Verfahren zum Abtrennen und Verschweissen von Bahnen von Verpackungsmaterialien und Vorrichtung zur Ausführung des Verfahrens
Die vorliegende Erfindung betrifft Verbesserungen in der Technik des Abtrennens von flachen Materialien und Verschweissens von zwei solchen Materialien oder zwei Teilen eines solchen Materials aneinander.
Die Erfindung betrifft insbesondere das Abtrennen und Verschweissen von Materialien, die aus heissverschweissbarem Kunststoff bestehen, oder von Materialien, die mindestens eine Oberfläche von heissverschweissbarem Kunststoff haben. Insbesondere betrifft die Erfindung ein Verfahren zum Abtrennen und Verschweissen von Bahnen von Verpackungsmaterialien in einer einzigen Operation.
Aus Ersparnisgründen bemüht man sich, beispielsweise bei der Herstellung von Verpackungen oder Rohlingen für Verpackungen den Verbrauch an Materialien auf das äusserste Minimum herabzusetzen. Bei einer gegebenen Dicke des Materials bietet das Verhältnis der Verpackungsoberfläche, die für jede Verpackung notwendig ist, zum Volumen des Produktes, das innerhalb der Verpackung untergebracht werden kann, einen Index für die Festsetzung des Preises der ganzen Verpakkung. Gewisse Teile des Verpackungsmaterials mancher Verpackungen müssen keine reine verpackungsbildende Funktion ausüben, sondern rühren von dem Herstellungsverfahren der Verpackung her.
Beispielsweise bekommen Beutel oder beutelförmige Rohlinge von Verpackungen mit einer inneren Oberfläche von heissverschweissbarem Kunststoff, die an ihren Rändern durch Heissverschweissen verschlossen werden, entlang den Schweissnähten sogenannte Grate. Verpackungen, die insbesondere für das Verpacken von Flüssigkeiten bestimmt und aus einem röhrenförmigen, teilweise mit Flüssigkeit gefüllten Verpackungsrohling mittels eines Verfahrens hergestellt werden, bei dem die Schlauchwände durch geeignete Mittel zusammengepresst und in Richtungen im rechten Winkel zur Schlauchachse heissverschweisst werden, sind ebenfalls mit solchen Graten versehen. Diese sind in dem schwedischen Patent Nr. 123 250 deutlich sichtbar.
Die Grate bilden einen Sicherheitsfaktor, um das Abschneiden einer der beiden Querverbindungsnähte beim Abtrennen der fertigen Verpackungen von dem röhrenförmigen Rohling zu vermeiden.
Das Abschneiden der fertigen Verpackungen wurde mit Hilfe von Spezialmessern ausgeführt, die mit den Verschweissvorrichtungen synchronisiert waren. Bei den hohen Geschwindigkeiten, die hier in Betracht kommen, nämlich eine oder mehrere Verpackungen pro Sekunde, treten bei der Schaffung mechanischer Vorrichtungen, die jede Verpackung an genau der gleichen Stelle in den Querschweissnähten abzutrennen vermögen, ausserordentliche Schwierigkeiten auf. Selbst wenn es gelingt, die Schneidvorrichtung perfekt zu machen, bleiben die Schwierigkeiten, die sich durch das Ziehen und Drehen des Verpackungsmaterials ergeben, zu lösen. Daher musste man bis heute beim Abschneiden der Verpackungen von dem Schlauchrohling mit ziemlich grossen Sicherheitsfaktoren arbeiten, wodurch sich die Grate ergaben.
Man hat bereits früher die grossen Materialverluste beobachtet, die durch die Grate verursacht werden, und versucht, das Problem durch mechanische Mittel zu lösen, indem man die Schweissbacken mit Messern versah, um eine erhöhte Synchronisierung der Schweiss- und Schneidoperationen zu erhalten. Theoretisch kann durch Verwendung dieser Vorrichtungen die Breite der Grate herabgesetzt werden, aber das Verfahren konnte nicht mit guten Ergebnissen verwirklicht werden, was unter anderem von der Tatsache abhängt, dass während des kurzen Zeitraumes, der für jede einzelne Verschweissungsoperation zur Verfügung steht, nicht einerseits eine gute Schweissnaht gebildet und andererseits die Verpakkung entlang der gebildeten Schweissnaht mechanisch abgeschnitten werden konnte.
Ein Ziel der Erfindung ist es, ein Material ohne Verwendung mechanischer Schneidwerkzeuge abzuschneiden.
Ein anderes Ziel der Erfindung ist es, Materialien mit Oberflächen von heissverschweissbarem Kunststoff, die gegeneinander zusammengebracht worden sind, zu verschweissen.
Ein weiteres Ziel der Erfindung ist es, das.Ver- schweissen und Abtrennen eines Materials in einer einzigen Operation auszuführen.
Ferner ist es ein Ziel der Erfindung, erhebliche Ma terialverluste bei der Herstellung von Verpackungen zu vermeiden und Verpackungen herzustellen, die vom hygienischen Standpunkt aus zufriedenstellender sind.
Ein weiteres Ziel ist es, Verpackungen mit verbesserten Abdichtungseigenschaften zu erzeugen.
Wie in der schwedischen Patentschrift Nr. 123 250 offenbart wird, können Verpackungen ausgehend von einem flachen Bahnmaterial hergestellt werden, das zu einem Schlauch geformt wird, der mit einem flüssigen Füllprodukt gefüllt wird. In diesem Fall wird der Schlauch zu tetraedrischen Verpackungen geformt, die, falls das Material eine Oberfläche von Kunststoff besitzt, die dem Inneren der Verpackung gegenüberliegt, heissverschweisst und von dem Schlauch abgetrennt werden, indem man in dem Gebiet zwischen den Querschweissnähten schneidet. Wenn mit Kunststoff überzogenes Material verwendet wird, wird während der Schlauchbildungsoperation die Längsverbindungsnaht des Schlauches ebenfalls in Längsrichtung durch Heissverschweissen verschweisst.
Bei der Kreuzung zwischen einer Längsnaht und einer Quemaht einer fertigen Verpakkung bildet sich leicht ein enger Kanal; der sehr schwierig abzudichten ist. Ein weiteres Ziel der Erfindung ist es daher, diesen Kanal abzudichten.
