EP2301884B1 - Lifting platform and method to command the same platform - Google Patents

Lifting platform and method to command the same platform Download PDF

Info

Publication number
EP2301884B1
EP2301884B1 EP10179351A EP10179351A EP2301884B1 EP 2301884 B1 EP2301884 B1 EP 2301884B1 EP 10179351 A EP10179351 A EP 10179351A EP 10179351 A EP10179351 A EP 10179351A EP 2301884 B1 EP2301884 B1 EP 2301884B1
Authority
EP
European Patent Office
Prior art keywords
max
platform
parameter
nacelle
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10179351A
Other languages
German (de)
French (fr)
Other versions
EP2301884A1 (en
Inventor
Slaheddine Beji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haulotte Group SA
Original Assignee
Haulotte Group SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haulotte Group SA filed Critical Haulotte Group SA
Publication of EP2301884A1 publication Critical patent/EP2301884A1/en
Application granted granted Critical
Publication of EP2301884B1 publication Critical patent/EP2301884B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • B66F11/044Working platforms suspended from booms
    • B66F11/046Working platforms suspended from booms of the telescoping type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/006Safety devices, e.g. for limiting or indicating lifting force for working platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment

Definitions

  • the invention relates to an aerial platform and to a method of controlling such a nacelle.
  • FR-A-2 908 119 He is known by FR-A-2 908 119 to define a volume delimited by a "safety chart" inside which must be maintained the upper end of the mast of a nacelle, this to prevent tilting of the nacelle.
  • the stability envelope of a nacelle is defined on the basis of the physical characteristics of this nacelle, such as the length of the mast or the weight of certain parts of the machine.
  • the security envelope mainly concerns the relation between the maximum height that can reach the end of the mast as a function of the offset of this mast end relative to a central axis of the frame of the mast.
  • Platform The conditions of use of a nacelle also include limit values with respect to its environment, in particular the speed of the wind to which it may be subjected, the slope or slope of the ground on which it rests or the mass of the load that she can bear.
  • the lifting means of the nacelle are generally controlled by an electronic unit which takes into account these various parameters and limits the movements of the nacelle when it is likely to operate outside its safety envelope or in conditions close to limit values defined by this wrapped.
  • each of the parameters taken into account by a control unit may vary within a range delimited by threshold values. These threshold values are each determined taking into account the maximum threshold values of the other parameters. For example, the maximum permissible superelevation value for the ground on which the platform is based is determined by taking into account the maximum height and the maximum offset of the platform from the ground, and / or the maximum mass of a load placed on the platform. this platform and / or the maximum wind speed to which the nacelle can be subjected.
  • the invention intends to remedy more particularly by proposing a new aerial platform whose operation is reliable compared to those of the state of the art.
  • the invention relates to a lifting platform comprising a chassis equipped with an assembly of motorization and ground connection means, a platform, means for lifting the platform relative to the chassis, sensors each delivering a signal representative of the configuration of the nacelle or its environment and a control unit of the elevation means according to several parameters, including the parameters corresponding to the signals emitted by the sensors.
  • the nacelle of the invention is characterized in that it comprises means for selecting at least one priority parameter and a threshold value of this parameter and in that the control unit is able to determine conditions. of use of the nacelle in which the threshold value of the priority parameter can be reached, and to control at least the elevation means within the limits of these conditions of use.
  • this parameter can be taken into account in a privileged way to set the conditions of use of the nacelle.
  • the selection of a priority parameter makes it possible to change the nacelle under conditions where this parameter has a high value, even if it means lowering the limit values of one or more other parameters.
  • the nacelle 1 shown in figure 1 comprises a frame 2 which rests on the surface S of the ground by four wheels, two of which are visible with the references 3A and 3B and which form means of connection to the ground. Instead of the wheels, the frame 2 could be equipped with caterpillars or other linkages on the ground.
  • the wheel 3A is driving, that is to say connected to an electric motor 4 integrated in the frame 2.
  • the wheel 3B is direct, that is to say has a variable orientation relative to the frame 2, this allowing direct the basket 1.
  • the mast 6 is articulated on the base 5 around an axis XX 'perpendicular to the axis Z-Z'.
  • the double arrow F 1 at the figure 1 represents the pivoting movement of the mast 6 about the X-X 'axis, this movement being controlled by a jack 51 disposed between the components 5 and 6.
  • the double arrow F 2 represents the pivoting movement of the base 5 relative to the frame 2, around the axis ZZ '.
  • the double arrow F 3 represents the forward or backward movement of the nacelle with respect to the surface S, while that the double arrow F 4 represents the possible changes of direction of the nacelle 1.
  • the mast 6 is telescopic, in this sense, that it comprises a shaft 61 articulated on the base 5 and a portion 62 adapted to slide inside the shaft 61, being controlled by a hydraulic cylinder 63 whose body 631 is secured to the shaft 61 by means of a fixing lug 632.
  • the rod 633 of the jack 63 is equipped with a bracket 634 for fixing on the part 62.
  • the portion 62 moves parallel to a longitudinal axis AA 'of the mast 6, relative to the barrel 61, which represents the double arrow F 5 .
  • Two positions of the portion 62 with respect to the shaft 61 are shown in FIG. figure 1 and illustrate this possibility of extension of the mast 6.
  • the upper end 6A of the mast that is to say the end of the portion 62 which is farthest from the shaft 61, is provided with a stirrup 621 for attaching a parallelogram structure 64 on which is suspended a platform 7 where can be held an operator O or on which we can have loads to transport height.
  • the structure 64 is equipped with a not shown actuator, such as a jack for moving the platform 7 by keeping it parallel to itself, which represents the double arrow F 6 .
  • L 6 the length of the mast 6 taken between the axis XX 'and the junction area between the portion 62 and the stirrup 621. This length L 6 is variable depending on the action of the cylinder 63.
  • Z 7 an axis parallel to the axis ZZ 'and passing through the center of the platform 7.
  • the lateral offset of the platform 7 relative to the frame 2, this offset being defined as the radial distance between the axes ZZ' and Z 7 . This lateral offset is variable depending on the position of the platform 7 in space.
  • H 6 is the height of the upper end 6A of the mast 6 relative to the ground.
  • the height H 6 varies according to the length L 6 and the angle of inclination of the mast with respect to the axis ZZ '.
  • a sensor 8 makes it possible to know the length L 6 by direct measurement, while a second sensor 9 makes it possible to measure directly or indirectly the angle of inclination of the mast 6.
  • Another sensor 10 integrated in the base 5 makes it possible to know the possible angle of tilt of the surface of the ground S on which the platform 1 is located.
  • An anemometer 11 is mounted in the vicinity of the stirrup 621 and makes it possible to determine the speed wind near the upper part of the mast 6 and the platform 7.
  • a weight measuring device 71 fixed on the platform 7 makes it possible to know the mass of the load loaded on the platform 7, whether it is the mass of the operator O and / or the mass of the objects that it wishes to transport in height with respect to the surface of the ground S.
  • the device 71 belongs to an onboard load control system whose other components are not represented for the clarity of the drawing.
  • the output signals of the various sensors and the device are supplied to an electronic control unit 100 which controls, in particular, the motor 4, the cylinders 51 and 63 and the not shown actuator of the parallelogram structure 64.
  • a control console 200 is mounted on a rail 72 of the platform 7.
  • This console allows the operator O to control the wheels 3B, the motor 4, the cylinders 51 and 63 and the means for moving the structure 64.
  • the console is equipped with one or more control members, for example joystick type, and a display which are integrated in the part of the console 20 which is not visible to Figures 2 and 3 .
  • the console 200 also allows the operator O to prefer a parameter relating to the platform 1 for the determination of its operating conditions safely.
  • the part of the console 200 represented at figure 2 includes a rotary knob 201 that can be depressed to select a value.
  • This console part 200 also comprises a primary display 202 intended to display the maximum mass M max that can be supported by the platform 7 in normal operation of the platform 1.
  • the display 202 displays a value yes (O) or not (N) corresponding to the fact that the platform may or may not be used outdoors, especially subject to wind speed.
  • the display 202 also makes it possible to display the maximum value of a slope D max expressed in percent and concerning the surface S of the ground on which the platform 1 rests.
  • the display 202 can display the maximum speed of the wind V max. . expressed in km / h, to which nacelle 1 can be subjected under normal conditions of use outdoors.
  • the console 200 also comprises a graphic display 203 comprising a representation of the nacelle 1 and, on the abscissa, the offset ⁇ of the platform 2 with respect to the base 5 and on the ordinate the height H 6 of the mast 6.
  • Step 501 When it is desired to use the boat 1, it implements a first step 501 of a control method of this nacelle, first step in which the current configuration of the machine and its environment is determined.
  • This step 501 is broken down into an elementary step 5011 for determining the position of the articulated structure constituted by the mast 6 and the parallelogram structure. This determination takes place thanks to the sensors 8 and 9, as well as to the sensor associated with the structure 64. It makes it possible to know, in particular, the height H 6 and the offset ⁇ .
  • Step 501 also comprises an elementary step 5012 in which the slope D of the surface S, that is to say its inclination with respect to the horizontal, is determined. This determination takes place thanks to the sensor 10.
  • the value of the mass M on board is determined by the cell 71.
  • it determines the wind speed to which the articulated structure of the nacelle 1 is subjected, this thanks to the anemometer 11.
  • the method of the invention also comprises a step 502 during which the operator O selects, from among the parameters that can be displayed on the display 202, the one that he considers to be a priority for the operation of the nacelle.
  • This parameter can be the maximum mass that can be embedded on the platform 7, ie M max .
  • This parameter may be the fact that the platform 1 can work indoors or outdoors, ie Ext / Int.
  • This parameter can be the value maximum D max of the superelevation of a surface on which the nacelle 1 can evolve.
  • This parameter can also be the maximum speed V max of the wind to which the nacelle 1 can be subjected.
  • the selection of the parameter considered by the user as priority or to be preferred is made by turning the knob 201 until highlighting a window arranged next to the name of this parameter.
  • the user has highlighted the window corresponding to the maximum allowable cant.
  • the user After having highlighted the window corresponding to the parameter which it intends to privilege, in the example D max , the user actually selects this parameter by pressing the button 201 while the corresponding window is highlighted. This corresponds to the step 502 of selecting the privileged parameter.
  • a threshold value for the parameter that he has identified as preferred This threshold value may be an upper or lower limit value.
  • the selection of the threshold value of the privileged parameter is performed by turning the knob 1 to display the desired value in the highlighted window.
  • the user has selected a value of 5% as being the upper limit of the value of the slope D of the surface of the ground S on which the nacelle can evolve.
  • the unit 100 checks the coherence between the threshold value selected for the privileged parameter, in the example the value of 5% for the maximum permissible superelevation D max , vis-à-vis the configuration of the machine and its environment as determined in step 501. If this consistency check is negative, the unit 100 goes to a step 505 of securing the machine and the user is asked to put again implementing steps 502 and 503, by selecting either another parameter as a preferred parameter or another threshold value for the previously selected parameter.
  • the threshold value selected for the privileged parameter in the example the value of 5% for the maximum permissible superelevation D max
  • step 504 determines that the threshold value selected for the privileged parameter is consistent with the machine configuration determined in step 501
  • unit 100 proceeds to a step 506 in which it determines the permissible threshold values for the other operating parameters of the machine.
  • This step 506 may be performed by means of calculations performed by the unit 100. It may also be performed by accessing a memory 102 containing data relating to different possible configurations for the platform 1, the unit 100 then selecting from among these data a data set corresponding to a configuration in which the selected value of the privileged parameter, in the example 5% for the maximum cant D max , can be reached.
  • step 506 can be performed both by accessing memory 102 and performing calculations.
  • the limit configuration determined by the unit 100 is displayed on the console 200, as shown in FIG. figure 3 . More precisely, threshold values determined for the parameters other than the one that is privileged are displayed on the one hand on the primary display 202, and on the other hand in graphic form on the display 203.
  • the threshold values displayed on the primary display 202 relate to the maximum mass that can be placed on the platform 7, ie M max , the fact that the nacelle can be used outdoors (value O or N of Ext) and the maximum permissible speed for the wind to which is subject the basket, V max .
  • step 506 also makes it possible to determine the safety chart or working chart C to be used, which is represented in graphic form on the display 203, with the maximum height of the mast 6 H 6max represented as a function of the offset. ⁇ of the platform 7.
  • the operator O on the nacelle 7 can therefore take cognizance of the influence that he chooses the maximum value D max of the superelevation on the other parameters of use of the nacelle 1, in terms of maximum load onboard, in terms of outdoor use, in terms of maximum permissible wind speed and in terms of maximum permissible height depending on the offset.
  • step 506 The limit values determined in step 506 are then compared, in a subsequent step 508, with the values determined during step 501, which repeats at regular intervals during use of the pod 1, for example every 40 minutes. ms. If the result of this consistency check is positive, that is, if the values determined in step 501 do not exceed the values determined in step 506, then the conditions of use determined by the unit 100 are used by it in a step 509 to control the cylinders 51 and 63, as well as the actuating means of the parallelogram structure 64, according to the movement commands entered by the operator O. These conditions of use can also be used to control the motor 4 and the steering wheels 3B.
  • step 508 If the consistency check of step 508 shows that the values determined in step 501 may exceed one or more threshold values determined in step 506, proceed to step 505 for securing the security. nacelle 1.
  • the user can choose a parameter, such as the maximum permissible superelevation D max in the example mentioned above, as being a priority parameter for the determination of the conditions of use of the nacelle 1. , that is to say in practice the threshold or threshold values of the other parameters which are determined according to a threshold value set for this priority parameter.
  • the invention therefore makes it possible to operate a nacelle under conditions that would not necessarily be accessible for a conventional nacelle, insofar as the value of the selected priority parameter may be outside the known operating ranges of known nacelles.
  • this value can be used to limit the threshold values of the other parameters, compared to a conventional configuration.
  • the value of 5% chosen for the maximum permissible devers may induce that the maximum load on board is reduced to 250 kg, while the nacelle can normally carry a load of 400 kg in so-called normal conditions of use where the backs possible is less than 3%.
  • a choice may be left to the operator to indicate which parameter, other than the privileged parameter, may have its value reduced or preferably modified so that the selected value of the privileged parameter can be reached.
  • the operator can choose that, in step 506, the value of the maximum onboard load M max is reduced preferably to the value of the maximum offset ⁇ .
  • the operator may prefer that the maximum height H 6max be reduced, rather than modify the other parameters.
  • the operator can choose several parameters, for example M max and H 6max , the value of which is adjusted preferably according to the value selected for the privileged parameter.
  • a priority parameter concerns the fact that a referenced user, who can be qualified as an administrator, may want to limit the performance of a nacelle to expand his offer.
  • a priority parameter may relate to the fact that an administrator gives access or not to all of the operating ranges of a nacelle.
  • the use of such a parameter as a priority parameter allows the administrator, who may be the representative of a nacelle rental company, to limit the performance of a nacelle when it is rented for a specific purpose. instead of a nacelle whose theoretical performance is lower. This allows a renter to expand its offer from the same basket.
  • the invention has been described above in the case where the nacelle 1 is equipped with an anemometer 11.
  • this anemometer can be replaced by a part of the console 200 where the operator O directly indicates the maximum value of the wind speed to which nacelle 1 can be subjected, within the normative limits.
  • the maximum value indicated by the operator is taken into account. For normative reasons, in Europe, the value indicated by the operator can not be less than 45 km / h, if the platform is intended to be used outdoors.
  • the means for selecting the preferred parameter or parameters may be different from the console 200 shown in the figures. They can, for example, include movable cursors in translation, + and - keys to increase or decrease a value, etc ...
  • the invention has been shown in the case of a tilt telescopic boom. It is applicable to any type of nacelle, including scissor lifts and nacelles vertical mast, these nacelles are self-propelled or towed.
  • the selected threshold value is a maximum value, especially in the case of the admissible overhang. It can also be a minimum value, for example for the mass M max or a binary value for the possibility of use outdoors.

