EP2305004A2 - Heating element of a heating comb for producing a honeycomb material - Google Patents

Heating element of a heating comb for producing a honeycomb material

Info

Publication number
EP2305004A2
EP2305004A2 EP09702561A EP09702561A EP2305004A2 EP 2305004 A2 EP2305004 A2 EP 2305004A2 EP 09702561 A EP09702561 A EP 09702561A EP 09702561 A EP09702561 A EP 09702561A EP 2305004 A2 EP2305004 A2 EP 2305004A2
Authority
EP
European Patent Office
Prior art keywords
heating element
heating
zones
honeycomb
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09702561A
Other languages
German (de)
French (fr)
Inventor
Bernard J. Michels
Norbert Uebach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2305004A2 publication Critical patent/EP2305004A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/22Heated wire resistive ribbon, resistive band or resistive strip
    • B29C65/221Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip
    • B29C65/224Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip being a resistive ribbon, a resistive band or a resistive strip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/22Heated wire resistive ribbon, resistive band or resistive strip
    • B29C65/221Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip
    • B29C65/226Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip characterised by the cross-section of said heated wire, resistive ribbon, resistive band or resistive strip, e.g. being triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/30Electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/347General aspects dealing with the joint area or with the area to be joined using particular temperature distributions or gradients; using particular heat distributions or gradients
    • B29C66/3472General aspects dealing with the joint area or with the area to be joined using particular temperature distributions or gradients; using particular heat distributions or gradients in the plane of the joint, e.g. along the joint line in the plane of the joint or perpendicular to the joint line in the plane of the joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/438Joining sheets for making hollow-walled, channelled structures or multi-tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8187General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the electrical insulating constructional aspects
    • B29C66/81871General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the electrical insulating constructional aspects of the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/843Machines for making separate joints at the same time in different planes; Machines for making separate joints at the same time mounted in parallel or in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/24Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor being self-supporting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81262Electrical and dielectric properties, e.g. electrical conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb
    • B29L2031/608Honeycomb structures