Demgemäss betrifft die vorliegende Erfindung ein Verfahren zum Abtrennen und Verschweissen von Bahnen von Verpackungsmaterialien zur Herstellung von Verpackungen. Das Verfahren ist dadurch gekennzeichnet, dass zwei Flächenabschnitte des Materials in einer länglichen, schmalen Zone in der das Abtrennen und Verschweissen erfolgen soll, übereinandergelegt und gegeneinander gepresst werden, wobei das wandbildende Verpackungsmaterial innerhalb einer Trennlinie in der genannten Zone getrennt wird, während gleichzeitig diejenigen Materialpartien, die innerhalb der Zone beidseits der Trennlinie angeordnet sind, verschweisst werden.
Die Erfindung betrifft auch eine Vorrichtung zur Ausführung des Verfahrens, die ein langgestrecktes, schmales Verschweissungs- und Abtrennwerkzeug mit einer Arbeitsfläche aufweist, die mindestens einen gleichen Bereich wie die Verschweissungs- und Abtrennzone umfasst, und dadurch gekennzeichnet ist, dass die Arbeitsfläche einen ersten Abschnitt aufweist, der sich über die ganze Werkzeuglänge erstreckt und praktisch die gleiche Breite wie die Abtrennzone hat, und zum Übertragen einer mindestens der Höhe der Schmelztemperatur des Verpackungsmaterials entsprechenden Temperatur dient, während zweite Abschnitte auf beiden Seiten dieser Zone nur zum Übertragen einer für das Heissverschweissen des Materials geeigneten Temperatur dienen.
Gemäss einer speziellen Ausführungsform der Erfindung wird eine erhitzte Arbeitsfläche des Werkzeuges in dem Bereich, in dem das Verschweissen und Schneiden ausgeführt werden soll gegen das Material gepresst.
Der Abschnitt ist gleich oder länger als die Länge der gewünschten Schweissnaht. Entlang der ganzen Ausdehnung der Arbeitsfläche hat der mittig liegende Abschnitt eine höhere Temperatur als die seitlich davon liegenden Abschnitte oder es sind Vorkehrungen getroffen, um einen stärkeren Wärmestrom zur Verpackungsmaterial partie hervorzurufen, die vom mittig liegenden Abschnitt der Arbeitsfläche berührt und durchgeschmolzen wird.
Die Erfindung ist im Folgenden anhand der Zeichnung beispielsweise beschrieben, wobei
Fig. 1 veranschaulicht, wie das Verschweissen und Abtrennen früher ausgeführt wurde;
Fig. 2 und 3 das Prinzip der Erfindung offenbaren ;
Fig. 4 und 5 das Prinzip der Erfindung mit einer Vorrichtung, die von der in Fig. 2 gezeigten etwas verschieden ist, offenbaren;
Fig. 6 zeigt, wie tetraedrische, mit Flüssigkeit gefüllte Verpackungen früher verschweisst wurden;
Fig. 7 zeigt in vergrössertem Massstab eine Einzelheit von Fig. 6, die dort durch einen Kreis umgeben ist;
Fig. 8 ist ein Schnitt durch eine gemässe einem früher ausgeführten Verfahren erzeugte Schweissstelle;
Fig. 9 zeigt, wie zwei Materialien erfindungsgemäss vereinigt worden sind, um verschweisst und zerschnitten zu werden;
Fig. 10 zeigt die Schweissstelle gemäss Fig. 9 in vergrössertem Massstab zusammen mit einem Temperatur diagramm;
Fig. 11 zeigt eine Schweissnaht gemäss der Erfindung;
Fig. 12 ist ein Schnitt durch eine früher verwendete Schweissbacke;
Fig. 13 ist ein Schnitt durch eine erfindungsgemässe Schweissbacke und
Fig.l4 bis 19 sind Einzelheiten von Verschweiss- und Schneidvorrichtungen gemäss der Erfindung, wobei Fig. 19 eine Einzelheit von Fig. 18, von unten gesehen, darstellt.
In Fig. 1, die das früher allgemein verwendete Verfahren zum Verschweissen und Zerschneiden von zwei Bahnmaterialien zeigt, sind die beiden Materialien durch 1 und 2 bezeichnet. Sie können aus heissverschweissbarem Kunststoff bestehen oder mindestens eine innere Oberfläche von heissverschweissbarem Kunststoff haben, d.h. die Oberfläche, die gegen die zu bildende Verpackung gerichtet ist. Das Heissverschweissen umfasst daher auch das Verschweissen mittels Hochfrequenz. Sie können ferner aus Materialien bestehen, die mit Hilfe von Ultraschall verschweisst werden können. Ferner können die Materialien auf den Innenseiten in denjenigen Gebieten, die eine Schweissnaht bilden sollen, mit einer Klebstoffpaste versehen werden.
Das Verschweissen wird mit Hilfe von zwei Schweissbacken 3 und 4 ausgeführt, die in bezug aufeinander beweglich sind. Durch Bewegen der Backen in Richtung aufeinander werden die Materialien 1 und 2 in einem Gebiet 5', das eine verhältnismässig grosse Ausdehnung hat, zusammengepresst. In Abhängigkeit von den Materialien 1 und 2, die verwendet werden, werden die Bakken 3, 4 beispielsweise auf die Schweisstemperatur erhitzt. Sie senden ferner elektromagnetische Hochfrequenzsignale aus, um eine geeignete Verschweisstemperatur zu liefern. Ferner kann eine die beiden Materialien gemäss dem Ultraschallprinzip mit einer hohen Frequenz gegeneinander schlagen oder einfach mit Paste versehene Oberflächen gegeneinander bewegen. Welches Prinzip auch immer verwendet wird, das Ergebnis ist eine Schweissnaht 5'.
Zwischen zwei benachbarten Schweissnähten 5' und 5" wird ein Raum 7 erhalten, der beispielsweise für Verpackungszwecke verwendet werden kann, wobei der Begriff Verpackung in seinem Weitesten Sinne genommen wird.