Abstract

The lift (1) has a lifting unit for lifting a platform (7) with respect to a chassis (2), and a control console (200) selecting a priority parameter i.e. maximum slope, and a threshold value of the parameter. The lifting unit is formed of a hydraulic actuator (63), a parallelogram structure (64) and an actuator (51) that controls pivoting movement of a telescopic mast (6) around an axis (X-X'). An electronic control unit (100) determines lift utilization conditions in which the threshold value of the parameter is attained, and controls the lifting unit in a limit of the utilization conditions. An independent claim is also included for a method for controlling an aerial lift.

Description

L'invention a trait à une nacelle élévatrice ainsi qu'à une méthode de commande d'une telle nacelle.The invention relates to an aerial platform and to a method of controlling such a nacelle.

II est connu de fiabiliser le fonctionnement d'une nacelle élévatrice en déterminant des valeurs limites de certains paramètres d'utilisation d'une telle nacelle. Il est connu par FR-A-2 908 119 de définir un volume délimité par un « abaque de sécurité » à l'intérieur duquel doit être maintenue l'extrémité supérieure du mât d'une nacelle, ceci afin d'éviter le basculement de la nacelle. Comme mentionné dans EP-A-1 378 483 , l'enveloppe de stabilité d'une nacelle est définie sur la base des caractéristiques physiques de cette nacelle, telles que la longueur du mât ou le poids de certaines parties de la machine. Dans le cas d'une machine à mât inclinable, l'enveloppe de sécurité concerne principalement la relation entre la hauteur maximale que peut atteindre l'extrémité du mât en fonction du déport de cette extrémité de mât par rapport à un axe central du châssis de la nacelle. Les conditions d'utilisation d'une nacelle comprennent également des valeurs limites en ce qui concerne son environnement, notamment la vitesse du vent auquel elle peut être soumise, la pente ou dévers du sol sur lequel elle repose ou la masse de la charge qu'elle peut supporter.It is known to make reliable the operation of an aerial platform by determining limit values of certain parameters of use of such a nacelle. He is known by FR-A-2 908 119 to define a volume delimited by a "safety chart" inside which must be maintained the upper end of the mast of a nacelle, this to prevent tilting of the nacelle. As mentioned in EP-A-1,378,483 , the stability envelope of a nacelle is defined on the basis of the physical characteristics of this nacelle, such as the length of the mast or the weight of certain parts of the machine. In the case of a machine with tilting mast, the security envelope mainly concerns the relation between the maximum height that can reach the end of the mast as a function of the offset of this mast end relative to a central axis of the frame of the mast. Platform. The conditions of use of a nacelle also include limit values with respect to its environment, in particular the speed of the wind to which it may be subjected, the slope or slope of the ground on which it rests or the mass of the load that she can bear.

