçage d'un outil de perçage d'une lentille ophtalmique
FR2912335A1 (fr) Machine de detourage d'une lentille de lunettes,pourvue d'un porte-outils tournant sur lequel sont montes plusieurs outils de travail
FR2907041A1 (fr) Procede de detourage d'une lentille ophtalmique
EP2268997B1 (fr) Appareil de lecture de la géometrie d'un cercle ou d'une arcade de monture de lunettes et procédé de lecture correspondant
FR2900853A1 (fr) Procede et dispositif de detourage d'une lentille glissante par decoupage de ladite lentille
EP2782709B1 (fr) Procédé d'obtention d'une lentille ophtalmique
EP2305422B9 (fr) Procédé et dispositif d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes
EP2380701B1 (fr) Procédé de détourage d'une lentille ophtalmique de lunettes
EP2964423B1 (fr) Dispositif de detourage de lentilles ophtalmiques
EP2140223B1 (fr) Procédé de préparation d'une lentille ophtalmique à l'affleurement d'un entourage d'une monture de lunettes
EP2399709B1 (fr) Procédé de calcul prédictif d'une géométrie simulée d'une nervure d'engagement à ménager sur le chant d'une lentille ophtalmique d'une paire de lunettes et méthode de biseautage
EP2247408B1 (fr) Équipement visuel comportant une lentille ophtalmique dont la nervure d'emboîtement est localement rognée et procédé de préparation d'une telle lentille
EP2253427B1 (fr) Dispositif et procédé de préparation au montage d'une lentille ophtalmique de lunettes
CH714196A2 (fr) Machine-outil pour la rénovation de jantes.
FR2906486A1 (fr) Procede de detourage d'une lentille en rotation au moyen d'une meule en rotation par inversion des sens de rotation de la meule et de la lentille.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110916

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B24B 9/14 20060101AFI20121023BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 604385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER AND CIE S.A., CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010005900

Country of ref document: DE

Effective date: 20130529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2413656

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130717

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 604385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130403

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130803

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

BERE Be: lapsed

Owner name: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQ

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

26N No opposition filed

Effective date: 20140106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010005900

Country of ref document: DE

Effective date: 20140106

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130729

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100729

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: ESSILOR INTERNATIONAL; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE)

Effective date: 20180219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010005900

Country of ref document: DE

Representative=s name: CORALIS PATENTANWAELTE, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010005900

Country of ref document: DE

Owner name: ESSILOR INTERNATIONAL, FR

Free format text: FORMER OWNER: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE), CHARENTON-LE-PONT, FR

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ESSILOR INTERNATIONAL

Effective date: 20180521

Ref country code: ES

Ref legal event code: PC2A

Effective date: 20180521

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ESSILOR INTERNATIONAL, FR

Free format text: FORMER OWNER: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE), FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ESSILOR INTERNATIONAL, FR

Effective date: 20180601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 14

Ref country code: ES

Payment date: 20230804

Year of fee payment: 14

Ref country code: CH

Payment date: 20230802

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240726

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240729

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240729

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240725

Year of fee payment: 15