Die Trennung von zwei benachbarten Verpackungen voneinander geht so vor sich, dass mit einem Schneideglied 6, beispielsweise einem Messer, ein Schnitt durch die Wand des Materials vorgenommen wird, der sich in dem Verschweissungsgebiet 5" von Rand zu Rand er streckt. Um zu garantieren, dass der Schnitt tatsächlich in dem Verschweissgebiet vorgenommen wird, muss dieses eine erhebliche Breite haben, die bei der Schneidoperation einen Sicherheitsfaktor bildet. Dadurch wird ein Grat mit einer Breite a gebildet, der in der Verpackung keine direkte Funktion ausübt, sondern lediglich ein Überbleibsel aus dem Verpackungsverfahren ist.
Fig. 2 zeigt, wie diese Grate und die sie begleitenden Materialverluste erfindungsgemäss vermieden werden können und ferner wie spezielle mechanische Schneideglieder vermieden werden. Zwei bewegliche Glieder 10 und 11 werden verwendet, die in Fig. 2 schematisch dargestellt sind. Diese Glieder pressen die Materialien 1, 2 in einem Gebiet 12, das eine viel geringere Ausdehnung hat als das entsprechende Gebiet 5' in Fig. 1, zusammen. Die Glieder 10, 11 sind in einer entsprechenden Weise in Abhängigkeit von dem vorliegenden Verpakkungsmaterial 1, 2 hergestellt. Sie können demgemäss Schall mit einer ultrahohen Frequenz aussenden. Durch festes Zusammenpressen der Glieder 10, 11 ist der Ultraschall in dem mittleren Teil des Gebietes 12 am intensivsten, während die benachbarten Teile eine etwas schwächere Schallenergie empfangen.
Durch entspre. chendes Ausgleichen von Drücken, Konstruktion der Glieder 10, 11 und Schallintensität können die Materialien 1, 2 wie aus Fig. 3 ersichtlich ist, dazu gebracht werden, in einem Gebiet 13, das dem mittleren Teil des Gebietes 12 entspricht, zu zerspringen, während die Materialien 1, 2 in dem benachbarten Teilen 14, 15 aneinander geschweisst werden. Die Verschweissung wird fixiert, indem man die Glieder während eines kurzen Zeitraumes nach der Ausführung der Schneidoperation in Berührung lässt. Man kann auch die seitlichen Teile der Schneidränder erhitzen.
Wenn die Glieder 10, 11 stattdessen auf eine hohe Temperatur erhitzt werden, werden die Materialien in den Gebieten 14 und 15 heissverschweisst, während in dem mittleren Gebiet 13 das Abbrennen stattfindet.
Dies hängt von der Tatsache ab, dass der Wärmestrom zu dem mittleren Teil viel stärker ist als derjenige zu den umgebenden Teilen, wodurch die Brenntemperatur des Materials in dem mittleren Teil erreicht oder überschritten wird, während die Temperatur in den Schweissnähten, die gebildet werden sollen, nur eine geeignete Verschweisstemperatur erreicht. Wie die Glieder 10, 11 zwecks Erzielung guter Ergebnisse auch mit hohen Anforderungen an die Festigkeit der Schweissnähte konstruiert werden können, wird im folgenden gezeigt.
Fig. 4 zeigt eine etwas andere Verschweiss- und Schneidmethode. In diesem Falle ist nur ein bewegliches Glied 10 vorhanden, während das in Fig. 2 dargestellte Glied 11 durch einen stationären Gegenhalter 17 ersetzt worden ist. Das Material 1 wird gegen das Material 2 gegenüber dem Gegenhalter 17 gepresst. Die Schneidund Verschweissenergie wird in der schon erwähnten Weise von dem Glied 10 übertragen. Der Gegenhalter 17 kann passiv sein, d.h. nur eine entgegenwirkende Funktion haben. Das erhaltene Ergebnis ist, wie aus Fig. 5 ersichtlich ist, ein Abschneiden der Materialien 1, 2 in dem den mittleren Teil des Gebietes 18 entsprechenden Gebiet 13 und das Verschweissen der Materialien 1 und 2 in den Gebieten 19 und 20, die in Richtung auf den Gegenhalter 17 etwas verschoben sind.
Fig. 6 zeigt eine Anzahl von tetraedrischen Verpakkungen 22, 23, 24, 25 und 26 und wie diese gemäss einem bekannten Verfahren verschweisst werden. Gemäss dem Verfahren zur Bildung solcher Verpackung geht man gewöhnlich von einer Bahn von Papiermaterial aus, wobei mindestens die Seite des Papiers, die die innere Seite der fertigen Verpackung bilden soll, eine Oberfläche von heissverschweissbarem Kunststoff hat. Das Bahnmaterial wird zu einem vertikalen Schlauch geformt, der in Längsrichtung verschweisst und mit einem flüssigen Produkt gefüllt wird. Der untere Teile des Schlauches wird durch eine Querverschweissung der in Fig. 6 gezeigten Art geschlossen und verschweisst.
Wenn die Verschweissungen vorgenommen worden sind, werden die einzelnen Verpackungen durch Schnitte in oder zwischen zwei benachbarten Verschweissungen in einer Weise, wie beschrieben werden wird, voneinander abgetrennt. Wie bereits erwähnt, wird das Abschneiden der fertigen Verpackungen von dem Schlauch mit Hilfe spezieller mechanischer Schneidglieder oder Messer vorgenommen.
Diese benötigen einen gewissen Sicherheitsfaktor, um sicherzustellen, dass der Schnitt nicht in einer Linie neben der gewünschten eintritt, wodurch die Verschweissung geschwächt wird oder ein Lecken eintritt. Zwischen zwei benachbarten Verpackungen 23 und 24 sind daher zwei verhältnismässig schmale Schweisszonen 31 und 32 mit einer dazwischenliegenden nicht verschweissten Zone 33, die verhältnismässig breit ist, hergestellt worden.
Darauf sind die beiden Verpackungen entlang der mittleren Linie C durch mechanische Schneidglieder voneinander abgetrennt worden, wobei die Zone 33 als Sicherheitsfaktor dient. Das durch den Kreis 40 umschlossene Bebiet ist in Fig. 7 vergrössert. Es ist daraus ersichtlich, dass die Breite al der Verschweissungszone 31 und die Breite a2 der Verschweissungszone 32 eine praktisch gleiche Grösse haben oder der Breite a gleich ist.