Les moyens d'élévation de la nacelle sont généralement commandés par une unité électronique qui tient compte de ces différents paramètres et limite les mouvements de la nacelle lorsque celle-ci est susceptible de fonctionner en dehors de son enveloppe de sécurité ou dans des conditions proches des valeurs limites définies par cette enveloppé. Dans ce cadre, chacun des paramètres pris en compte par une unité de commande est susceptible de varier dans une plage délimitée par des valeurs de seuil. Ces valeurs de seuil sont chacune déterminées en tenant compte des valeurs de seuil maximales des autres paramètres. Par exemple, la valeur dévers maximale admissible pour le sol sur lequel repose la nacelle est déterminée en tenant compte de la hauteur maximale et du déport maximal de la plateforme par rapport au sol, et/ou de la masse maximale d'une charge disposée sur cette plateforme et/ou de la vitesse maximale du vent auquel peut être soumise la nacelle.The lifting means of the nacelle are generally controlled by an electronic unit which takes into account these various parameters and limits the movements of the nacelle when it is likely to operate outside its safety envelope or in conditions close to limit values defined by this wrapped. In this context, each of the parameters taken into account by a control unit may vary within a range delimited by threshold values. These threshold values are each determined taking into account the maximum threshold values of the other parameters. For example, the maximum permissible superelevation value for the ground on which the platform is based is determined by taking into account the maximum height and the maximum offset of the platform from the ground, and / or the maximum mass of a load placed on the platform. this platform and / or the maximum wind speed to which the nacelle can be subjected.

Or, il est parfois nécessaire de faire fonctionner une nacelle dans des conditions qui sortent de la plage d'utilisation normale, ce qui n'est pas possible avec les nacelles actuelles, sauf à mettre en danger l'utilisateur ou les personnes se trouvant à proximité de la nacelle.However, it is sometimes necessary to operate a nacelle in conditions that are outside the normal range of use, which is not possible with the current nacelles, except to endanger the user or the people at near the nacelle.

C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant une nouvelle nacelle élévatrice dont le fonctionnement est fiabilisé par rapport à celles de l'état de la technique.It is these drawbacks that the invention intends to remedy more particularly by proposing a new aerial platform whose operation is reliable compared to those of the state of the art.

A cet effet, l'invention concerne une nacelle élévatrice comprenant un châssis équipé d'un ensemble de motorisation et de moyens de liaison au sol, une plateforme, des moyens d'élévation de la plateforme par rapport au châssis, des capteurs délivrant chacun un signal représentatif de la configuration de la nacelle ou de son environnement et une unité de commande des moyens d'élévation en fonction de plusieurs paramètres, dont les paramètres correspondant aux signaux émis par les capteurs. Ces caractéristiques sont connues du document EP1923347 . La nacelle de l'invention est caractérisée en ce qu'elle comprend des moyens de sélection d'au moins un paramètre prioritaire et d'une valeur de seuil de ce paramètre et en ce que l'unité de commande est apte à déterminer des conditions d'utilisation de la nacelle dans lesquelles la valeur de seuil du paramètre prioritaire peut être atteinte, ainsi qu'à commander au moins les moyens d'élévation dans la limite de ces conditions d'utilisation.To this end, the invention relates to a lifting platform comprising a chassis equipped with an assembly of motorization and ground connection means, a platform, means for lifting the platform relative to the chassis, sensors each delivering a signal representative of the configuration of the nacelle or its environment and a control unit of the elevation means according to several parameters, including the parameters corresponding to the signals emitted by the sensors. These characteristics are known from the document EP1923347 . The nacelle of the invention is characterized in that it comprises means for selecting at least one priority parameter and a threshold value of this parameter and in that the control unit is able to determine conditions. of use of the nacelle in which the threshold value of the priority parameter can be reached, and to control at least the elevation means within the limits of these conditions of use.

Grâce à l'invention, il est possible d'identifier un ou plusieurs paramètres comme prioritaires, ce paramètre pouvant être pris en compte de façon privilégiée pour fixer les conditions d'utilisation de la nacelle. En particulier, la sélection d'un paramètre prioritaire permet de faire évoluer la nacelle dans des conditions où ce paramètre a une valeur élevée, quitte à abaisser les valeurs limites d'un ou plusieurs autres paramètres.Thanks to the invention, it is possible to identify one or more parameters as priorities, this parameter can be taken into account in a privileged way to set the conditions of use of the nacelle. In particular, the selection of a priority parameter makes it possible to change the nacelle under conditions where this parameter has a high value, even if it means lowering the limit values of one or more other parameters.

Selon les aspects avantageux mais non obligatoires de l'invention, une telle nacelle peut incorporer une ou plusieurs des caractéristiques suivantes, prises dans toute combinaison techniquement admissible :

  • Les moyens de sélection comprennent un afficheur apte à montrer différents paramètres susceptibles d'être sélectionnés en tant que paramètre prioritaire, ainsi qu'au moins un organe d'entrée d'une commande de sélection d'un des paramètres affichés, en tant que paramètre prioritaire, et d'entrée d'une valeur de seuil de ce paramètre.
  • Il est prévu un dispositif d'affichage, sous forme graphique et/ou alphanumérique, des conditions limites d'utilisation de la nacelle déterminées par l'unité de commande.
According to the advantageous but non-mandatory aspects of the invention, such a nacelle may incorporate one or more of the following features, taken in any technically permissible combination:
  • The selection means comprise a display capable of showing different parameters that can be selected as a priority parameter, as well as at least one input member of a command for selecting one of the displayed parameters, as parameter priority, and input of a threshold value of this parameter.
  • There is provided a display device, in graphical and / or alphanumeric form, the nacelle use limit conditions determined by the control unit.

L'invention concerne également une méthode de commande d'une nacelle telle que mentionnée ci-dessus qui permet d'adapter le fonctionnement de la nacelle à ses conditions prévues d'utilisation. Cette méthode comprend des étapes consistant à :

  1. a) déterminer, parmi les paramètres utilisés par une unité de commande de la nacelle, au moins un paramètre prioritaire ;
  2. b) choisir une valeur de seuil pour ce paramètre prioritaire ;
  3. c) déterminer, en fonction de la valeur de seuil choisie à l'étape b), des conditions d'utilisation de la nacelle dans lesquelles la valeur de seuil paramètre prioritaire peut être atteinte ; et
  4. d) commander au moins les moyens d'élévation dans la limite des conditions d'utilisation déterminés à l'étape c).
The invention also relates to a method of controlling a nacelle as mentioned above which makes it possible to adapt the operation of the nacelle to its intended conditions of use. This method comprises steps of:
  1. a) determining, among the parameters used by a control unit of the nacelle, at least one priority parameter;
  2. b) select a threshold value for this priority parameter;
  3. c) determining, according to the threshold value chosen in step b), conditions of use of the nacelle in which the priority parameter threshold value can be reached; and
  4. d) controlling at least the lifting means within the conditions of use determined in step c).

Selon des aspects avantageux mais non obligatoire de l'invention, une telle méthode peut incorporer une ou plusieurs des caractéristiques suivantes prises dans toute combinaison techniquement admissible.

  • Lors de l'étape c), on détermine une valeur limite, pour au moins un autre paramètre utilisé par l'unité de commande, en fonction de la valeur de seuil choisie pour le paramètre prioritaire. Dans ce cas, l'étape c) est effectuée au moins en partie en calculant la valeur limite de l'autre paramètre. De façon alternative ou cumulative, l'étape c) peut être effectuée au moins en partie en accédant à une mémoire contenant des données relatives à plusieurs configurations prédéterminées d'utilisation de la nacelle.
  • Il est prévu une étape supplémentaire d) dans laquelle les conditions d'utilisation déterminées au cours de l'étape c) sont affichées.
  • Il est prévu une autre étape e), postérieure à l'étape b) et antérieure à l'étape c), dans laquelle on vérifie la cohérence entre la valeur déterminée à l'étape b) et la configuration de la machine déterminée par les capteurs, alors que l'étape c) est mise en oeuvre en fonction du résultat de la vérification de cohérence de cette autre étape.
  • Le paramètre prioritaire est représentatif du choix d'un utilisateur de brider ou non le fonctionnement de la nacelle.
According to advantageous but non-mandatory aspects of the invention, such a method may incorporate one or more of the following features taken in any technically permissible combination.
  • During step c), a limit value is determined for at least one other parameter used by the control unit, as a function of the threshold value chosen for the priority parameter. In this case, step c) is performed at least in part by calculating the limit value of the other parameter. Alternatively or cumulatively, step c) can be performed at least in part by accessing a memory containing data relating to several predetermined configurations of use of the nacelle.
  • There is provided an additional step d) in which the conditions of use determined during step c) are displayed.
  • There is provided another step e), subsequent to step b) and prior to step c), in which the consistency between the value determined in step b) and the configuration of the machine determined by the sensors, while step c) is implemented according to the result of the consistency check of this other step.
  • The priority parameter is representative of the choice of a user to clamp or not the operation of the nacelle.