Definitions

  • the present invention relates to a heating element of a heating comb for producing a honeycomb material from a thermofusible material.
  • Honeycomb materials or elements are widely and increasingly used. Reasons for this are in particular the high compressive strength and rigidity of such structures.
  • Honeycomb materials can be used, for example, as insulating material in cooling technology, as acoustic insulating materials or as lightweight building materials.
  • the use of honeycomb materials in mechanical engineering, in rail and road transport, in scaffolding, in the aerospace industry, for high-performance sports equipment and in the construction of racing vehicles and high-sea yachts is well known.
  • honeycombs of larger dimensions can be used for ground mounting, road construction, sports fields, horticulture, dam and thinnest attachment.
  • Honeycomb materials are known from the materials metal, in particular aluminum or steel, paper or cardboard and plastic.
  • Aluminum honeycombs have the disadvantage that the raw material aluminum is relatively expensive and the production of aluminum honeycombs is expensive.
  • honeycomb material made of paper or cardboard is lightweight and easy to produce by gluing, there is a lack of often necessary strength, resistance to moisture and fire resistance. For this reason, such honeycomb are primarily only as a commodity, z. B. used as packaging material.
  • Plastic honeycomb material has a number of advantages, but in particular the production of the honeycomb structure is possible only with increased difficulty.
  • honeycomb materials can be done, for example, starting from flat material (films).
  • the heating combs used for the compound have individual heating elements, which may consist of steel, which is formed around an insulator.
  • the insulator may for example consist of polyimide, a thermoplastic high-performance plastic from the group of polyimides. Since in the production of the honeycomb material, the insulator is briefly exposed to very high temperatures of more than 300 0 C during the heating phases, there is usually a use of the polyimide Vespel®, which easily tolerates these temperatures, but ages under the influence of temperature and thus becomes unstable. Both the detection and the regulation of the temperature takes place via a thermo-sensor, which is housed in the insulator. However, this proves to be disadvantageous in that the heating elements are not very stable and are therefore easily destroyed if used incorrectly. Furthermore, the dead times occurring in this method lead to a complex PID parameterization in the individual temperature measurements and thus require special operation steps at the start of welding.
  • nonwovens or films with a density of less than 190 gr / m 2 can not be processed because the heating elements currently used are too thick and a thinner construction is too unstable due to the mechanical properties of the Vespel®.
  • honeycomb materials with low density would be, for example, the use as thermal insulation, and the production of clear optical translucent honeycomb or honeycomb materials. Also the then favorable light diffusion would be advantageous. Since no special strengths are required in the fields of heat and optics, but thermal and optical properties are important, thin films could be used in these areas. Furthermore, spunbonded nonwoven webs could be advantageously used in filtration applications. Also, a use in the field of soil attachment of, for example, non-accessible areas such as dams or slopes and noise barriers on highways would be advantageous.
  • the object is achieved by a heating element for producing a honeycomb material from a thermofusible material having the features of claim 1.
  • the heating element according to the invention is characterized by zones with different electrical resistances, which cause a different heating of the zones when current flows.
  • the zones can be produced according to the invention by at least one slot in the heating element. If a slot divides an electrical conductor and its width varies, the resistance varies inversely linearly with the width of the conductor, with the current flowing at its temperature, depending on the ambient temperature and the thermal conductivity. Take, for example, a transparent heating element that tapers from its base to the tip and introduces a slot, electrical resistance increases from the base to the tip. If the heating element at the base is connected to a thermal mass and the tip is exposed in the air, the temperature drops from tip to base.
  • a heated heating element in the lower region has a lower temperature than in the upper region. If the heating element between two sheets of film is introduced to weld them, the contact between the heating element and the film web is formed only at the moment when the heating element is fully inserted. Accordingly comes the lower portion of the film web with the heating element when pulling out the longest in contact.
  • the contact thus arises only when the heating element is fully inserted. If a heating element with a length of 10cm is withdrawn at a constant speed, the lower centimeter of the film webs is heated 10 times more than the upper one with uniform heating temperature from top to bottom. Since the acceleration of the retraction is limited, the temperature of the heating element must fall from top to bottom to ensure a constant heat transfer to the webs.
  • the different temperature zones of the heating element which are particularly advantageous from top to bottom, thus ensuring a constant heat transfer to the film webs, so that all areas of the film webs are welded together at about the same time and the film webs in the lower area not by possibly too hot or too long Heating to be destroyed.
  • the heating element has grooves for generating zones. By removing material also the electrical resistance is changed, there is only complete separation of the heating element.
  • the zones can be varied by the geometric dimensions of the slot of the groove, ie length, width and / or depth.
  • the division into temperature zones leads to a continuously occurring temperature topography starting from the upper very hot region of the heating element to the lower somewhat cooler region of the heating element and / or from a hot region in the middle of the heating element to colder temperature zones on the respective sides.
  • the groove is filled with an electrically conductive material having a different electrical conductivity than the material of the heating element. Since the entire geometry of the heating element is often predetermined in terms of process technology, filling the groove with an electrically conductive material provides another possibility for producing a wanted temperature topography, which is largely independent of the geometry of the heating element.
  • the groove filling be carried out such that a wire made of copper, aluminum, brass, silver, etc. introduced from a good electrically conductive metal in the groove and soldered by brazing and then the excess soldering bead is ground down to the heating element level.
  • a copper-filled 0.5mm wide groove behaves like a pure stainless steel heater that is 20mm wide, as the copper electrical resistivity is about 40 times smaller than that of stainless steel.
  • the resulting electrical circuit causes an electrical resistance change of at least 400ppm / ° C, preferably> 1000ppm / ° C.
  • the zones are defined by different geometry, e.g. Thickness (thickness) of the heating element itself generated over its course.
  • the heating element may be thinner at its tip than at its base.
  • the three methods mentioned for generating the zones are based on the shape of the heating element and thus the change in the electrical resistance per zone.
  • the three shaping measures can be combined as desired with one another in order to achieve as exact a temperature distribution over the heating element as possible.
  • the heating element may be made of steel, in particular of stainless steel.
  • Stainless steel is significantly more robust than polyimide Vespel®, which results in improved stiffness of the heating element.
  • the heating elements may be substantially thinner than heretofore (for example, 1.5 mm from the original 3.2 mm), whereby honeycomb materials can be made from materials with lower thicknesses.
  • the periphery of the heating element can be made simpler and more robust by the improved rigidity of the heating elements, which on the one hand the production of larger raw honeycomb and on the other hand an increase in the welding cycle is possible.
  • TCR temperature coefficient of the resistance
  • the properties of a TCR control are known, for example, from sensor technology, in which PCT and NCT resistance alloys are used.
  • the average resistance specifies the actual value for the control.
  • the temperature coefficient (TCR) depends on the materials used, so that an absolute temperature determination is possible. The dead times of the TCR control in relation to the dead times of currently used temperature measurements are much lower.
  • the groove receives the melt of the polymer to be welded.
  • the polymer degrades very slowly because it is exposed to a very small groove surface.
  • the welding process is initiated more quickly when the sheets to be joined are wetted with liquid polymer, whereby the heat transfer is considerably accelerated.
  • the groove In contrast to the conventional heating elements, which can accommodate the polymer only on its surface, fill in the Edelkarmmen invention, the grooves with the polymers. At temperatures above the melting point, the liquid polymer degrades rapidly on the heating comb surface because it is exposed to a large air surface, which is not the case for the polymer in the groove.
  • a device with heating elements according to the invention is particularly suitable for welding nonwovens.
  • nonwoven is understood to mean a coherent thread layer and / or continuous thread layers.
  • spunbonded nonwovens which are produced directly from a dope are also suitable.
  • the scrim is deposited and subsequently optionally chemically or thermally solidified.
  • the fleece can still be dyed and / or printed.
  • raw materials are predominantly polypropylene, but also polyester, polyamide or copolymer threads in question.
  • the production of different hot zones across the width of the heating element improves the production of nonwoven honeycombs because, for example, the threads in the middle can be very strongly welded, while the degree of Welding to the sides is less. The brittleness at the honeycomb edges is significantly reduced.
  • the heating elements can be coated many times.
  • a copper layer can further reduce the electrical resistance in the lower region and / or improve the electrical contacts.
  • a material with low surface energy can be applied, whereby the adhesion to a metal surface is substantially reduced.
  • any number of heating elements can be connected either in parallel or in series.
  • the resistance R can be determined by U / I or with a Wheatstone bridge and is independent of the current regime.
  • welding methods are possible which are based on the principle of external heating and / or the principle of internal heating.
  • heat is introduced from outside into the film webs with the aid of heating elements according to the invention until both film webs have reached the melting temperature.
  • the heat is thus passed through film webs until the surfaces facing each other are sufficiently heated.
  • the heat can be introduced only through a film web, but it is also possible to heat both to be joined film webs.
  • a heating element according to the invention is brought between the film webs to be joined.
  • the film webs are therefore heated only on the sides, which are to be connected later.
  • honeycomb materials with large cells and thick or thick material, it makes sense to heat the film webs from the outside and from the inside. The heat then reliably reaches all threads.
  • the methods mentioned are only to be understood as examples; it is only essential for the production of a honeycomb material that a sufficiently stable welded joint is formed.
  • FIG. 1 is a schematic representation of a honeycomb material
  • FIG. 2 shows a schematic diagram of the production of a honeycomb material by heating the films to be joined from the outside
  • Figure 3 is a schematic diagram of the production of a honeycomb material by
  • Figure 4 is a schematic view of a heating element according to the invention.
  • FIG. 1 shows, in a simplified basic representation, a detail of a honeycomb material 10. In the present exemplary embodiment, this has hexagonal cells 12.
  • the honeycomb material 10 is formed from a material 14 or from interconnected film webs 14 a, 14 b, 14 c.
  • three contiguous film webs 14 a, 14 b, 14 c are shown differently for better understanding, but this does not mean that it is film webs 14 a, 14 b, 14 c made of different materials.
  • the film webs 14 a, 14 b, 14 c are partially interconnected via connecting cuts 16, wherein the connecting portions 16 are offset from film web to film web by an amount H to each other.
  • H is the distance from composite center to composite center.
  • a cell division A is shown, which essentially means a height of a cell 12. The cell division A depends on the application and can vary from a few millimeters to the meter range.
  • the material 14 may be formed by a thermofusible or weldable material such as films, non-woven and / or textile material.
  • This heating of the material to be welded 14 can be done on the one hand according to the principle of internal heating ( Figure 3) and on the other hand according to the principle of external heating ( Figure 2) or by a mixed form.
  • FIG. 2 illustrates the principle of external heating.
  • a first film web 14 a is in contact with a second film web 14 b and heating elements 18 according to the invention are brought into contact with the first web portion 14 a.
  • the heating elements 18 heat them in such a way that heat is transferred first from the heating elements 18 to the first film web 14 a and then from the first film web 14 a to the second film web 14 b.
  • the result is a heating area 20.
  • the two film webs 14 a, 14 b pressed against holding stamp 22, which leads in this area in nonwoven fabric to a targeted Nachkalandrtechnik.
  • the heating elements 18 are withdrawn, the film webs 14 a, 14 b are welded.
  • a third film web 14 c (see Fig. 1) is added to these two film webs. It is necessary for the execution of the honeycomb structure that the connecting portions 16 between the first film web 14 a and the second film web 14 b offset from the then following connecting portions between, for example, the second film web 14 b and the third film web 14 c are arranged.
  • FIG. 3 illustrates the principle of internal heating.
  • the heating elements 18 according to the invention are arranged between the first film web 14 a and the second film web 14 b.
  • the heating region 20 is simultaneously formed in both film webs 14 a, 14 b, the heat transfer takes place starting from the heating elements 18 via the facing surface. nen infestation the film webs 14 a, 14 b in this.
  • the heating can take place very quickly up to or above the melting temperature, taking into account the heat diffusion rate. It is essential for the heating that the melting temperature of the film lasts as short as possible in order to avoid or restrict recrystallization.
  • the goal is, for example, in films, only a minimal area of the film webs 14 a, 14 b physically to change, so only a small area of the heating area 20 as possible.
  • the heating elements 18 are removed and the two film webs 14 a, 14 b, for example, by means of movable cylinders, not shown, compressed.
  • the movable cylinders may be covered with a soft material to form the film webs 14a. 14b as gently as possible to compress.
  • the movable cylinder clamp the heating elements 18 when they are between the film webs 14 a, 14 b, so they press the film webs 14 a, 14 b against the heating elements 18 After reaching the welding temperature, the heating elements pull 18 back.
  • a third web section 14c (see Fig. 1) is added to these two film webs 14a, 14b. It is necessary for the formation of the honeycomb structure that the connecting portions 16 between the first track portion 14 a and the second track portion 14 b offset from the then following connecting portions between, for example, the second track section 14 b and the third Bruabitesl4 c are arranged.
  • FIG. 4 shows an embodiment of a heating element 18 according to the invention.
  • the heating element 18 consists of an electrically conductive material into which two slots 20 are made in the exemplary embodiment shown.
  • the slots 20 cause the current flow depending on the geometric dimension of the remaining material different electrical resistances are opposed.
  • connections 22 are shown in a foot region of the heating element 18, via which electrical current is introduced into the heating element 18.
  • the slots 20 effect in the embodiment shown, the hot zones 34 and colder zones 36 are generated. These zones 34, 36 extend both in the longitudinal direction of the heating element and in the transverse direction.
  • the arrangement and geometry of the slots 20 is freely selectable for each individual case or for each honeycomb manufacturing device to be manufactured. It can also be seen that the geometric dimensions of the heating element 18 itself produce the desired zones 34, 36 with different electrical resistances and thus different temperatures.
  • the heating element 18 shown tapers in this example in the direction of its free end, in order to achieve a better mechanical stability.
  • FIG. 4 shows that the zones 34, 36 of different temperature can also be created or influenced by introducing a groove 30.
  • the term groove 30 describes a recess in the material of the heating element 18.
  • the groove can be filled with a selected material, wherein the filling material has a different electrical resistance than the material of the heating element. By filling with different materials, it is possible to vary the temperature zones in the heating element 18.
  • the division into temperature zones leads to a continuously occurring temperature topography.
  • the use of the heating element 18 ensures that the material 14 to be welded can be welded to a temperature and time adapted to its position. If the heating element 18 is inserted between two film webs in order to weld them together. Shen, the contact between the heating element 18 and the film web is formed only at the moment when the heating element 18 is fully inserted. Accordingly, the lower portion of the film web comes with the heating element 18 the longest in contact, because the heating element 18 is guided over its entire length from top to bottom of this.
  • the upper portion of the film webs 14 a, 14 b, 14 c comes so only briefly and only with the hot upper portion of the heating element 18 in contact, while the lower portion of the film webs 14 a, 14 b, 14 c when running with all temperature zones the heating element 18 comes into contact.
  • the different temperature zones of the heating element 18 thus ensure the desired optimum heat transfer to the film webs, so that all areas of the film webs are welded together as desired and the lower portion of the film webs 14 a, 14 b, 14 c not by possibly too hot or too long heating or treatment is destroyed by the heating element 18 with the heating comb.
  • the heat transfer according to the invention can also be influenced by an adaptation of the speed of movement of the heating element when pulling out. For example, it may be useful to increase the pull-out speed during the pull-out operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

The invention relates to a heating element (18) of a heating comb made from an electrically conductive material (22) for producing a honeycomb material (10) from thermofusible material (14), said element having zones and different electrical resistors, as a result of which the zones are heated differently.