Die Länge A ist der gegenseitige Abstand der Verschweissungszonen, und die Länge (A-a) ist der Spielraum oder die Toleranz, innerhalb dessen das Schneidglied arbeitet.
Fig. 8 stellt einen Schnitt durch ein gemäss dem bekannten Verfahren erzeugtes Verschweissungsgebiet dar.
Das Gebiet 33 zwischen zwei Verschweissungszonen besteht aus zwei Wänden 34 und 35 von Material, das nicht aneinander geschweisst ist. Zwischen diesen Wänden wird ein kleiner enger Raum 36 gebildet, der bei diesem bekannten Verfahren nicht vermieden werden kann. Wenn man eine Flüssigkeit verpackt, sammelt sich hier eine kleine Menge des flüssigen Produktes an, das bei der Verschweissungsoperation gegen die Verschweissungszonen 31 und 32 gepresst wird, wodurch eine absolute Abdichtung gefährdet wird.
Wenn man die Wände 34, 35 des Materials abschneidet, kommt der Raum 36 mit der darin enthaltenen Flüssigkeit in Berührung mit der umgebenden Luft.
Wenn das Produkt beispielsweise aus Milch oder irgendeinem anderen Substrat besteht, gibt es ein grosses Risiko, dass der Raum bald eine Bakterienkolonie bildet, was unter anderem von der Tatsache abhängt, dass die Flüssigkeit Insekten anzieht. Vom aseptischen Standpunkt aus bringt dies ein grosses Risiko mit, weil der Inhalt der Verpackung selbst dadurch leicht infiziert wird, wenn sie geöffnet wird.
Es wurde ein Versuch unternommen, diese Nachteile zu beseitigen, indem man das ganze Gebiet 33 ver schweisste wodurch die Zonen 31, 33 und 32 eine einzige ein Ganzes bildende Verschweissungszone darstellen.
Diese hat eine erhebliche Breite, was dazu führt, dass das einzufüllende Produkt. bei dem Verschweissungsprozess nicht vollständig herausgedrückt wird, sondern in der Schweissnaht eingebettet wird. Wenn man Milch gemäss diesem Verfahren verpackt, hat man beispielsweise kleine Mengen des einzufüllenden Produktes in den Schweissnähten gefunden, was natürlich ein grosses Risiko ist.
Fig. 9 zeigt, wie zwei Materialien 41, 42 zusammengepresst worden sind, um erfindungsgemäss verschweisst und abgeschnitten zu werden. Der Massstab von Fig. 9 ist der gleiche wie in Fig. 8. Es ist demgemäss ersichtlich, dass die Breite b der Verschweissungszone, die gebildet werden soll, praktisch gleich gross ist wie eine der Verschweissungszonen al oder a2.
Mit Bezug auf Fig. 10 werden die Prinzipien der wirksamen Verschweissung und des wirksamen Schneidens mit Hilfe von Wärme erklärt. Da hier und weiterhin das Heissverschweissen besonders beschrieben ist, sollte man festhalten, dass die vorliegende Erfindung nicht auf die Heissverschweissungstechnik beschränkt ist, sondern dass andere Verschweissungsverfahren ebenfalls im Rahmen der Erfindung liegen.
Fig. 10 ist eine Vergrössung von Fig. 9. Die Wände 41, 42 des Materials können aus einem heissverschweissbaren Kunststoff oder beispielsweise aus Papiermaterial mit einander gegenüberliegenden Oberflächen von Kunststoff bestehen. Die Materialien können ferner geschichtet sein. Das Verfahren wurde sogar mit Schichtstoffen, die Aluminiumfolien enthielten, mit guten Ergebnissen geprüft.
Die Wände 41, 42 werden aufeinander zu bewegt und von beiden Seiten durch nicht dargestellte Glieder zusammengepresst, von denen mindestens eines beweglich ist. Ein Glied kann demgemäss stationär sein und einen Gegenhalter bilden. Ferner ist mindestens ein Glied erhitzt worden, wobei der Wärmestrom zu dem Verschweissungs- und Abbrenngebiet das charakteristische Aussehen hat, das in der Temperaturverteilungskurve in dem Oberteil der Figur dargestellt ist.
Der Wärmestrom hat ein Maximum auf der mittleren Achse C der Verschweissungszone. Dieses Maxi mum liegt oberhalb der Brenntemperatur tq des Materials. In der Zone q, die dem Teil der Kurve entspricht, der oberhalb der Linie tq liegt, wird das Material daher abgebrannt. Diese Zone kann sehr schmal gemacht werden, indem man die Kurve sehr spitz macht.
Die Temperatur tfi ist die untere Heissverschweissungstemperatur der Kunststoffschicht, und die Temperatur tr ist die obere Heissverschweissungstemperatur derselben. Zwischen diesen beiden Temperaturen zeigt die Kurve einen flachen Teil, der von der unteren zur höheren Temperatur wenig ansteigt. Durch diesen geringen Anstieg erhält die fertige Schweissnaht ausserordentlich gute Festigkeits- und Abdichtungseigenschaften. Die Verschweissungszonen sind durch den Buchstaben f bezeichnet. Zwischen den Verschweissungszonen und der Abbrennzone liegen kleinere Übergangszonen x. In diesen Zonen existiert das Risiko, dass sich das Material verfärbt. Die Zonen können jedoch sehr schmal gemacht werden, wodurch die Verfärbung mit dem unbewaffneten Auge kaum wahrgenommen werden kann.
In Fig. 11 ist ein Schnitt durch eine Verschweissungsstelle schematisch dargestellt. Der Teil des Materials, der abgebrannt wird, ist verhältnismässig klein, und daher ist die Breite jeder Schweissnaht unwesentlich kleiner als b/2. Eine auf diese Weise hergestellt Schweissnaht hat sich, wie bereits erwähnt, als sehr fest und abdichtend werwiesen. Die gute Dichtigkeit hängt unter anderem von der Tatsache ab, dass auch der Schlauch, der mit den bekannten Verschweissungsverfahren am Kreuzungspunkt zwischen einer Längsnaht und einer Querschweissnaht gebildet wurde, gemäss diesem Verfahren mit geschmolzenem Kunststoff, der sich danach verfestigt, gefüllt ist. Das Verschweissen dieses Schlauches geschieht vorzugsweise in einem Teil der Verschweissungszone, der am nächsten der Abbrennzone gelegen ist.