L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre, d'un mode de réalisation d'une nacelle conforme à l'invention et d'une méthode de commande de cette nacelle, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, dans lesquels :

  • La Figure 1 est une représentation schématique de côté, d'une nacelle conforme à l'invention
  • La Figure 2 est une vue de face partielle d'une console de contrôle appartenant à la nacelle de la Figure 1, lorsque les moyens de contrôle de la nacelle sont dans une première configuration
  • La Figure 3 est une vue analogue de la Figure 2 lorsque les moyens de contrôle sont dans une deuxième configuration et
  • La Figure 4 est un ordinogramme d'une méthode de commande de la nacelle de la Figure 1, au moyen de la console des Figures 2 et 3.
The invention will be better understood and other advantages thereof will appear more clearly in the light of the description which follows, an embodiment of a nacelle according to the invention and a control method. of this nacelle, given solely by way of example and with reference to the appended drawings, in which:
  • The Figure 1 is a schematic side view of a nacelle according to the invention
  • The Figure 2 is a partial front view of a control console belonging to the nacelle of the Figure 1 when the control means of the nacelle are in a first configuration
  • The Figure 3 is a similar view of the Figure 2 when the control means are in a second configuration and
  • The Figure 4 is a flowchart of a method of controlling the nacelle of the Figure 1 , using the console of Figures 2 and 3 .

La nacelle 1 représentée à la figure 1 comprend un châssis 2 qui repose sur la surface S du sol par quatre roues dont deux sont visibles avec les références 3A et 3B et qui forment des moyens de liaison au sol. A la place des roues, le châssis 2 pourrait être équipé de chenilles ou d'autres organes de liaison au sol. La roue 3A est motrice, c'est-à-dire relié à un moteur électrique 4 intégré au châssis 2. La roue 3B est directrice, c'est-à-dire a une orientation variable par rapport au châssis 2, ceci permettant de diriger la nacelle 1.The nacelle 1 shown in figure 1 comprises a frame 2 which rests on the surface S of the ground by four wheels, two of which are visible with the references 3A and 3B and which form means of connection to the ground. Instead of the wheels, the frame 2 could be equipped with caterpillars or other linkages on the ground. The wheel 3A is driving, that is to say connected to an electric motor 4 integrated in the frame 2. The wheel 3B is direct, that is to say has a variable orientation relative to the frame 2, this allowing direct the basket 1.

Sur le châssis 2 est monté, avec possibilité de pivotement autour d'un axe Z-Z' perpendiculaire à la surface S du sol, une embase 5 sur laquelle est articulée un mât télescopique 6. Le mât 6 est articulé sur l'embase 5 autour d'un axe X-X' perpendiculaire à l'axe Z-Z'. La double flèche F1 à la figure 1 représente le mouvement de pivotement du mât 6 autour de l'axe X-X', ce mouvement étant contrôlé grâce un vérin 51 disposé entre les composants 5 et 6.On the frame 2 is mounted, with possibility of pivoting about an axis ZZ 'perpendicular to the surface S of the ground, a base 5 on which is articulated a telescopic mast 6. The mast 6 is articulated on the base 5 around an axis XX 'perpendicular to the axis Z-Z'. The double arrow F 1 at the figure 1 represents the pivoting movement of the mast 6 about the X-X 'axis, this movement being controlled by a jack 51 disposed between the components 5 and 6.

La double flèche F2 représente le mouvement de pivotement de l'embase 5 par rapport au châssis 2, autour de l'axe Z-Z'. La double flèche F3 représente le mouvement d'avance ou de recul de la nacelle par rapport à la surface S, alors que la double flèche F4 représente les changements de direction possible de la nacelle 1.The double arrow F 2 represents the pivoting movement of the base 5 relative to the frame 2, around the axis ZZ '. The double arrow F 3 represents the forward or backward movement of the nacelle with respect to the surface S, while that the double arrow F 4 represents the possible changes of direction of the nacelle 1.

Le mât 6 est télescopique, en ce sens, qu'il comprend un fût 61 articulé sur l'embase 5 et une partie 62 adaptée pour coulisser à l'intérieur du fût 61, en étant commandé par un vérin hydraulique 63 dont le corps 631 est solidaire du fût 61 grâce à une patte de fixation 632. La tige 633 du vérin 63 est équipée d'une patte 634 de fixation sur la partie 62.The mast 6 is telescopic, in this sense, that it comprises a shaft 61 articulated on the base 5 and a portion 62 adapted to slide inside the shaft 61, being controlled by a hydraulic cylinder 63 whose body 631 is secured to the shaft 61 by means of a fixing lug 632. The rod 633 of the jack 63 is equipped with a bracket 634 for fixing on the part 62.

En fonction de l'activation du vérin 63, la partie 62 se déplace parallèlement à un axe longitudinal A-A' du mât 6, par rapport au fût 61, ce qui représente la double flèche F5. Deux positions de la partie 62 par rapport au fût 61 sont représentées à la figure 1 et illustrent cette possibilité d'extension du mât 6.Depending on the activation of the jack 63, the portion 62 moves parallel to a longitudinal axis AA 'of the mast 6, relative to the barrel 61, which represents the double arrow F 5 . Two positions of the portion 62 with respect to the shaft 61 are shown in FIG. figure 1 and illustrate this possibility of extension of the mast 6.

L'extrémité supérieure 6A du mât, c'est-à-dire l'extrémité de la partie 62 qui est la plus éloignée du fût 61, est pourvue d'un étrier 621 d'accrochage d'une structure à parallélogramme 64 sur laquelle est suspendue une plateforme 7 où peut se tenir un opérateur O ou sur laquelle on peut disposer des charges à transporter en hauteur.The upper end 6A of the mast, that is to say the end of the portion 62 which is farthest from the shaft 61, is provided with a stirrup 621 for attaching a parallelogram structure 64 on which is suspended a platform 7 where can be held an operator O or on which we can have loads to transport height.

La structure 64 est équipée d'un actionneur non représenté, tel qu'un vérin permettant de déplacer la plateforme 7 en la gardant parallèle à elle-même, ce que représente la double flèche F6.The structure 64 is equipped with a not shown actuator, such as a jack for moving the platform 7 by keeping it parallel to itself, which represents the double arrow F 6 .

Pour éviter les risques de basculement de la nacelle 1, il est connu que l'extrémité supérieure 6A du mât 6 doit demeurer à l'intérieur d'un volume dont la limite est représentée par la courbe C à la figure 1, cette courbe étant parfois dénommée « abaque de sécurité » ou « abaque de travail » pour cette nacelle.To avoid the risks of tilting of the nacelle 1, it is known that the upper end 6A of the mast 6 must remain inside a volume whose limit is represented by the curve C at the figure 1 this curve sometimes being called "safety abacus" or "working abacus" for this nacelle.

On note L6 la longueur du mât 6 prise entre l'axe X-X' et la zone de jonction entre la partie 62 et l'étrier 621. Cette longueur L6 est variable en fonction de l'action du vérin 63. On note Z7 un axe parallèle à l'axe Z-Z' et passant par le centre de la plateforme 7. On note Δ le déport latéral de la plateforme 7 par rapport au châssis 2, ce déport étant défini comme la distance radiale entre les axes Z-Z' et Z7. Ce déport latéral est variable en fonction de la position de la plateforme 7 dans l'espace.Note L 6 the length of the mast 6 taken between the axis XX 'and the junction area between the portion 62 and the stirrup 621. This length L 6 is variable depending on the action of the cylinder 63. Note Z 7 an axis parallel to the axis ZZ 'and passing through the center of the platform 7. Note Δ the lateral offset of the platform 7 relative to the frame 2, this offset being defined as the radial distance between the axes ZZ' and Z 7 . This lateral offset is variable depending on the position of the platform 7 in space.

On note H6 la hauteur de l'extrémité supérieure 6A du mât 6 par rapport au sol. La hauteur H6 varie en fonction de la longueur L6 et de l'angle d'inclinaison du mât par rapport à l'axe Z-Z'.H 6 is the height of the upper end 6A of the mast 6 relative to the ground. The height H 6 varies according to the length L 6 and the angle of inclination of the mast with respect to the axis ZZ '.

Un capteur 8 permet de connaître la longueur L6 par mesure directe, alors qu'un deuxième capteur 9 permet de mesurer directement ou indirectement l'angle d'inclinaison du mât 6.A sensor 8 makes it possible to know the length L 6 by direct measurement, while a second sensor 9 makes it possible to measure directly or indirectly the angle of inclination of the mast 6.

D'autres capteurs non représentés permettent de connaître la position de la structure à parallélogramme 64 par rapport au mât 6.Other unrepresented sensors make it possible to know the position of the parallelogram structure 64 with respect to the mast 6.

Un autre capteur 10 intégré à la base 5 permet de connaitre l'angle de dévers éventuel de la surface du sol S sur laquelle est située la nacelle 1. Un anémomètre 11 est monté au voisinage de l'étrier 621 et permet de déterminer la vitesse du vent au voisinage de la partie supérieure du mât 6 et de la plateforme 7.Another sensor 10 integrated in the base 5 makes it possible to know the possible angle of tilt of the surface of the ground S on which the platform 1 is located. An anemometer 11 is mounted in the vicinity of the stirrup 621 and makes it possible to determine the speed wind near the upper part of the mast 6 and the platform 7.

Un dispositif de mesure de poids 71 fixé sur la plateforme 7 permet de connaître la masse de la charge embarquée sur la plateforme 7, qu'il s'agisse de la masse de l'opérateur O et/ou de la masse des objets qu'il souhaite transporter en hauteur par rapport à la surface du sol S. Le dispositif 71 appartient à un système de contrôle de la charge embarquée dont les autres composants ne sont pas représentés pour la clarté du dessin.A weight measuring device 71 fixed on the platform 7 makes it possible to know the mass of the load loaded on the platform 7, whether it is the mass of the operator O and / or the mass of the objects that it wishes to transport in height with respect to the surface of the ground S. The device 71 belongs to an onboard load control system whose other components are not represented for the clarity of the drawing.