Description

Bezeichnung: Heizelement eines Heizkamms zur Herstellung eines Wabenwerkstoffes Designation: Heating element of a heating comb for the production of a honeycomb material
Die vorliegende Erfindung betrifft ein Heizelement eines Heizkamms zur Herstellung eines Wabenwerkstoffes aus einem thermofusionierbaren Material.The present invention relates to a heating element of a heating comb for producing a honeycomb material from a thermofusible material.
Waben Werkstoffe bzw. Elemente werden vielfach und in zunehmendem Maße eingesetzt. Gründe hierfür sind insbesondere die hohe Druckfestigkeit und Steifigkeit derartiger Strukturen. Wabenwerkstoffe können beispielsweise als Isoliermaterial in der Kühltechnik, als akustische Dämmmaterialien oder als leichte Baustoffe eingesetzt werden. Bekannt ist der Einsatz von Wabenwerkstoffen im Maschinenbau, im Schienen- und Straßenverkehr, im Gerüstbau, in der Luft- und Raumfahrtindustrie, für Hochleistungssportgeräte sowie beim Bau von Rennfahrzeugen und Hochseerennyachten. Des Weiteren können Waben mit größeren Maßen für Bodenbefestigung, Straßenbau, Sportplätze, Gartenbau, Damm- und Dünnenbefestigung eingesetzt werden.Honeycomb materials or elements are widely and increasingly used. Reasons for this are in particular the high compressive strength and rigidity of such structures. Honeycomb materials can be used, for example, as insulating material in cooling technology, as acoustic insulating materials or as lightweight building materials. The use of honeycomb materials in mechanical engineering, in rail and road transport, in scaffolding, in the aerospace industry, for high-performance sports equipment and in the construction of racing vehicles and high-sea yachts is well known. Furthermore, honeycombs of larger dimensions can be used for ground mounting, road construction, sports fields, horticulture, dam and thinnest attachment.
Bekannt sind Wabenwerkstoffe aus den Materialien Metall, insbesondere Aluminium oder Stahl, Papier bzw. Pappe und Kunststoff. Aluminiumwaben haben den Nachteil, dass der Rohstoff Aluminium verhältnismäßig teuer und die Herstellung der Aluminiumwaben aufwendig ist. Wabenmaterial aus Papier bzw. Pappe ist zwar leicht und durch Kleben einfach herzustellen, jedoch fehlt es an einer oftmals notwendigen Festigkeit, an der Beständigkeit gegen Feuchtigkeit und auch an Feuerfestigkeit. Aus diesem Grunde werden derartige Waben in erster Linie lediglich als Massenware, z. B. als Verpackungsmaterial eingesetzt.Honeycomb materials are known from the materials metal, in particular aluminum or steel, paper or cardboard and plastic. Aluminum honeycombs have the disadvantage that the raw material aluminum is relatively expensive and the production of aluminum honeycombs is expensive. Although honeycomb material made of paper or cardboard is lightweight and easy to produce by gluing, there is a lack of often necessary strength, resistance to moisture and fire resistance. For this reason, such honeycomb are primarily only as a commodity, z. B. used as packaging material.
Wabenmaterial aus Kunststoff hingegen weist eine Vielzahl von Vorteilen auf, jedoch ist insbesondere die Herstellung der Wabenstruktur nur unter erhöhten Schwierigkeiten möglich.Plastic honeycomb material, however, has a number of advantages, but in particular the production of the honeycomb structure is possible only with increased difficulty.
Die Herstellung von Wabenwerkstoffen kann beispielsweise ausgehend von Flachmaterial (Folien) erfolgen.The production of honeycomb materials can be done, for example, starting from flat material (films).
Bei einer solchen Herstellung werden Folien einer Schweißvorrichtung bei Raumtemperatur zugeführt. Dabei werden zwei einander gegenüberliegende Folien- bahnen aus einem Kunststoffmaterial, das einen Schmelzpunkt aufweist, bereichsweise unter Zuführung von Wärme aufgeschmolzen, die Schmelzen dann vereinigt und abgekühlt. Die Folien bilden in den aufgeschmolzenen und dann abgekühlten Bereichen einen monolithischen Block aus, der makroskopisch homogen ist, mikroskopisch aber aus sehr verschiedenen strukturellen Phasen bestehen kann. Diese beiden Folienbahnen werden dann mit einer dritten Bahn auf die gleiche Art und Weise verbunden, wobei die „Schweißnähte" in Längsrichtung der Folienbahnen versetzt zu den bereits vorhandenen Schweißnähten angeordnet sind. Anschließend werden die verbundenen Bahnen unter adäquater Temperatur zu dem zu erzielenden Wabenkörper auseinander gezogen.In such a production films are fed to a welding device at room temperature. In this case, two opposite foil webs of a plastic material having a melting point, partially melted under the supply of heat, the melts then combined and cooled. The films form a monolithic block in the molten and then cooled areas, which is macroscopically homogeneous but may consist microscopically of very different structural phases. These two film webs are then bonded to a third web in the same manner, with the "welds" longitudinally of the film webs offset from the already existing welds, and then the bonded webs are pulled apart at an adequate temperature to the honeycomb body to be achieved ,
Bekannt ist, dass die für die Verbindung eingesetzten Heizkämme einzelne Heizelemente aufweisen, die aus Stahl bestehen können, der um einen Isolator geformt ist. Der Isolator kann z.B. aus Polyimid, einem thermoplastischen Hochleistungskunststoff aus der Gruppe der Polyimide, bestehen. Da bei der Herstellung des Wabenwerkstoffes der Isolator während der Heizphasen kurzfristig sehr hohen Temperaturen von mehr als 3000C ausgesetzt wird, erfolgt in der Regel eine Verwendung des Polyimid Vespel®, welches diese Temperaturen problemlos erträgt, aber unter Temperatureinfluss altert und dadurch instabil wird. Sowohl die Feststellung als auch die Regulierung der Temperatur findet über einen Thermo- fühler, der im Isolator untergebracht ist, statt. Als nachteilig erweist sich hierbei aber, dass die Heizelemente nicht sehr stabil sind und deswegen bei falscher Anwendung leicht zerstört werden. Ferner führen die bei diesem Verfahren auftretenden Totzeiten bei den einzelnen Temperaturmessungen zu einer aufwendigen PID-Parametrierung und erfordern dadurch spezielle Operationsschritte beim Schweißanfang.It is known that the heating combs used for the compound have individual heating elements, which may consist of steel, which is formed around an insulator. The insulator may for example consist of polyimide, a thermoplastic high-performance plastic from the group of polyimides. Since in the production of the honeycomb material, the insulator is briefly exposed to very high temperatures of more than 300 0 C during the heating phases, there is usually a use of the polyimide Vespel®, which easily tolerates these temperatures, but ages under the influence of temperature and thus becomes unstable. Both the detection and the regulation of the temperature takes place via a thermo-sensor, which is housed in the insulator. However, this proves to be disadvantageous in that the heating elements are not very stable and are therefore easily destroyed if used incorrectly. Furthermore, the dead times occurring in this method lead to a complex PID parameterization in the individual temperature measurements and thus require special operation steps at the start of welding.
Ferner können Vliese oder Folien mit einer Dichte von unter 190 gr/m2 nicht verarbeitet werden, da die zurzeit verwendeten Heizelemente zu dick sind und eine dünnere Konstruktion aufgrund der mechanischen Eigenschaften des Vespel® zu instabil ist.Furthermore, nonwovens or films with a density of less than 190 gr / m 2 can not be processed because the heating elements currently used are too thick and a thinner construction is too unstable due to the mechanical properties of the Vespel®.
Ein Anwendungsbereich für Waben Werkstoffe mit geringer Dichte wäre z.B. die Verwendung als Wärmeaustauchdämmung, und die Herstellung klarer optischer transluzider Waben bzw. Wabenwerkstoffe. Auch die dann günstige Lichtdiffusion wäre vorteilhaft. Da in den Gebieten Wärme und Optik keine besonderen Festigkeiten verlangt werden, jedoch thermische und optische Eigenschaften wichtig sind, könnten dünne Folien in diesen Gebieten eingesetzt werden. Ferner könnten Vlieswaben aus dünnem Vlies vorteilhaft bei Filteranwendungen angewandt werden. Auch eine Verwendung im Bereich der Bodenbefestigung von beispielsweise nicht begehbaren Flächen wie Dämmen bzw. Hängen sowie Lärmschutzwällen an Autobahnen wäre vorteilhaft.One area of application for honeycomb materials with low density would be, for example, the use as thermal insulation, and the production of clear optical translucent honeycomb or honeycomb materials. Also the then favorable light diffusion would be advantageous. Since no special strengths are required in the fields of heat and optics, but thermal and optical properties are important, thin films could be used in these areas. Furthermore, spunbonded nonwoven webs could be advantageously used in filtration applications. Also, a use in the field of soil attachment of, for example, non-accessible areas such as dams or slopes and noise barriers on highways would be advantageous.