Hier ist die Temperatur höher als im Rest der Verschweissungszone (siehe die Kurve in Fig. 10), wodurch der Kunststoff flüssiger ist und besser in alle Hohlräume zu fliessen vermag.
Fig. 12 zeigt einen Schnitt durch eine Schweissbacke, die bei der Herstellung der in den Figuren 6 bis 8 dargestellten Schweissnähte gemäss der bekannten Methode verwendet wird. Die Schweissnähte werden dann durch zwei schmale Streifen 45, 46 hergestellt, die auf eine geeignete Verschweissungstemperatur erhitzt werden. Die Streifen 45, 46 sind in einer Basis 47 befestigt, die in lösbarer Weise in dem Material 48 befestigt ist.
Fig. 13 zeigt schematisch in einem Schnitt durch eine erfindungsgemässe Vorrichtung die Hauptkomponenten einer Verschweissungs- und Schneidbacke, die bei der Ausführung des erfindungsgemässen Verfahrens verwendet wird. Die Verschweissungsglieder 50 und 51 mit dem Schneidglied 52 dazwischen, das aus einem Teil der ersteren bestehen kann, sind vorzugsweise in einem Abstützstück 53 befestigt, das in lösbarer Weise in dem Material 54 befestigt ist.
In Fig. 14 sind die unteren Einzelheiten von Fig. 13 in einem vergrösserten Massstab dargestellt. Gemäss dieser Ausführungsform besteht das Schneidglied aus einem stark erhitzten Draht 52, der zwischen zwei Metallstreifen 50 und 51, die auf eine etwas niedrigere Temperatur als der Draht 52 erhitzt werden, angebracht ist. Das Erhitzen findet durch Anlegen einer elektrischen Spannung über den Draht 52 und die Streifen 50 und 51 statt. Die Spannung kann konstant sein oder, was oft zweckmässiger ist, in Form von Impulsen zugeführt werden.
Das stärkere Erhitzen des Drahtes 52 als der Streifen 50, 51 kann praktisch auf zwei Weisen geschehen.
Ein Verfahren besteht darin, die Querschnittsflächen des Drahtes und der Streifen in einer geeigneten Weise anzupassen. Das andere Verfahren besteht darin, den Draht 52 und die Streifen 50, 51 aus verschiedenen Materialien herzustellen.
Wie wohlbekannt ist, ist die als Wärme in einem Widerstandsleiter entwickelte Energie dem spezifischen Widerstand des Leiters umgekehrt proportional und der Querschnittsfläche derselben direkt proportional. Gemäss der in Fig. 14 dargestellten Ausführungsform ist der Draht 52 so gemäss diesem Grundsatz aus einem Material mit einem wesentlich geringen spezifischen Widerstand als die Streifen 50, 51 hergestellt. Informationen über Materialien, die die gewünschten elektrischen Eigenschaften besitzen, können aus gewöhnlichen Handbüchern der Technik erhalten werden. Gemäss dem anderen Prinzip gibt man dem Draht eine wesentlich grössere Querschnittsfläche als den Streifen, oder genauer, man gibt ihm einen Durchmesser, der grösser ist als die Dicke des Streifens, wodurch die pro Einheit der Breite entwickelte Energie in dem Draht wesentlich grösser ist als in dem Streifen.
Was unter einer Einheit der Breite verstanden wird, ist aus der Tatsache ersichtlich, dass die Entfernung b als Breite des Gliedes bezeichnet wird.
Fig. 15 zeigt eine andere Ausführungsform der Verschweissungs- oder Abbrennglieder. Diese sind als ein ein Ganzes bildendes Stück 60 hergestellt, das im mittleren Teil, d.h. dem Teil, der der Zone q in Fig. 10 entspricht, eine wesentlich grössere Dicke hat. Daher besteht das Prinzip gemäss dieser Ausführungsform darin, die Querschnittsflächen der Verschweissungs- und Abschneideteile in angemessener Weise anzupassen.
Eine gewisse Wärmestrahlung findet natürlich zwischen den Gliedern 60 und der Umgebung 53 statt.
Diese Strahlung kann jedoch kompensiert werden, indem man den elektrischen Strom durch das Glied 60 erhöht, oder wie in der Figur, indem man die Dicke des Gliedes mindestens im mittleren Teil beträchtlich gross macht. In der Ausführungsform gemäss Fig. 16 wird es stattdessen bevorzugt, einen Streifen 70 durch eine Wärmeisolation 71 thermisch von der Umgebung zu isolieren. Diese Wärmeisolation kann im mittleren Teil schwerer gemacht werden, wodurch die Temperatur des Streifens 70 hier grösser ist. Möglicherweise kann die Isolierung ganz auf die mittlere Zone konzentriert sein oder in irgendeiner anderen geeigneten Weise konstruiert sein.
Gemäss der in Fig. 17 dargestellten Ausführungsform ist ein Streifen 80 vorgesehen, dessen seitliche Teile als Heissverschweissungsvorrichtung dienen. Auf diesem Streifen am mittleren Teil desselben ist ein schmalerer Streifen 81 vorgesehen, der als Abtrennvorrichtung für das abzutrennende Material dient. Der spezifische Widerstand dieses Streifens 81 ist wesentlich geringer als derjenige des Heissverschweissungsstreifens 80.
Schliesslich zeigen Fig. 18 und 19 noch eine andere Ausführungsform. Fig. 19 zeigt die Verschweissungsund Abtrennvorrichtung, von der Unterseite von Fig. 18 aus gesehen. Der elektrische Strom wird durch den mittleren Teil 90 geleitet. Dieser wird dadurch stark erhitzt, so dass das Abtrennen des zu verschweissenden Materials stattfindet. Gleichzeitig findet ein Wärmetransport zu den seitlichen Teilen 91, 92 statt, die aus einer grossen Anzahl von Zähnen bestehen, die durch Zwischenräume 94 getrennt sind. Die seitlichen Teile werden dadurch auf eine geeignete Verschweissungstemperatur erhitzt.