Les signaux de sortie des différents capteurs et du dispositif sont fournis à une unité électronique de contrôle 100 qui commande, notamment, le moteur 4, les vérins 51 et 63 et l'actionneur non représenté de la structure à parallélogramme 64.The output signals of the various sensors and the device are supplied to an electronic control unit 100 which controls, in particular, the motor 4, the cylinders 51 and 63 and the not shown actuator of the parallelogram structure 64.

Une console de commande 200 est montée sur une rambarde 72 de la plateforme 7.A control console 200 is mounted on a rail 72 of the platform 7.

Cette console permet à l'opérateur O de piloter les roues 3B, le moteur 4, les vérins 51 et 63 et les moyens de déplacement de la structure 64. Pour ce faire, la console est équipée d'un ou plusieurs organes de commande, par exemple de type joystick, et d'un afficheur qui sont intégrés à la partie de la console 20 qui n'est pas visible aux figures 2 et 3.This console allows the operator O to control the wheels 3B, the motor 4, the cylinders 51 and 63 and the means for moving the structure 64. To do this, the console is equipped with one or more control members, for example joystick type, and a display which are integrated in the part of the console 20 which is not visible to Figures 2 and 3 .

La console 200 permet également à l'opérateur O de privilégier un paramètre relatif à la nacelle 1 pour la détermination de ses conditions de fonctionnement en sécurité.The console 200 also allows the operator O to prefer a parameter relating to the platform 1 for the determination of its operating conditions safely.

La partie de la console 200 représentée à la figure 2 comprend un bouton rotatif 201 qui peut être enfoncé pour sélectionner une valeur. Cette partie de console 200 comprend également un afficheur primaire 202 destiné à afficher la masse maximum Mmax qui peut être supportée par la plateforme 7 en fonctionnement normal de la nacelle 1. L'afficheur 202 affiche une valeur oui (O) ou non (N) correspondant au fait que la nacelle peut ou non être utilisée en extérieur, notamment soumise à la vitesse du vent. L'afficheur 202 permet également d'afficher la valeur maximale d'un dévers Dmax exprimé en pourcent et concernant la surface S du sol sur laquelle repose la nacelle 1. Enfin, l'afficheur 202 peut afficher la vitesse maximale du vent Vmax. exprimée en km/h, à laquelle peut être soumise la nacelle 1 dans des conditions normales d'utilisation en extérieur.The part of the console 200 represented at figure 2 includes a rotary knob 201 that can be depressed to select a value. This console part 200 also comprises a primary display 202 intended to display the maximum mass M max that can be supported by the platform 7 in normal operation of the platform 1. The display 202 displays a value yes (O) or not (N) corresponding to the fact that the platform may or may not be used outdoors, especially subject to wind speed. The display 202 also makes it possible to display the maximum value of a slope D max expressed in percent and concerning the surface S of the ground on which the platform 1 rests. Finally, the display 202 can display the maximum speed of the wind V max. . expressed in km / h, to which nacelle 1 can be subjected under normal conditions of use outdoors.

La console 200 comprend également un afficheur graphique 203 comprenant une représentation de la nacelle 1 et, en abscisses, le déport Δ de la plateforme 2 par rapport à l'embase 5 et en ordonnées la hauteur H6 du mât 6.The console 200 also comprises a graphic display 203 comprising a representation of the nacelle 1 and, on the abscissa, the offset Δ of the platform 2 with respect to the base 5 and on the ordinate the height H 6 of the mast 6.

Lorsque l'on souhaite utiliser la nacelle 1, on met en oeuvre une première étape 501 d'une méthode de commande de cette nacelle, première étape dans laquelle on détermine la configuration actuelle de la machine et de son environnement. Cette étape 501 se décompose en une étape élémentaire 5011 de détermination de la position de la structure articulée constituée du mât 6 et de la structure à parallélogramme. Cette détermination a lieu grâce aux capteurs 8 et 9, ainsi qu'au capteur associé à la structure 64. Elle permet de connaître, notamment, la hauteur H6 et le déport Δ. L'étape 501 comprend également une étape élémentaire 5012 dans laquelle on détermine le dévers D de la surface S, c'est-à-dire son inclinaison par rapport à l'horizontale. Cette détermination a lieu grâce au capteur 10. Au cours d'une étape élémentaire 5013 de l'étape 501, on détermine la valeur de la masse M embarquée sur la plateforme, ceci grâce à la cellule 71. Au cours d'une autre étape élémentaire 5014 de l'étape 501, on détermine la vitesse du vent auquel est soumise la structure articulée de la nacelle 1, ceci grâce à l'anémomètre 11.When it is desired to use the boat 1, it implements a first step 501 of a control method of this nacelle, first step in which the current configuration of the machine and its environment is determined. This step 501 is broken down into an elementary step 5011 for determining the position of the articulated structure constituted by the mast 6 and the parallelogram structure. This determination takes place thanks to the sensors 8 and 9, as well as to the sensor associated with the structure 64. It makes it possible to know, in particular, the height H 6 and the offset Δ. Step 501 also comprises an elementary step 5012 in which the slope D of the surface S, that is to say its inclination with respect to the horizontal, is determined. This determination takes place thanks to the sensor 10. During an elementary step 5013 of the step 501, the value of the mass M on board is determined by the cell 71. In another step 5014 of the step 501, it determines the wind speed to which the articulated structure of the nacelle 1 is subjected, this thanks to the anemometer 11.

La méthode de l'invention comprend également une étape 502 au cours de laquelle l'opérateur O sélectionne, parmi des paramètres affichables sur l'afficheur 202, celui qu'il considère comme prioritaire pour le fonctionnement de la nacelle. Ce paramètre peut être la masse maximale pouvant être embarquée sur la plateforme 7, soit Mmax. Ce paramètre peut être le fait que la nacelle 1 peut travailler en intérieur ou en extérieur, soit Ext/Int. Ce paramètre peut être la valeur maximale Dmax du dévers d'une surface sur laquelle peut évoluer la nacelle 1. Ce paramètre peut également être la vitesse maximale Vmax du vent à laquelle peut être soumise la nacelle 1.The method of the invention also comprises a step 502 during which the operator O selects, from among the parameters that can be displayed on the display 202, the one that he considers to be a priority for the operation of the nacelle. This parameter can be the maximum mass that can be embedded on the platform 7, ie M max . This parameter may be the fact that the platform 1 can work indoors or outdoors, ie Ext / Int. This parameter can be the value maximum D max of the superelevation of a surface on which the nacelle 1 can evolve. This parameter can also be the maximum speed V max of the wind to which the nacelle 1 can be subjected.

La sélection du paramètre considéré par l'utilisateur comme prioritaire ou à privilégier est effectuée en faisant tourner le bouton 201 jusqu'à mettre en surbrillance une fenêtre disposée en regard du nom de ce paramètre. Dans l'exemple représenté à la figure 2, l'utilisateur a mis en surbrillance la fenêtre correspondant au dévers maximum admissible.The selection of the parameter considered by the user as priority or to be preferred is made by turning the knob 201 until highlighting a window arranged next to the name of this parameter. In the example shown in figure 2 , the user has highlighted the window corresponding to the maximum allowable cant.

Après avoir mis en surbrillance la fenêtre correspondant au paramètre qu'il entend privilégier, en l'exemple Dmax, l'utilisateur sélectionne effectivement ce paramètre en appuyant sur le bouton 201 alors que la fenêtre correspondante est en surbrillance. Ceci correspond à l'étape 502 de sélection du paramètre privilégié.After having highlighted the window corresponding to the parameter which it intends to privilege, in the example D max , the user actually selects this parameter by pressing the button 201 while the corresponding window is highlighted. This corresponds to the step 502 of selecting the privileged parameter.

Au cours d'une étape 503 suivant l'étape 502, l'utilisateur choisit une valeur de seuil pour le paramètre qu'il a identifié comme à privilégier. Cette valeur de seuil peut être une valeur limite supérieure ou inférieure. En pratique, la sélection de la valeur de seuil du paramètre privilégié est effectuée en faisant tourner le bouton 1 jusqu'à afficher la valeur souhaitée dans la fenêtre en surbrillance.During a step 503 following step 502, the user chooses a threshold value for the parameter that he has identified as preferred. This threshold value may be an upper or lower limit value. In practice, the selection of the threshold value of the privileged parameter is performed by turning the knob 1 to display the desired value in the highlighted window.

Dans l'exemple représenté à la figure 2, l'utilisateur a sélectionné une valeur de 5 % comme étant la limite supérieure de la valeur du dévers D de la surface du sol S sur laquelle peut évoluer la nacelle.In the example shown in figure 2 , the user has selected a value of 5% as being the upper limit of the value of the slope D of the surface of the ground S on which the nacelle can evolve.

Au cours d'une étape 504 ultérieure, l'unité 100 vérifie la cohérence entre la valeur de seuil sélectionnée pour le paramètre privilégié, dans l'exemple la valeur de 5 % pour le dévers maximum admissible Dmax, vis-à-vis de la configuration de la machine et de son environnement telle que déterminée à l'étape 501. Si cette vérification de cohérence est négative, l'unité 100 passe à une étape 505 de mise en sécurité de la machine et l'utilisateur est invité à mettre à nouveau en oeuvre les étapes 502 et 503, en sélectionnant soit un autre paramètre comme paramètre à privilégier, soit une autre valeur de seuil pour le paramètre précédemment sélectionné.During a subsequent step 504, the unit 100 checks the coherence between the threshold value selected for the privileged parameter, in the example the value of 5% for the maximum permissible superelevation D max , vis-à-vis the configuration of the machine and its environment as determined in step 501. If this consistency check is negative, the unit 100 goes to a step 505 of securing the machine and the user is asked to put again implementing steps 502 and 503, by selecting either another parameter as a preferred parameter or another threshold value for the previously selected parameter.