Es ist die Aufgabe der vorliegenden Erfindung, ein Heizelement bereitzustellen, das es ermöglicht, Wabenwerkstoffe schneller, einfacher und zuverlässiger zusammenzuschweißen. Insbesondere soll auch ein Verschweißen von Material mit geringer Dichte möglich sein.It is the object of the present invention to provide a heating element which makes it possible to weld honeycomb materials faster, easier and more reliable. In particular, a welding of low density material should be possible.
Erfindungsgemäß wird die Aufgabe durch ein Heizelement eines zur Herstellung eines Wabenwerkstoffes aus einem thermofusionierbaren Material mit den Merkmalen des Anspruch 1 gelöst. Dabei ist das erfindungsgemäße Heizelement durch Zonen mit verschiedenen elektrischen Widerständen, die bei Stromfluss eine unterschiedliche Erwärmung der Zonen bewirken, gekennzeichnet. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.According to the invention the object is achieved by a heating element for producing a honeycomb material from a thermofusible material having the features of claim 1. In this case, the heating element according to the invention is characterized by zones with different electrical resistances, which cause a different heating of the zones when current flows. Advantageous embodiments of the invention are specified in the subclaims.
Die Zonen können erfindungsgemäß durch mindestens einen Schlitz in dem Heizelement erzeugt werden. Teilt ein Schlitz einen elektrischen Leiter, und variiert dessen Breite, variiert der Widerstand umgekehrt linear mit der Breite des Leiters, bei Stromfluss dessen Temperatur, abhängig von der Umgebungstemperatur und der thermischen Leitfähigkeit. Nimmt man z.B. ein transparentförmiges Heizelement, das sich von seiner Basis zur Spitze verjüngt und bringt einen Schlitz hinein, nimmt der elektrische Widerstand von der Basis zur Spitze zu. Ist das Heizelement an der Basis mit einer thermischen Masse verbunden und die Spitze steht frei in der Luft, fällt die Temperatur von Spitze zu Basis ab.The zones can be produced according to the invention by at least one slot in the heating element. If a slot divides an electrical conductor and its width varies, the resistance varies inversely linearly with the width of the conductor, with the current flowing at its temperature, depending on the ambient temperature and the thermal conductivity. Take, for example, a transparent heating element that tapers from its base to the tip and introduces a slot, electrical resistance increases from the base to the tip. If the heating element at the base is connected to a thermal mass and the tip is exposed in the air, the temperature drops from tip to base.
Auf diese Weise ist es möglich, dass ein aufgeheiztes Heizelement im unteren Bereich eine geringere Temperatur aufweist als im oberen Bereich. Wird das Heizelement zwischen zwei Folienbahnen eingeführt, um diese zu verschweißen, entsteht der Kontakt zwischen dem Heizelement und der Folienbahn erst in dem Moment, wenn das Heizelement ganz eingeführt ist. Entsprechend kommt der untere Bereich der Folienbahn der mit dem Heizelement beim Herausziehen am längsten in Kontakt.In this way, it is possible that a heated heating element in the lower region has a lower temperature than in the upper region. If the heating element between two sheets of film is introduced to weld them, the contact between the heating element and the film web is formed only at the moment when the heating element is fully inserted. Accordingly comes the lower portion of the film web with the heating element when pulling out the longest in contact.
Der Kontakt entsteht also erst wenn das Heizelement ganz eingeführt ist. Wird ein Heizelement von 10cm Länge mit konstanter Geschwindigkeit zurückgezogen, wird bei gleichmäßiger Heiztemperatur von oben nach unten, der untere Zentimeter der Folienbahnen lOmal mehr aufgeheizt als der obere. Da die Beschleunigung des Zurückziehens begrenzt ist, muss die Temperatur des Heizelementes von oben nach unten abfallen, um eine konstante Wärmeübertragung an die Bahnen zu gewährleisten. Die unterschiedlichen Temperaturzonen des Heizelementes, die besonders vorteilhaft von oben nach unten abfallen, gewährleisten somit, eine konstante Wärmeübertragung an die Folienbahnen, so dass alle Bereiche der Folienbahnen in etwa gleich zusammengeschweißt werden und die Folienbahnen im unteren Bereich nicht durch eventuell zu heißes oder zu langes Erwärmen zerstört werden.The contact thus arises only when the heating element is fully inserted. If a heating element with a length of 10cm is withdrawn at a constant speed, the lower centimeter of the film webs is heated 10 times more than the upper one with uniform heating temperature from top to bottom. Since the acceleration of the retraction is limited, the temperature of the heating element must fall from top to bottom to ensure a constant heat transfer to the webs. The different temperature zones of the heating element, which are particularly advantageous from top to bottom, thus ensuring a constant heat transfer to the film webs, so that all areas of the film webs are welded together at about the same time and the film webs in the lower area not by possibly too hot or too long Heating to be destroyed.
In einer weiteren besonders vorteilhaften Ausführungsform weist das Heizelement Nuten zur Erzeugung von Zonen auf. Durch Materialwegnahme wird ebenfalls der elektrische Widerstand verändert, es erfolgt lediglich keine vollständige Durchtrennung des Heizelements.In a further particularly advantageous embodiment, the heating element has grooves for generating zones. By removing material also the electrical resistance is changed, there is only complete separation of the heating element.
Die Zonen können durch die geometrischen Abmessungen des Schlitzes der Nut, also Länge, Breite und/oder Tiefe variiert werden.The zones can be varied by the geometric dimensions of the slot of the groove, ie length, width and / or depth.
Das Einteilen in Temperaturzonen führt zu einer kontinuierlich auftretenden Temperaturtopographie ausgehend vom oberen sehr heißen Bereich des Heizelementes bis hin zum unteren etwas kühlerem Bereich des Heizelementes und/oder von einem heißen Bereich in der Mitte des Heizelementes zu kälteren Temperaturzonen auf den jeweiligen Seiten.The division into temperature zones leads to a continuously occurring temperature topography starting from the upper very hot region of the heating element to the lower somewhat cooler region of the heating element and / or from a hot region in the middle of the heating element to colder temperature zones on the respective sides.
In einer besonders vorteilhaften Ausführungsform ist die Nut mit einem elektrisch leitenden Material gefüllt, das eine andere elektrische Leitfähigkeit als das Material des Heizelements aufweist. Da die gesamte Geometrie des Heizelementes oftmals prozesstechnisch vorgegeben ist, stellt das Befüllen der Nut mit einem elektrisch leitenden Material eine weitere Möglichkeit zur Erzeugung einer ge- wünschten Temperaturtopographie dar, die weitgehend unabhängig von der Geometrie des Heizelementes ist. So kann beispielsweise die Nutfüllung derart ausgeführt werden, dass ein Draht aus Kupfer, Aluminium, Messing, Silber usw. aus einem elektrisch gut leitenden Metall in die Nut eingebracht und mittels Hartlot verlötet und anschließend der überschüssige Lötwulst bis zur Ebene des Heizelementes abgeschliffen wird. Auf diese Weise verhält sich zum Beispiel eine mit Kupfer gefüllte 0,5mm breite Nut wie ein Heizelement aus reinem Edelstahl, das 20mm breit ist, da der spezifische elektrische Widerstand vom Kupfer etwa 40- mal kleiner ist als der vom Edelstahl. Vorzugsweise bewirkt der so entstandene elektrische Kreis eine elektrische Widerstandsänderung von mindestens 400ppm/°C, vorzugsweise > 1000ppm/°C.In a particularly advantageous embodiment, the groove is filled with an electrically conductive material having a different electrical conductivity than the material of the heating element. Since the entire geometry of the heating element is often predetermined in terms of process technology, filling the groove with an electrically conductive material provides another possibility for producing a wanted temperature topography, which is largely independent of the geometry of the heating element. Thus, for example, the groove filling be carried out such that a wire made of copper, aluminum, brass, silver, etc. introduced from a good electrically conductive metal in the groove and soldered by brazing and then the excess soldering bead is ground down to the heating element level. In this way, for example, a copper-filled 0.5mm wide groove behaves like a pure stainless steel heater that is 20mm wide, as the copper electrical resistivity is about 40 times smaller than that of stainless steel. Preferably, the resulting electrical circuit causes an electrical resistance change of at least 400ppm / ° C, preferably> 1000ppm / ° C.
In einer dritten erfindungsgemäßen Ausführungsvariante werden die Zonen durch unterschiedliche Geometrie, z.B. Stärke (Dicke) des Heizelementes selbst über seinen Verlauf erzeugt. Zum Beispiel kann das Heizelement an seiner Spitze dünner sein, als an seiner Basis.In a third embodiment of the invention, the zones are defined by different geometry, e.g. Thickness (thickness) of the heating element itself generated over its course. For example, the heating element may be thinner at its tip than at its base.