Die in den Fig. 14 bis 19 dargestellten Anordnungen können natürlich auf verschiedene Weisen kombiniert werden. Beispielsweise kann es in einer Anzahl von Fällen, insbesondere wenn verhältnismässig dicke geschichtete Materialien abgetrennt werden, wie in Fig. 14 notwendig sein, das Abtrennglied etwas vorstehend zu machen (Draht 52). Um die Abtrennung des Materials zu erleichtern, kann das Verfahren mit einem Ziehen in dem Material kombiniert werden. Da dieser Zug in den meisten Verpackungsmaschinen bereits besteht, wie zuvor erwähnt wurde, brauchen im allgemeinen keine zusätzlichen Vorrichtungen zur Erzeugung dieses Zuges vorgesehen zu werden.
Method for severing and welding strips of packaging materials and device for carrying out the method
The present invention relates to improvements in the art of severing flat materials and welding two such materials or two pieces of such material together.
The invention relates in particular to the severing and welding of materials which consist of heat-weldable plastic, or of materials which have at least one surface of heat-weldable plastic. In particular, the invention relates to a method for severing and sealing webs of packaging materials in a single operation.
For reasons of economy, efforts are made to reduce the consumption of materials to the absolute minimum, for example in the production of packaging or blanks for packaging. For a given thickness of material, the ratio of the packaging surface area necessary for each packaging to the volume of product that can be accommodated within the packaging provides an index for determining the price of the entire package. Certain parts of the packaging material in some packaging do not have to perform a pure packaging-forming function, but rather result from the manufacturing process of the packaging.
For example, bags or bag-shaped blanks from packaging with an inner surface of heat-weldable plastic, which are closed at their edges by heat-welding, get so-called burrs along the weld seams. Packagings, which are intended in particular for packing liquids and are made from a tubular, partially liquid-filled packing blank by means of a process in which the tube walls are pressed together by suitable means and heat-welded in directions at right angles to the tube axis, also have such burrs Mistake. These are clearly visible in the Swedish patent no. 123 250.
The burrs form a safety factor in order to avoid cutting off one of the two cross-connecting seams when separating the finished packaging from the tubular blank.
The finished packaging was cut off with the help of special knives that were synchronized with the welding devices. At the high speeds that are considered here, namely one or more packages per second, there are extraordinary difficulties in creating mechanical devices which are able to separate each package at exactly the same point in the transverse weld seams. Even if the cutting device is made perfect, the difficulties arising from pulling and rotating the packaging material remain to be solved. Therefore, until today, when cutting the packaging from the tube blank, one had to work with fairly large safety factors, which resulted in the burrs.
The large losses of material caused by the burrs have been observed in the past and attempts have been made to solve the problem by mechanical means by providing the welding jaws with knives in order to obtain an increased synchronization of the welding and cutting operations. Theoretically, the width of the burrs can be reduced by using these devices, but the method could not be implemented with good results, which depends, among other things, on the fact that, during the short period of time available for each individual welding operation, not one good weld seam formed and on the other hand the packaging could be cut mechanically along the weld seam formed.
One object of the invention is to cut a material without using mechanical cutting tools.
Another object of the invention is to weld materials with surfaces of heat-weldable plastic that have been brought together against one another.
Another aim of the invention is to carry out welding and separating of a material in a single operation.
It is also an object of the invention to avoid considerable material losses in the manufacture of packaging and to produce packaging which is more satisfactory from a hygienic point of view.
Another aim is to produce packaging with improved sealing properties.
As disclosed in Swedish Patent Specification No. 123,250, packaging can be made from a flat sheet material which is formed into a tube which is filled with a liquid filling product. In this case, the tube is formed into tetrahedral packaging which, if the material has a surface made of plastic facing the inside of the packaging, is heat-sealed and separated from the tube by cutting in the area between the transverse weld seams. If plastic-coated material is used, the longitudinal connecting seam of the hose is also welded in the longitudinal direction by heat-welding during the hose-forming operation.
At the intersection between a longitudinal seam and a transverse seam of a finished package, a narrow channel is easily formed; which is very difficult to seal. Another object of the invention is therefore to seal this channel.
Accordingly, the present invention relates to a method for severing and welding strips of packaging materials for the production of packaging. The method is characterized in that two surface sections of the material in an elongated, narrow zone in which the separation and welding is to take place, are placed on top of one another and pressed against each other, the wall-forming packaging material being separated within a dividing line in said zone, while at the same time those material parts , which are arranged within the zone on both sides of the dividing line, are welded.
The invention also relates to a device for carrying out the method, which has an elongated, narrow welding and severing tool with a working surface which comprises at least one same area as the welding and severing zone, and is characterized in that the working surface has a first section , which extends over the entire length of the tool and has practically the same width as the separation zone, and is used to transfer a temperature at least equal to the melting temperature of the packaging material, while second sections on both sides of this zone only transfer one for hot welding the material suitable temperature.
According to a special embodiment of the invention, a heated working surface of the tool is pressed against the material in the area in which the welding and cutting is to be carried out.
The section is equal to or longer than the length of the desired weld seam. Along the entire extension of the work surface, the centrally located section has a higher temperature than the laterally located sections or precautions have been taken to cause a stronger heat flow to the packaging material part, which is touched by the central section of the work surface and melted.
The invention is described below with reference to the drawing, for example, wherein
Fig. 1 illustrates how the welding and severing was carried out earlier;
Figures 2 and 3 disclose the principle of the invention;
Figures 4 and 5 disclose the principle of the invention with a device slightly different from that shown in Figure 2;
6 shows how tetrahedral, liquid-filled packagings were previously welded;
FIG. 7 shows, on an enlarged scale, a detail from FIG. 6, which is surrounded there by a circle;
Fig. 8 is a section through a weld created in accordance with a previously performed method;
9 shows how two materials have been combined according to the invention in order to be welded and cut;
FIG. 10 shows the welding point according to FIG. 9 on an enlarged scale together with a temperature diagram;
11 shows a weld seam according to the invention;
Fig. 12 is a section through a previously used welding jaw;
13 is a section through a welding jaw according to the invention and
Fig.l4 to 19 are details of welding and cutting devices according to the invention, Fig. 19 showing a detail of Fig. 18, seen from below.