Si l'étape 504 détermine que la valeur de seuil sélectionnée pour le paramètre privilégié est cohérente avec la configuration de la machine déterminée à l'étape 501, l'unité 100 passe à une étape 506 au cours de laquelle elle détermine, les valeurs de seuil admissibles pour les autres paramètres d'utilisation de la machine. Cette étape 506 peut être effectuée au moyen de calculs réalisés par l'unité 100. Elle peut également être effectuée en accédant à une mémoire 102 contenant des données relatives à différentes configurations possibles pour la nacelle 1, l'unité 100 sélectionnant alors parmi ces données un jeu de données correspondant à une configuration dans laquelle la valeur sélectionnée du paramètre privilégié, en l'exemple 5 % pour le dévers maximum Dmax, peut être atteinte.If step 504 determines that the threshold value selected for the privileged parameter is consistent with the machine configuration determined in step 501, unit 100 proceeds to a step 506 in which it determines the permissible threshold values for the other operating parameters of the machine. This step 506 may be performed by means of calculations performed by the unit 100. It may also be performed by accessing a memory 102 containing data relating to different possible configurations for the platform 1, the unit 100 then selecting from among these data a data set corresponding to a configuration in which the selected value of the privileged parameter, in the example 5% for the maximum cant D max , can be reached.

En variante, l'étape 506 peut être réalisée à la fois en accédant à la mémoire 102 et en effectuant des calculs.Alternatively, step 506 can be performed both by accessing memory 102 and performing calculations.

Au terme de l'étape 506, la configuration limite déterminée par l'unité 100 est affichée sur la console 200, comme représenté à la figure 3. Plus précisément, des valeurs de seuil déterminées pour les paramètres autres que celui qui est privilégié sont affichées d'une part sur l'afficheur primaire 202, et d'autre part sous forme graphique sur l'afficheur 203. Les valeurs de seuil affichées sur l'afficheur primaire 202 concernent la masse maximum qui peut être disposée sur la plateforme 7, soit Mmax, le fait que la nacelle peut être utilisée en extérieur (valeur O ou N de Ext) et la vitesse maximale admissible pour le vent auquel est soumise la nacelle, soit Vmax.At the end of step 506, the limit configuration determined by the unit 100 is displayed on the console 200, as shown in FIG. figure 3 . More precisely, threshold values determined for the parameters other than the one that is privileged are displayed on the one hand on the primary display 202, and on the other hand in graphic form on the display 203. The threshold values displayed on the primary display 202 relate to the maximum mass that can be placed on the platform 7, ie M max , the fact that the nacelle can be used outdoors (value O or N of Ext) and the maximum permissible speed for the wind to which is subject the basket, V max .

Par ailleurs, l'étape 506 permet également de déterminer l'abaque de sécurité ou abaque de travail C à utiliser, laquelle est représentée sous forme graphique sur l'afficheur 203, avec la hauteur maximale du mât 6 H6max représentée en fonction du déport Δ de la plateforme 7.Furthermore, step 506 also makes it possible to determine the safety chart or working chart C to be used, which is represented in graphic form on the display 203, with the maximum height of the mast 6 H 6max represented as a function of the offset. Δ of the platform 7.

L'opérateur O se trouvant sur la nacelle 7 peut donc prendre connaissance de l'influence qu'à son choix de la valeur maximale Dmax du dévers sur les autres paramètres d'utilisation de la nacelle 1, en termes de charge maximale embarquée, en termes d'utilisation en extérieur, en termes de vitesse du vent maximale admissible et en termes de hauteur maximale admissible en fonction du déport.The operator O on the nacelle 7 can therefore take cognizance of the influence that he chooses the maximum value D max of the superelevation on the other parameters of use of the nacelle 1, in terms of maximum load onboard, in terms of outdoor use, in terms of maximum permissible wind speed and in terms of maximum permissible height depending on the offset.

Les valeurs limites déterminées à l'étape 506 sont alors confrontées, dans une étape ultérieure 508, aux valeurs déterminées au cours de l'étape 501 qui se répète à intervalle réguliers en cours d'utilisation de la nacelle 1, par exemple toutes les 40 ms. Si le résultat de cette vérification de cohérence est positif, c'est-à-dire si les valeurs déterminées à l'étape 501 n'excèdent pas les valeurs déterminées à l'étape 506, alors les conditions d'utilisation déterminées par l'unité 100 sont utilisées par celle-ci dans une étape 509 pour commander les vérins 51 et 63, ainsi que les moyens d'actionnement de la structure à parallélogramme 64, en fonction des ordres de mouvement entrés par l'opérateur O. Ces conditions d'utilisation peuvent également être utilisées pour commander le moteur 4 et les roues directrices 3B.The limit values determined in step 506 are then compared, in a subsequent step 508, with the values determined during step 501, which repeats at regular intervals during use of the pod 1, for example every 40 minutes. ms. If the result of this consistency check is positive, that is, if the values determined in step 501 do not exceed the values determined in step 506, then the conditions of use determined by the unit 100 are used by it in a step 509 to control the cylinders 51 and 63, as well as the actuating means of the parallelogram structure 64, according to the movement commands entered by the operator O. These conditions of use can also be used to control the motor 4 and the steering wheels 3B.

Si la vérification de cohérence de l'étape 508 montre que les valeurs déterminées à l'étape 501 risquent d'excéder une ou des valeurs de seuil déterminées à l'étape 506, on passe à l'étape 505 de mise en sécurité de la nacelle 1.If the consistency check of step 508 shows that the values determined in step 501 may exceed one or more threshold values determined in step 506, proceed to step 505 for securing the security. nacelle 1.

Ainsi, grâce à l'invention, l'utilisateur peut choisir un paramètre, tel que le dévers maximal admissible Dmax dans l'exemple mentionné ci-dessus, comme étant un paramètre prioritaire pour la détermination des conditions d'utilisation de la nacelle 1, c'est-à-dire en pratique les valeurs limites ou de seuil des autres paramètres qui sont déterminées en fonction d'une valeur de seuil fixée pour ce paramètre prioritaire. L'invention permet donc de faire fonctionner une nacelle dans des conditions qui ne seraient pas forcément accessibles pour une nacelle classique, dans la mesure où la valeur du paramètre prioritaire sélectionnée peut se trouver en dehors des plages de fonctionnement classiques des nacelles connues.Thus, thanks to the invention, the user can choose a parameter, such as the maximum permissible superelevation D max in the example mentioned above, as being a priority parameter for the determination of the conditions of use of the nacelle 1. , that is to say in practice the threshold or threshold values of the other parameters which are determined according to a threshold value set for this priority parameter. The invention therefore makes it possible to operate a nacelle under conditions that would not necessarily be accessible for a conventional nacelle, insofar as the value of the selected priority parameter may be outside the known operating ranges of known nacelles.

En effet, une fois la valeur du paramètre privilégié choisie, cette valeur peut être utilisée pour limiter les valeurs de seuil des autres paramètres, par rapport à une configuration classique.Indeed, once the value of the privileged parameter chosen, this value can be used to limit the threshold values of the other parameters, compared to a conventional configuration.

Par exemple, la valeur de 5 % choisie pour le devers maximum admissible peut induire que la charge maximale embarquée est ramenée à 250 kg, alors que la nacelle peut normalement emporter une charge de 400 kg dans des conditions dites normales d'utilisation où le devers possible est inférieur à 3 %.For example, the value of 5% chosen for the maximum permissible devers may induce that the maximum load on board is reduced to 250 kg, while the nacelle can normally carry a load of 400 kg in so-called normal conditions of use where the backs possible is less than 3%.

En variante, à ce stade, un choix peut être laissé à l'opérateur pour indiquer quel paramètre, autre que le paramètre privilégié, peut avoir sa valeur réduite ou modifiée de façon préférentielle pour que la valeur sélectionnée du paramètre privilégiée puisse être atteinte. Dans l'exemple ci-dessus, l'opérateur peut choisir que, lors de l'étape 506, la valeur de la charge maximale embarquée Mmax soit réduite de préférence à la valeur du déport maximal Δ. Selon une autre approche, l'opérateur peut préférer que ce soit la hauteur maximale H6max qui soit réduite, plutôt que de modifier les autres paramètres. Selon une autre variante, l'opérateur peut choisir plusieurs paramètres, par exemple Mmax et H6max, dont la valeur est ajustée de façon préférentielle en fonction de la valeur sélectionnée pour le paramètre privilégié.Alternatively, at this point, a choice may be left to the operator to indicate which parameter, other than the privileged parameter, may have its value reduced or preferably modified so that the selected value of the privileged parameter can be reached. In the example above, the operator can choose that, in step 506, the value of the maximum onboard load M max is reduced preferably to the value of the maximum offset Δ. According to another approach, the operator may prefer that the maximum height H 6max be reduced, rather than modify the other parameters. According to another variant, the operator can choose several parameters, for example M max and H 6max , the value of which is adjusted preferably according to the value selected for the privileged parameter.