Die drei genannten Verfahren zur Erzeugung der Zonen basieren auf der Formgebung des Heizelementes und damit der Änderung des elektrischen Widerstands je Zone. Die drei Formgebungsmaßnahmen können beliebig miteinander kombiniert werden, um eine möglichst exakte Temperaturverteilung über das Heizelement zu erreichen.The three methods mentioned for generating the zones are based on the shape of the heating element and thus the change in the electrical resistance per zone. The three shaping measures can be combined as desired with one another in order to achieve as exact a temperature distribution over the heating element as possible.
Insbesondere kann das Heizelement aus Stahl, insbesondere aus Edelstahl gefertigt sein. Edelstahl ist deutlich robuster als Polyimid Vespel®, was eine verbesserte Steifigkeit des Heizelementes bewirkt. Auf diese Weise können die Heizelemente wesentlich dünner als bisher sein (beispielsweise 1,5 mm gegenüber den ursprünglichen 3,2 mm), wodurch Waben Werkstoffe aus Materialien mit geringeren Dicken herstellbar sind. Auf diese Weise kann die Peripherie des Heizelementes durch die verbesserte Steifigkeit der Heizelemente einfacher und robuster gestaltet werden, wodurch einerseits die Herstellung größerer Rohwaben und andererseits eine Erhöhung des Schweißzyklus möglich ist.In particular, the heating element may be made of steel, in particular of stainless steel. Stainless steel is significantly more robust than polyimide Vespel®, which results in improved stiffness of the heating element. In this way, the heating elements may be substantially thinner than heretofore (for example, 1.5 mm from the original 3.2 mm), whereby honeycomb materials can be made from materials with lower thicknesses. In this way, the periphery of the heating element can be made simpler and more robust by the improved rigidity of the heating elements, which on the one hand the production of larger raw honeycomb and on the other hand an increase in the welding cycle is possible.
Es ist möglich, die Temperaturzonen über den jeweiligen Temperaturkoeffizient des Widerstands (TCR) zu regeln, da die verschiedenen Temperaturzonen des Heizelements ihren Widerstand mit der Temperatur ändern. Die Eigenschaften einer TCR Regelung sind beispielsweise aus der Sensorik bekannt, in der PCT und NCT Widerstandslegierungen eingesetzt werden. Dabei gibt der Durchschnittswiderstand den Istwert für die Regelung vor. Ferner hängt der Temperaturkoeffizient (TCR) von den verwendeten Materialien ab, so dass auch eine Absoluttemperaturbestimmung möglich ist. Die Totzeiten der TCR Reglung im Verhältnis zu den Totzeiten der derzeit verwendeten Temperaturmessungen, sind deutlich viel geringer.It is possible to regulate the temperature zones by the respective temperature coefficient of the resistance (TCR), since the different temperature zones of the Heating element to change its resistance with the temperature. The properties of a TCR control are known, for example, from sensor technology, in which PCT and NCT resistance alloys are used. The average resistance specifies the actual value for the control. Furthermore, the temperature coefficient (TCR) depends on the materials used, so that an absolute temperature determination is possible. The dead times of the TCR control in relation to the dead times of currently used temperature measurements are much lower.
Vorteilhafterweise nimmt die Nut während des Schweißens die Schmelze des zu verschweißenden Polymers auf. Dabei degradiert das Polymer sehr langsam, da es einer sehr geringen Nutoberfläche ausgesetzt ist. Ferner initiiert sich der Schweißvorgang schneller, wenn die zu verbinden Bahnen mit flüssigem Polymer benetzt werden, wodurch der Wärmeübergang erheblich beschleunigt wird. Im Gegensatz zu den herkömmlichen Heizelemente, die den Polymer nur auf ihrer Oberfläche aufnehmen können, füllen sich bei den erfindungsgemäßen Heizkämmen auch die Nuten mit den Polymeren. Bei Temperaturen über dem Schmelzpunkt degradiert das flüssige Polymer auf der Heizkammfläche schnell, da es einer großen Luftfläche ausgesetzt ist, was für das Polymer in der Nut nicht der Fall ist.Advantageously, during welding, the groove receives the melt of the polymer to be welded. The polymer degrades very slowly because it is exposed to a very small groove surface. Furthermore, the welding process is initiated more quickly when the sheets to be joined are wetted with liquid polymer, whereby the heat transfer is considerably accelerated. In contrast to the conventional heating elements, which can accommodate the polymer only on its surface, fill in the Heizkämmen invention, the grooves with the polymers. At temperatures above the melting point, the liquid polymer degrades rapidly on the heating comb surface because it is exposed to a large air surface, which is not the case for the polymer in the groove.
Eine Vorrichtung mit erfindungsgemäßen Heizelementen eignet sich insbesondere für ein Verschweißen von Vliesen. Unter dem Begriff Vlies wird im Sinne der Erfindung eine zusammenhängende Fadenschicht und/oder werden zusammenhängende Fadenschichten verstanden. Beispielsweise sind auch Spinnvliese geeignet, die direkt aus einer Spinnmasse kontinuierlich hergestellt werden. Auf einem Transportband wird das Fadengelege abgelegt und nachfolgend gegebenenfalls chemisch oder thermisch verfestigt. Anschließend kann das Vlies noch gefärbt und/oder bedruckt werden. Als Rohstoffe kommen überwiegend Polypropylen, aber auch Polyester, Polyamid oder Copolymerfäden infrage.A device with heating elements according to the invention is particularly suitable for welding nonwovens. For the purposes of the invention, the term nonwoven is understood to mean a coherent thread layer and / or continuous thread layers. For example, spunbonded nonwovens which are produced directly from a dope are also suitable. On a conveyor belt, the scrim is deposited and subsequently optionally chemically or thermally solidified. Subsequently, the fleece can still be dyed and / or printed. As raw materials are predominantly polypropylene, but also polyester, polyamide or copolymer threads in question.
Die Erzeugung unterschiedlich heißer Zonen über die Breite des Heizelementes verbessert die Herstellung von Vlieswaben deswegen, weil beispielsweise die Fäden in der Mitte sehr stark verschweißt werden können, während der Grad der Verschweißung zu den Seiten hin geringer wird. Die Brüchigkeit an den Wabenkanten wird dadurch deutlich reduziert.The production of different hot zones across the width of the heating element improves the production of nonwoven honeycombs because, for example, the threads in the middle can be very strongly welded, while the degree of Welding to the sides is less. The brittleness at the honeycomb edges is significantly reduced.
Auch können die Heizelemente vielfach beschichtet sein. Beispielsweise kann eine Kupferschicht den elektrischen Widerstand im unteren Bereich weiter reduzieren und/oder die elektrischen Kontakte verbessern. Ferner kann als zusätzliche Schicht ein Material mit geringer Oberflächenenergie aufgebracht werden, wodurch die Haftung gegenüber einer Metalloberfläche wesentlich verringerbar ist.Also, the heating elements can be coated many times. For example, a copper layer can further reduce the electrical resistance in the lower region and / or improve the electrical contacts. Furthermore, as an additional layer, a material with low surface energy can be applied, whereby the adhesion to a metal surface is substantially reduced.
Erfindungsgemäß kann eine beliebige Anzahl Heizelemente entweder parallel o- der in Reihe geschaltet sein. Wobei der Widerstand R durch U/I oder mit einer Wheatstone Brücke ermittelt werden kann und unabhängig von der Stromregime ist.According to the invention, any number of heating elements can be connected either in parallel or in series. Wherein the resistance R can be determined by U / I or with a Wheatstone bridge and is independent of the current regime.
Ferner sind Schweißverfahren möglich, die auf dem Prinzip der Außenerwärmung und/oder dem Prinzip der Innenerwärmung basieren.Furthermore, welding methods are possible which are based on the principle of external heating and / or the principle of internal heating.
Bei einem Verfahren nach dem Prinzip des Außenerwärmung wird mit Hilfe von erfindungsgemäßen Heizelementen Wärme von außen in die Folienbahnen eingeleitet, bis beide Folienbahnen die Schmelztemperatur erreicht haben. Die Wärme wird also durch Folienbahnen hindurch geleitet, bis die aufeinander zuweisenden Flächen ausreichend erwärmt sind. Die Wärme kann dabei nur durch eine Folienbahn eingeleitet werden, möglich ist aber auch eine Erwärmung beider zu verbindender Folienbahnen.In a method according to the principle of external heating, heat is introduced from outside into the film webs with the aid of heating elements according to the invention until both film webs have reached the melting temperature. The heat is thus passed through film webs until the surfaces facing each other are sufficiently heated. The heat can be introduced only through a film web, but it is also possible to heat both to be joined film webs.
Bei einem Verfahren nach dem Prinzip der Innenerwärmung wird dagegen ein erfindungsgemäßes Heizelement zwischen die zu verbindenden Folienbahnen gebracht. Die Folienbahnen werden also lediglich auf den Seiten erwärmt, die später miteinander verbunden werden sollen.In a method according to the principle of internal heating, however, a heating element according to the invention is brought between the film webs to be joined. The film webs are therefore heated only on the sides, which are to be connected later.