In FIG. 1, which shows the previously generally used method for welding and cutting two sheet materials, the two materials are denoted by 1 and 2. They can be made of heat-weldable plastic or have at least one inner surface made of heat-weldable plastic, i.e. the surface facing the package to be formed. The hot welding therefore also includes welding by means of high frequency. They can also consist of materials that can be welded using ultrasound. Furthermore, the materials can be provided with an adhesive paste on the inside in those areas which are to form a weld seam.
The welding is carried out with the aid of two welding jaws 3 and 4, which are movable with respect to one another. By moving the jaws towards one another, the materials 1 and 2 are pressed together in an area 5 'which is relatively large. Depending on the materials 1 and 2 that are used, the jaws 3, 4 are heated, for example, to the welding temperature. They also send out electromagnetic high frequency signals to provide a suitable welding temperature. Furthermore, one can strike the two materials against one another at a high frequency according to the ultrasonic principle or simply move surfaces provided with paste against one another. Whichever principle is used, the result is a weld 5 '.
A space 7 is obtained between two adjacent weld seams 5 'and 5 ", which can be used for packaging purposes, for example, the term packaging being taken in its broadest sense.
Two adjacent packagings are separated from one another in such a way that a cutting element 6, for example a knife, is used to make a cut through the wall of the material which extends from edge to edge in the welded area 5 ". that the cut is actually made in the weld area, it must have a considerable width, which forms a safety factor during the cutting operation. This forms a ridge with a width a, which has no direct function in the packaging, but only a remnant of the Packaging method is.
Fig. 2 shows how these burrs and the accompanying material losses can be avoided according to the invention and also how special mechanical cutting members can be avoided. Two movable members 10 and 11 are used, which are shown schematically in FIG. These members press the materials 1, 2 together in an area 12 which is much smaller in extent than the corresponding area 5 'in FIG. The links 10, 11 are manufactured in a corresponding manner depending on the packaging material 1, 2 present. Accordingly, you can emit sound at an ultra-high frequency. By firmly pressing the limbs 10, 11 together, the ultrasound is most intense in the central part of the area 12, while the neighboring parts receive a somewhat weaker sound energy.
By corresponding Corresponding balancing of pressures, construction of the members 10, 11 and sound intensity, the materials 1, 2, as can be seen from FIG. 3, can be made to burst in an area 13 corresponding to the central part of the area 12, while the Materials 1, 2 in which adjacent parts 14, 15 are welded to one another. The weld is held in place by leaving the links in contact for a short period of time after the cutting operation is performed. You can also heat the side parts of the cutting edges.
If the members 10, 11 are instead heated to a high temperature, the materials in the areas 14 and 15 are heat-welded, while in the central area 13 the burning takes place.
This depends on the fact that the heat flow to the central part is much stronger than that to the surrounding parts, thereby reaching or exceeding the firing temperature of the material in the central part, while the temperature in the welds that are to be formed, only reached a suitable welding temperature. How the links 10, 11 can be constructed with high demands on the strength of the weld seams in order to achieve good results is shown below.
Fig. 4 shows a somewhat different welding and cutting method. In this case, only one movable member 10 is present, while the member 11 shown in FIG. 2 has been replaced by a stationary counter holder 17. The material 1 is pressed against the material 2 opposite the counter holder 17. The cutting and welding energy is transmitted from the link 10 in the manner already mentioned. The counter holder 17 can be passive, i. only have a counteracting function. The result obtained is, as can be seen from FIG. 5, a cutting of the materials 1, 2 in the area 13 corresponding to the central part of the area 18 and the welding of the materials 1 and 2 in the areas 19 and 20, which in the direction of the counter holder 17 are slightly displaced.
6 shows a number of tetrahedral packages 22, 23, 24, 25 and 26 and how these are welded according to a known method. According to the method for forming such packaging, one usually starts from a web of paper material, at least the side of the paper which is to form the inner side of the finished packaging has a surface made of heat-weldable plastic. The web material is formed into a vertical tube, which is welded in the longitudinal direction and filled with a liquid product. The lower part of the hose is closed and welded by a transverse weld of the type shown in FIG.
When the welds have been made, the individual packages are separated from one another by cuts in or between two adjacent welds in a manner as will be described. As already mentioned, the finished packaging is cut from the tube with the aid of special mechanical cutting members or knives.
These require a certain safety factor to ensure that the cut does not enter in a line next to the desired one, weakening the weld or causing leakage. Therefore, between two adjacent packagings 23 and 24, two relatively narrow welding zones 31 and 32 with an intervening non-welded zone 33 which is relatively wide have been produced.
The two packages have then been separated from one another along the central line C by mechanical cutting members, the zone 33 serving as a safety factor. The area enclosed by circle 40 is enlarged in FIG. 7. It can be seen from this that the width a1 of the welding zone 31 and the width a2 of the welding zone 32 are of practically the same size or are the same as the width a.
The length A is the mutual spacing of the weld zones and the length (A-a) is the margin or tolerance within which the cutting link operates.
8 shows a section through a weld area produced according to the known method.
The area 33 between two weld zones consists of two walls 34 and 35 made of material that is not welded to one another. A small, narrow space 36 is formed between these walls which cannot be avoided with this known method. If a liquid is packaged, a small amount of the liquid product collects here, which is pressed against the welding zones 31 and 32 during the welding operation, whereby an absolute seal is jeopardized.
When the walls 34, 35 of the material are cut off, the space 36 with the liquid contained therein comes into contact with the surrounding air.
For example, if the product consists of milk or any other substrate, there is a great risk that the room will soon form a bacterial colony, which among other things depends on the fact that the liquid attracts insects. From an aseptic point of view, this poses a great risk because it easily infects the contents of the package itself if it is opened.
An attempt has been made to eliminate these disadvantages by welding the entire area 33, whereby the zones 31, 33 and 32 represent a single, integral welding zone.
This has a considerable width, which means that the product to be filled. is not pushed out completely during the welding process, but is embedded in the weld seam. If you package milk according to this method, you have found, for example, small amounts of the product to be filled in the weld seams, which is of course a great risk.