L'invention a été décrite ci-dessus dans le cas où l'opérateur a le choix entre quatre paramètres comme paramètres prioritaires potentiels. Il est bien entendu que le nombre de ces paramètres prioritaires potentiels et leurs natures peuvent être adaptés en fonction des choix du concepteur de la nacelle. D'autres paramètres pouvant être utilisés en tant que paramètre prioritaire sont le nombre de personnes pouvant se trouver sur la plateforme 7, le déport maximal Δ ou la hauteur H6.The invention has been described above in the case where the operator has the choice between four parameters as potential priority parameters. It is understood that the number of these potential priority parameters and their natures can be adapted according to the choices of the designer of the nacelle. Other parameters that can be used as a priority parameter are the number of people that can be on the platform 7, the maximum offset Δ or the height H 6 .

Un autre paramètre prioritaire potentiel concerne le fait qu'un utilisateur référencé, que l'on peut qualifier d'administrateur, peut vouloir brider les performances d'une nacelle afin d'élargir son offre. En d'autres termes, un paramètre prioritaire peut concerner le fait qu'un administrateur donne ou non accès à la totalité des plages de fonctionnement d'une nacelle. L'utilisation d'un tel paramètre en tant que paramètre prioritaire permet à l'administrateur, qui peut être le représentant d'un loueur de nacelles, de limiter les performances d'une nacelle lorsqu'elle est louée dans un but précis, à la place d'une nacelle dont les performances théoriques sont inférieures. Ceci permet à un loueur d'élargir son offre à partir d'une même nacelle.Another potential priority parameter concerns the fact that a referenced user, who can be qualified as an administrator, may want to limit the performance of a nacelle to expand his offer. In other words, a priority parameter may relate to the fact that an administrator gives access or not to all of the operating ranges of a nacelle. The use of such a parameter as a priority parameter allows the administrator, who may be the representative of a nacelle rental company, to limit the performance of a nacelle when it is rented for a specific purpose. instead of a nacelle whose theoretical performance is lower. This allows a renter to expand its offer from the same basket.

L'invention a été décrite ci-dessus dans le cas où la nacelle 1 est équipée d'un anémomètre 11. En variante, cet anémomètre peut être remplacé par une partie de la console 200 où l'opérateur O indique directement la valeur maximale de la vitesse du vent auquel peut être soumise la nacelle 1, dans les limites normatives. Dans ce cas, lors de l'étape 5014, on prend en compte la valeur maximale indiquée par l'opérateur. Pour des raisons normatives, en Europe, la valeur indiquée par l'opérateur ne peut pas être inférieure à 45 km/h, si la nacelle est destinée à être utilisée en extérieur.The invention has been described above in the case where the nacelle 1 is equipped with an anemometer 11. Alternatively, this anemometer can be replaced by a part of the console 200 where the operator O directly indicates the maximum value of the wind speed to which nacelle 1 can be subjected, within the normative limits. In this case, during step 5014, the maximum value indicated by the operator is taken into account. For normative reasons, in Europe, the value indicated by the operator can not be less than 45 km / h, if the platform is intended to be used outdoors.

Les moyens de sélection du ou des paramètres privilégiés peuvent être différents de la console 200 représentée sur les figures. Ils peuvent, par exemple, comprendre des curseurs mobiles en translation, des touches + et - permettant d'augmenter ou de diminuer une valeur, etc...The means for selecting the preferred parameter or parameters may be different from the console 200 shown in the figures. They can, for example, include movable cursors in translation, + and - keys to increase or decrease a value, etc ...

L'invention a été décrite ci-dessus dans le cas où un seul paramètre prioritaire est à privilégier. Toutefois, en variante, on peut privilégier plusieurs paramètres prioritaires, les valeurs admissibles des autres paramètres étant déterminées en fonction de celles de ces paramètres prioritaires.The invention has been described above in the case where a single priority parameter is to be preferred. However, alternatively, several priority parameters may be prioritized, the permissible values of the other parameters being determined according to those of these priority parameters.

L'invention a été représentée dans le cas d'une nacelle à mât télescopique inclinable. Elle est applicable à tout type de nacelle, notamment les nacelles à ciseau et les nacelles à mât vertical, que ces nacelles soient automotrices ou tractées.The invention has been shown in the case of a tilt telescopic boom. It is applicable to any type of nacelle, including scissor lifts and nacelles vertical mast, these nacelles are self-propelled or towed.

L'invention a été décrite ci-dessus dans le cas où la valeur de seuil sélectionnée est une valeur maximale, notamment dans le cas du dévers admissible. Il peut également s'agir d'une valeur minimale, par exemple pour la masse Mmax ou une valeur binaire pour la possibilité d'utilisation en extérieur.The invention has been described above in the case where the selected threshold value is a maximum value, especially in the case of the admissible overhang. It can also be a minimum value, for example for the mass M max or a binary value for the possibility of use outdoors.

Claims (10)

  1. An elevating platform (1) comprising a chassis (2) equipped with a motor drive unit (4) and with ground-engaging means (3A, 3B), a platform (7), elevator means (6, 51, 63, 64) for elevating the platform relative to the chassis, sensors (8-11, 71), each delivering a signal representative of the configuration of the elevating platform or of its environment, and a control unit (100) for controlling the elevator means as a function of a plurality of parameters (D, M, v, H6, Δ), including parameters corresponding to the signals delivered by the sensors, said elevating platform being characterized in that it further comprises selector means (200) for selecting at least one priority parameter (Dmax) and a threshold value (5%) for said parameter, and in that the control unit (100) is suitable for determining operating conditions for the elevating platform (1) under which the threshold value for the priority parameter can be reached, and for controlling at least the elevator means (6, 51, 63, 64) within the limit of these operating conditions.
  2. An elevating platform according to claim 1, characterized in that the selector means comprise a display (202) suitable for showing various parameters (Mmax, Ext, Dmax, Vmax) that are suitable for being selected as priority parameter (dmax) and at least one input member (201) for inputting a command for selecting one of the displayed parameters as priority parameter, and for inputting a threshold value for said priority parameter.
  3. An elevating platform according to any preceding claim, characterized in that it further comprises at least one display device (202, 203) for displaying, in graphical form and/or alphanumeric form, limit operating conditions (Mmax. Ext, Dmax, Vmax, H6max, Δ) for the elevating platform that are determined by the control unit (100).
  4. A method of controlling an elevating work platform comprising a chassis (2) equipped with a motor drive unit (4) and with ground-engaging means (3A, 3B), a platform (7), elevator means (6, 51, 63, 64) for elevating the platform relative to the chassis, sensors (8-11, 71), each delivering a signal representative of the configuration of the elevating platform or of its environment, and a control unit (100) for controlling the elevator means as a function of a plurality of parameters (D, M, V, H6, Δ), including parameters corresponding to the signals delivered by the sensors, said method being characterized in that it comprises steps consisting in:
    a) determining (502) at least one priority parameter (Dmax) from among the parameters (Mmax, Ext, Dmax, Vmax) used by the control unit;
    b) choosing (503) a threshold value (5%) for said priority parameter;
    c) determining (506), as a function of the threshold value chosen in step b), operating conditions for the elevating platform (1), under which conditions the threshold value for the priority parameter can be reached; and
    d) controlling (509) at least the elevator means (6, 51, 63, 64) within the limit of these operating conditions determined in step c).
  5. A method according to claim 4, characterized in that, during step c), at least one limit value (Mmax, Ext, Vmax) is determined for at least one other parameter (M, Ext, V) used by the control unit, as a function of the threshold value (5%) chosen for the priority parameter (Dmax).
  6. A method according to claim 5, characterized in that step c) is performed at least in part by calculating the limit value of the other parameter (Dmax, Ext, Vmax).
  7. A method according to any one of claims 4 to 6, characterized in that step c) is performed at least in part by accessing a memory (102) containing data relating to a plurality of predetermined operating configurations for the elevating platform (1).
  8. A method according to any one of claims 4 to 7, characterized in that it further comprises an additional step d) (507) in which the operating conditions determined during step c) are displayed.
  9. A method according to any one of claims 4 to 8, characterized that it further comprises a step e) (504) subsequent to step b) and prior to step c) and in which it is checked that the value determined in step b) is consistent with the configuration of the machine that is determined the sensors, and in that step c) (506) is implemented as a function of the result of the consistency check of step e).
  10. A method according to any one of claims 4 to 9, characterized in that the priority parameter is representative of the choice made by a user as to whether or not to govern operation of the elevating platform (1).
EP10179351A 2009-09-28 2010-09-24 Lifting platform and method to command the same platform Active EP2301884B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0956679A FR2950618B1 (en) 2009-09-28 2009-09-28 LIFT BOOM AND METHOD OF CONTROLLING SUCH NACELLE

Publications (2)

Publication Number Publication Date
EP2301884A1 EP2301884A1 (en) 2011-03-30
EP2301884B1 true EP2301884B1 (en) 2012-05-09

Family

ID=42173880

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10179351A Active EP2301884B1 (en) 2009-09-28 2010-09-24 Lifting platform and method to command the same platform

Country Status (4)