Möglich ist aber auch eine Kombination der beiden Verfahren. Insbesondere bei Wabenwerkstoffen mit großen Zellen und starkem bzw. dickem Material ist es sinnvoll, die Folienbahnen von außen und von innen zu erwärmen. Die Wärme erreicht dann zuverlässig alle Fäden. Die genannten Verfahren sind nur beispielhaft zu verstehen, entscheidend für die Herstellung eines Wabenwerkstoffes ist lediglich, dass eine ausreichend stabile Schweißverbindung gebildet wird.But it is also possible a combination of the two methods. Especially with honeycomb materials with large cells and thick or thick material, it makes sense to heat the film webs from the outside and from the inside. The heat then reliably reaches all threads. The methods mentioned are only to be understood as examples; it is only essential for the production of a honeycomb material that a sufficiently stable welded joint is formed.
Im Folgenden wird die Erfindung anhand beiliegender Figuren erläutert. Weitere Vorteile und Ausführungsvarianten gehen aus dieser Beschreibung und den beiliegenden Ansprüchen hervor.In the following the invention will be explained with reference to the accompanying figures. Further advantages and embodiments will become apparent from this description and the appended claims.
Es zeigen :Show it :
Figur 1 : eine Prinzipdarstellung eines Wabenwerkstoffes,FIG. 1 is a schematic representation of a honeycomb material;
Figur 2: eine Prinzipskizze der Herstellung eines Wabenwerkstoffes durch Erwärmen der zu verbindenden Folien von außen,2 shows a schematic diagram of the production of a honeycomb material by heating the films to be joined from the outside,
Figur 3 eine Prinzipskizze der Herstellung eines Wabenwerkstoffes durchFigure 3 is a schematic diagram of the production of a honeycomb material by
Erwärmen der zu verbindenden Folien von innen,Heating the foils to be joined from the inside,
Figur 4 eine schematische Ansicht eines erfindungsgemäßen Heizelementes.Figure 4 is a schematic view of a heating element according to the invention.
Figur 1 zeigt in einer vereinfachten prinzipiellen Darstellung einen Ausschnitt aus einem Wabenwerkstoff 10. Dieser weist im vorliegenden Ausführungsbeispiel sechseckige Zellen 12 auf.FIG. 1 shows, in a simplified basic representation, a detail of a honeycomb material 10. In the present exemplary embodiment, this has hexagonal cells 12.
Der Wabenwerkstoff 10 ist aus einem Material 14 bzw. aus miteinander verbundenen Folienbahnen 14 a, 14 b, 14 c gebildet. Im gezeigten Ausführungsbeispiel sind zum besseren Verständnis drei aneinander liegende Folienbahnen 14 a, 14 b, 14 c unterschiedlich dargestellt, was aber nicht bedeuten soll, dass es sich um Folienbahnen 14 a, 14 b, 14 c aus unterschiedlichen Materialien handelt. Die Folienbahnen 14 a, 14 b, 14 c sind bereichsweise über Verbindungsschnitte 16 miteinander verbunden, wobei die Verbindungsabschnitte 16 von Folienbahn zu Folienbahn um einen Betrag H zu einander versetzt sind. Je nach Wahl der Größe des Versatzes H ist die Form der Zellen 12 an gewünschte Bedingungen anpassbar. H ist die Distanz von Verbundmitte zu Verbundmitte. Weiterhin ist eine Zellteilung A dargestellt, die quasi eine Höhe einer Zelle 12 bezeichnet. Die Zellteilung A hängt von der Anwendung ab und kann von einigen Millimetern bis ins Meterbereich variieren.The honeycomb material 10 is formed from a material 14 or from interconnected film webs 14 a, 14 b, 14 c. In the embodiment shown, three contiguous film webs 14 a, 14 b, 14 c are shown differently for better understanding, but this does not mean that it is film webs 14 a, 14 b, 14 c made of different materials. The film webs 14 a, 14 b, 14 c are partially interconnected via connecting cuts 16, wherein the connecting portions 16 are offset from film web to film web by an amount H to each other. Depending on the choice of the size of the offset H, the shape of the cells 12 can be adapted to desired conditions. H is the distance from composite center to composite center. Furthermore, a cell division A is shown, which essentially means a height of a cell 12. The cell division A depends on the application and can vary from a few millimeters to the meter range.
Das Material 14 kann durch ein thermofusionierbares bzw. schweißbares Material wie beispielsweise Folien, Vlies und/oder textilem Material gebildet sein.The material 14 may be formed by a thermofusible or weldable material such as films, non-woven and / or textile material.
Diese Erwärmung des zu verschweißenden Materials 14 kann einerseits nach dem Prinzip der Innenerwärmung (Figur 3) und anderseits nach dem Prinzip der Außenerwärmung (Figur 2) oder durch eine Mischform erfolgen.This heating of the material to be welded 14 can be done on the one hand according to the principle of internal heating (Figure 3) and on the other hand according to the principle of external heating (Figure 2) or by a mixed form.
Figur 2 verdeutlicht das Prinzip der Außenerwärmung. Eine erste Folienbahn 14 a wird in Kontakt mit einer zweiten Folienbahn 14 b und erfindungsgemäße Heizelemente 18 werden in Kontakt mit dem ersten Bahnabschnitt 14 a gebracht. Die Heizelemente 18 erwärmen diese derart, dass eine Wärmeübertragung zunächst von den Heizelementen 18 zur ersten Folienbahn 14 a und dann von der ersten Folienbahn 14 a zur zweiten Folienbahn 14 b erfolgt. Es entsteht ein Erwärmungsbereich 20. Üblicherweise werden die beiden Folienbahnen 14 a, 14 b dabei gegen Haltestempel 22 gedrückt, was in diesem Bereich bei Vliesstoff zu einer gezielten Nachkalandrierung führt. Anschließend werden die Heizelemente 18 zurückgezogen, die Folienbahnen 14 a, 14 b sind verschweißt.FIG. 2 illustrates the principle of external heating. A first film web 14 a is in contact with a second film web 14 b and heating elements 18 according to the invention are brought into contact with the first web portion 14 a. The heating elements 18 heat them in such a way that heat is transferred first from the heating elements 18 to the first film web 14 a and then from the first film web 14 a to the second film web 14 b. The result is a heating area 20. Usually, the two film webs 14 a, 14 b pressed against holding stamp 22, which leads in this area in nonwoven fabric to a targeted Nachkalandrierung. Subsequently, the heating elements 18 are withdrawn, the film webs 14 a, 14 b are welded.
Nachdem die beiden Folienbahnen 14 miteinander verbunden worden sind, wird eine dritte Folienbahn 14 c (vgl. Fig. 1) an diese beiden Folienbahnen angefügt. Dabei ist es zur Ausführung der Wabenstruktur notwendig, dass die Verbindungsabschnitte 16 zwischen der ersten Folienbahn 14 a und der zweiten Folienbahn 14 b versetzt zu den dann folgenden Verbindungsabschnitten zwischen beispielsweise der zweiten Folienbahn 14 b und der dritten Folienbahn 14 c angeordnet sind.After the two film webs 14 have been joined together, a third film web 14 c (see Fig. 1) is added to these two film webs. It is necessary for the execution of the honeycomb structure that the connecting portions 16 between the first film web 14 a and the second film web 14 b offset from the then following connecting portions between, for example, the second film web 14 b and the third film web 14 c are arranged.
Figur 3 verdeutlicht das Prinzip der Innenerwärmung. Die erfindungsgemäßen Heizelemente 18 werden zwischen der ersten Folienbahn 14 a und der zweiten Folienbahn 14 b angeordnet. Durch die Erwärmung entsteht gleichzeitig in beiden Folienbahnen 14 a, 14 b der Erwärmungsbereich 20, die Wärmeübertragung erfolgt ausgehend von den Heizelementen 18 über die einander zugewandten In- nenflächen der Folienbahnen 14 a, 14 b in diese hinein. Die Erwärmung kann insgesamt sehr schnell bis zur oder über die Schmelztemperatur erfolgen, wobei die Wärmediffusionsrate berücksichtigt wird. Wesentlich bei der Erwärmung ist, dass die Schmelztemperatur der Folie möglichst kurz andauert, um eine Nachkristallisation zu vermeiden bzw. einzuschränken. Ziel ist es beispielsweise bei Folien, nur einen minimalen Bereich der Folienbahnen 14 a, 14 b physikalisch zu verändern, also nur einen möglichst kleinen Bereich des Erwärmungsbereiches 20.FIG. 3 illustrates the principle of internal heating. The heating elements 18 according to the invention are arranged between the first film web 14 a and the second film web 14 b. As a result of the heating, the heating region 20 is simultaneously formed in both film webs 14 a, 14 b, the heat transfer takes place starting from the heating elements 18 via the facing surface. nenflächen the film webs 14 a, 14 b in this. Overall, the heating can take place very quickly up to or above the melting temperature, taking into account the heat diffusion rate. It is essential for the heating that the melting temperature of the film lasts as short as possible in order to avoid or restrict recrystallization. The goal is, for example, in films, only a minimal area of the film webs 14 a, 14 b physically to change, so only a small area of the heating area 20 as possible.
Nachdem die beiden Folienbahnen 14 a und 14 b die Schweißtemperatur erreicht haben, werden die Heizelemente 18 entfernt und die beiden Folienbahnen 14 a, 14 b werden, beispielsweise mit Hilfe von bewegbaren nicht dargestellten Zylindern, zusammengedrückt. Die bewegbaren Zylinder können mit einem weichen Material belegt sein, um die Folienbahnen 14a. 14b möglichst schonend zusammenzudrücken.After the two film webs 14 a and 14 b have reached the welding temperature, the heating elements 18 are removed and the two film webs 14 a, 14 b, for example, by means of movable cylinders, not shown, compressed. The movable cylinders may be covered with a soft material to form the film webs 14a. 14b as gently as possible to compress.