9 shows how two materials 41, 42 have been pressed together in order to be welded and cut according to the invention. The scale of FIG. 9 is the same as in FIG. 8. It can accordingly be seen that the width b of the welding zone which is to be formed is practically the same size as one of the welding zones a1 or a2.
With reference to Fig. 10, the principles of efficient welding and cutting with the aid of heat will be explained. Since hot welding is particularly described here and further, it should be noted that the present invention is not limited to hot welding technology, but that other welding methods are also within the scope of the invention.
FIG. 10 is an enlargement of FIG. 9. The walls 41, 42 of the material can consist of a heat-weldable plastic or, for example, of paper material with opposing surfaces of plastic. The materials can also be layered. The method has even been tested with good results with laminates containing aluminum foils.
The walls 41, 42 are moved towards one another and pressed together from both sides by members (not shown), at least one of which is movable. A link can accordingly be stationary and form a counter holder. Furthermore, at least one member has been heated, the heat flow to the welding and burn-off area having the characteristic appearance which is shown in the temperature distribution curve in the upper part of the figure.
The heat flow has a maximum on the central axis C of the weld zone. This maximum is above the firing temperature tq of the material. In the zone q, which corresponds to the part of the curve which lies above the line tq, the material is therefore burned off. This zone can be made very narrow by making the curve very sharp.
The temperature tfi is the lower hot-welding temperature of the plastic layer and the temperature tr is the upper hot-welding temperature of the same. Between these two temperatures, the curve shows a flat part that rises little from the lower to the higher temperature. This slight increase gives the finished weld seam extremely good strength and sealing properties. The welding zones are indicated by the letter f. There are smaller transition zones x between the welding zones and the burn-off zone. In these zones there is a risk of the material becoming discolored. However, the zones can be made very narrow, making the discoloration barely noticeable to the naked eye.
In Fig. 11 a section through a weld is shown schematically. The part of the material that is burned off is relatively small, and therefore the width of each weld seam is slightly smaller than b / 2. As already mentioned, a weld seam produced in this way has proven to be very strong and tight. The good tightness depends, among other things, on the fact that the hose, which was formed using the known welding process at the intersection between a longitudinal seam and a transverse weld seam, is also filled according to this process with molten plastic, which then solidifies. This hose is preferably welded in a part of the weld zone which is closest to the burn-off zone.
Here the temperature is higher than in the rest of the weld zone (see the curve in FIG. 10), as a result of which the plastic is more fluid and is able to flow better into all the cavities.
FIG. 12 shows a section through a welding jaw which is used in the production of the weld seams shown in FIGS. 6 to 8 according to the known method. The weld seams are then produced by two narrow strips 45, 46 which are heated to a suitable welding temperature. The strips 45, 46 are secured in a base 47 which is releasably secured in the material 48.
13 shows schematically in a section through a device according to the invention the main components of a welding and cutting jaw which is used in carrying out the method according to the invention. The welding members 50 and 51 with the cutting member 52 in between, which may consist of a part of the former, are preferably fastened in a support piece 53 which is fastened in the material 54 in a detachable manner.
In FIG. 14, the lower details of FIG. 13 are shown on an enlarged scale. According to this embodiment, the cutting member consists of a strongly heated wire 52 which is attached between two metal strips 50 and 51, which are heated to a slightly lower temperature than the wire 52. The heating takes place by applying an electrical voltage across the wire 52 and the strips 50 and 51. The voltage can be constant or, which is often more expedient, be supplied in the form of pulses.
Heating the wire 52 more than the strips 50, 51 can be accomplished in two practical ways.
One method is to adjust the cross-sectional areas of the wire and strips in an appropriate manner. The other method is to make the wire 52 and strips 50, 51 from different materials.
As is well known, the energy developed as heat in a resistive conductor is inversely proportional to the resistivity of the conductor and is directly proportional to its cross-sectional area. According to the embodiment shown in FIG. 14, the wire 52 is produced in accordance with this principle from a material with a significantly lower specific resistance than the strips 50, 51. Information on materials having the desired electrical properties can be obtained from ordinary technical manuals. According to the other principle, the wire is given a considerably larger cross-sectional area than the strip, or more precisely, it is given a diameter which is larger than the thickness of the strip, whereby the energy developed in the wire per unit of width is considerably larger than in the strip.
What is understood by a unit of width can be seen from the fact that the distance b is referred to as the width of the link.
Fig. 15 shows another embodiment of the welding or burn-off members. These are made as one integral piece 60, which in the middle part, i. the part corresponding to zone q in FIG. 10 has a significantly greater thickness. Therefore, the principle according to this embodiment consists in adapting the cross-sectional areas of the welding and cut-off parts in an appropriate manner.
A certain heat radiation naturally takes place between the members 60 and the surroundings 53.
This radiation can, however, be compensated for by increasing the electrical current through the member 60 or, as in the figure, by making the thickness of the member at least in the central part considerably great. In the embodiment according to FIG. 16, it is preferred instead to thermally insulate a strip 70 from the surroundings by means of thermal insulation 71. This thermal insulation can be made heavier in the middle part, whereby the temperature of the strip 70 is higher here. Perhaps the insulation can be entirely concentrated in the central zone or constructed in some other suitable manner.
According to the embodiment shown in FIG. 17, a strip 80 is provided, the side parts of which serve as a hot-welding device. On this strip at the central part of the same, a narrower strip 81 is provided, which serves as a separating device for the material to be separated. The specific resistance of this strip 81 is significantly lower than that of the hot-welded strip 80.
Finally, FIGS. 18 and 19 show yet another embodiment. 19 shows the welding and separating device, seen from the underside of FIG. The electrical current is passed through the central part 90. This is strongly heated, so that the material to be welded is separated. At the same time, heat is transported to the lateral parts 91, 92, which consist of a large number of teeth that are separated by spaces 94. The side parts are heated to a suitable welding temperature.
The arrangements shown in FIGS. 14 to 19 can of course be combined in various ways. For example, in a number of cases, particularly when severing relatively thick layered materials, as in Figure 14, it may be necessary to make the severing member slightly protruding (wire 52). In order to facilitate the separation of the material, the method can be combined with drawing in the material. Since this train already exists in most packaging machines, as mentioned above, no additional devices generally need to be provided for generating this train.