Country Link
US (1) US9079756B2 (en)
EP (1) EP2301884B1 (en)
AT (1) ATE556980T1 (en)
FR (1) FR2950618B1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513283B1 (en) * 2012-11-12 2014-03-15 Palfinger Ag Method for reporting the risk of tipping a crane
CA2894461A1 (en) * 2012-12-07 2014-06-12 Linepro Equipment Ltd. Vehicle mounted crane boom assembly with a dielectric boom arm
US10410124B1 (en) * 2013-01-21 2019-09-10 Link-Belt Cranes, L.P., Lllp Display for displaying lifting capacity of a lifting machine and related methods
WO2014149125A1 (en) * 2013-03-15 2014-09-25 Rodney Koch Lift arm structure with an articulated knee portion for a power machine
DE202013003782U1 (en) * 2013-04-22 2013-05-07 Manitowoc Crane Group France Sas Sensor-based monitoring of wind direction and heat radiation for a mobile implement
US9272224B2 (en) * 2014-03-06 2016-03-01 Disney Enterprises, Inc. Amusement park ride with cantilevered ride vehicles
US20150368082A1 (en) * 2014-06-23 2015-12-24 The Boeing Company Collision avoidance system for scissor lift
US9790069B2 (en) * 2014-06-23 2017-10-17 The Boeing Company Collision avoidance system for scissor lift
US20140320293A1 (en) * 2014-07-08 2014-10-30 Caterpillar Inc. Operator alert and height limitation system for load carrying machines
US10611616B2 (en) * 2014-12-09 2020-04-07 Altec Industries, Inc. Aerial device with quick-coupling implement
GB2552025B (en) 2016-07-08 2020-08-12 Sovex Ltd Boom conveyor
FR3056203B1 (en) * 2016-09-21 2020-10-09 Haulotte Group VISUAL ASSISTANCE FOR MOVING A LIFT BASKET ON THE GROUND
JP6189512B1 (en) * 2016-10-17 2017-08-30 日本ビソー株式会社 Work vehicle with gondola device
US20180132477A1 (en) * 2016-11-16 2018-05-17 ADC Custom Products, LLC Transportable Observation Station
WO2018145079A1 (en) 2017-02-06 2018-08-09 Mietzner Jr Leroy W Boom safe, anti-tip system
US10707869B2 (en) * 2017-05-18 2020-07-07 Altec Industries, Inc. Insulated joystick
JP6261800B1 (en) * 2017-07-12 2018-01-17 日本ビソー株式会社 Working gondola device and working vehicle equipped with the same
CN108658019B (en) * 2018-07-03 2019-07-30 徐州海伦哲专用车辆股份有限公司 A kind of working bucket leveling system of high-altitude operation vehicle
JP7213666B2 (en) * 2018-11-27 2023-01-27 株式会社アイチコーポレーション Safety device for aerial work platform
EP3947248A1 (en) * 2019-04-05 2022-02-09 Oshkosh Corporation Platform control box
US11919756B2 (en) 2020-02-04 2024-03-05 Xtreme Manufacturing, Llc Aerial work vehicle boom auxiliary control panel
JP2022059745A (en) * 2020-10-02 2022-04-14 株式会社アイチコーポレーション Operation control device for high altitude working vehicle
CN112938853B (en) * 2021-03-10 2022-05-27 湖南星邦智能装备股份有限公司 Optimization control method for implementing stable operation of aerial work platform
CN113816317B (en) * 2021-08-24 2023-07-04 江苏徐工工程机械研究院有限公司 Parameter calibration control method and system for aerial working platform
CN114460976A (en) * 2021-12-29 2022-05-10 湖南中联重科应急装备有限公司 Control method and device for arm support, storage medium, processor and arm support
US11822356B1 (en) 2023-01-30 2023-11-21 Altec Industries, Inc. Aerial lift systems and control input apparatuses with high electrical resistance for use with aerial lift systems

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670849A (en) * 1970-10-23 1972-06-20 Baker Equipment Eng Co Inc Aerial personnel platform with proximity sensing system
US4178591A (en) * 1978-06-21 1979-12-11 Eaton Corporation Crane operating aid with operator interaction
US4331215A (en) * 1980-02-12 1982-05-25 Jlg Industries, Inc. Controls for aerial lift platform apparatus
US4359137A (en) * 1980-05-30 1982-11-16 Jlg Industries Inc. Safeload indicator for aerial lift platform apparatus
US4326601A (en) * 1980-05-30 1982-04-27 Jlg Industries, Inc. Aerial lift platform apparatus with capacity indicator
US4456093A (en) * 1981-06-16 1984-06-26 Interstate Electronics Corp. Control system for aerial work platform machine and method of controlling an aerial work platform machine
US4514796A (en) * 1982-09-08 1985-04-30 Joy Manufacturing Company Method and apparatus for controlling the position of a hydraulic boom
JPH0742077B2 (en) * 1990-02-09 1995-05-10 極東開発工業株式会社 Work range control device for aerial work vehicles
US5390104A (en) * 1990-04-02 1995-02-14 Fulton; Francis M. Adaptive control man-augmentation system for a suspended work station
SG82672A1 (en) * 1999-02-04 2001-08-21 Snorkel International Inc Aerial work platform boom having ground and platform controls linked by a controller area network
US6439341B1 (en) * 2001-02-14 2002-08-27 Snorkel International, Inc. Apparatus for monitoring loading of a lift
JP2003014528A (en) * 2001-06-28 2003-01-15 Denso Corp Seat load measuring system
JP2003034498A (en) * 2001-07-23 2003-02-07 Hitachi Constr Mach Co Ltd Overload detecting device for high lift work vehicle
US7014054B2 (en) 2002-07-01 2006-03-21 Jlg Industries, Inc. Overturning moment measurement system
US7004285B2 (en) * 2003-06-25 2006-02-28 Bailey Jeffrey H Load-sensing mechanism for aerial work apparatus
US8622170B2 (en) * 2004-02-26 2014-01-07 Jlg Industries, Inc. Lift vehicle with multiple capacity envelope control system and method
DE102005059768A1 (en) * 2005-07-22 2007-01-25 Liebherr-Werk Ehingen Gmbh Crane, preferably caterpillar or vehicle crane
FR2898120B1 (en) * 2006-03-03 2008-05-02 Manitou Bf Sa "CONTROL DEVICE, IN PARTICULAR FOR HANDLING MACHINE"
FR2908119B1 (en) * 2006-11-07 2009-02-06 Haulotte Group Sa LIFT BOOM AND METHOD FOR CONTROLLING SUCH NACELLE
US20110042164A1 (en) * 2009-08-18 2011-02-24 Genie Industries, Inc. Apparatuses and methods for determining and controlling vehicle stability

Also Published As

Publication number Publication date
EP2301884A1 (en) 2011-03-30
FR2950618B1 (en) 2011-10-21
US9079756B2 (en) 2015-07-14
US20110088970A1 (en) 2011-04-21
FR2950618A1 (en) 2011-04-01
ATE556980T1 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
EP2301884B1 (en) Lifting platform and method to command the same platform
EP2537684B1 (en) Axle shaft, and vehicle including at least one such axle shaft
EP1698497B1 (en) Tilt control device for forklift
EP2686200B1 (en) Device and method for controlling a seat actuator in a vehicle such as an aircraft
EP2123590B1 (en) Method for controlling the orientation movement of the rotating part of a tower crane
FR2868764A1 (en) FORKLIFT HAS BETTER STATIC / QUASI STATIC TILTING STABILITY
FR2868765A1 (en) FORKLIFT HAS BETTER STATIC / QUASI-STATIC AND DYNAMIC TILTING STABILITY
EP3431435B1 (en) Control of a handling machine
EP3736245B1 (en) Control of a handling machine
EP1452479B1 (en) Scissor lift platform and method for controlling lifting and lowering the platform
FR2909084A1 (en) Aerial lift, has electronic programmable control unit controlling motor for displacing frame in forward and reverse directions when measured magnitude of frame corresponds to specific angles, respectively
EP3356282B1 (en) System for modification of the steering ratio for a vehicle provided with a steering wheel, and corresponding vehicle
EP1829812B1 (en) Control device, in particular for a handling machine
EP1923347A1 (en) Aerial lift and method of controlling such a lift
FR2750972A1 (en) Mechanical handler with safety system preventing accidental tipping over
EP1186568B1 (en) Elevating work platform and control method for a load carried thereon
WO2023139236A1 (en) Steering control system for a wheeled work vehicle
FR2990202A1 (en) Motorized lifting machine for lifting e.g. load, to desired position, has telescopic supporting arm articulated on frame, where frame includes four arms independently pivoted centrally of frame, and each arm includes hydraulic wheel-motor
FR2750971A1 (en) Mechanical handler with safety system preventing accidental tipping over
EP3929522B1 (en) Pointing device for a weapon system comprising a weapon secured to a frame and method implementing such a device
EP4116251A1 (en) Method for controlling a crane for selecting and applying a preferential load curve according to the inclination of a boom structural element
EP3395748B1 (en) Hoisting engine
FR2878016A1 (en) Camera platform horizontality maintaining device, has correcting unit to correct relative inclination between arm and platforms, and including force returning unit to simultaneously correct inclination of platforms
FR2631377A1 (en) Extending ladder for fibre engine - has hydraulic cylinder to bring rung to horizontal position when engine is on sloping ground
FR3131333A1 (en) Improved device for converting the horizontal angular displacement of a boom of an earth-moving machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110829

RIC1 Information provided on ipc code assigned before grant

Ipc: B66F 11/04 20060101AFI20110928BHEP

Ipc: B66F 17/00 20060101ALI20110928BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 556980

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010001451

Country of ref document: DE

Effective date: 20120719

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120509

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 556980

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120910

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: HAULOTTE GROUP

Effective date: 20120930

26N No opposition filed

Effective date: 20130212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120820

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010001451

Country of ref document: DE

Effective date: 20130212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120924

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100924

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230908

Year of fee payment: 14

Ref country code: GB

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230811

Year of fee payment: 14

Ref country code: DE

Payment date: 20230911

Year of fee payment: 14