In einer besonders vorteilhaften Ausführungsvariante klemmen die bewegbaren Zylinder die Heizelemente 18, wenn sie sich zwischen den Folienbahnen 14 a, 14b befinden, ein, sie drücken also die Folienbahnen 14 a, 14b gegen die Heizelemente 18. Nach Erreichen der Schweißtemperatur ziehen sich die Heizelemente 18 zurück.In a particularly advantageous embodiment, the movable cylinder clamp the heating elements 18 when they are between the film webs 14 a, 14 b, so they press the film webs 14 a, 14 b against the heating elements 18 After reaching the welding temperature, the heating elements pull 18 back.
Nachdem die beiden Folienbahnen 14 a, 14 b miteinander verbunden worden sind, wird ein dritter Bahnabschnitt 14 c (vgl. Fig. 1) an diese beiden Folienbahnen 14 a, 14 b angefügt. Dabei ist es zur Ausbildung der Wabenstruktur notwendig, dass die Verbindungsabschnitte 16 zwischen dem ersten Bahnabschnitt 14 a und dem zweiten Bahnabschnitt 14 b versetzt zu den dann folgenden Verbindungsabschnitten zwischen beispielsweise dem zweiten Bahnabschnitt 14 b und dem dritten Bahnabschnittl4 c angeordnet sind.After the two film webs 14a, 14b have been joined together, a third web section 14c (see Fig. 1) is added to these two film webs 14a, 14b. It is necessary for the formation of the honeycomb structure that the connecting portions 16 between the first track portion 14 a and the second track portion 14 b offset from the then following connecting portions between, for example, the second track section 14 b and the third Bahnabschnittl4 c are arranged.
Üblicherweise erfolgt ein Auffächern der zusammengefügten Folienbahnen 14a, 14 b zum endgültigen Wabenwerkstoff 10. Dies kann aber auch später, beispielsweise am Einsatzort des Wabenwerkstoffes erfolgen. Nachdem also ausreichend Folienbahnen 14 zusammengefügt wurden, werden diese derart mechanisch auseinander gezogen, dass sich die Wabenzellen öffnen und sich nach Abkühlen der gewünschte Wabenwerkstoff 10 ausbildet. Figur 4 zeigt eine Ausführung einer erfindungsgemäßen Heizelements 18 .Das Heizelement 18 besteht aus einem elektrisch leitfähigen Material, in das im gezeigten Ausführungsbeispiel zwei Schlitze 20 eingebracht sind. Die Schlitze 20 bewirken, dass dem Stromfluss je nach geometrischer Abmessung des verbleibenden Materials unterschiedliche elektrische Widerstände entgegengesetzt werden. Im gezeigten Ausführungsbeispiel sind Anschlüsse 22 in einem Fußbereich des Heizelementes 18 gezeigt, über die elektrischer Strom in das Heizelement 18 eingeleitet wird.Usually, a fanning of the assembled film webs 14a, 14b to the final honeycomb material 10. This can also be done later, for example, at the site of the honeycomb material. Thus, after sufficient foil webs 14 have been joined, they are mechanically pulled apart so that the honeycomb cells open and, after cooling, the desired honeycomb material 10 is formed. FIG. 4 shows an embodiment of a heating element 18 according to the invention. The heating element 18 consists of an electrically conductive material into which two slots 20 are made in the exemplary embodiment shown. The slots 20 cause the current flow depending on the geometric dimension of the remaining material different electrical resistances are opposed. In the exemplary embodiment shown, connections 22 are shown in a foot region of the heating element 18, via which electrical current is introduced into the heating element 18.
Die Schlitze 20 bewirken in der gezeigten Ausführungsvariante, das heiße Zonen 34 und kältere Zonen 36 erzeugt werden. Diese Zonen 34, 36 erstrecken sich sowohl in Längsrichtung des Heizelements als auch in Querrichtung. Die Anordnung und Geometrie der Schlitze 20 ist für jeden Einzelfall bzw. für jede zu fertigende Wabenherstellungsvorrichtung frei wählbar. Erkennbar ist auch, dass die geometrischen Abmessungen des Heizelementes 18 selbst die gewünschten Zonen 34, 36 mit unterschiedlichen elektrischen Widerständen und damit unterschiedlichen Temperaturen erzeugen. Das gezeigte Heizelement 18 verjüngt sich in diesem Beispiel in Richtung seines freien Endes, um eine bessere mechanische Stabilität zu erreichen.The slots 20 effect in the embodiment shown, the hot zones 34 and colder zones 36 are generated. These zones 34, 36 extend both in the longitudinal direction of the heating element and in the transverse direction. The arrangement and geometry of the slots 20 is freely selectable for each individual case or for each honeycomb manufacturing device to be manufactured. It can also be seen that the geometric dimensions of the heating element 18 itself produce the desired zones 34, 36 with different electrical resistances and thus different temperatures. The heating element 18 shown tapers in this example in the direction of its free end, in order to achieve a better mechanical stability.
Weiterhin zeigt Figur 4, dass die Zonen 34, 36 unterschiedlicher Temperatur auch durch Einbringen einer Nut 30 geschaffen oder beeinflusst werden können. Im Sinne dieser Erfindung beschreibt der Begriff Nut 30 eine Vertiefung im Material des Heizelements 18. Vorteilhafterweise kann die Nut mit einem ausgewählten Material gefüllt werden, wobei das Füllmaterial einen anderen elektrischen Widerstand als das Material des Heizelementes aufweist. Durch das Befüllen mit verschiedenen Materialen ist es möglich, die Temperaturzonen im Heizelement 18 zu variieren.Furthermore, FIG. 4 shows that the zones 34, 36 of different temperature can also be created or influenced by introducing a groove 30. For the purposes of this invention, the term groove 30 describes a recess in the material of the heating element 18. Advantageously, the groove can be filled with a selected material, wherein the filling material has a different electrical resistance than the material of the heating element. By filling with different materials, it is possible to vary the temperature zones in the heating element 18.
Das Einteilen in Temperaturzonen führt zu einer kontinuierlich auftretenden Temperaturtopographie. Durch die Verwendung des Heizelementes 18 wird gewährleistet, dass das zu verschweißende Material 14 mit einer seiner Position entsprechend angepassten Temperatur und Zeit verschweißt werden kann. Wird das Heizelement 18 zwischen zwei Folienbahnen eingeführt, um diese zu verschwei- ßen, entsteht der Kontakt zwischen dem Heizelement 18 und der Folienbahn erst in dem Moment, wenn das Heizelement 18 ganz eingeführt ist. Entsprechend kommt der untere Bereich der Folienbahn mit dem Heizelement 18 am längsten in Kontakt, weil das Heizelement 18 über seine ganze Länge von oben nach unten an diesem vorbeigeführt wird. Der obere Bereich der Folienbahnen 14 a, 14 b, 14 c kommt also nur kurz und nur mit dem heißen oberen Bereich des Heizelementes 18 in Kontakt, während dagegen der untere Bereich der Folienbahnen 14 a, 14 b, 14 c beim Ausführen mit allen Temperaturzonen des Heizelementes 18 in Kontakt kommt. Die unterschiedlichen Temperaturzonen des Heizelementes 18 gewährleisten somit die gewünschte optimale Wärmeübertragung an die Folienbahnen, so dass alle Bereiche der Folienbahnen wunschgemäß zusammengeschweißt werden und der untere Bereich der Folienbahnen 14 a, 14 b, 14 c nicht durch eventuell zu heißes oder zu langes Erwärmen oder Behandeln mit dem Heizkamm durch das Heizelement 18 zerstört wird.The division into temperature zones leads to a continuously occurring temperature topography. The use of the heating element 18 ensures that the material 14 to be welded can be welded to a temperature and time adapted to its position. If the heating element 18 is inserted between two film webs in order to weld them together. Shen, the contact between the heating element 18 and the film web is formed only at the moment when the heating element 18 is fully inserted. Accordingly, the lower portion of the film web comes with the heating element 18 the longest in contact, because the heating element 18 is guided over its entire length from top to bottom of this. The upper portion of the film webs 14 a, 14 b, 14 c comes so only briefly and only with the hot upper portion of the heating element 18 in contact, while the lower portion of the film webs 14 a, 14 b, 14 c when running with all temperature zones the heating element 18 comes into contact. The different temperature zones of the heating element 18 thus ensure the desired optimum heat transfer to the film webs, so that all areas of the film webs are welded together as desired and the lower portion of the film webs 14 a, 14 b, 14 c not by possibly too hot or too long heating or treatment is destroyed by the heating element 18 with the heating comb.
Die Wärmeübertragung kann erfindungsgemäß auch durch eine Anpassung der Bewegungsgeschwindigkeit des Heizelements beim Herausziehen beeinflusst werden. Zum Beispiel kann es sinnvoll sein, die Herausziehgeschwindigkeit während des Herausziehvorgangs zu erhöhen. The heat transfer according to the invention can also be influenced by an adaptation of the speed of movement of the heating element when pulling out. For example, it may be useful to increase the pull-out speed during the pull-out operation.

Claims

Patentansprüche claims
1. Heizelement (18) eines Heizkamms aus einem elektrisch leitenden Material (22) zur Herstellung eines Wabenwerkstoffes (10) aus thermofu- sionierbaren Material (14) gekennzeichnet durch Zonen (34, 36) mit unterschiedlichen elektrischen Widerständen, was zu unterschiedlicher Erwärmung der Zonen (34, 36) bei Stromfluss führt.1. heating element (18) of a heating comb made of an electrically conductive material (22) for producing a honeycomb material (10) from thermofu- sionable material (14) characterized by zones (34, 36) with different electrical resistances, resulting in different heating of the zones (34, 36) leads to current flow.
2. Heizelement (18) nach Anspruch 1, dadurch gekennzeichnet, dass die Zonen (34, 36) durch eine geometrische Formgebung des Heizelementes (18) erfolgt.Second heating element (18) according to claim 1, characterized in that the zones (34, 36) by a geometric shape of the heating element (18).
3. Heizelement (18) nach Anspruch 2, dadurch gekennzeichnet, dass die Formgebung durch mindestens einen Schlitz (20) erfolgt.3. heating element (18) according to claim 2, characterized in that the shaping by at least one slot (20).
4. Heizelement (18) nach einem der Ansprüche 1 bis 3, gekennzeichnet durch die Formgebung durch mindestens eine Nut (30) gebildet ist..4. heating element (18) according to one of claims 1 to 3, characterized by the shaping by at least one groove (30) is formed ..
5. Heizelement (18) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Heizelement (18) aus Metall besteht.5. heating element (18) according to one of claims 1 to 4, characterized in that the heating element (18) consists of metal.
6. Heizelement (18) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Nut (30) mit elektrisch leitendem Material gefüllt ist.6. heating element (18) according to one of claims 1 to 5, characterized in that the groove (30) is filled with electrically conductive material.
7. Heizelement (18) nach Anspruch 6, dadurch gekennzeichnet, dass, das elektrisch leitende Material (22) eine elektrische Widerstandsänderung von mindestens 400 ppm/°C, vorzugsweise > 1000 ppm/°C, bewirkt7. heating element (18) according to claim 6, characterized in that, the electrically conductive material (22) causes an electrical resistance change of at least 400 ppm / ° C, preferably> 1000 ppm / ° C causes
8. Heizelement (18) nach einem der Ansprüche 1 bis 7, gekennzeichnet durch mehrere Schlitze (20) und/oder Nuten (30).8. Heating element (18) according to one of claims 1 to 7, characterized by a plurality of slots (20) and / or grooves (30).
9. Heizelement (18) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Formgebung durch unterschiedliche Materialstärken gebildet ist. 9. heating element (18) according to one of claims 1 to 8, characterized in that the shaping is formed by different thicknesses of material.
10. Heizelement (18) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Formgebung über ihren Verlauf unterschiedliche geometrische Abmessungen aufweist.10. heating element (18) according to one of claims 1 to 9, characterized in that the shape over its course has different geometric dimensions.
11. Heizelement (18) nach einem der Ansprüche 1 bis 10, gekennzeichnet durch eine Beschichtung mit geringem Anhaftpotential. 11. Heating element (18) according to one of claims 1 to 10, characterized by a coating with low adhesion potential.
EP09702561A 2008-01-18 2009-01-06 Heating element of a heating comb for producing a honeycomb material Withdrawn EP2305004A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008005220.5A DE102008005220B4 (en) 2008-01-18 2008-01-18 Honeycomb material sheet welding machine
PCT/EP2009/050063 WO2009090116A2 (en) 2008-01-18 2009-01-06 Heating element of a heating comb for producing a honeycomb material

Publications (1)

Publication Number Publication Date
EP2305004A2 true EP2305004A2 (en) 2011-04-06

Family

ID=40547874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09702561A Withdrawn EP2305004A2 (en) 2008-01-18 2009-01-06 Heating element of a heating comb for producing a honeycomb material

Country Status (3)

Country Link
EP (1) EP2305004A2 (en)
DE (1) DE102008005220B4 (en)
WO (1) WO2009090116A2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT185569B (en) * 1952-05-12 1956-05-11 Herbert Dr Funck Device for welding thermoplastic materials
GB884826A (en) * 1959-08-14 1961-12-20 Cav Ltd Electric resistance elements
CH433098A (en) * 1964-12-28 1967-03-31 Tepar Ag Method for severing and welding strips of packaging materials and device for carrying out the method
DE3408901A1 (en) * 1984-03-10 1985-09-19 Optima-Maschinenfabrik Dr. Bühler GmbH & Co, 7170 Schwäbisch Hall DEVICE FOR WELDING FILMS
DE3722765A1 (en) * 1987-07-09 1989-01-19 Productech Gmbh HEATED STAMP
US4967058A (en) * 1988-04-13 1990-10-30 Kabushiki Kaisha Toshiba Power heating member
DE29508647U1 (en) * 1995-05-24 1995-08-10 Hainsberger Metallwerk GmbH, 01705 Freital Heating conductor for a foil welding device
GB2332844A (en) * 1997-12-29 1999-06-30 Jonathan Patrick Leech Infra-red heaters and elements therefor
ATE279316T1 (en) * 2000-01-11 2004-10-15 Versacore Ind Corp METHOD AND DEVICE FOR JOINING SECTIONS OF A THERMOPLASTIC WEB MATERIAL
SE522581C2 (en) * 2002-02-27 2004-02-17 Sandvik Ab Molybdenum silicide type element
DE102004063411A1 (en) * 2004-12-23 2006-07-06 Heinz Schmidt Non-metallic honeycomb for lightweight structures, thermal and acoustic insulation, is formed from elastic film such as biaxially oriented polyethylene terephthalate
DE102006016695A1 (en) * 2006-04-08 2007-10-11 Leister Process Technologies Electric heating element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102008005220B4 (en) 2016-07-14
DE102008005220A1 (en) 2009-07-30
WO2009090116A2 (en) 2009-07-23
WO2009090116A3 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
DE69630521T2 (en) METHOD FOR PRODUCING POROUS FLUOROPOLYMER FILMS
DE69721773T2 (en) Laminate structure and method for producing a laminate structure
DE2544128A1 (en) MULTIPLE STRIP CABLES AND METHOD OF MANUFACTURING IT
DE2125610C2 (en) Process for the production of a multilayer flat capacitor
DE2432350A1 (en) PROCESS FOR PRODUCING NETWORK STRUCTURES
EP1835786A1 (en) Planar heating element and process for manufacturing a planar heating element
WO2013156162A2 (en) Electric heating device, component and method for the production thereof
DE10026635B4 (en) Method for producing a soldered connection, electrotechnical product with the soldered connection and use of the electrotechnical product
DE10135111A1 (en) Composite nonwoven fabric with high transverse strength, process for its production and use
EP0111728A2 (en) Method of and device for producing products in the shape of strips or foils
DE10017493B4 (en) Method for producing a component with an internal tissue
DE102008005220B4 (en) Honeycomb material sheet welding machine
DE2816044C3 (en) Weldable binding tape and method for producing a tape or strip-shaped laminar composite article
DE2709484C2 (en) Process for the production of tube casings for tube electrodes of accumulators and device therefor
DE19880108C2 (en) Block plate made of a thermoelectric material, rectangular rod cut therefrom and method for producing such a block plate
DE102020107515A1 (en) Multimetal Velcro Welding
EP0099562A2 (en) Multi-layered textile product
DE2136455C3 (en)
EP3052690A1 (en) Reinforcement element and method for producing said type of reinforcement element
DE3144781A1 (en) Process for producing deformable plastic composites
DE2136455B2 (en) Method for producing a split fiber network
DE19545914C1 (en) Ceramic boat for use in vaporising metals, esp. aluminium@, in coating processes
EP3241666B1 (en) Heating device
DE102004044278B4 (en) Honeycomb material of thermofusible material, and an apparatus and a method for producing such a honeycomb material
DE2236286C3 (en) Non-woven reinforced paper with an open network reinforcement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110215

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150903

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20191204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603